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Abstract

Neural networks are full of promises for the resolution of ill-posed inverse problems. In
particular, physics informed learning approaches already seem to progressively gradually
replace carefully hand-crafted reconstruction algorithms, for their superior quality. The aim
of this paper is twofold. First we show a significant weakness of these networks: they do
not adapt efficiently to variations of the forward model. Second, we show that training the
network with a family of forward operators allows to solve the adaptivity problem without
compromising the reconstruction quality significantly. All our experiments are carefully
devised on partial Fourier sampling problems arising in magnetic resonance imaging (MRI).

Index terms— Inverse problems, adaptivity, model based reconstruction, convolutional
neural network, unrolled networks, MRI reconstruction

1 Introduction

The primary concern of this paper is the design of model-based neural networks to solve families
of linear inverse problems. Many sensing devices like cameras, magnetic resonance imaging
(MRI) or computerized tomography (CT) measure a signal x ∈ CN through a linear operator
A(ξ) ∈ CM×N . The parameter ξ ∈ RP reflects the fact that the sensing operator may change
depending on the imaging conditions. For instance, it could encode the point spread function in
image deblurring, the projection angles in CT or the Fourier sampling locations in MRI. This
leads to measurements of the form:

y = P(A(ξ)x), (1)

where P : CM → CM is a perturbation (e.g. additive Gaussian noise, quantization). A model
based inverse problem consists in recovering an estimate x̂ of x from y and A(ξ).

Regularization theory From a historical perspective, the first solvers were based on simple
inverses or approximate inverses of A(ξ). This approach provides low quality results when the
matrix A(ξ) has a non trivial kernel or when the conditioning number of A∗(ξ) is high. In those
cases, it is critical to use regularization terms. For long (∼ 1960-2000), simple quadratic terms
(Tikhonov) dominated the scientific landscape. Around 1990, a second research trend appeared
with convex, nonlinear regularizers (e.g. total variation regularization). This area culminated
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with the development of the compressed sensing theory. Starting from 2015, impressive perfor-
mance gains have occurred with the advent of neural networks. They are likely to replace the
initial methods in a growing number of technologies [18].

Learned reconstructions There are two main approaches to attack reconstruction problems
using machine learning [4].

A first solution is end-to-end networks where the neural network is agnostic to the operator
A(ξ). It gets trained through pairs (y,x) generated with the model (1). A popular example
is AUTOMAP [23]. In this technology, the network needs to infer the forward model from the
training data. This usually requires a huge amount of training data for large M and N .

The other possibility is model-based reconstruction networks. They are often praised for their
interpretability. They can be considered as mappings of the form:

N : RD × RP × CM → RN

(w, ξ,y) 7→ N [w, ξ,y].

Given a weight w ∈ RD, a forward operator parametrization ξ and a measurement vector y, the
network N outputs an estimate x̂. The weights w are trained so as to minimize a quality metric

between x̂ and x. A typical choice is the empirical risk E(w)
def
= 1

2I

∑I
i=1 ‖N [w, ξ,yi] − xi‖22,

where (xi)1≤i≤I is a collection of training images and yi are the corresponding measurements
generated using the model 1. Two popular families among this class are:

• Denoising nets: There, the reconstruction network performs a crude inversion followed by
a denoising network such as a U-Net, to remove the remaining artifacts, see e.g. [11].

• Unrolled nets: Many efficient iterative methods have been developed to solve convex opti-
mization problems (forward-backward, Douglas-Rachford, ADMM, ...) [7]. They have the
general form:

xk+1 = proxR (M(A(ξ),y,xk)) , (2)

for k = 1 to K ∈ N. The mapping M is linear and can be interpreted as a crude way to
invert the operator, in the sense that A(ξ)M(A(ξ),y,xk) ' y. The term proxR can be
interpreted as a way to regularize (denoise) the remaining artifacts.

The unrolled networks draw their inspiration from (2). They consist in replacing the
human-made proximal operator proxR by a sequence of neural networks Nk[wk] promoting
an output xK similar to the images observed during the training phase. Examples of
approaches in this category include [1, 2]. These algorithms are currently amongst the best
performers for MRI reconstruction [13].

What this work is about We focus on model-based reconstruction networks. While they
provide state-of-the art results in a large panel of applications, we identify and showcase a
significant limitation: their lack of adaptivity. Let us give a precise meaning to this assertion.
Let ξ0 6= ξ1 denote two different operator parameterizations. Let y0 = P(A(ξ0)x) and y1 =
P(A(ξ1)x). Assume that w?

0 and w?
1 are the weights of a reconstruction network optimized for

A(ξ0) and A(ξ1) respectively. The adaptivity issue means that the quality of N (w?
1, ξ0,y0) is

significantly worst than that of N (w?
0, ξ0,y0). In other words: a network trained for a specific

operator A(ξ0) may have a significant performance drop if used for another operator A(ξ1).
The main idea explored in this paper is simple. We propose to train the network with a whole

family of forward operators A = {A(ξ), ξ ∈ Ξ}, where Ξ is a set of parameters characterizing the
device. We evaluate the performance of the resulting network for a specific problem of MRI image
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reconstruction from under-sampled data. In that application, the variety of operators stems from
various sampling patterns that may differ from one application to the next. We carefully analyze
the results, showing that this learning approach yields a reconstruction network which is much
more stable to variations of the operator. In particular, the performance of an unrolled network
trained on a family is only marginally worse than that of a network that would be trained and
used for a single operator. It therefore provides a satisfactory answer to the adaptivity issue.

Related works Neural network reconstruction can suffer from severe instabilities. This issue
was notably discussed in [3], where it was shown that well chosen additive noise (an adversarial
attack) or modifications of the forward operator could lead to disastrous hallucinations for some
specific architectures. This problem was studied with care in [9]. There, the authors have
shown that careful training procedures could fix this issue and yield robust and state-of-the-art
reconstruction results.

A paper closely related to our work is [10]. The authors study the same robustness issue
to model mismatches. The authors propose two distinct algorithmic approaches to attack it.
The first one is called Parametrize & Perturb. It suffers from an important drawback, which is
the need to re-optimize the network weights for every new operator. It can therefore be slow
at run-time and we will not compare it in this paper. The other approach is called Reuse &
Regularize (R&R). It consists in training a network for a given operator A(ξ0), and then use this
network in an iterative procedure, accounting for the data consistency term ‖A(ξ1)x−y‖22. The
approach we propose in this paper is somewhat simpler, since we just train the network with a
family of operators.

An older and popular alternative consists in replacing the proximal operator in (2) by a
denoiser. This approach is often called a Plug & Play (P&P) prior [17]. It has the huge asset
of adapting painlessly to arbitrary inverse problems. We will propose some comparisons and
discuss the pros and cons of each approach, see Section 3.

2 The experimental setting

We consider the problem of image reconstruction from under-sampled Fourier samples. This
corresponds to imaging modalities such as MRI or radio-interferometry.

The forward models Let A(ξ) denote the non-uniform Fourier transform (NUFT) [14] de-
fined for all x by

[A(ξ)x]m =

N∑
n=1

xne
−i〈pn,ξm〉,

where (pn) is a set of 2D positions on a grid. We used the efficient cuFINUFFT trans-
form [16], which is the fastest available library in our experiments (see https://github.com/

albangossard/Bindings-NUFFT-pytorch for comparisons). We assume that y = A(ξ)x + b,
where b ∼ N (0, σ2Id) is additive white complex Gaussian noise.

A restricted sampling family We propose to generate the undersampled sampling schemes
following the ideas from [5, 6, 12]. In all experiments, we set M = 0.25N , i.e. a 4x downsampling
rate. The sampling locations ξ are drawn w.r.t. a target probability measure ρ, by solving

ξ(ρ)
def
= arg min

ξ∈R2M

dist

(
1

M

M∑
m=1

δξm
, ρ

)
, (3)
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(a) © (b) − (c) | (d) (e) (f) + (g) ×

Figure 1: Densities (top) and corresponding sampling schemes (bottom). Fig. 1a, 1b, 1c, 1d and
1e belong to the family Ξ. Fig. 1f and 1g (crosses) do not.

where dist is a discrepancy between probability measures. The target densities ρ are anisotropic
power decaying distributions, which have been truncated at the center to avoid too dense sam-

pling. They are parameterized by a vector λ ∈ Λ
def
= [1, 3]× [0, π]× [1.2, 2]. Its coordinates encode

the anisotropy, a rotation angle and an oversampling ratio at the center. The value λ3 = 1 means
that we sample the center exactly at the Shannon-Nyquist limit. The feasible set of sampling
schemes is Ξ = {ξ(ρ(λ)),λ ∈ Λ}. Examples of densities and sampling patterns ξ(ρ(λ)) are
displayed in Fig. 1a-1e.

The model-based reconstruction networks We consider two networks. The first one de-
noted N d is a denoising network of the form

N d[w, ξ,y] = D[w,A(ξ)+(y)],

where D is a deep iterative down-up network (DIDN) [21], with a lower memory footprint than
the popular U-Net [15].

The second network is an unrolled proximal gradient network with K = 10 iterations. Letting
F (x) = 1

2‖A(ξ)x− y‖22, it takes the sequential form:

x0 = A(ξ)+y

xk+1 = D[wk,xk − γ∇F (xk)].

where D is a DIDN and γ = 1
‖A(ξ)‖22→2

is a step-size. Hence the weights w to be trained are

w = [w0, . . . ,wK−1]. The network is denoted N u : (w, ξ,y) 7→ xK .

The training Although elementary, this is the main methodological contribution of this paper.
All the networks are trained by minimizing the average risk:

inf
w∈RD

1

2
E‖N [w, ξ,y]− x‖22, (4)

where the expectation is taken with respect to the noise b, to the forward models ξ and to the
images x.

As for ξ, we have pre-computed 1000 sampling patterns by solving (3), where the densities ρ
have been generated by picking λ uniformly at random in Λ.

The training database is the fastMRI knee training dataset [22]. It contains 34742 images
of size 320 × 320. All the models were trained using the Adam optimizer in PyTorch. For the
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experiments, the denoising network N d was trained on 30 epochs with a learning rate of 10−3

and an exponential step decay of 0.95 after each epoch. The unrolled network N u was trained
on 14 epochs with a learning rate of 10−4 and an exponential step decay of 0.95 after each epoch.
Both trainings took about 24h on an Nvidia V100.

3 Results

All evaluations were performed on the validation set of the fastMRI knee database containing
7135 2D slices.

3.1 Training on fixed sampling schemes

In this section, we trained the two reconstruction networks on 5 different schemes: a radial one
(©, Fig. 1a), an horizontal one (−, Fig. 1b) and a vertical one (|, Fig. 1c). In addition, we used
two crosses, which do not belong to the training family Ξ. The first one is aligned with the axes
(+, Fig. 1f) and the other one with the diagonals (×, Fig. 1g). In Table 1, we report the average
peak signal to noise ratio, on the validation set for the two architectures. It is defined by

PSNR(x̂,x)
def
= −10 log10

(
‖x̂− x‖22
N‖x‖2∞

)
.

Table 1 illustrates various facts listed below.

Lack of adaptivity Without surprise, the values on the diagonal are higher than the off-
diagonal terms. This means that the best way to reconstruct images for a given scheme is to
train the network for this specific scheme. The drop of PSNR when using a network trained with
the wrong operator can be as high as 10dB for the denoising net and 9dB for the unrolled net (see
the pairs − and |). This is a striking illustration of the strong dependency of a reconstruction
net to the operator used at the training stage. The corresponding images are shown in Fig. 2.

The superiority of unrolled nets The unrolled network provides better reconstruction re-
sults than the denoising net. The overall gain on the diagonal varies between 1dB and 1.7dB for
this particular application, which is significant. This is in accordance with recent comparisons
of both strategies [13].

Partial adaptivity While the training on the vertical scheme | provides catastrophic results
when used on the horizontal scheme −, the networks trained on the radial © scheme provide
rather good results uniformly on the 4 other sampling schemes. Indeed, we see that the perfor-
mance drop when used on a distinct scheme raises up to 4dB for the denoising net and ’only’
1.3dB for the unrolled network. Overall, the unrolled network provides a significantly better
alternative when it comes to adaptivity.

Optimal sampling scheme Some sampling schemes make the reconstruction easier than
others, which is in accordance with the compressed sensing theory. The knee images have large
vertical and horizontal edges. This seems to favor the + sampling scheme, which was already
observed in other works [19, 20].
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| + ×

36.31
±4.30

31.75
±2.63

32.45
±2.91

35.39
±3.68

35.09
±3.55

32.46
±2.77

35.43
±3.96

26.74
±2.75

33.08
±2.98

30.46
±2.79

| 32.34
±2.87

25.68
±2.36

36.24
±4.22

34.46
±3.31

29.11
±2.50

+ 35.37
±3.67

29.64
±2.51

31.11
±3.01

36.38
±4.30

32.35
±2.69

× 35.16
±3.61

32.94
±2.79

32.42
±2.73

33.35
±2.88

36.05
±4.19

Train

Ev
al

ua
tio

n
(a) Denoising net

| + ×

37.86
±4.96

36.92
±4.31

36.66
±4.02

37.82
±4.96

37.88
±5.00

35.72
±3.98

37.05
±4.61

28.38
±2.22

35.65
±4.03

35.52
±3.41

| 36.68
±4.18

31.16
±2.91

37.58
±4.79

36.92
±4.35

33.96
±3.47

+ 37.63
±4.77

35.05
±3.60

35.09
±2.86

37.91
±4.97

37.19
±4.46

× 37.30
±4.65

36.79
±4.18

33.13
±2.34

36.82
±4.32

37.74
±4.97

Train

Ev
al

ua
tio

n

(b) Unrolled net

Table 1: Average PSNR and its standard deviation evaluated on the fastMRI validation dataset
for the two architectures.

ID FD IU FU P&P R&R

36.31
±4.30

36.13
±4.17

37.86
±4.96

37.84
±4.95

35.76
±3.81

35.22
±3.56

35.43
±3.96

35.08
±3.74

37.05
±4.61

36.82
±4.46

34.36
±3.43

32.97
±3.34

| 36.24
±4.22

35.91
±4.01

37.58
±4.79

37.37
±4.65

35.75
±3.81

34.23
±3.28

+ 36.38
±4.30

35.42
±3.72

37.91
±4.97

37.72
±4.82

35.91
±3.85

34.15
±3.35

× 36.05
±4.19

35.23
±3.61

37.74
±4.97

37.53
±4.80

35.22
±3.63

33.67
±3.16

Model
Ev

al
ua

tio
n

Table 2: Average PSNR and standard deviation (in dB) of various reconstruction approaches
applied to various operators.

A simple explanation We focus on the denoising network. The pseudo-inverse A(ξ)+ applied
to y = A(ξ) + b yields a vector x̃ of the form:

x̃ = x + k + n,

where k ∈ ker(A(ξ)) and n is correlated Gaussian noise living in ran(A(ξ)). Hence the denoising
network D serves two purposes: 1) recover the missing data k in the kernel of A(ξ) and 2) remove
the correlated noise n. Each of these two tasks is clearly highly dependent on ξ. If trained with
a single scheme, the network may get specialized very well for these specific statistical patterns
and not extrapolate to other ones. It is therefore tempting to see if a training with a larger
variety of operators mitigates the performance drop.

3.2 Training on an operator family

In this section, we trained the reconstruction networks by varying the forward operators, as in
(4). In what follows, we let ID and IU denote the ”ideal” denoising network and the ”ideal”
unrolled network respectively. By ideal, we mean that the networks have been trained and tested
with the same operator. They serve as a benchmark that cannot be outperformed. We let FD
and FU denote the ”family” denoising and unrolled networks, which have been trained over a
complete family. We also tested the P&P approach. We used an unrolled proximal gradient for
K = 10 iterations with a DIDN network as an embedded denoiser. It was trained specifically to
denoise the images with various levels of white Gaussian noise. Finally, we implemented the R&R
network composed of K = 10 iterations. The embedded inversion network consists of a pseudo-
inverse, followed by a DIDN network trained for the © sampling scheme. The hyperparameter
in the method (see [10]) was tuned to produce the best results.

Table 2 shows the performance of the different architectures. The following remarks can be
formulated:
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Denoising network The denoising network trained on the whole family drops by less than
0.3dB compared to ID, when tested with schemes that belong to the training family.

However, the performance is significantly altered (0.9dB) for the two schemes outside the
training family. This suggests that a proper training of a denoising net should cover a sufficiently
vast family of operators.

Unrolled networks The unrolled networks trained with a family shows a performance drop
of at most 0.2dB compared to IU for schemes inside and outside the family. This is a remarkable
feature: the scheme extrapolates to some extent outside the training set.

In addition, the price of adaptivity seems affordable for most applications since a 0.2dB loss
is marginal.

Plug & Play (P&P) When comparing Table 1 and 2, we see that the P&P approach performs
better uniformly than models trained on a single operator. However, its performance drops by
0.5− 1dB compared to ID and 1.8− 2.7dB compared to IU.

It is also significantly less efficient than FU for an identical computational cost. This suggests
that for a given reconstruction architecture, it is beneficial to train the proximal networks for a
specific task rather than using a universal denoiser, as is the case in P&P.

Notice however, that FU does not extrapolate well to problems completely different from the
ones it was trained for. Indeed, we trained FU for an MRI reconstruction problem and tested it
for a deblurring application. There, the P&P approach was considerably more consistent.

Reuse & Regularize (R&R) Finally, the R&R approach does improve the results by up to
1.9dB compared to a model trained on a single operator. However, it seems that our simpler
training approach provides significantly better results.

4 Conclusion

In this work we studied the stability of model-based reconstruction networks to variations of
the acquisition operator. We first illustrated significant performance drops when training the
models on a single forward model. We then demonstrated that a simple solution to mitigate this
effect and ensure a good adaptivity is to train the model on a family of operators. This study
is preliminary since it was conducted solely on a rather realistic MRI reconstruction problem.
It opens new interesting perspectives for computational imaging. A recent trend consists in
optimizing the forward model and the reconstruction algorithm jointly (see e.g. [20, 8, 19]
for examples in MRI). With a reconstruction method capable of adapting to a vast family of
operators, it becomes possible to restrict the attention to the optimization of the forward model
only.
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(a) Original image (b) Tr.| Ev.|, 35.7dB

(c) Tr.| Ev.−, 30.0dB (d) FU Ev.−, 35.1dB

Figure 2: Examples of reconstructions using the unrolled network. We trained it on | (2b, 2c)
and on a family (2d). We tested it on | (2b) and − (2c, 2d).
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