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Mathematical problems in mechanics

Abstract

In this Note we study the regularity of the solution of an obstacle problem for linearly elastic elliptic membrane

shells, obtained as a result of a rigorous asymptotic analysis. Since the solution of this boundary value problem
is uniquely determined, the problem in object is formulated as a set of variational inequalities posed over a
non-empty, closed, and convex subset of a Sobolev space. We will show that, by imposing a higher regularity
on the applied body force density acting on the linearly elastic elliptic membrane shell under consideration, the
displacement vector field that solves the aforementioned variational inequalities actually enjoys, at least locally, a
regularity higher by one order for each of its components.

Dans cette Note, nous étudions la régularité de la solution d’un probléme d’obstacle pour des coques mem-
branaires elliptiques linéairement élastiques, obtenu a la suite d’une analyse asymptotique rigoureuse. Puisque la
solution de ce probléme aux limites est déterminée de maniére unique, le probléme dans I'objet est formulé comme
un ensemble d’inégalités variationnelles posées sur un sous-ensemble non vide, fermé et convexe d’un espace de
Sobolev. Nous montrerons qu’en imposant une régularité plus élevée a la densité de force corporelle appliquée agis-
sant sur la membrane elliptique linéairement élastique considérée, le champ de vecteurs de déplacement qui résout
les inégalités variationnelles susmentionnées bénéficie en fait, au moins localement, d’une régularité supérieure
d’un ordre pour chacun de ses composants.

1. Preliminaries

For definitions, notations and other preliminaries, we refer to [1]. The complete proofs of the results
presented in this Note will be found in [2].
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2. Formulation of an obstacle problem for a linearly elastic elliptic membrane shell

Let w be a domain in R2, let y := Ow, and let v be a non-empty relatively open subset of . For each

€ > 0, we define the sets

O =w x]—g, e[ and T'§ := v X |—¢,¢],
we let 2° = (%) designate a generic point in the set Q¢, and we let 95 := 9/0z5. Hence we also have
x5, = Yo and 05, = 0O,.

Given an immersion 8 € C*(w;E?) and € > 0, consider a shell with middle surface 8(w) and with
constant thickness 2e. This means that the reference configuration of the shell is the set ©(2¢), where
the mapping © : Q¢ — E3 is defined by

O(x°) := O(y) + 25a>(y) at each point 2° = (y,x5) € Q°.

One can then show (cf., e.g., Theorem 3.1-1 of [3]) that, if ¢ > 0 is small enough, such a mapping

© € C%(05; E3) is an immersion, in the sense that the three vectors
g7 (%) = 070 (x")

are linearly independent at each point 2° € Q¢; these vectors then constitute the covariant basis at the
point ©(z¢), while the three vectors g7¢(z¢) defined by the relations

g’ (a°) - g5 () = 6]
constitute the contravariant basis at the same point. It will be implicitly assumed in the sequel that € > 0
is small enough so that ©® : Q¢ — E3 is an immersion.

One then defines the metric tensor associated with the immersion ® by means of its covariant compo-
nents

95 =95 - g5 € CH(Q),
or by means of its contravariant components
gij,a = gi,e . gj,a c Cl(W)

Note that the symmetric matrix field (¢*) is then the inverse of the matrix field (g;), that g7 =
gJ<gs and gf = gfjgj’s, and that the volume element in ©®(QF) is given at each point ®(x°), 2° € QF,
by +/¢¢(xf) dz®, where L

g° = det(gj;) € C*(£2).

One also defines the Christoffel symbols associated with the immersion ® by
IV = dig5 - g"° =T%° € C°(9).
Note that T%$ = % = 0. -
Given a vector field v© = (v§) € C}(Qf;R3), the associated vector field
¢ =g
can be viewed as a displacement field of the reference configuration ®(Q¢) of the shell, thus defined by
means of its covariant components v over the vectors g»° of the contravariant bases in the reference

configuration.
If the norms ||v5|] c1(a) are small enough, the mapping (® + v:g™®) is also an immersion, so that one

can also define the metric tensor of the deformed configuration (© + v g"¢)(QF) by means of its covariant
components

955 (v%) :=(g5 + 9;%%) - (g5 + 0; %)
=g, + g5 - 9;0° + 0507 - g5 + 9,0 - 0,;0°.
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The linear part with respect to v° in the difference (g;;(v®) — g5;)/2 is then called the linearised strain

tensor associated with the displacement field v g%, the covariant components of which are thus defined
by

1 - N 1
e (v°) =3 (g - 0;0° + 0;0° - g5) = 5 (0507 +07v5) — I3 vy = €5y (v).

The functions ef‘lj(vs) are called the linearised strains in curvilinear coordinates associated with the
displacement field v$g®®.

We assume throughout this Note that, for each ¢ > 0, the reference configuration ©(Q¢) of the shell
is a natural state (i.e., stress-free) and that the material constituting the shell is homogeneous, isotropic,
and linearly elastic. The behaviour of such an elastic material is thus entirely governed by its two Lamé
constants A > 0 and p > 0 (for details, see, e.g., Section 3.8 of [4]).

We will also assume that the shell is subjected to applied body forces whose density per unit volume is
defined by means of its covariant components f©¢ € L?(QF), and to a homogeneous boundary condition
of place along the portion I'{ of its lateral face (i.e., the displacement vanishes on I'j).

In this Note, we consider a specific obstacle problem for such a shell, in the sense that the shell is also
subjected to a confinement condition, expressing that any admissible deformed configuration remains in
a half-space of the form

H:= {0z € E*; Ox - q¢ > 0},
where q € E? is a non-zero vector given once and for all. In other words, any admissible displacement
field must satisfy

(©(°) + v (27)g"*(2%)) - > 0
for all 2° € Q¢, or possibly only for almost all (a.a. in what follows) 2° € F when the covariant
components v¢ are required to belong to the Sobolev space H! () as in Theorem 2.1 below.

We will of course assume that the reference configuration satisfies the confinement condition, i.e., that

0(0f) C H.

Such a confinement condition renders the study of this problem considerably more difficult, however,
as the constraint now bears on a vector field, the displacement vector field of the reference configuration,
instead of on only a single component of this field.

The mathematical modelling of such an obstacle problem for a linearly elastic shell is then clear; since,
apart from the confinement condition, the rest, i.e., the function space and the expression of the quadratic
energy J¢, is classical (see, e.g. [3]). More specifically, let

Aijké,e — )\gij,egkl,a + L (gik,sgjé,e +gi€,agjk,e) — Ajiké,s — Akéij,a
denote the contravariant components of the elasticity tensor of the elastic material constituting the shell.

Then the unknown of the problem, which is the vector field u® = (u$) where the functions ug : Q< — R

are the three covariant components of the unknown “three-dimensional” displacement vector field usg®®
of the reference configuration of the shell, should minimise the energy J¢ : H'(Q¢) — R defined by

JE(v) = %/5 Aijke’seiw(vs)efuj(ve)ﬁdxs — . ]""’Evf\/g?dzr6
for each v = (v5) € H(QF) over the set of admissible displacements defined by:
U(Q°) :={v° = (v5) € H(Q°); v° =0 on T,
(©(2°) + v (2°)g"* (2%)) - ¢ > 0 for a.a. 2° € Q°}.
The solution to this minimisation problem exists and is unique, and it can be also characterised as the
unique solution of a set of appropriate variational inequalities (cf., Theorem 2.1 of [5]).
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Theorem 2.1 The quadratic minimisation problem: Find a vector field u® € U(2°) such that

JE(uf) = inf JE (v
(U ) UEEIII}(QE) <U )

has one and only one solution. Besides, the vector field u® is also the unique solution of the variational
problem P(Q°): Find u® € U(QF) that satisfies the following variational inequalities:

. ATREE e () (efnj(vs) - efuj(us)) Ve dat > /Q Fo5(0f = uf)V/gF dat

for all v¢ = (v§) € U(2F). O
The limit problem we are interested in is derived as a result of the rigorous asymptotic analysis con-
ducted in Theorem 4.1 of [5].
Theorem 2.2 Let w be a domain in R?, let @ € C3(w;E?) be an immersion such that the surface 6(w)
is elliptic, and let ¢ € E3 be a non-zero vector. Define the space and sets
Vi (w) = Hy(w) x Hg(w) x L*(w),
Un(w) = {n = (m) € Hy(w )XHo(W)
(6(y) +m:(y)a’(y)) -
Un(w) = {n = (m) € Hy(w ) x Ho(w
(0(y) +mi(y)a’(y)) -

and assume that the immersion 0 is such that

*(w);

x L
q >0 for a.a. y € w},

o (W)

) x H,
g >0 for a.a. y € w},

d := min(8(y) - q) > 0,
Yyew
is independent of €, and assume that the following “density property” holds:
Uy (w) is dense in Uy (w) with respect to the norm of 1 71 oy Bt w0y x 22 (0) -

Let there be given a family of membrane shells with the same middle surface 6(w) and thickness 2 > 0,
and let

u(e) = (ui(e)) € U(g;Q) == {v = (v;) € H'(Q); v =0o0n v x |-1,1],
(6(y) + ez3as(y) + vi(z)g' (e)(z)) - @ > 0 for a.a. z = (y,x3) € Q}

denote for each ¢ > 0 the unique solution of the corresponding scaled problem P(e;QY) introduced in
Theorem 8 of [2].
Then there exist functions u, € HY(Q)) independent of the variable x3 and satisfying

Uo =0 on vy x|—1,1],
and there exists a function uz € L?(Q) independent of the variable x3, such that
U () = uq in HY(Q) and uz(e) — uz in L*(Q).
Define the average

Then

where ¢ is the unique solution of the two-dimensional variational problem Pp(w): Find ¢ € Up(w) that
satisfies the following variational inequalities

[ a5 e (€rrastn = OVady = [ 9~ G)vady for all g = () € Une(e),
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where
A p

A+2p

1
abor . a“Pa’ 4+ 2u (a‘waBT + amaﬁa) and p’ := / fidas.
-1
O
Critical to establish the convergence of the family (u(g))->0 is the “density property” assumed there,
which asserts that the set Uns(w) is dense in the set Unr(w) with respect to the norm ||-[| g () x 1 (w)x 22 (w)-
The same “density property” is used to provide a justification, via a rigorous asymptotic analysis, of
Koiter’s model for membrane shells subject to an obstacle (cf. [6], [7]). We hereby recall a sufficient
geometric condition ensuring the assumed “density property” (cf. Theorem 5.1 of [5]).
Theorem 2.3 Let 6 € C?(w;E?) be an immersion with the following property: There exists a non-zero
vector q € E? such that

min(6(y) - q) > 0 and min(as(y) - q) > 0.
YeEw YyEW

Define the sets

Unr(w) := {n =(n:) € Hy(w) x Hg(w) x L*(w);
(0(y) +mi(y)a’(y)) - g > 0 for a.a. y € w},
Un(w) ND(w) := {n =(m) € D(w) X D(w) x D(w);
(G(y) +n:(y)a’ (y)) -q >0 for a.a. y € w}.

Then the set Upr(w) D (w) is dense in the set Unr(w) with respect to the norm ||| g1 ) x 1 (wyx 12(w)- &
Examples of elliptic membrane shells satisfying the “density property” thus include those whose middle
surface is a portion of an ellipsoid that is strictly contained in one of the open half-spaces that contain
two of its main axes (see, e.g., that drawn in Figure 4.1-1 in [3]), the boundary of the half-space coinciding
with the obstacle in this case.
As a final step, we de-scale Problem Pj;(w) and we get the following variational formulation (cf.
Theorem 4.2 of [5]).
Problem P5,(w) Find (¢ = ((§) € Un(w) satisfying the following variational inequalities:

e / 0T (CVap( — C)Vady > / (i — ¢ )ady,

for all m = (n;) € Upr(w), where p€ := ffs [ das. |

3. Augmentation of interior regularity of the solution of Problem Pj,(w)

Before proving the main result of this section, we briefly outline the main steps we are going to
implement for showing that the solution ¢° of Problem P§, (w) is also of class HZ .(w) x HZ .(w) x HL (w).
The main difficulty in doing so amounts to constructing an admissible test vector field from which it is
possible to infer the desired augmented regularity property.

Our strategy consists in locally perturbing the solution ¢ by a vector field with compact support in a
neighbourhood of w, compact support which is sufficiently far away from the boundary ~.

In order to implement this local perturbation strategy, we have to first fix a neighbourhood U; C w
sufficiently far away from the boundary v, and consider a smooth function ¢ whose support is compact
in Ul.

Second, we multiply the smooth function ¢ by a suitable coefficient ¢ > 0, o = O(h?) and a suitable
second order finite difference quotient. The purpose of the positive coefficient p is to ensure that the
geometrical constraint appearing in the set Ujys(w) is satisfied in the selected neighbourhood U;. The
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argument of the second order difference quotient is the product between the smooth function ¢ and a
smooth approximation of the solution. The approximation by smooth functions requirement cannot be
dropped since the transverse component of the solution, namely (5, is a priori only of class L?(w). This
regularity is in general too low for working with a second order difference quotient.

Thanks to the assumed “density property”, we are in a position to consider an approximation by smooth
functions of the solution ¢¢, approximations which all belong to the non-empty, closed and convex subset
U]V[ (w)

To begin with, we establish two abstract preparatory lemmas. The complete proof of the first lemma
can be found in [2], viz. Lemma 2.

Lemma 3.1 Let w, wy and wy be subsets of R? as in Section 5 of [2]. For each y € w, let a'(y) denote
a vector of the contravariant basis at the point 6(y) of the surface 0(w).

Assume that 9 € C*(w; E?) is such that 9 - q concave on wg. Let n = (n;) € H'(w) x H'(w) x L*(w) be
such that (9(y) +n:(y)at(y)) - q > 0 for a.a. y € wo.

Then, for each 0 < h < d and all 0 < ¢ < h?/2, the vector field n, = (n,:) € L*(w1) defined in a way
such that

No,@ = mia’ + 0p15pn(ma’),
is such that (9(y) +1g,:(y)a'(y)) -q >0 for a.a. y € wy.

Sketch of the proof. For a.a. y € w; we have that
Me,i ()@ (y) = ni(y)a' (y) + 0p1(y)d,n(nia’)(y)

- h%wl(y)(mai)(y + he,) + (1 — fé’@l(yo (ma®)(y) + h%@l(y)(mai)(y ~he,).

By virtue of the properties of ¢; and g, the functions ¢;(y) = c_1(y) := oh 2p1(y) and co(y) :

1—20h =21 (y) are non-negative in @. Combining these properties with the assumption that (9+n;a’)-q >
0 almost everywhere in wy gives:

%ﬂwwquz(Mw+g%@f%y+M02Ww+9@h%».%

2
for a.a. y € wy.
The assumed concavity of 9 - q in wq gives

O(y + he,) — 21}91(2y) + 9y — hep)) g <0,

@w@yqz(

for all 0 < h < d and all y € w;. Recalling that supp ¢; CC wi, we derive (9(y) + n,.:(y)a*(y)) - q > 0
for a.a. y € wq, as it was to be proved. O

The next result is a direct application of Lemma 3.1 and of the “density property” (see Corollary 1
in [2]).
Corollary 3.2 Let w, wy and wy be subsets of R? as in Section 5 of [2]. For each y € @, let a'(y) denote
a vector of the contravariant basis at the point 0(y) of the surface 0(w).

Assume that 9 € Ct(w; E3) is such that 9 - q concave on wy. Let n = (n;) € H'(w) x H*(w) x L?(w) be
such that (9(y) + ni(y)a‘(y)) - q > 0 for a.a. y € wy. Let 0 < h < d be given, and let 0 < o < h?/2. In
correspondence of one such number h, define the number € = ¢(h) > 0 by

inf >0 mingegr(0pn (=9 - q))

0<e<h?|—2el2 . 1
€= 2max{||a’ - q|lco@); 1 < i < 3} M




Assume that in correspondence of such a number € there exists an element € = (&;) € C* (@) such that
(I(y) + & (y)ai(y)) - q > 0 for all y € Wy and such that

1€ (y) — ni(y)] < g for a.a. y €w; and all 1 <4 < 3. (2)
Then, the vector field ), defined in a way such that
o.j0’ :=mia’ + op10,n(&ia’),

is such that fl, = () € H'(w) x H'(w) x L*(w) and (9(y) + Npi(y)at(y))-q >0 for a.a. y € wy. O

For treating the case where the concavity assumption fails, we need the following auxiliary result (cf.
Lemma 3 of [2]).
Lemma 3.3 Let the function 9 = (¥1,92,93) € C*(w;E?) be such that 9 -q > 0 in w. Then, for every
Yo = (Yo.1,%0,2) € w, there exists a neighbourhood U of yo and numbers B € R, By > 0,r > 0 such that
the function (—9 - q + B)g is convex in U, where

1.2
g() =15 [ exo(rup —rv0,)  forally = (v1,30) € .
p=1

Moreover, it results g(y) > Bo, for ally € U.

Sketch of the proof. Fix yo € w. Owing to the fact that ¥ € C*(w;E3) and ¥ - ¢ > 0 in @, we can find
numbers B € R and 7" > 0, and a neighbourhood U of yy such that

—%(y)-q+B<-T<0 forall yelU.
For all y = (y1,y2) € W, define the function:

2
(y) == [ exp(ryp — ry0.p)-
p=1
We recall that a function is convex if and only if it is convex along any lines that intersect the function
domain (cf., e.g., page 67 of [8]). In other words, checking the convexity of the function (—¢ - g + B)g in
U amounts to checking that, for all v = (vy,v2) € R? and all y = (y1,92) € U, the function

H(t):=(-9(y+tv)-q+ B)gly +tv), teR, (y+tv)=(y1 +tvy,ys +tvs) €U,

is convex.

Thanks to the global uniform boundedness of the first and second derivative of 9 - q in @, the properties
of the numbers B and T', and the positiveness of the functiong § and II, we derive that there exists a
positive number M such that:

1 d*H 11

———(t)>-M|=—=

IT de? () = ’H 2‘
We observe that, for r sufficiently large,

T
—rM + 5(7)1 + v2)2r2.

T
pi(r) := 5(«}1 + v2)%r2 — Mr — M > 0.

Let us choose a neighbourhood U of yg such that U CC Uy and

1.3
[Yp — vo,p| < o ln§ for all y € U and all p € {1,2}. (3)
r
On the one hand, it is immediate to see that, by the monotonicity of the exponential and (3),

3
0<H(y)§§ for all y € U. (4)



On the other hand, again by (3), we have that

2
1 1 1
— - — = exp(—r(yp —Yo0,p)) — = <1 forally el, 5
and, by virtue of (4), we have that
1 1 2 1
—— ——->-—-->0 forall . 6
My 2°-3 2> orallyeld (6)
In conclusion, putting (5) and (6) together, we have that
’ 1 1‘ <1 forallyel (7)
—— == < or all y .
Ii(y) 2
By virtue of (4), we also obtain g(y) > 1 —1I/2 > 1/4, for all y € U. Letting By := 1/4 completes the
proof. O

In the next preparatory lemma, we prove some convergence properties of the operator D, for functions.
Since its proof is technical, we directly refer to Lemma 4 of [2] for the proof.
Lemma 3.4 Let {v;}r>1 be a sequence in C1(w) that converges to a certain element v € H'(w) with
respect to the norm || - || g1 (). Then, we have that for all 0 < h < d and all p € {1,2},

Dypv € H' (wg) and  Dypvp — Dypv in H (wp) as k — oo. (8)

O
We are now ready to prove the main result of this Note.
Theorem 3.5 Assume that the “density property” stated in Theorem 2.2, namely,

Uy (w) is dense in Uyy(w) with respect to the norm of 111 271 oy x B2 (w0) x 22 ()

holds. Assume also that the vector f¢ = (f*¢) defining the applied body force density is of class H' ().
Then, the solution ¢ of Problem P5;(w) is of class Vis(w) N HE (w) x HE (w) x H} (w).

loc

Sketch of the proof. For the complete proof, we refer to Theorem 6 of [2].

The idea consists in showing that || Dy, (¢%0) || f2 w4y ) x H2 (@) x B 1y ) 18 uniformly bounded by a constant
independent of h. The function ¢ is assumed to be of class C* with support compact in U .

To begin with, thanks to Lemmas 3.1-3.4 and the assumed “density property” it is possible to establish
that the vector field 5;”“ defined by

§§jf(y)aj(y)=Cf(y)ai(y)+Q(§(y))‘1w2(y)5ph[(Cf”“(y)ai(yHl;;) §<y>] for a.a y €, (9)

satisfies O(y) - ¢ + 5Zf(y)az(y) -q >0, for a.a. y € U; and is such that ég’k € HY'(Uy) x H (Uy) x L (Uy).
By resorting to the assumed “density property”, and the previous lemmata, we can show that there
exists a constant C' > 0 independent of h such that

6/ a7 o (Do (9C))Vap (Do (96%))Vady < C(1+ || Do (€)1 i1 @iy ) x bt ) x L2y )-
U

Finally, Korn’s inequality on a surface (cf., e.g., [9] and [10]) gives the existence of a constant ¢ > 0
such that

oT 1
E/u 0™ Yo (Do (9C) V05 (Dpn (¢ Vady = —1Dpn (0 @y @y x 22 @i

completing the proof. O
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