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Abstract

The notion of propagation of chaos for large systems of interacting particles
originates in statistical physics and has recently become a central notion in many
areas of applied mathematics. The present review describes old and new methods
as well as several important results in the field. The models considered include the
McKean-Vlasov diffusion, the mean-field jump models and the Boltzmann models.
The first part of this review is an introduction to modelling aspects of stochastic
particle systems and to the notion of propagation of chaos. The second part presents

concrete applications and a more detailed study of some of the important models
in the field.
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1 Introduction

The second part of this review is devoted to many classical and recent modelling prob-
lems which are based on the simulation of large systems of interacting particles. This
approach was initiated in the second half of the XIXth century by Boltzmann who pro-
posed to model a gas as a myriad of elementary particles undergoing a simple Newtonian
dynamics. When the number of particles grows to infinity, Boltzmann’s kinetic theory of
gases is able to explain complex thermodynamics phenomena which previously had only
a phenomenological interpretation.



Beyond the contributions in Physics, the ideas of Boltzmann have had a profound
influence on the development of mathematical concepts both in Probability and in Anal-
ysis. In the middle of the XXth century, Kac and later McKean introduced a proper
mathematical formalisation of the concepts introduced by Boltzmann. The notions of
Kac’s chaos and propagation of chaos together with the probabilistic models of Kac and
McKean are the foundations of the mathematical kinetic theory. The derivation of the
Boltzmann equation for rarefied gas dynamics as well as the other classical equations of
statistical physics have long motivated the development of the theory. Since the last two
decades, there is an ever growing number of applications of these ideas in wider range
of domains, from the modelling of large animal societies, to socio-economic models or
numerical methods in data sciences.

The first part of this review introduced the tools, concepts and some of the main
abstract models for the study of many-particle systems. Throughout this second part,
references to the first part are indicated by “I-” (for instance Section refers to the
second section of the first part). In the second part of this review, the analysis is special-
ized on the one hand to the classical models introduced by Kac and McKean and their
recent developments and on the other hand to a gallery of recent applications in applied
mathematics and beyond.

Outline

The outline of the article is as follows.

Section [2] summarises the content of the first part of this review.

Section Bl and Section [ are devoted to the review of the main results in the literature
respectively for McKean-Vlasov models and Boltzmann-Kac models. We emphasize that
although none of the results presented are new, we include some proofs that we did not
find or hardly found in the literature in this form, in particular: the proofs of McKean’s
and Kac’s theorems (Section and Section , the functional law of large numbers by
martingale arguments (Section and the proof of propagation of chaos for Boltzmann
models via coupling methods (Section .

Section [5| is an introductory section to various recent modelling problems and prac-
tical applications of the concept of propagation of chaos. A selection of examples which
motivate and often extend the results of the previous sections is presented, including some
open problems and current research trends.

Several appendices complete this work. Generalised high-order expansions of the par-
ticle generators against monomial test functions are shown in Appendix [A]and a technical
lemma in Appendix [B] Finally, for the reader’s convenience, we collect in Appendix [C]
useful tightness criteria.

Notations and conventions

Sets



C(I,E)

Cy(E), Cy(E)

LP(E) or L7 (E)

My(R)
M(E)
M*(E)
P(E)
Pu(E)

Pn(E)
R,

Sy
Sd—l

The set of continuous functions from a time interval I = [0,7] to a
set F, endowed with the uniform topology.

Respectively the set of real-valued bounded continuous functions and
the set of functions with & > 1 bounded continuous derivatives on a
set F.

The set of real-valued continuous functions with compact support on
a locally compact space E.

The set of real-valued continuous functions vanishing at infinity on
a locally compact space E, i.e. ¢ € Co(E) when for all ¢ > 0, there
exists a compact set K. C F such that |¢(x)| < ¢ for all z € E outside
K..

The space of functions which are right continuous and have left limit
everywhere from a time interval I = [0,7] to a set F, endowed with
the Skorokhod J1 topology. This is the space of cadlag functions.
This space is also called the Skorokhod space or the path space.

The set of measurable functions ¢ defined almost everywhere on a
measured space (E, u) such that the |p|? is integrable for p > 1. When
p = 400, this is the set of functions with a bounded essential supre-
mum. We do not specify the dependency in g when no confusion is
possible.

The set of d-dimensional square real matrices.

The set of signed measures on a measurable space E.

The set of positive measures on a measurable space E.

The set of probability measures on a space E.

The set of probability measures with bounded moment of order p > 1
on a space F.

The set of empirical measures of size N over a set I/, that is measures
of the form p = % Zz]\; d,i, where 2 € E.

The set [0, +00).

The permutation group of the set {1,..., N}.

The sphere of dimension d — 1.

Generic elements and operations

C

C(al, c CLn)

diag(x)

A generic nonnegative constant, the value of which may
change from line to line.

A generic nonnegative constant which depends on some fixed
parameters denoted by aq, ..., a,. Its value may change from
line to line.

The d-dimensional diagonal matrix whose diagonal coeffi-
cients x1,...,xq4 are the components of the d-dimensional
vector .



V.-V

A: B and ||A

V2V
14

Id
(z,y) orz -y

P(u)

(2 c Cb<E)
on € Cy(EY)

o € Cy(P(E))

URV, p RV Or p Y

Tr M

MT

xN = (2, 2N)

XM’N - (xlv 7xM)

T = (xh 7xd)T and |$‘

The divergence of a vector field V : R? — R? or of a matrix
field V : R? — My(R), respectively defined by V-V =
S 9.,V or componentwise by (V- V); = Z?Zl 0z, Vij.
The Frobenius inner product of two matrices A, B € My(R)
defined by A : B := Z?:1 25:1 A;;B;; and the associated
norm || A ;== VA : A

The Hessian matrix of a scalar field V : R? — R defined
componentwise by (V*V);; = 92, V.

The d-dimensional identity matrix.

The identity operator on a vector space.

The Euclidean inner product of two vectors z,y € R? defined
by (z,y) = z-y = 3¢, 2'y’. One notation or the other may
be preferred for typographical reasons in certain cases.

The (i, 7) (respectively row and column indexes) component
of a matrix M.

The projection matrix P(u) := I, — %@‘ on the plane orthog-
onal to a vector u € R

A generic bounded continuous test function on F.

A generic bounded continuous test function on the product
space BV,

A generic bounded continuous test function on the set of
probability measures on F.

Respectively, the matrix tensor product of two vectors u, v €
R? defined componentwise by (u ® v);; = w;v;; the product
measure on E x I’ of two measures u, v respectively on E and
F; the product function on E x F defined by (¢ ®)(z,y) =
w(z)1(y) for two real-valued function ¢, 1 respectively on F
and F.

The trace of the matrix M.

The transpose of the matrix M.

A generic element of a product space EY. The components
are indexed with a superscript.

The M-dimensional vector in EM constructed by taking the
M first components of x.

A generic element of a d-dimensional space and its norm.
The coordinates are indexed with a subscript. The norm of
x denoted by |x| is the Euclidean norm.

Probability and measures



The convolution of a function K : F x F' — G with a measure p on
F' defined as the function K «p : ¢ € E — [, K(z,y)u(dy) € G.
When E = F = G = R? and K : R? — R? we write K % u(r) =
Jpa K (2 = y)p(dy).

The Dirac measure at the point x.

The empirical measure defined by pnw = %Zf\il 0y where xV =

(zt,...,2).

Alternative expression for (u, ) when p is a probability measure.
When p = P on (Q,.7, (%), P), the expectation is simply denoted
by E.

The relative entropy (or Kullback-Leibler divergence) between two
measures i, v, see Defintion .

The integral of a measurable function ¢ with respect to a measure .
The law of a random variable X as an element of P(E) where X takes

its value in the space FE.

(Q,.7,(F:),P) A filtered probability space. Unless otherwise stated, all the random

variables are defined on this set. The expectation is denoted by E.

o(X', X% ...)  The o-algebra generated by the random variables X!, X2 .. ..

- oy

Wy

X~

The pushforward of the measure p on a set £ by the measurable map
T : E — F. This is a measure on the set F defined by Tyu(e) =
w(T~1 (7)) for any measurable set o7 of F.

The Total Variation (TV) norm for measures.

The Wasserstein-p distance between probability measures (see Defini-

tion .

It means that the law of the random variable X is pu.

(Xy): or (Zy), The canonical process on the path space D(I, E) defined by X;(w) =

w(t).

(XMN), or (ZY), The canonical process on the product space D(I, E)" with components

XN = (XI,...,XM).

Systems of particles and operators

The state space of the particles, assumed to be at least a Polish space.

The N-particle distribution in P(EY) at time ¢ > 0.

The k-th marginal of f.

The N-particle distribution on the path space in P(D(I, EN)) or P(C(I, EN))
for a time interval I = [0,T]. We identify D(I, EV) ~ D(I, E)N.

The limit law in P(E) at time ¢ > 0.

The limit law on the path space in P(D(I, E)) or P(C(I, E)).

The law of the empirical process in P(P(E)) at time ¢ > 0.

The weak pathwise law of the empirical process in P(D(I,P(E))) on the time
interval I = [0, 7.

The strong pathwise law of the empirical process in P(P(D(1, E))) on the time
interval I = [0, 7.



Ly The N-particle generator acting on (a subset of ) Cy(E™N).

LN The N-particle generator acting on P(EY) defined as the formal adjoint of
Ly.

Lo;on The action of an operator L on (a subset of) Cy(F) against the i-th variable
of a function ¢y in Cy(EY), defined as the function in (a subset of) Cy(EY)
Lojoy : (24 .,2N) = Lz = on(2t, ..., 27z, o 2aM)](2f). The
definition readily extends to the case of an operator L) acting on Cy(E?) and
two indexes i < j in which case we write L2 o, .

(&N), The N-particle process, with components Xy = (X", ..., X") ¢ EV.
Often we write X, = X/ and (&), = X7

(ZN),  An alternative notation for the N-particle process with ZN =
(z} Nz ’N). Often used for Boltzmann particle systems or kinetic sys-
tems.

2 Summary of the first part

2.1 Particle systems, chaos and propagation of chaos

The object of the present review is the study of large systems of interacting parti-
cles. Throughout this work, a particle system is defined as a Markov process (X}¥),c;
with values in EV where F is a Polish space, N is the number of particles and I =
[0,T], T € (0,+00] is a time interval. Throughout this review, we use the notation
xN = (XM, ..., XN for the particle system and we write X! = X" without the N
superscript for the i-th particle when no confusion is possible.

From the theory of Markov processes (see Appendix[[-A.4), the probability distribution
of the particle system at time ¢ denoted by f¥ € P(E") satisfies the (weak) Liouwville
equation

Viw € Dom(Ly), < (N ow) = (Y. L), )

where Ly is the infinitesimal generator of the particle system acting on a (dense) subset
of test functions Dom(Ly) C Cy(EY). In stochastic analysis, the (richer) pathwise law
fﬁ 7 € P(D([0,T], EVN)) is sometimes preferred and is characterised as the solution of
a martingale problem. It means that fﬁ 7] is the unique probability distribution on the
Skorokhod space of cadlag functions such that for all test function ¢y € Dom(Ly), the
process defined by:

t
MY = on(XN) — on (X)) — / Lyen(XY)ds,
0

is a f[lgf r-martingale. In this definition, the process (X);50 denotes the canonical process
on D([0,T], EY) defined for any w € D([0,T], EY) and any t > 0 by XY (w) = w(t).

The particle system is assumed to be ezchangeable in the sense that fV (resp. its path-
wise version f[](;f, 71) is a symmetric probability distribution on EN (resp. on D([0,T], E)N ~

D([0,T], EN)).



This review is devoted to the notions of chaos and propagation of chaos introduced by
Kac [204] and defined below.

Definition 2.1 (Kac’s chaos). Let f € P(E). A sequence (f")y>; of symmetric prob-
ability measures on EV is said to be f-chaotic when for any k € N and any function
Y € Cb(Ek>7

lim (Y, 0p @ 1977F) = (f*, ¢y).

N—+400

It means that for all £ € N, the k-th marginal satisfies f*V — f®* for the weak topology.

From now on in this review, the initial distribution f& € P(EY) of the particle system
is always assumed to be fy-chaotic for a given f, € P(E). The goal is to prove that this
initial chaoticity assumption is propagated at later times as in the following definition.

Definition 2.2 (Pointwise and pathwise propagation of chaos). Let f& € P(EY) be the
initial fo-chaotic distribution of X at time ¢ = 0.

e Pointwise propagation of chaos holds towards a flow of measures (f;); € C(I,P(E))
when the law fN € P(EYN) of X is fi-chaotic for every time ¢ € I.

e Pathwise propagation of chaos holds towards a distribution f; € P(D(I, E)) on the
path space when the law f € P(D(I, E)") of the process X}¥ (seen as a random
element in D(I, E)V) is f;-chaotic.

The propagation of chaos property (pointwise or pathwise) describes the limit behav-
ior of the particle system when the number of particles grows to infinity. It implies that
any subsystem (of fixed size) of the N-particle system asymptotically behaves as a sys-
tem of i.i.d processes with common law f; (note that the particles are always identically
distributed by the exchangeability assumption). This translates the physical idea that
for large systems, the correlations between two (or more) given particles which are due
to the interactions become negligible. By looking at the whole system, only an averaged
behavior can be observed instead of the detailed correlated trajectories of each particle.
This notion of average behavior can be understood through the following characterization
of the notion of chaos. The proof of this fundamental lemma can be found in the first part
of the present review article, see Lemma [[-3.19] or in the classical course by Sznitman
[276, Proposition 2.2].

Lemma 2.3. Fach of the following assertions is equivalent to Kac’s chaos.
(i) There exists k > 2 such that f*N converges weakly towards f&*.

(i) The random empirical measure

1 N
= — (52
HxnN Nizl X,

converges in law towards the deterministic measure f, where for any N € N, XV =
(XL XN~ fN



The central question is therefore the description of the limit law f; which will be
defined as the solution of a nonlinear PDE or of a nonlinear martingale problem. For
all the models presented in this review, the goal is to compute the limit N — 400 of
any marginal ftk’N of the N-particle distribution at any time ¢t > 0 or the limit of the
random empirical measure prpv. The models which are considered belong to one of the
three families of models described in the next Section 2.2

2.2 Models

The first two families of models are called mean-field models, they are defined by a gen-
erator of the form

N
ENSON(XN) = Z LMXN ©; QDN<XN)7 (2)
=1

where given a probability measure p € P(E), L, is the generator of a Markov process
on E which will be either a diffusion (Section [2.2.1) or jump-process (Section [2.2.2)).
Throughout this review, the notation L ¢; ¢ denotes the function:

Lojpy:(zh,...,2N) e EN = Lz — on(2!, ... 2"z 2™ 2V)](2f) e R.

The third family of models are the Boltzmann models (Section [2.2.3)).

2.2.1 McKean-Vlasov diffusion

When the generator L, in is the generator of a diffusion process, the particle system
is the solution the following system of SDEs

Vie{l,...,N}, dXp™ =b(XpY, pay)dt + o (XPY, pa, ) B, (3)

fori € {1,..., N} where (B), are N independent Brownian motions and the drift function
b and diffusion matrix are of the form

b:R*x P(RY) = RY,  o:RYx P(RY) — My(R).

Remark 1. Note that there are actually d/N independent one-dimensional Brownian
motions. This remark may be helpful in cases where the Brownian motions in the different
directions are different. In particular, for kinetic particles defined by their positions and
velocities, the noise is often added on the velocity variable only (this case is nevertheless
covered by ((3)| with a block-diagonal matrix ¢ with a vanishing block on the position
variable).

The mean-field limit N — +o0 is given by the nonlinear Fokker-Planck equation

atft(x) = _vx . {b(.T, ft)ft} + % Z axiaxj{aij(x> ft>ft}? (4)

1,j=1

10



where a(x, i) := o(z, u)o(x,u)T. This is the law of the nonlinear McKean-Vlasov process

(X¢): which solves the following nonlinear SDE:
dyt = b(yt, ft)dt + U(Yt, ft) dBt (5)

where B; is a Brownian motion and f; = Law(yt). The well-posedness of is proved
under Lipschitz assumptions on b and o in Proposition [I-1]

In many applications, the particles are rather defined by their positions and velocities,
respectively denoted for the i-th particle at time ¢ by (X7, V) € R? x R%. For instance,
when o = 0, a particle system ruled by the Newton equations

dx; Vi <
t i t iy
o - g _ZF(Xt Xi),
7=1
where F' is a force, can be written in the form |(3)[ with the function b : R x R? x P(R? x
R?) — R4 x R? given by

b((x, ), 1) = (U, /R ,Fla- x’),u(da:’,dv’)) |

In this case, the limit Equation is the renowned Vlasov equation which is historically
one of the first and most important models in plasma physics and celestial mechanics. In
the following, we will nevertheless most often consider stochastic models although some
of the results still apply in this deterministic case (in particular the important Theorem
. For a detailed account of the Vlasov equation in this context, we refer to the review
article [191].

Stochastic McKean-Vlasov systems have a wide range of applications. Some examples
in physics and biology are described in the first part of this review, see Example [[-30]
In this second part, we will treat important historical applications in physics: questions
related to the granular media equation are discussed in Section [3.1.3]and particle systems
with Coulomb-type interactions and other singular kernels, in particular in fluid dynam-
ics, are described in Sections and [5.1.3] More recently, McKean-Vlasov systems have
also been used to model biological phenomena, in particular self-organized swarming phe-
nomena (Sections|5.2.1land [5.2.2). Very recently, these models have also gain attention in
data sciences for the design and study of Particle Swarm Intelligence algorithms (Section

53).

2.2.2 Mean-field jump process

The N-particle process is defined by a generator of the form where given u € P(E),
L, is the generator of a jump process of the form

Lugl@) = M) [ (o(0) = (@)} Pala, )
E
It describes a system of N jump processes, driven by N independent Poisson processes
with jump rate

A ExP(E)—= Ry, (z,0) = ANz, p).

11



The law of jumps is prescribed by the jump measure:
P:EXxPE)—=PE), (z,p) = P,(z,dy).

In classical kinetic theory, mean-field jump processes can be used to give a stochastic
interpretation to the famous BGK equation [21] (see Example. They have also recently
become a basic tool for neuron models in biology (Example [[-4] and Section [5.2.3)).

2.2.3 Boltzmann models

The N-particle process is defined on an abstract Polish space E by a generator of the
form:

N
1
ACNQON :ZL(D <4 QON—FNZL@) Oij @N, (6)
=1 i<j
where oy = pn (21, ..., 2Y) is a test function on the product space EV. The operator L2

acts on two-variable test functions and stands for binary interactions between particles.
The operator L") acts on one-variable test functions and describes the individual flow of
each particle (and possibly the boundary conditions). More explicitly, let us recall the
notations, for (2%,...,2") € EY and i < j,

LY o, on(2Y, ..., 2") = LW [u = oon(2h o 2T a2 ,zN)} (2%

and

L@ oy on(2h ... 2"
=L® [(u, v) > on(2h 2T 2 T e ,ZN)} (2%, 27).

These models are called Boltzmann models in reference to the famous Boltzmann equation
of rarefied gas dynamics which is a fundamental equation for mathematicians, physicists
and philosophers. It will be explained at the end of this section (see Equation how
it can be obtained as the limit of a general particle system of the form @ The specificity
of Boltzmann models is that the particles interact only at random times by pair and not
individually with an average of all the other particles as in mean-field models. In full
generality, the state space F is an abstract space. In classical kinetic theory, F = R% x R?
is the phase space of positions and velocities and two particles interact when they are
close enough: they are said to collide and by analogy, we will keep this terminology to
refer to an interaction between two particles even in an abstract space. In addition to
these pairwise interactions, each particle is also subject to an individual flow prescribed
by the operator L"), Typical examples in kinetic theory include

e (Free transport) LW p(z,v) = v - V0,
e (Space diffusion) LMg(x,v) = Ayp.

e (Velocity diffusion) LW p(z,v) = Ayp.
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When two particles collide, the effect of the collision is prescribed by the operator L.
In kinetic theory, this operator acts on the velocity variable only but in full generality, in
an abstract space F, it will be assumed to satisfy the following assumptions.

Assumption 1. The operator L\?) satisfies the following properties.
(1) The domain of the operator L'®) is a subset of Cy(E?).
(2) There exist a continuous map called the post-collisional distribution
T® :(21,2) € Ex E s TW(2,2,d2},d2) € P(E x E),
and a symmetric function called the collision rate
Ai(z1,22) € EX E— ANz, 2) € Ry,

such that for all 3 € Cy(E?) and all 21,2 € E,

L® (21, 20) = A(z1, Z2)/ {pa(2], 25) — al21, 20) TP (21, 20, d21, d2). (7)

ExXFE

(8) For all z1,z9 € E, the post-collisional distribution is symmetric in the sense that
T® (2, 29,d2},dz}) = TP (29, 21, d2), d2)). (8)

It ensures that the law fY defined by the backward Kolmogorov equation remains
symmetric for all time provided that f{¥ is symmetric.

(4) The function X\ is measurable on {(z1,22) € E?, 21 # 23} and for all z € E, \(z,2) =
0.

The assumption that A is a (measurable) function prevents from considering the true
classical Boltzmann inhomogeneous case in kinetic theory A(z1, 29) = 04, =4, (that is, two
particles collide when they are exactly at the same position), which is beyond the scope of
this review (see however Section [4.6). The collision rate is often assumed to be uniformly
bounded

sup A(z1,22) < A < o0, 9)
21,22€FE
This cutoff assumption is unfortunately not physically relevant for many models where
an infinite number of collisions may happen in finite time. However, it may serve as a
first approximation which can be simulated on a computer as explained in Proposition
[-3] (see also Algorithm [I]).

The operator @ describes a particle system where each pair of particles interact at
a rate given by the function A by updating the states of both particles according to the
measure I'®. When propagation of chaos hold, the limit law f; is the solution of the
general Boltzmann equation:

%(ft790> = <ft7L(1)30> + < 7?27 L(Q)((P ® 1)>

13



Using Assumption [T, this equation can be rewritten

d
E<fta<ﬂ> = (i, L)

+ /ES )\(zla22>{90(31) - 90(21)}F(2)(21,Z2,d2’1>E)ft(dzl)ft(dzz), (10)

or in a more symmetric form, using :

d
E<fta<ﬁ> = (f;, LW )

+3 / Ao 2){0(2) + 0 (2) = 9(21) = 9(22) JTO (21, 22, dzy, d2h) flda) f(d2a). - (11)

In many applications, the post-collisional distribution is explicitly given as the image
measure of a known parameter space (0,v) endowed with a probability measure v (or a
positive measure with infinite mass). In this review, this particular class of models will
be called parametric Boltzmann models.

Definition 2.4 (Parametric and semi-parametric Boltzmann model). Let be given two
measurable functions

Vi EXEXO —FE 1Y :EXEXO —FE,
which satisfy the symmetry assumption
V(z1,22) € E?, (41, 02)(21, 22, Jpv = (Yo, ¥1)(22, 21, )4V
Let the function 1 be defined by
V:EXxExO = E? (21,2,0) — (%(21,22,9),%(21,22,9))-

A parametric Boltzmann model with parameters (0, 1)) is a Boltzmann model of the form
@ with Assumption |1 and a post-collisional distribution of the form:

V(z1,2) € E%, TO(2y, 29,d2},dzb) = (21, 22, ).
The post-collisional distribution of a semi-parametric Boltzmann model is of the form
V(z1,22) € E®, T® (21, 29,2, d2h) = (21, 20, )4 (q(21, 22, 0)w(d6)), (12)

where ¢ : Ex Ex© — R is a fixed nonnegative function with [ q(z1, 22, 0)r(df) = 1 for
every (21, 2z2) in E?. We will often assume that there exists M > 0 and ¢o(6) a probability
density function with respect to v such that

VZl, Zo € E7 Vo € @7 Q(2172270) S MQO(G) (13)
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In the literature, the following variant of the generator @ is sometimes considered
(see Example for more details): for z"¥ = (21,...,2) € EN and oy € Cy(EN),

N
Lyen(zV) =Y LW o; on(2")
=1

o ) [ en ) ente) . 09

where A\ : E x E — R, O is a parameter set endowed with a probability measure 7 and

z¥ (i, ,0) is the N dimensional vector whose k component is equal to

i it k#dg
i, 5,0) =S (2, 2,0) if k=i
oz, 27, 0) it k=

for two given functions 1,1, : E x E x © — E. In this case, the general Boltzmann
equation |(10)| can be re-written:

%Ut, ©) = (fi, L(l)90> - % /(:)XE‘Z S\(Zl’ Z2>{90(2;1(21’ 22’5)) * (p(%(zl’z%é))
— (1) = pl=2) }r(dd) fi(da) fi(dza). (1)

The generator slightly differs from @ because the pair (i, ) is distinguished from
the pair (j,7). Consequently, the double sum in runs over all indices i,j =1,..., N
while in the sum @, it runs over the indices ¢ < 7. The two formulations are nevertheless
equivalent as shown in Example [[-10] in the first part of this review.

The study of Boltzmann models has historically been motivated by the study of the
Boltzmann equation of rarefied gas dynamics which reads (in strong form):

O fe(z,v) +v - Vofy
— [ [ Bo= v (Rl ila) = file ) file ) dodo, (16
Rd JSd—1

where

, vtv. v —u , vt ue v — o
— = — 17
v 5 + 5 7 Vs 5 5 O (17)

The function B : R? x S¥~1 — R, called the cross-section is of the form

B(u, o) = ®([u])%(6), (18)

U
|ul

e (Hard-sphere)

with cosf = % - 0, 0 € [0,7]. Some famous cross-sections are listed below.

O(ful) = [uf,  %(0) = 1. (19)
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e (Maxwell molecules)

(Ju) = 1, / $(6)d8 = 400, (20)
0
e (Maxwell molecules with Grad’s cutoff)

o(|ul) = 1, /Oﬂ (0)d6 < +oc. (21)

In a spatially homogeneous setting, the case of bounded ® and integrable ¥ (including
Maxwell molecules with Grad’s cutoff) is a parametric Boltzmann model with

77Z)1(U7U*79) = Ul? 1/)2(1]70*79) - U;:

and

AW, ) = B(|v — ) /Oﬂ 5(0)do,

/ / >
(v, v, d2’, dv,, dvl) = (v, v, )4 <m> :
0

Mathematically, it is often much simpler to consider a bounded ®. However, physically,
only Maxwell molecules satisfy this condition and they are therefore particularly studied
because of this mathematical simplicity. The case of the unbounded models and
is more delicate, see Example [[-9) and Section [[-2.3.3] The derivation of the Boltzmann
equation of rarefied gas dynamics in various cases will be discussed in Section

In addition to these important examples, further recent applications of Boltzmann

models can be found in particular in socio-economical models of wealth and opinion
dynamics such as the ones described in Section [5.2.4

2.3 Proving propagation of chaos

Some of the classical techniques to prove propagation of chaos are gathered in section
which summarizes the content of Section [-4l

2.3.1 Coupling methods

When a SDE description of the particle system is available, the coupling method initiated
by McKean [226] and Sznitman [276] consists in comparing the trajectories of the particle
system with the trajectories of a system of N i.i.d processes with common law f;.

Definition 2.5 (Chaos by coupling the trajectories). Let be given a final time 7" € (0, oo,
a distance dg on E and p € N. Propagation of chaos holds by coupling the trajectories
when for all N € N there exist

e a system of particles (X), with law f~ € P(EY) at time t < T,

e a system of independent processes (X}), with law f*" € P(EV) at time ¢ < T
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e a number £(N,T) > 0 such that e(N,T) e 0,
—+0o0

such that (pathwise case)

N
1 o
— Y E de (X, XHP| <e(N,T), 22
or (pointwise case)
N
1 .
— supE[dg(X?, X" <e(N,T). 23
N 2 SupE[ds(X]. X)) < (V. ) (23)

i=1
Note that |(22)| implies |(23) The bound implies:

W, (N, f¥N) < (N, T) — 0
sup Wy (£77, /i) < e(N,T) = 0.

where W, denotes the Wasserstein-p distance (see Definitions|[-3.1]and [I-3.5) on a P(EY)
defined for pu,v € EN by:

1 N 1/p
Wy(v) = inf = i~y Pr(dx, d
)= mf (N;[szv 2" — 7 [Prr(dx, y)) ,

and II(y,v) is the set of all probability measures on EY x EY with marginals y and v. It
implies the propagation of chaos in the sense of Definition [2.2] since the topology induced
by the Wasserstein distance is stronger than the topology of the weak convergence of
probability measures (see Section [[-3)).

Coupling techniques are widely used and many examples will be presented below. The
original argument of McKean and Sznitman is presented in Section[3.1.1] It is based on the
synchronous coupling between the particle system and the system of N independent
SDEs: ' . '

dyz = b(Xiv ft)dt + O-(X:ta ft)dB§7
where (B}); is the same Brownian motion as in . Other coupling techniques are pre-

sented in Section [3.2]
For Boltzmann models, we postpone the discussion to Section |4.4

2.3.2 Compactness methods

Thanks to Lemma[2.3] the propagation of chaos property is equivalent to the convergence
in law of the sequence of empirical measures. A natural strategy to prove such conver-
gence is to prove on the one hand that it is possible to extract a converging subsequence
and on the other hand to prove the uniqueness of the accumulation point. Note that
these properties respectively show the existence and the uniqueness of the limit problem,
which can be given, depending on the point of view, by a nonlinear PDE or a nonlinear
martingale problem. The uniqueness property strongly depends on the limit nonlinear
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problem and it is an independent problem not necessarily related to the underlying par-
ticle system. In order to extract a converging subsequence, it is important to note that
the sequence of empirical measures is a sequence of measure-valued random variables and
in this context, it is natural to try to apply one of the classical or less classical stochastic
tightness criteria recalled in Appendix [C| There is however an important subtlety to keep
in mind: there are actually three strictly nonequivalent points of view on the empirical
measure and depending on the one chosen, it provides three different nonequivalent re-
sults. These point of view are explained in great detailed in Section [[-3.4] and we briefly
recall them now.

e The strongest point of view, called (strong) pathwise, considers the empirical mea-
sure as the empirical measure associated to a sequence of N random processes
defined in the Skorokhod space, that is, with the previous notations, the sequence
(u XzOvT]) ~n. For each N, the empirical measure is thus a random element p Xy, €

P(D’([O, T),E)) and the goal is to prove the convergence of the laws in the space
P(P(D([0,T], E))).

e The second, weaker, point of view, called functional law of large numbers, sees the
empirical measure as a measure-valued process, that is, for each IV, a random process
t € (0,7 = pyy € P(E), ie. arandom variable in the space D([0, 7], P(E)). The
goal is thus to prove the convergence of the sequence of pathwise laws in the space
P(D([0,T), P(E))).

e Finally, the weakest point of view, called pointwise point of view studies the flow
of time marginals of the law of the empirical measure process, that is the mapping
t € [0,T] — Law(uyy) € P(P(E)). This defines a deterministic sequence in the
functional space C([0,T], P(P(E))).

The first proofs of the propagation of chaos using compactness methods for spatially
homogeneous version of the Boltzmann model are due to Tanaka [281] and Sznitman
[273]. For the McKean-Vlasov diffusion and the mean-field jump model, a detailed analysis
can be found in [169, 229]. A more recent approach which exploits the gradient-flow
structure of the McKean-Vlasov diffusion is due to [60]. These results will be discussed
in Section [3.3] and Section [£.3]

2.3.3 Generator related methods

When seen as measure-valued processes, the sequence of empirical measures is a sequence
of Markov processes in the space P(F). Since a Markov process is defined by its generator,
the convergence (in law) of a sequence of processes can be recast into the convergence of
the sequence of their generators. Based on this idea, the seminal article of Griinbaum
[T72] is based on the asymptotic analysis of the generator of the empirical measure process
when N — +o00. However, since P(E) is only a metric space with no Banach structure,
the rigorous definition of the infinitesimal generator of a measure-valued processes and
the notion of convergence are in this case extremely delicate. A completed and rigorous
version of Griinbaum’s original argument is due to [239], 240] and is discussed in detailed
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in Section [[-4.3] The main result is an abstract theorem (Theorem valid for a wide
range of mean-field and Boltzmann models. This strategy has been applied to the spatially
homogeneous version of the Boltzmann equation in [239] and leads to uniform in time
propagation of chaos results. The main results are gathered in Section [£.5]

2.3.4 Entropy bounds

Most of the methods already presented require at some point some regularity assumptions
on the interaction, typically a Lipschitz continuity property for the functions b and o in
or of v in . However, such assumption cannot be verified in many important
cases, for instance Coulomb-type or Biot and Savart interactions. To deal with such
systems, a new class of methods has recently been developed, based on the notion of
entropy. In the present context, the study of entropy and entropy bounds originates from
the large deviation analysis of particle systems, as reviewed in Section [[-4.4] Following
these techniques, recent results have been obtained for singular systems and systems with
low regularity in physics and biology, see Sections [3.4] and [5.1.3] On a more probabilistic
side, these techniques are also strongly linked to the Girsanov transform and also lead to
propagation of chaos results for very general and abstract systems, see Section |3.6.2]

Definition 2.6 (Entropy, Fisher information). Let & be a Polish space. Given two
probability measures p, v € P(&) (or more generally two measures), the relative entropy

is defined by
dv dv
H(v ::/—lo (—)d ,
(vn) 3 os g )

where dv/dp is the Radon-Nikodym derivative. When the two measures are mutually
singular, by convention, the relative entropy is set to +oo (the same holds for the Fisher
information below). If moreover E is endowed with a smooth manifold structure, the
Fisher information can be defined as

i o (3

The following lemma links entropy bound and Kac’s chaos in Total Variation norm.
It is a direct consequence of the Pinsker inequality and the Csiszar inequality [36].

2

dv,

with the same conventions.

Lemma 2.7. Let & be a Polish space and let fN € P(&N) and f € P(&). For every
nonnegative integer k < N, it holds that

H(fN| ),

1 2 k
SN = 1 ey < HPEN) < 5

where || - ||rv is the Total Variation norm (which induces a topology stronger than the
topology of the weak convergence of probability measures, see Section .
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For the McKean-Vlasov diffusion , the following lemma gives a way to bound the
relative entropy between the N-particle distribution and its mean-field limit. The first
pathwise inequality is a consequence of the Girsanov theorem (see Appendix and
Lemma. The second one can be formally obtained by direct computations (see Lemma

L),

Lemma 2.8 (Pathwise and pointwise entropy bounds). Let T' > 0 and I = [0,T]. For
N €N, let N € P(C([0,T], RYN)) be the law of the McKean-Viasov diffusion (X)),
defined by [(3) with b : R x P(RY) — R? and o = I, and let fN € P(RHN) its time
marginal at time t € [0,T]. Let fr € P(D([0,T],R%)) be the pathwise law of the limit
nonlinear McKean-Vlasov diffusion and let f; € P(R?) be its time marginal at time
t € 10,77 (it is the solution of[(4)).

o For any k < N it holds that
kN r@k k g 1 1 2
H( javy ) < §E : |b(Xt7:uXtN) _b(Xtaft)‘ dt|. (24)
e For every a > 0 1t holds that
iH(fN|f®N> < a__1]<fN|f®N) "‘EE[lb(Xl L N) _b(Xl f>‘2} (25)
dt t t — 2 t t 20& to Xt trJt .

2.3.5 Interaction graphs

In an abstract Boltzmann model given by the generator @ in Section , the binary
interactions can be represented by graph structures. Given a trajectorial realisation of
the particle system, the interaction graph of a particle (or a group of particles) is built
backward in time and retain the genealogical interactions which determine the particle at
the current time (i.e. the history of the collisions). Before building graphs from particle
realisations, the minimal structure of such a possible graph is detailed in the following
definition.

Definition 2.9 (Interaction graph). Consider an index ¢ € {1,..., N} (it will stand later
for the index of a particle). An interaction graph for 7 at time ¢ > 0 is the data of

1. a k-tuple Ty = (t1,...,tg) of interaction times t > t; >ty > ... >t >0,

2. a k-tuple Ry = (r1,...,r,) of pairs of indexes, where for ¢ € {1,...,k}, the pair
denoted by 7, = (iy, j¢) is such that j, € {ig,?1,...,%_1} with the convention iy =i
and iy € {1,,N}

Such an interaction graph is denoted by G;(Tx, Rx)-

Given a trajectorial realisation of a Boltzmann particle system, the interaction graph
of the particle 7 retains the minimal information needed to compute the state of particle 7
at time ¢ > 0. It is constructed from Definition 2.9 as follows.
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P iy iy

Figure 1: An interaction graph. The vertical axis represents time. Each particle is
represented by a vertical line parallel to the time axis. The index of a given particle is
written on the horizontal axis. The construction is done backward in time starting from
time t where only particle ¢ is present. At each time t,, if 7, does not already belong to
the graph, it is added on the right (with a vertical line which starts at ¢;,). The couple
re = (ig, jo) of interacting particles at time ¢, is depicted by an horizontal line joining
two big black dots on the vertical line representing the particles i, and j,. for instance,
on the depicted graph, ro = (is,7). Note that at time t3, r3 = (i1,i2) (or indifferently
rs = (ig,11)) where i; and i were already in the system. Index i3 is skipped and at time
ty, the route is r4 = (i4,41). The recollision occurring at time t3 is depicted in red.

e The set (i1,...,1;) is the set of indexes of the particles which interacted directly or
indirectly with particle ¢ during the time interval (0, ¢) (an indirect interaction means
that the particle has interacted with another particle which interacted directly or
indirectly with particle ¢) — note that the i,’s may not be all distinct.

e The times (ti,...,tx) are the times at which an interaction occurred.

e For ¢ € {1,...,k}, the indexes (i, j,) are the indexes of the two particles which
interacted together at time t,.

Following the terminology of [169], a route of size ¢ between i and j is the union of ¢
elements r,, = (ig,, jo,), K = 1,...,q such that i,, =1, i, = js, and j,, = j. A route of
size 1 (i.e a single element r,) is simply called a route. A route which involves two indexes
which were already in the graph before the interaction time (backward in time) is called a
recolliston. This construction is more easily understood with the graphical representation
of an interaction graph shown on Figure [I}

The definition of interaction graphs can be extended straightforwardly starting from
a group of particles instead of only one particle. This representation does not take into
account the physical trajectories of the particles, it only retains the history of the inter-
actions among a group of particles. Note that the graph is not a tree in general since the
1¢’s are not necessarily distinct. It is a tree when no recollision occurs.
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The following definition extends the construction of Definition to the case of ran-
dom parameters.

Definition 2.10 (Random interaction graph). Let A > 0, N € N, ¢ € {1,...,N} and
t > 0. Let (T"™)1<k<e<y be N(N — 1)/2 independent Poisson processes with rate A/N.
For each Poisson process T™* we denote by (T/™"), its associated increasing sequence of
jump times. The sets of times T = (¢1,...,t) and routes Ry = (rq,...,r;) are defined
recursively as follows. Initially, tg =t and ig = i and for £ > 0,

b1 = max { TP | TP < by, £ < k}. (26)
Lpn

Then, given (¢, p,n) such that ¢z = TP i1 = pand jry1 = igso that rpo 1 = (Ira1, Jrs1)-
The procedure is stopped once the set on the right-hand side of is empty (it hap-
pens almost surely after a finite number of iterations). The resulting interaction graph
Gi(Tk, Ry) is called the random interaction graph with rate A rooted on ¢ at time ¢t. The
definition is extended similarly starting from a finite number of indexes (ig, 1, ..., )
instead of just i.

As explained before, a realisation of a Boltzmann particle system immediately gives
an interaction graph for each particle. More importantly, given an interaction graph, it is
possible to construct a forward realisation of a Boltzmann particle. More precisely, when
the interaction graph is sampled as a random interaction graph following Definition [2.10],
then the following straightforward lemma constructs a forward realisation of a stochastic
process whose pathwise law is equal to f[t’é\][, the first marginal of the law f[]g 1 of a

Boltzmann particle system given by the generator @ on the time interval [0, ¢].

Lemma 2.11. Let us consider the Boltzmann setting given by Assumption[]] together with
the uniform bmmd on A. Given a realisation of a random interaction graph sampled
beforehand as in Definition apply the following procedure:

1. At time t =0, let the particles Zée be distributed according to the initial law.
2. Between two collision times, the particles evolve according to LY.

3. At a collision time t,, with probability )\(fo, thf)/A, the new states of particles i,
4 4

and jy are sampled according to

(Zii, Zﬂ'f) ~ T (Z"f, 77 dz, dz2> .
tf tZ tl t(

Then the process (Z)s<; is distributed according to the one-particle marginal f[t’i\][ of the

law f[’(}{t] of a Boltzmann particle system given by the genemtor on the time interval
[0, t].

This result will be useful later. Interaction graphs and random interaction graphs
are used in [213] and in [169] to prove propagation of chaos by a direct control of the
trajectories of the particles. This will be reviewed respectively in Sections and [£.2]
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3 McKean-Vlasov diffusion models

Since the seminal work of McKean [226], later extended by Sznitman [276], a very popular
method of proving propagation of chaos for mean-field systems is the synchronous coupling
method (Section . Over the last years, some alternative coupling methods have been
proposed to handle either weaker regularity or to get uniform in time estimates under mild
physically relevant assumptions (Section . Alternatively to these SDE techniques, the
empirical process can be studied using stochastic compactness methods [274) [169], leading
to (non quantitative) results valid for mixed jump-diffusion models (Section [3.3). Recent
works focus on large deviation techniques, in particular the derivation of entropy bounds
from Girsanov transform arguments [194, 210], this allows interactions with a very weak
regularity (Section or with a very general form (Section [3.6]).

3.1 Synchronous coupling

In this section, we give several examples of the very fruitful idea of synchronous coupling
presented in Section [2.3.1] The first instance of synchronous coupling that we are aware
of is due to McKean himself although the most popular form of the argument is due to
Sznitman. This will be discussed in Section [3.1.1] This original argument is valid under
strong Lipschitz and boundedness assumptions but it can be extended to more singular
cases, as explained in Section [3.1.2] Finally, in Section [3.1.3] the strategy is successfully
applied to gradient systems and leads to uniform in time and convergence to equilibrium
results.

3.1.1 McKean’s theorem and beyond for Lipschitz interactions

The following theorem due to McKean is the most important result of this section. For a
function K : E? — R, we recall the notation K % u(z) := [ K(z,y)u(dy).

Theorem 3.1 (McKean). Let the drift and diffusion coefficients in[(3) be defined by
Vz e REVp e P(RY), bz, ) = b(z, Ky p(z)), olx,p) =5z, Kaxpu(x), (27)
where K; : R x R — R™, KQ:RdXRd%Rn,I;:RdXRm%Rd and & : R*x R" —

My(R) are globally Lipschitz and K, Ko are bounded. Then pathwise chaos by coupling
in the sense of Definition holds for any T > 0, p = 2, with the synchronous coupling

t t
XN = X+ / DXV, K % e (X)) ds + / 0 (XN, Ky pay (XPV))dB, - (28)
0 0
and
t t
X =Xi+ / DXL, Ky fo(X0Y))ds + / 6 (XYY Kax fo(XUY))dBL (29)
0 0

It means that the trajectories satisfy:

N
¥ L E|sup X - Xif’| < <(v.)
=1

t<T
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where the convergence rate is given by

e(N,T) = —01(b7 uxd) ec2 (b0 )T

30
0 , (30)
for some absolute constants C,C,Cgpe > 0 not depending on N, T,
(b,0,7) = CT (T KBl + Conal| Kl 1, ). (31)
and . B
a(b,0, ) i= C(T(1+ [ KallE) 1Bl + Cova (1+ 1HaliE,) 1515, ). (32)

We present two proofs of this result. The first one is the original proof due to McKean
[226]. The second one is due to Sznitman [276]. Sznitman’s proof is a slightly shorter and
more general version of McKean’s proof. We chose to include McKean’s original argument
for three reasons. First it gives an interesting and somehow unusual probabilistic point
of view on the interplay between exchangeability and independence (see Section .
This is an underlying idea for all the models presented in this review which is made very
explicit in McKean’s proof. Secondly, although the computations in both proofs are very
much comparable, McKean’s proof is philosophically an existence result while Sznitman’s
proof is based on the well-posedness result stated in Proposition[[-1} Finally, it seems that
McKean’s proof has been somehow forgotten in the community or is sometimes confused
with Sznitman’s proof which in turn has become incredibly popular. McKean’s argument
was first published in [225] and then re-published in [226]. Both references are not easy
to find nowadays and it is probably the source of the confusion between the two proofs.

Proof (McKean). The originality of this proof is that the nonlinear process is not intro-
duced initially. It appears as the limit of a Cauchy sequence of coupled systems of particles
with increasing size. Let (Bj),, i > 1 be an infinite collection of independent Brownian
motions and for N € N we recall the notation

N = (xN XYY e RN,

where (X"), solves |(28)] The idea is to prove that the sequence (in N) of processes
(X;"™), is a Cauchy sequence in L? (2,C([0,T],R?)) and then to identify the limit as the
solution of |(29)] The proof is split into several steps.

Step 1. Cauchy estimate

Let M > N and let us consider the coupled particle systems XV and XM where the
N first particles in XM have the same initial condition as X'V, ..., XV and are driven
by the same Brownian motions B!, ... BY. Using and the Burkholder-Davis-Gundy
inequality it holds that for a constant Cgpg > 0,

T 2
E [sup | XM —X,}’Nﬂ < 2T/ E‘b(th’M,uXtM> - b(X}N,MXtN) dt
0

t<T

T 2
+ 2080 / E‘0<X§’M,MXtM) —a(ngN,uXtNﬂ dt. (33)
0
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For the first term on the right-hand side of |(33)], we write:

2 2
E)b(th’M, ,uXtM> — b(th’N, [,I,XtN> ‘ < QE’[)(th’M, ,uXtM> — b(th’M, [,I,XtN,M> ‘
+ QE‘Z)(th’M, uXtN,NI) - b(th’N, ,LLXtN>

where XM = (X1 sl ,XtN’M) € (RY)N. Each of the two terms on the right-hand side
of m (34)|is controlled using , the Lipschitz assumptions and the fact that the X/ are
identically distributed. For the first term, expanding the square gives:

E‘b(th’M,/LXtM> - b(th’M,,uXN,M)
1 & 1

712 LM M
< HbHLipE’M;KI (Xt , XY ) - N

- 11 N 2
< Il (M + 5 QW)E)M (X,}’M,XE’MM

" (34)

2

. 2
(x4, x0)

M=

I, (257 + S — 2 ) x
E[Kl(X X2 )-K1<Xt1’M,Xf”M)]

1 1 5 1T
<2 (5 - 37 ) Il

For the second term, the Lipschitz assumptions leads to:

2
E‘b<Xt1’M7 MXtN’M> - b<Xt1’N7 /’LXtN) ’
< 2||Z~)||I2_Aip]E|:|Xt1’N - th’M‘z

N N
1 ‘ 1 | ,
R (X XE) = 5 S () ]
Jj=1 =
2 (1+ 20K I2y) B, B[ XY — XM P

The same estimates hold for the diffusion term on the right-hand side of |(33)| with o
instead of b and K, instead of K;. Gathering everything thus leads to:

[Sup X }
t<T
1 1

T
2
< <N — M>c1(b, 0,T) + cy(b, 0, T)/O E|x; Y — XM at

where ¢; and ¢, are defined by |(31)[and [(32)l Using (a generalisation of) Gronwall lemma,
it follows that:

1 1
su X1 M X1 AN } (— — —)c b, o, T)e2bo )T 35
E|sup | * < (5 - o )ertv.o.T) (3
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Step 2. Cauchy limit and exchangeability

The previous estimate implies that the sequence (X'V)y is a Cauchy sequence in
L*(Q,C([0,T],RY)). Since this space is complete, this sequence has a limit denoted by
X! = (X}),. Applying the same reasoning for any k € N, there exists an infinite collection
of processes X*, defined for each k& > 1 as the limit of (X*")y. These processes are
identically distributed and their common law depends only on (X});»; and (B"),s; which
are independent random variables. Moreover, knowing (X}, B') and for any measurable
set %, any event of the type {X! € %} belongs to the o-algebra of exchangeable events
generated by the random variables (X{),», and (B");>2. Since these random variables are
i.i.d, Hewitt-Savage 0-1 law (Theorem states that this o-algebra is actually trivial. It
follows that X! is a functional of X} and B! only. The same reasoning applies for each

X" and hence the processes X* are also independent.
Step 3. Identification of the limit

At this point, propagation of chaos is already proved and it only remains to identify
the law of the X¥ as the law of the solution of |(29)l To do so, McKean defines for
i€{l,..., N} the processes

t

t
XZ»N :X(Z)—f—/ b(Yg,uXN>ds—i—/ O'<7;,M}N>dB;,
0 S O S

where XY = (X},..., X¥). From the independence of the processes and by the strong
law of large numbers, the right hand side converges almost surely as N — +oo towards
the right hand side of with f; being the law of X’ (which is the same for all 7).
Moreover, direct Lipschitz estimates lead to

. . C

Elsup | X; — X!|"| < —,

L<¥| =X } N
where C' is a constant which depends only on T, || Ky ||uip, | Ke[lLip- By uniqueness of the
limit, it follows that X! satisfies . Moreover, the bound |(30)| is obtained by taking
the limit M — 400 in|(35)} O

The following proof is due to Sznitman [276] in the case where ¢ is constant and with
p = 1 in Definition 2.5 The following (direct) adaptation to the model of Theorem [3.1
can be found in [203], Proposition 2.3].

Proof (Sznitman). With a more direct approach, the strategy is to introduce both the
particle system and its (known) limit given respectively by and and to estimate
directly the discrepancy between the two processes. Using the Burkholder-Davis-Gundy
inequality, it holds that for a constant Cgpg > 0,

2

T
]E[Sup }yg_xﬂ <o [ R (R ) = b(X ) [
0

t<T

2

dt. (36)

+ 2CH0a /OTE)U(X;‘,ft) (Xt )
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The drift term on the right-hand side of [(36)| is split into two terms as follows:

2

S . 2 S .
E)b(X;a ft) - b(XZ,uthv)‘ < 2]E)b(X;7 ft) - b<X7{57 M?ﬁ)
+ 2E’b<7i,uyi\7> - b<Xti7:uXtN> 2

For the first term on the right-hand side of [(37)|, the assumption and the Lipschitz

assumptions give:

(37)

2

Ba) B 2 7112 B2 1 = i WJ
E[b(X% £) = (Ko )| < 10 B[R+ (K — D (K3 X)
j=1

H || i ~i ~i VI 2
_ LPE‘Z{Kl*ft(Xt)—Kl(Xt,Xi)H .
Expanding the square, it leads to:

E[b(X3, £) (i ey )|

(NS i v v ~i <i %
< 50 2 B[+ (X)) — Ki(X5.X9)) - (Kax fi(XG) = Ka(X3, X))
k=1
_ AlIBIEs I K 5
= N
1112

+

ZE[(KI * [1(X}) — K1 (X}, X7)) - (K * fo(X)) — Ki (XL, X7)) ]
k0

N2

When k # ¢, using the fact that Yf and 75 are independent, f;-distributed and indepen-
dent of X, it holds that:

E[(Kyx £i(XD) = Ka(X0, K1) - (K x (XD = K (X0, X0))]
= B[E[(F1+ £i(X)) — Ka(K5, X)) - (K £(X5) — 16X, X)) [

— E[E| (K1« fi(X)) — K(X3, X)) [0 B[ (560« £X) — 160X, 1)) [ X
=0,

To obtain the last inequality observe that since k # ¢ at least one of them is not equal to
i, let us assume that ¢ # i. Then since Law(X?) = f;, it holds that

B[ (161 + £:(X5) — 16(X3, X)) %3] =0

In conclusion, )
2 _ AYOIE 4 15

B[b(Xi fi) = b(Xi ey ) o

(38)

27



For the second-term on the right-hand side of |(37)], the Lipschitz assumptions give:

i 2 7 i i|2
E|b (X ey ) = b(Xi gy )| < CIBIE, (1+ 1K) EIRE - X0 (39)

The same estimates hold when b and K are replaced by ¢ and K,. Gathering everything
leads to:

T
{sup}X’ Xﬂ} % (b,U,T)—FCQ(baU,T)/ E|7i_Xti|2dt
0

t<T

1 T :
< Ncl(b’ o, T) + c2(b, o, T) / {Sup ’XZ X;‘Q] dt.
0

s<t
The conclusion follows by Gronwall lemma. O

Remark 2. 1. The same synchronous coupling result holds (at least) with p = 1 (see
[6, Corollary 3.3]) and p = 4 (see [203, Proposition 2.3]) in Definition

2. Pointwise chaos|(23)|in Definition [2.5is a consequence of pathwise chaos but it
can also be proved directly with the same line of argument but where the Burkholder-
Davis-Gundy inequality is replaced by the Ito isometry.

3. The starting inequality (Equation in McKean’s proof and Equation in
Sznitman’s proof) can be replaced by an equality using It6’s lemma. This may
bring a small improvement in the constants ¢; and c¢y. For instance, in the common
case where o is a constant, we can write (in Sznitman’s framework),

t
|7§ — XZ\Q = 2/ (b(X, fs) — b(XE, pan), X — X1)ds.
0

And we would obtain for some constants C,C' > 0 (see for instance the introduction

of [268]):

20 o CllbllLip (1+ K [|Lip) T
)

. . b K

gt - ] < Pl 1
t<T N

and therefore propagation of chaos holds over a time interval T" ~ log N. Several

example will be given in the following (see in particular Theorem and Theorem

33).

When o = I;, the following corollary shows that the pathwise particle system is
strongly chaotic in TV norm. This result has been proved in [220, Theorem 5.5].

Corollary 1 (Pathwise TV chaos). Under the same assumptions as in McKean’s theorem
but with o = 14, for all k < N it holds that

k
Hf[OT OT]”TV < C(T) N
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Proof. By the Pinsker inequality and the inequality |(I-106)|, it holds that

k
Hf[OT OT]HTV<2NH( 0T]|f[0T)

Using |(24), the right-hand side is bounded by:

T
o — [OTHTV<2kE[/O (X}, ) — XL, )

By McKean’s theorem, the expectation on the right-hand side is bounded by C(T and

the conclusion follows. ]

McKean’s theorem can be directly generalised to more general, yet Lipschitz, settings
as we shall see in Section B.6.1]

3.1.2 Towards more singular interactions

The hypotheses of McKean’s theorem (bounded and globally Lipschitz interactions) are
most often too strong in practice. Even though there is no real hope for better results at
this level of generality, many directions have been explored to weaken the hypotheses in
specific cases.

1. (Moment control). A commonly admitted idea is that propagation of chaos
should also hold for only locally Lipschitz interaction functions with polynomial
growth provided that moment estimates can be proved (both at the particle level
and for the limiting nonlinear system).

2. (Moderate interaction and cut-off). If one is mainly interested in the derivation
of a singular nonlinear system, another idea is to smoothen the interaction at the
particle level, for instance by adding a cutoff parameter or by convolution with a
sequence of mollifiers. Such procedures typically depend on a smoothing parameter
¢ that will go to zero. For a fixed € > 0 McKean’s theorem gives a (quantitative)
error estimate between the particle system and a smoothened nonlinear system.
Then the idea is to take a smoothing parameter € = £ which depends on N such
that ey — 0 as N — 4+o0o. Taking advantage of the quantitative bound given by
McKeans’s theorem, the goal is to choose an appropriate €y (usually a very slowly
converging sequence) to pass to the limit directly from the smooth particle system
to the singular nonlinear system.

In the present section, we give some examples of these ideas which naturally extend
Sznitman’s proof of McKean’s theorem using synchronous coupling. Note that all the
proofs crucially depend at some point of a well-posedness result for the nonlinear system.
In practise, for singular interactions, proving propagation of chaos therefore largely de-
pends on the considered model. Several examples for classical PDEs in kinetic theory can
be found in Section 5.1l
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Moment control.

In [31] the authors introduce some sufficient conditions on the interaction kernels K; and
K5 to extend the result of McKean’s theorem to non globally Lipschitz bounded settings.
This comes at the price of a strong assumption on the boundedness of the moments.
Other examples using similar ideas will be detailed in Section [3.1.3] We first give a simple
version of [31, Theorem 1.1] for the McKean-Vlasov model [(3)]

Theorem 3.2 ([31]). Let us consider the McKean-Viasov model [(3) Let b,o be as in
McKean’s Theorem with b,c globally Lipschitz and assume that there exists v > 0,

p > 0 such that for i = 1,2, K; satisfy for all x,y,2',y € R?,
|Kilw,y) = Kile )| <2 (le = a1+ ly = o/1) (1l + [yl + 2+ [y/17). (40)

Assume there exist k > 0 and p’ > p such that for any T > 0, Equations|(28) and |(29),
admit solutions which verify

sup supE[e“‘Xﬂp,} < +00, supE[e“‘Yﬂp,} < +00. (41)
N t<T t<T

and fori=1,2,
sup [ 1K) f(da) fi(dy) < oo, (42)

t<T
Then for all T > 0, there exists C(T) > 0 such that for all0 <t < T,
i O
BIX; - X < ).

Moreover, if the moment bound holds for some p' > p then for all 0 < e < 1, there
exists C(T) > 0 such that for allt < T,

g OO)
]E|Xt _Xt|2 S N]_fg’

Sufficient conditions which ensure the well-posedness of and are given by
p <2, band & bounded, K;(x,y) = K;(z —y) with |K;(z)| < C(1+ |z|) for i = 1,2. This
is a particular case of the more detailed result [31, Theorem 1.2], see also [31, Lemma

3.5)).

Proof. The proof is similar to the proof of McKean’s theorem using Sznitman’s syn-
chronous coupling but starting from [to’s formula:

LB - X = 2B (X, - XEb(G )~ b))
+ 980 (K £)— o (X, )
Then
E<7?§ - tha b(Y;, ft) - b(tha ,UXtN)> = ]E<7; - XZ» 5(7;7 ft) - b(yzaﬂfi\’)>
+E(X, — X[, 0(X5, pen) — b(X, pay))
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Using Cauchy-Schwarz inequality with the same classical argument as before but replacing
the boundedness of K7 by [(42)| gives:

12 C

B, X0 0T, £) ~ (i py) < (BIK: - XP)

Then,
]E<72 - thv b(yia M}é\’) - b(tha MXtN)>
1L o ,
= 2B = X b(XG ey ) = (X i)
i=1

1N o .
< 7 DB = X ) =X )

g N
b 1 7 7 7 7 b - 7
2 ”“’ZM XK (R ) — K (X © > B, - Xl
2,j=1 i=1
V1Dl
Li ~ i 1 N1 i vd ]
< = S E[ (1K - X0+ X - XX - X7))
ij=1

x (1 i+ (X + X017 + |X7 ) |

—. OfYHbHI—JP Z ]E 1]

2,7=1

For a given (7,7) and R > 0, the authors of [31] define the event
= {IXil < R.IXI| < R |X{| < R, 1X]| < R},
Then they distinguish the two cases inside the expectation:

< C(1+4RE|X: — X;|> + E[1g1;j]
< O(1+4RPE|X! — X}
1/2 i 37 i 2]\
+ (ElLr])” (B[ (1+ X5 + (XA + X0 + [ x71)°])
The probability of R¢ is controlled by the Markov inequality,
E[ILRC] < E[1|Y§\>R} + E[1|Y{|>R] + E[B\X§|>R] + E[ﬂ\xg'p}z]
S Ce—HRp,
Setting r = kP/P" RP /2P/V' it follows that
B[] < C(1 + r)E[X! — XI? + Ce™"".
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A similar reasoning applies for the term with ¢ and therefore, the function
y(t) = E[X} — X[,

satisfies, for every r > 0:

Y1) < CO+ry(t) +e " + \/%\/ﬁ <C+r)yt)+Ce ™" + %

If p =19/, choosing r = log(1 + 1/y(t)) leads to the nice differential inequality
C

y'(t) < Cy(t) + Cy(t)log(L + 1/y(1)) +

and a complicated Gronwall-like argument (see e.g. [72, Lemma 5.2.1] or [124, Theorem

27]) terminates the proof. Otherwise when p’ > p, choose 7 = (log N)?/?', and since
y(0) = 0, a direct integration by the classical Gronwall lemma gives

y(t) < 2eCT+CT(logN)P/p/flogN

which concludes. L
The authors of [31] write a detailed proof in the kinetic case with
b(z,v, 1) = —F(z,v) — H* p(z,v), oz,v,pm) =21,
where F, H : R x R? — R? satisfy a slightly weaker assumption, namely:
—(v —w, F(z,v) = F(z,w)) < v —wl,
and
|F(x,0) = F(y,v)] < 5pmin(1, [z —y[)(1 +[o]’),

and similarly for H. They also prove [31, Theorem 1.2] which gives sufficient conditions
on F' and G for the well-posedness of both the particle and the nonlinear systems and
such that the hypotheses of Theorem are satisfied. Theorem corresponds to a
combination of the variant (V3), of the case given in Section 1.2.2 and of the case given
in Section 1.2.3 of [31], Theorem 1.1].

Moderate interaction.

In [249], Oelschléger introduced the concept of moderately interacting particles. He studied
systems of the form With a constant diffusion matrix o = v/21,; and with a symmetric
interaction kernel K7 which depends on N as follows:

1 —x
Ve,y e RY  Ki(a,y) = KNy — o) = — Kq (y ) | (13)
EN EN

where K, : R? — R is a fixed symmetric radial kernel and (gx)y is a sequence such that
ey — 0 as N — +oo. The strength of the interaction between two particles is thus of
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the order ~ e3? N1, Oelschliger considered the case ey = N~%/¢ with 8 € (0,1). The
two extreme cases § = 0 and 8 = 1 correspond respectively to a weak interaction of order
~ 1/N (actually what is usually called the mean-field scaling) and a strong interaction of
order ~ 1 (it would be hopeless to take the limit N — +o00 in this case without further
assumptions, see Section . More generally, the term moderate interaction refers to
any situation in which ey — 0 and e3? N~ = o(1). In this case

in the distributional sense, which allows to recover singular purely local interactions.

When the diffusion matrix o = v/21; is constant, the main result of [249, Theorem 1]
is a functional law of large numbers which states the convergence of the empirical measure
valued process (,u XtN)t towards the deterministic singular limit f; solution of

Ofi(x) = =V, {b(z, fi(2)) fi(2)} + Apfie

We call this interaction purely local because the drift term no longer depends on the
convolution Kj % fi(x) but only on the local quantity f;(z). The strategy is roughly the
same as the one explained in Section The first step is a relative compactness result
in P(C([0,T],P(RY))), the second step is the identification of the limit process which is
shown to be almost surely the solution of a deterministic equation. The last step and
in this case, the most difficult one, is the uniqueness of the solution of this deterministic
equation. In the case of a gradient system, well-posedness results in some Holder spaces
are available in the PDE literature [212].

Later, Oelschlager studied the fluctuations around the limit [250] and applied these re-
sults to a multi-species reaction-diffusion system [251]. A pathwise extension of Oelschldger’s
results can be found in [234].

The martingale approach of [249] is very restricted to the case when the diffusion
matrix is equal to the identity. In the general case [(27)] the problem is revisited in [203].
The approach is based on a careful control of the convergence rate in McKean’s theorem
and ad hoc well-posedness results for the limiting purely local equation . First note
that the L> and Lipschitz norms of KV are controlled by

Co Ch
1K |oo = T 1KY Ly = =7
N €N

for some constants Cy, C; > 0 depending on K. We also assume that Kj is of the form
(43)| (possibly with another Kj). Thus, McKean’s theorem gives for all N an estimate of
the form by
E {sup \XZ’N - Yi’NP} < 51€L exp (525312((”1)), (44)
t<T N

for some constants ¢, ¢ > 0 depending only on T, Ky, b and & and where Y?N satisfies

AXN = B(Y;W, KN f) (7;‘”) ) dt + 6 (7;’“, KN f) (Y:}N) ) B!,
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with £ € P(R?) is the law of X, It satisfies

oS @) = =9, {b(e K 1) 1) |

d
1
500 B0 { s (21 5 10 (@) 10 (@)}, (45)
2, j=1 ’
where a = (a;;) = 567, In order to take N — 400 in |(44), Jourdain and Méléard [203]
assume that ey — 0 slowly enough so that the right-hand side of still converges to
zero. A sufficient condition is
et < Slog N, (46)
for a small § > 0. In the bound [(44)| the nonlinear process (X:"), still depends on N
(through KV and K¥) so it is not possible to simply take the limit N — +o00. Moreover,
the goal is to prove propagation of chaos towards the solution f; of the purely local PDE:

d

0ufiw) =~V bl i) £l)} + 5 3 000, fay o @A) (47)

ij=1

Well-posedness results for the PDEs and can be found in [203, Section 1]. The
approach of [203] is based on the work of [212] on parabolic PDEs. The main assumptions
are the regularity of the drift and diffusion coefficients (respectively at least C? and C?)
and of the initial condition (at least C* with an Holder continuous second order derivative),
together with the following non-negativity assumption on a:

Vo €RVz eRIVpER, (x,(d(2,p)p+a(z,p)z) >0,
where for z € R?, a/(z,p) denotes the derivative of p € R — a(z,p) € My(R). Then,

[203, Proposition 2.5] shows that |(47)|is well-posed, that the associated nonlinear SDE is
well-posed and that the solution X of

aX; = b(X £i(X0) )t + o (X, £ (X7) ) By,

satisfies:

E [Sup XN — X;‘r*] < Cey, (48)

t<T

for some 8 > 0. The proof of this proposition is based on PDE arguments. In particular,
since the law of X/ solves , using Ascoli’s theorem (or other compactness criteria)
it is possible to extract a convergent subsequence ft(N) — f; where f; solves m with an
explicit convergence rate. Combining and |(48)| leads to

—2d
E {sup | XN — 7t|2] < (C’e?vﬁ + 61% exp (625]_\,2(d+1)>> :
t<T

and the conclusion follows as soon as ey satisfies .

Recent applications of these results can be found in [73] and [I15]. The reference [73]
presents a generalisation of [203] to a multi-species system with non globally Lipschitz
interactions. The article contains very detailed well-posedness results for the different
systems involved. In [IT5], the diffusion process is replaced by a Piecewise Deterministic
process on a (compact) manifold.
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Singular interactions with cutoff

Similarly to the moderate interaction case where the goal was to approximate purely local
interactions, it is possible to introduce a cutoff parameter which depends on N in order
to approximate interactions which do not satisfy the regularity hypotheses of McKean’s
theorem. The most important cases in the literature are the singular Coulomb-type
interactions. These models are given either by the first order model

dX] = F x ppndt + 0dBj, (49)
or by the second order kinetic system
N
i i i1 i j i
AX; = Vidt, dvi=— ; F(X! — X})dt + odB, (50)

where in both cases ¢ > 0 and F' is a Coulomb-type force:

Fz) = &

R

with a constant £; € R. This force is singular at the origin and derives from a potential
F = -V,® with

O(z) = %logm, d=2
_ §a
Y=gy 1

In the attractive case &; > 0, the kinetic systems corresponds to the classical gravitational
Newtonian dynamics. More recently, the first order system has been used to model the
chemotaxis interactions between swarms of bacteria. Using the classical notations in this
context and with an appropriate constant £; > 0, the formal limit N — +oco leads to the
propagation of chaos towards a limit distribution p which satisfies the system

2

op=—-V-(pVe)+ %Ap, (51a)
—Ac = p. (51b)

This system is called the parabolic-elliptic Keller-Segel system. The density p represents
the (spatial) density of bacteria and ¢ the concentration of a chemical substance which is
secreted by the bacteria and whose gradient drives the motion of the other bacteria.

The repulsive case £; < 0 is classically used in plasma physics. Importantly, the kinetic
case with o = 0 has also motivated the first propagation of chaos results (in a more regular
setting) by Braun and Heppp [41] and Dobrushin [120], as the formal limit equation is
the renowned Vlasov equation

Ofi+v-Vofi +(Fxp)-Vyufy =0
t = ¢(x,v)dv.
oi(z) /Rdfww
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For a detailed review of classical and recent propagation results in this deterministic
context (but possibly with random initial conditions), we refer the interested reader to
the review articles [I91] 165], to the articles [182, [183] 29 214] or, with different techniques,
to the recent articles [193] 269] 270].

In all these cases, it is not possible to directly apply McKean’s theorem due to the
singularity at the origin. Moreover, it has been shown by [149, Proposition 4] that, for
the particle system associated to the Keller-Segel system, the singularity is indeed visited
with nonzero probability: for any N > 1, any {; > 0 and any ¢y, > 0, then any solution of
(49)| (if it exists) satisfies

P(3s € [0,t0), Ji #j, X, =X]) >0.

Consequently, this raises well-posedness issues already at the particle level. A natural
strategy is therefore to remove the singularity at the origin by regularizing the force using
a cutoff parameter ¢ > 0. For instance, in [59], the authors replace the force F' by the

regularized version
x

Felz) = 5dmax(|3[:|, g)t
In [217, 139], the authors define a regularized potential ®. = J. x & where J.(z) =
e~4J(e71x) and J is a smooth mollifier. Once a regularized particle system is defined,
it is also possible to define the associated synchronously coupled system of nonlinear
SDEs (which depend on the cutoff parameter). Since coupling methods typically give
quantitative results, it becomes possible to take a cutoff parameter ¢ = ey which depends
on N and vanishes as N — +o00. Similarly to the moderate interaction case, it is necessary
to obtain beforehand precise well-posedness results and the sharpness of the estimates
will determine the size of the cutoff. In [59], the authors extend previous results by [214]
in the deterministic case (but starting from a random initial condition) and prove the
propagation of chaos for the regularized system with the cutoff and a cutoff
size ¢ = ey = N7%, 6§ < 1/d. This result has been improved in [190]. In [217, 139],
the authors use a smooth mollifier for the regularized system with a cutoff size
e=ey = (logN)~V/,

Finally, it should be noted that there has been many recent advances on this issue
using techniques that are not always based on cutoff approximations. These results will
be further discussed in Section [3.4] Section [3.6.2] and Section [5.1.3]

(52)

3.1.3 Gradient systems and uniform in time estimates

In this section, the case of McKean-Vlasov gradient systems is investigated, that is systems
of the form with

b(z,p) =—-VV(x) = VW u(z), olx,pn)=0cly, o>0, (53)

where V, W : R? — R are two twice continuously differentiable potentials (usually sym-
metric, but it will be precised each time), respectively called the confinement potential
and the interaction potential. The law of the corresponding nonlinear McKean-Vlasov
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process satisfies the famous granular media equation:

o2
8ft:gAft+V~(ftV(V—|—W*ft)). (54)

For the modelling details, we refer the reader to [I5] [14] who first derived this equation.
The granular media equation has been studied analytically in [62] 63] and later in [34].
The fundamental question, which also motivates this section, is the long-time asymptotic
of the solution, in particular the existence of stationary solutions and the convergence to
equilibrium. The probabilistic counterpart of the granular media equation is the nonlinear
McKean-Vlasov process with b, 0 given by . The long-time behaviour of this
process is not simpler than the direct study of but this probabilistic approach strongly
suggests to consider the (linear) McKean particle system as a starting point, the idea
being to replace the nonlinearity in dimension d by a linear system of particles in high
dimension dN. Since the behaviour of linear diffusion systems is well-established, this may
be simpler provided that it is possible to prove convergence results with rates independent
of the dimension. In a series of works reviewed in this section, it has been shown that
quantitative convergence to equilibrium for the nonlinear system may follow from the
study of the particle system. The crucial result is the uniform in time propagation of chaos.
In this section we review some results in this sense under various convexity assumptions
on the potentials. Note that uniform in time propagation of chaos is strongly linked
to the uniqueness of a stationary measure for the nonlinear process. Uniform in time
propagation of chaos may not hold as soon as the nonlinear system admits more than
one stationary measure (in the cases studied below, this is a consequence of the fact that
the particle system admits a unique equilibrium). In general uniform in time propagation
of chaos and the existence of a unique stationary measure for the nonlinear process hold
simultaneously. We start by stating the main theorem of this section which is due to
Malrieu [220].

Theorem 3.3 (Uniform in time propagation of chaos [220]). Let XN be the particle

system |(28) and Tiv be the synchronously coupled nonlinear system |(29). Let b,o be
given by 2552, and let us assume that there exist 5 > 0 and p > 1 such that V,W satisfy
the following properties.

o V is B-uniformly convex:
Va,y €RY (z —y, VV(z) = VV(y) = Blz -yl
o W s symmetric and convex:

Vo,y € RY (2 —y, VIV (2) — VIV (y)) > 0.

o VW s locally Lipschitz and has polynomial growth of order p.

Let the initial law foy € Pap(RY) have bounded moments of order 2p. Then there exists a
constant C' > 0 depending only on B and p such that

Q

N
1 . .
su —§ E|X!— X2 < —. 55
tZE)Nizl | t t| _N ( )
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All the well-posedness results for both the particle system and the nonlinear process
are proved in [64, Section 2]. The proof of Theorem is given below. This is an
extension of Sznitman’s proof of McKean’s theorem by synchronous coupling to the case
of unbounded interactions. In a one-dimensional setting, a similar result is proved in [13]
Theorem 3.1]. It has been adapted to the current setting in [220, Theorem 3.3]. The
uniform convexity of V' allows a uniform in time control of the trajectories. To deal with
unbounded interactions, the following lemma will be needed to control the moments of
the nonlinear system uniformly in time (see also [I3, Proposition 3.10] and [64, Corollary
2.3, Proposition 2.7]).

Lemma 3.4 (Moment bound). Let (X;); be the nonlinear McKean-Vlasov process
with b and o given by|(53). Let V' be B-uniformly convex for a constant f > 0 and let W
be symmetric and convex. Then for every p > 1 such that fy € Pay(R?), it holds that

sup E[ X |* < +oo.
>0

Proof. 1to’s formula gives:
X[ = [Xo|* + 2p /0 t (X PP IX,, -VV(X,) - VIV * fi(X,))ds
+ o?dp /t 1 X2 Vds 4 2p(p — 1)0° /t X2V ds
0 0
vo | (/X2 DX, dB,).
0
Taking the expectation and then the time-derivative

CEIX. [ = 2 [|X,20 ) (X, 0, VV(X,) — VV(0))]
— 2pE[| X, [P V(X,, VV(0))]
+ po?(d + 2(p — 1))E[X >~V
— 2pE(|X,[PPIX, VIV fi(X))
< —2pBE[X,[|* + 2p|VV (0)[E[X, [~
+ po?(d + 2(p — 1))E[X,|2P—Y
— 2pE(|X P VX, VIV x £,(X,)).

where the inequality follows from the uniform convexity of V. Let now (Y); be an
independent copy of (X});, so that

E([X,[PP~VX,, VWV x fi(X,)) = B(IX *PVX, VIV (X, = V7).
Since W is symmetric, VW is odd, leading to

E<’7t|2(p71)7t7 VW x ft(yt)> = _E<|yt|2(p71)?t7 VW<Yt - 7t)>7
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using the fact X, and Y, are independent and have the same law. Summing these two
expressions and using the convexity of W gives

_ _ _ 1 _ _ _ _ _
E(|X 070X, VIV £i(X)) = SE(IXPOV (X, = V), VIV (X, = V)
> 0.

Denote the moment of order 2p by pg,(t) := E|X,|*. Then it holds that

%mp(t) < = A(p)pap(t) + c1(p)pap—1)(t) + ca(p)pap-1(2),

where A(p), c1(p), c2(p) > 0 only depend on p and 8. Since py,(0) = 0, the conclusion
follows by integrating this differential Gronwall-like inequality, after noticing that for all
e > 0 and for all exponent ¢ < 2p, there exists a constant K > 0 such that for all z € R,

2|9 < K + ¢z,
[

Proof (of Theorem . The proof proceeds similarly as in Sznitman’s approach but the
convexity assumptions are used to get a better uniform in time control of the trajectories.
The starting point is Itd’s formula:

X=X = =2 [ (X ROV - TV R as
_ 2/: (X! — X5 VW e (X0) — VIV % (X))
Taking the expectation, and then differentiating
S - X < osmx - XP
— OB(X] = L VW e s (XF) — VIV gy (X))
— 2B(X] — XL VW gy (F5) — VIV 5 (),

where the uniform convexity assumption on V' is used and the introduction of the term
VW x pi%n in the second term on the right-hand side is forced as in the proof of McKean’s
theorem. For the second term on the right-hand side of the last inequality, summing over
i leads to

N

S E(X] - X VW ks (X)) — VIV 5 iy (D)

N
1 o . ) .
=+ DL B(X{ - X, VW (X] - X)) - VW(X] - X))
ij=1
:N E<(Xt—th)—(Xt—X{),VW(Xt—Xf)—VW(Xt—Xg»
1<j
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where the convexity and symmetry of W are used.
Then after summing over ¢ = 1,..., N and dividing by N, the Cauchy-Schwarz in-
equality for the last term gives:

d1

N
7 7 ﬁ A R
dtNEE\X X]2<— Y EIX] - X,
=1

E]Xl X2 piat,

||Mz

where

(E[VW*,MXN(X ) = VW x £,(X0)] )1/2.

As in Sznitman’s proof, it holds that

[ril? = E[VW % pgn (X)) — VIV + f(X))|* ZEWW (X - X[,

since the processes X° are independent. Using the polynomial growth of VW and Lemma
B.4] it follows that there exists a constant C), depending on p only such that

C
WQ < =

N’
Finally, by exchangeability, it holds that

dtNZE|XZ X1|2 < - BZE|XZ Xz|2

1/2
20,
E|X] — X{|? :
f( 3
Thus, setting

L& 1/2
olt) = (ﬁzwxz —7@\2) ,

i=1

it holds that o
y'(t) < —By(t) + —=,

VN

and since y(0) = 0, the conclusion follows by integrating this Gronwall-like differential
inequality. O]

As a corollary, we state the main application of this theorem which is the exponentially
fast convergence to equilibrium of the nonlinear process. Once again, this result is proved
in [220].
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Corollary 2. Let fy, V and W satisfy the same assumptions as in Theorem with
o = V2 for simplicity. Let us also assume that [ folog fo < oo. Then the following
properties hold true

1. (Entropic chaos). There exists C > 0 such that for every N > 1

sup H(f| ) < C.

t>0

2. (Convergence to equilibrium for the nonlinear process). There exists a
unique jios € P(RY) and a constant C' > 0 such that for all t > 0,

i — poollTv < Ce P72,
Note that in both statements, the constant C' > 0 depends on fy.

Proof (sketch). 1. The first property is proved in [220, Proposition 3.13] and follows
from a log-Sobolev inequality satisfied by f;. More generally, it is possible to use
the general bound given by Lemma with a = % in . Thanks to the Bakry-
Emery criterion (Proposition , it can be shown that there exists A > 0 such
that f, (and thus f2V) satisfies LSI(A) for every N > 1, i.e.

A
(YY) < 0 H (FY1EY)

see [220), Proposition 3.12]. Then the quantity,
1 & .
T2 VW (X{ = X7) = VW x f, (X))
j=1

is controlled by Zfil E }Xf — 7“2 and the square moments of X! which are both
bounded uniformly in time by Theorem 3.3} Reporting in[(25)] this eventually gives

a constant C' > 0 such that
d A
SH (Y)Y < S H(FN5EN) + 0
and the conclusion follows by integrating this Gronwall-like differential inequality.

2. This is the content of [220, Theorem 3.18|. The existence and uniqueness of f., is
proved for instance in [I4, Theorem 2.2]. To get a quantitative convergence bound,
the idea is to introduce the particle system as a pivot:

1fe = foollrv < e = FEN v + 1A = N ey + s = Foollv, (56)

where LY is the first marginal of the probability measure ;Y with density

pd (dx) oc exp (— Z V(z") — % Z W (z" — x3)> dx. (57)

i=1 i,j=1



Note that p is the unique invariant measure of the N-particle process. The first
and third terms on the right-hand side of are bounded by K /+/N using the first
property thanks to the Pinsker inequality. The second term on the right-hand side
of is bounded by K+v/Ne ! using a classical application of the Bakry-Emery
criterion (Proposition [[-13). Thus,

K
| fr — foollTv < \/_N + KV Ne ™™,

and the conclusion follows by taking N of the order of e%/2.
O

Remark 3 (Invariant measures and phase transitions). The fact that the N-particle
system admits the unique invariant measure for any choice of potentials V, W is a
very important and noticeable property. On the contrary, the limit equation may
have more than one stationary solution and the unicity in Corollary [2|is ensured by the
strong convexity assumptions on the potentials. When the limit equation has more than
one stationary solution, the system is said to undergo a phase transition. In a recent
work [I13], the relation between phase transitions, uniform in time propagation of chaos
and log-Sobolev inequalities is explored for McKean-Vlasov gradient systems It is
shown that in the absence of phase transition then uniform in time propagation of chaos
is equivalent to the non degeneracy as N — +oo of the constant in the log-Sobolev
inequality satisfied by the Gibbs measure of the N-particle system. This work is
based on the gradient-flow framework which will be discussed in Section [3.3.2]

It is also possible to go beyond Theorem and prove concentration inequalities by
using log-Sobolev inequalities for the N-particle law with constants independent of N.
These questions will be discussed in Section [3.5]

The uniform convexity assumption is generally understood as too strong to cover cases
of physical interest. Some extensions of Theorem with weaker convexity assumptions
are discussed below.

(a) No confinement. The key assumption is the uniform convexity of V' (the confine-
ment potential) which allows a uniform in time control of the trajectories. In [62], the
authors studied analytically the granular media equation which corresponds to the
law of the nonlinear system when V' = 0. However, at the particle level, it has been
shown in [13] and [220, Section 4], [221], Section 2| that propagation of chaos does not
hold uniformly in time. This is unfortunate as it annihilates any hope of studying
the long-time behaviour of the nonlinear system with a probabilistic point of view
as in the case when V' is uniformly convex. Nevertheless, Malrieu [221] showed that
uniform in time propagation of chaos does hold for the system defined by

i i 1 j
V=X - X (59)
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which is the projection of the particle system on the set

N
M = {XERN,ijzo}.

j=1
The proof proceeds similarly as before but requires the potential W to be uniformly
convex (and not only convex as in Theorem . It also requires a uniform in time
control of the moments of the nonlinear system, proved in dimension one in [13]
Proposition 3.10] and more generally in [221, Lemma 5.2]. Details can be found in
[221, Theorem 5.1] as well as a probabilistic proof of the convergence to equilibrium
for the granular media equation [221, Theorem 6.2].

(b) Non uniformly convex potentials. In Theorem [3.3/and in the case V = 0 in [221],
at least one of the potentials has to be uniformly convex. This condition is relaxed
in [64] and replaced by the C(A, a)-condition already introduced in [62]: there exists
A, a > 0 such that for all 0 < e < 1,

Vz,y € R, (x —y, VIW(z) — VW (y)) > Ac*(|x — y|2 — 52).

This condition is weaker than uniform convexity and includes important cases such
as W(z) = |z|*T®. Uniform in time propagation of chaos holds either for the particle
system X, when V satisfies the C(A, a) condition or for the projected system Y’
when V = 0 and W satisfies the C'(A, ) condition. In both cases, the convergence
rate obtained in [64, Theorem 3.1] is N=%/(®*1 instead of N~! in Theorem

(c) Convexity outside a ball of confinement and large diffusion. As already ex-
plained, uniform in time propagation is strongly linked to the existence of a unique
stationary solution to the nonlinear equation It has been proved in [185] 2911, 292]
that such uniqueness does not hold in general without a convexity assumption. How-
ever, uniqueness may hold even in non convex settings provided that the diffusion o is
large enough and with the assumption of convexity outside a ball of confinement. This
includes important cases such as double-well potentials. Convergence to equilibrium
for the nonlinear system is studied in particular in [291, 292, B34]. Extending these
results at the particle level has been the subject of many recent works. To prove
uniform in time propagation of chaos, new coupling approaches, which go beyond
the traditional synchronous coupling, have been developed. They will be discussed
in more details in the following sections. Let us mention in particular the reflection
coupling method [129] (Section and the optimal coupling approach of [268, T10]

(Section [3.2.3).

We end this section by reviewing some cases which go beyond the gradient setting.

More general diffusion matrices.

Taking a general diffusion matrix o = o(z, 1) would add two terms in 1t6’s formula in the
proof of Theorem [3.3}

t
| ot ) = o (R £ s
0
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and
2 [ (X=X (X ) = oK, F)IBE).

The same proof of uniform in time propagation of chaos would work for globally Lipschitz
o with a Lipschitz constant L > 0 which is sufficiently small with respect to 5.

Non-gradient systems.

The proof does not really depend on the form of the drift. To get uniform in time prop-
agation of chaos, more general interactions can be considered provided that they satisfy
the same convexity and growth assumptions satisfied by VV and VW. The gradient
system setting seems more natural to study convergence to equilibrium properties as al-
ready discussed. However, similar results than the ones presented in this section but in
a very general, yet restrictive, framework can be found for instance in [298]. See also
[241], B06] for additional weak and strong well-posedness results on the corresponding
nonlinear process.

Kinetic systems.

These ideas can be extended to the case of a kinetic system Z}¥ = (X}, V}!),... (XY, V}Y))
(R x RY)Y defined by the N coupled SDE:

{ dX; = Vidt

AV = —F(Vi)dt — G(X{)dt — H # pn (X{)dt + odB; (59)

where F, G, H : R? — R? are respectively called the friction force, the exterior confinement
force and the interaction force and py~ denotes the z-marginal of pzn, so that
1 & -
Hoei (X)) = 3 m(x: - X))
j=1

The corresponding nonlinear McKean-Vlasov process is obtained by replacing the empir-
ical measure of the particle system by the law f;(x, v)dzdwv of the nonlinear process which
is the solution of the famous Vlasov-Fokker-Planck equation:

Ofi +v-Vafi — Hxplfi](x) V., fi = %2Avft + V- ((Fv) + G(2)) f2), (60)

where p[fi](x) :== [ga fe(@, v)dv.
Theorem 3.5 ([35]). In assume that the forces satisfy the following properties.

e There exists a, ' > 0 such that for all v,w € R?,

|F(v) — F(w)| < alv —w|, (v—w, Flv)—F(w))>d|v—w?
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e There exists 3,6 > 0 such that for all x,y € RY,

G(z) = pr +G(z), |G(2) = Gy)| <z —yl.

o There exists v > 0 such that for all x,y € RY,
|H (x) — H(y)| <~]z—yl.

Then there exists €9 > 0 such that if 0 < 7,0 < &9, then there exists a constant
C > 0 such that

1 al i Y2 i T2 C
sup— Y E|IX{ - X2+ |V - V] <+
i=1

t>0

The proof of Theorem [3.5| again follows from a classical synchronous coupling. How-
ever, the standard approach would not give uniform in time estimates (it would only be a
special instance of McKean’s theorem in a Lipschitz setting which do not take advantage
of the form of the interactions). The idea of [35, Theorem 1.2] is to introduce a new
metric on the state space F = R% x R? which is equivalent to the usual Euclidean metric
but for which some dissipativity can be recovered. Namely, the authors show that there
exist a,b,c > 0, such that the following expression defines a positive definite quadratic
form on R¢ x R?

Q(x,v) = alz|® + bz, v) + c|v|,

and which satisfies

d = AR o i i T ¢
EE[Q(Xt - Xt7 V;s 7Vt)} < _EHXt - Xt|2 + |Vt - Vt|2] + N?

from which the result follows.

Remark 4. This approach is strongly inspired by the hypocoercivity methods [302]. In
fact, in the same article [35, Theorem 1.1] the authors also show the exponential con-
vergence to equilibrium of the nonlinear process, using a synchronous coupling method
(between two nonlinear processes) and a perturbed Euclidean metric. This extends a
classical result of Villani [302], Theorem 56] to a non-compact setting but for a weaker
distance (the Wasserstein distance). Note that unlike [220], convergence to equilibrium
for the Vlasov-Fokker-Planck equation follows only from its nonlinear stochastic inter-
pretation but does not use its particle approximation. The same method could also be
applied to the granular media equation [35, Remark 2.2].

Although very general, a drawback of Theorem is that it only works for close to
linear confinement force and small interactions. When the forces derive from potentials,
similarly to Theorem [3.3], it becomes possible to prove stronger results by using the explicit
expression of the equilibria of the particle system (which is not known in general). The
following theorem due to Monmarché [242] Theorem 3| considers the uniformly convex
case.
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Theorem 3.6 ([242]). In assume that the following properties hold.

e There exists v > 0 such that for all v € R,

F(v) = —yv.

o There exists a smooth potential V : R? — R with bounded derivatives of order larger
than 2 and such that for all z € R?,

G(z) = VV(z).

Moreover, V' is uniformly convex in the sense that there exists c; > 0 such that

VQV Z Cy.

o There erists a smooth symmetric potential W : R? — R with bounded derivatives of
order larger than 2 and such that for all z € RY,

H(z) = VW (z).
Moreover, there exists a constant co < %cl such that VW > —c,.

Let fo € Po(R?) admit a smooth density in Llog L. Then there exists a > 0 and C > 0
such that o

sup W2 (ftLNaft) S Ao

t>0 N«

and the same estimate also holds in total variation norm.

Within this setting, the N-particle process admits a unique stationary distribution
given by its density:

N N N
27y ) 1 ) ) 1 )
N i i 1|2
pa (dx, dv) o< exp <_F < g Vi(x') + N E Wiz —a) + 3 ;1 |v'] ))dxdv.

i=1 ij=1

one of the main results of [242], Theorem 1] is the exponential decay of the relative entropy
for the N-particle process with a rate which does not depend on N, namely there exist
C, x > 0 such that

H(fN|pl) < Ce X H(f k). (61)

Combined with McKean’s theorem, as in [220], it is then possible to prove the exponential
convergence towards equilibrium for the nonlinear process [242], Lemma 8, Proposition 13].
Namely, there exist jio(dz,dv) € Po(R? x RY) and C' > 0 such that

W3 (fe, poc) < Ce (62)

Combining this long-time estimate with the short-term bound given by McKean’s theo-
rem, it is possible to improve the propagation of chaos result to get a uniform in time
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convergence. For t < elog N, McKean’s theorem already gives two constants C,b > 0
such that
C

1,N
Wz( t 7ft) < N2
Then for t > elog N, using the normalised distance on EV (see Definition [I-3.5)),

Wz( tl’N,ft) < WZ(ftNa t®N)
< W (f}Y, 1) + We (e &) + Wa(us, f77)

1 1
<C (W + W) ,
The first and third terms on the right-hand side of the second line are bounded by C'N ~#X
using and [(62)] The second term is bounded by [242, Lemma 8]. Theorem [3.6] follows
by taking e = (x +20b)~!. Note that unlike the previous theorems in this section, the final
uniform in time estimate is not at the level of the trajectories. In the work of Malrieu,
convexity is used to prove uniform in time propagation of chaos and to prove that the
N-particle law satisfies a log-Sobolev inequality. Since the previous argument relies on the
classical McKean’s theorem, convexity is only used to obtain the bound . In a recent
work [177], Guillin and Monmarché have used the results of [176] to remove the convexity
assumptions, allowing a broader class of potentials, notably potentials which are convex
outside a ball of confinement. Finally, even more recently, Guillin, Le Bris and Monmarché

[T75] have used a completely different technique, the reflection coupling method discussed
below (Section [3.2.1)), to further weaken the assumptions on the potentials.

3.2 Other coupling techniques

In this section, we review some of the main results obtained by the other types of couplings
presented in Section [-4.1]

3.2.1 Reflection coupling for uniform in time chaos

Let us consider a gradient system of the form |(53). Following the work of [130} [131]
on reflection coupling (see Section [I-4.1.3| for a general presentation), we first state the
following technical lemma which is the cornerstone of [130), [129].

Lemma 3.7 ([I30, 129]). Assume that V is such that there exists a continuous function
k1[0, +00) = R satisfying liminf, . k(r) > 0 and

2

Vay e RY, (o -y, VV(2) = VV () = Tl —y)le —uf. (63)

Then there exists an increasing C* concave function f : [0, 4+00) — [0, +00) with f(0) =0
and f" <1 such that

Iy : (2,y) € RY X R — [(|a — ) (64)
defines a distance on R? and which satisfies for all v > 0,
" 1 / Co
_Z < 9
£(r) = el f ) < — 52 (), (65)
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for a constant cq > 0.

The proof of Lemma can be found in [129, Section 2.1] which follows closely the
framework introduced in [130, Section 2.1]. The function f and the constant ¢y have an
explicit but somehow not particularly enlightening expression as a function of k. Their
construction is nevertheless motivated and detailed in [I30], Section 4] (see also Section
F113).

The condition on V implies the existence of two constants my > 0 and My >0
such that for all z,y € R,

(x —y, VV(X) = VV(y)) = my|z — y|? — My

This implies uniform convexity outside a ball and thus allows non globally convex settings,
the prototypical example being the double well potential

Viw) =lal" — alz]*.
We now state the main theorem of this section, it is due to [129].

Theorem 3.8 ([129]). Let us consider the McKean-Vlasov particle system with b, o
given by . Let V' be such that there exist a function f and a constant cy given by
Lemma[3.7. Assume that the interaction potential W is symmetric, that VW is Lipschitz
for the distance induced by f with a Lipschitz constant n > 0 and that there exists My, > 0
such that V2W > —My,. Let the N particles be initially i.i.d with law fy € P(RY). Then
for allt > 0, it holds that:

C(C())T/>
VN
where we recall that Wi 4, denotes both the Wasserstein-1 distance on P(R?) for the

distance dy defined by|(64) and the Wasserstein-1 distance on P((RY)N) for the normalised
distance induced by dy.

Wi, (fN, f2N) < e 2O, 4 (fo, fo) +

Proof (sketch). The strategy is to use a componentwise reflection coupling in (R?)Y be-
tween a particle system X}V and a system XY of independent nonlinear McKean-vlasov
processes. Since the reflection coupling badly behaves on the diagonal, [130, 129] intro-
duced the following interpolation between reflection and synchronous coupling:

dX? = —VV(X)dt — VIV % f,(X)dt + o—{qsé(E;‘)dB;‘ +(1- ¢6<Eg))dég}
dX] = —VV(X])dt = VIV % v (X;)dt
+ 0 { " (B} (1 — 2€}(e})")AB} + (1 = o°(E)dBi .

where (B{), and (BY), are 2N independent Brownian motions, where

B =X, - X, e =E/E]
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and where ¢’ : R? — R is a Lipschitz function such that
1 if |z[ >4
S(o =
‘“x)_{ 0 if |z]<6/2°
for a parameter § > 0 (ultimately § — 0). It is also assumed that X ~ E@N and

XY~ f&N are optimally coupled for the distance Wi 4, .
Usmg [129, Lemma 7], 1td’s formula gives:

AF(ED = (FUBNCE +20% (B (B )t + £/ Ei) Aidt + A,
where . o o
Cp = =(VV(X}) = VV(X{), &),
and (AY), is an adapted stochastic process such that

A < [T fi(KD) = VW e (X5)|.

and M is a martingale. As usual the drift term is split into two parts, the “non-
interacting” part which involves C? and the “interacting” part which involves A!. Similarly
to the proof of Theorem [3.3, Durmus et al. take advantage of the non-interacting part
to get a uniform in time control and they treat the interacting part as a perturbation.
The main difference is that, thanks to , the reflection coupling gives a better control,
namely it holds that:

FUEINCE + 202 f" (| B¢’ (1) < —2¢f(|Ef]) + w(8) + 2¢0f (0),

where w(r) = sup,ejy,1 sk(s)”. The interacting part is controlled as usual by forcing the
introduction of a nonlinear term:

Al < ‘VWWXN( D) = VW g (X

oy (X3) — VIV« fi(X)|.

Using the hypotheses on W, the fact that f is increasing and defines a distance, it holds
that

VW gy (X3) = VW 5 p (X)

N
i n g
< nf(E]) NZ (1E7])
Then, as in the proof of McKean’s theorem (Theorem (3 , since it holds that

E [VW(Yi - X))

X,| = VW s (X)),

and since VIW(0) = 0 and VW is Lipschitz with a constant 7, by the Cauchy-Schwarz
inequality and the independence of the processes X, 4, it holds that

Cn

E’VWWW(Y') VW f,(X)] < Nt
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where the constant C' > 0 only depends on a uniform in time moment control on f;
(similar to Lemma [3.4] and proved in [129, Lemma 8]). Therefore,

liEAi < Q—niEf(]Eil) + .

p— t .
N3 NS VN
Using that f’ < 1, this yields

o iEmEﬂ) <201 iEmEﬂ) +(0) + 200f(0) + -
dt N — N i=1 VN

The conclusion follows by integrating this differential Gronwall-like inequality and by
letting § — 0, since it holds that lims_,o+ w(d) = 0 and f(0) = 0. O

Remark 5 (Sticky boundary and sticky coupling). At the informal level, one could take
§ = 0 so that the synchronous coupling only acts when E! = 0, i.e. when the two processes
coincide. Since the drifts do not coincide, one could expect that the processes immediately
become different and that this only happens for a Lebesgue-nul set of times. However
this is not true in general. This is closely linked with the (quite strange) fact the solution
to the SDE on [0, +00) with sticky boundary condition at 0

dry = adt + 1,,-0d By,

with @ > 0, indeed spends some (Lebesgue-positive) time at 0, hence the term sticky.
This fact has been shown by Watanabe [307] and recently by Eberle and Zimmer [132].
We also mention that this latter work introduce the notion of sticky coupling between
two diffusion processes with different drifts. Using this coupling, the distance between
the two processes is controlled by the solution of a SDE on [0, +00) which is sticky at 0.
Based on this idea, the question of the long-time behaviour of nonlinear McKean-Vlasov

processes and of the uniform in time propagation of chaos has been recently revisited in
[128).

The fact that the result holds for the distance W 4, may seem unsatisfactory compared
to Theorem |3.3|and its extensions which hold in W5 distance or Theorem |3.18 which holds
in W distance. This directly comes from the somehow ad hoc estimate |(65). The result
has been recently improved in [218], where instead of the function f, the authors consider
the function h solution of the following Poisson equation

40" (r) + re(r)h'(r) = —r, r>0.

Using the same reflection coupling strategy, the authors obtain a similar uniform in time
propagation of chaos result in W, distance, in both the pathwise and pointwise settings,
see [218, Theorem 2.9]. This article also contains many results in W; distance regarding
concentration inequalities and explicit exponential rates of convergence towards equilib-
rium (independent of N) for the particle system. The choice of the function h avoids some
technicalities in the definition of the function f (see [I31] and Lemma [3.7). The setting
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is quite general so we do not give all the details here. We only mention that it applies to
cases where V' is convex outside a ball but has potentially many wells. An assumption on
V2W is also made in order to prevent phase transitions (which would forbid uniform in
time estimates), see [218], Section 2.2].

Finally, we also mention the recent extension [175] of the reflection coupling method
to kinetic systems, that is for systems of the form in the setting of Theorem but
with relaxed convexity assumptions. This work generalizes [242] [I77], in particular, it
does not require the knowledge of the invariant measure of the particle system and allows
a broader class of potentials.

3.2.2 Chaos via Glivenko-Cantelli

In a recent article [I89], Holding proves pathwise chaos on finite time intervals using a
coupling on vector-fields instead of particles for a system of the form with Assumption
and constant diffusion matrix ¢ = I;. The interaction kernel K is not assumed to
be Lipschitz-continuous, it can be only Hélder-continuous (with and exponent larger than
2/3 for kinetic systems). There is no strong assumption on the initial data. The argument
is based on a new Glivenko-Cantelli theorem for vector fields which moves the need for
regularity properties from the SDE system onto the limit equation.
Holding introduces the random measure fth € P(E), solution of the equation

1
T + V- (b nap ) ) = 501 T = oo (66)
From a SDE point of view, the coupling introduced by [I89] is given by the following
exchangeable particle system, defined conditionally on the random vector-field by :=

b<'7 /l’XS{V>
t
XN = X [ 0(0 iy s + B
0
where E@ are independent Brownian motions, which are also independent of X*. The

starting point of the proof is then similar to the one of McKean’s theorem but with the
splitting step:

E[Wg <M2@Na ft)} <2E [WQQ (MXtNa J?Z)Nﬂ +2E |:W22 (ﬁwa ftﬂ- (67)

The main difference with |(37)|is that f2 replaces [N -

Conditionally on the random vector-field by := b(-, pyn~), the particles XN are AZ’N -

distributed random variables, which is reminiscent of a law of large numbers. However,
contrary to the law of large numbers, the XZ’N are not independent here. Given a fixed
(smooth) vector field b : RY — R? (random or not), we denote by u x|, the empirical
measure of the N-particle system where the drift is replaced by this fixed b. Note
that piyyy, = pyy. Similarly we denote by f;b the solution of |(66)| with by replaced by
b. Then the first term on the right-hand side of reads:

E(WE (s )| = BB WE (s V) [ | (63)
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One of the main result [I89, Corollary 2.3] is a generalized Glivenko-Cantelli theorem for
SDE which gives the explicit bound:

E{sup sup W7 (uw,ff)] < (N, T),

beB 0<t<T

where B is a subset of Holder regular vector fields and e(N,T) — 0 is an explicit poly-
nomial rate of convergence. Taking the supremum in over all the vector fields in B,
this controls the first term on the right-hand side of To conclude, the control of
the second term on the right-hand side of shall result from stability estimates on the
solution of the limit equation with respect to its vector-field parameter b.

With a traditional synchronous coupling, the Lipschitz regularity of b is used to con-
trol the particle system and a crude L estimate is used to control the error term which
depends on the limit equation. With this approach, the need for regularity on b is weak-
ened by the generalized Glivenko-Cantelli theorem and the control of the error term can
take advantage of the regularity properties of the limit equation. This idea is successfully
applied in [I89] to various first-order and kinetic systems, at the pathwise level.

3.2.3 Optimal coupling and WJ inequality

This section is devoted to the analytical coupling approach of [268] described in the
introductory Section [[-4.1.5 In this section, this approach is mainly applied to gradient-
systems but, as explained in [268 Section 2.2], it also allows to recover, at the level of
the laws, many of the results obtained by synchronous or reflection coupling for more
general McKean-Vlasov systems. The strategy originated from the earlier works [33], 34]
where the author prove the convergence to equilibrium of the solution of respectively the
linear Fokker-Planck equation and the nonlinear granular media equation. The strategy
is adapted and carried out at the particle level in [268] and in [IT0] to prove at the same
time the convergence to equilibrium and the propagation of chaos in a non globally convex
setting.

In this section, we recall (see Definition ) that W, denotes the non-normalised
Wasserstein distance on EY defined by WZ(f, g") = NWZ(fN, g") for f¥, ¢ € P(EVN).

The starting point of the argument is the following observation. For McKean-Vlasov
systems with linear interaction functions of the form

o) = [ ban@n), olen) = ola o0,

the laws f and f®" are both absolutely continuous solutions of continuity equations in
RN Tt is therefore possible to compute the dissipation rate in W, distance between them
using a result which originates from the theory of gradient-flows [303] Theorem 23.9],
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namely it holds that:

d 1~
dtQWQ (ft 9 )

-/ <bN<xN> — Vg £ (), V() — ) £ ()
RaN
— / <(b* Je— %ZVlog ft)®N(XN)= V?/’iV(XN) - XN> t®N (dXN)v (69)
RAN
where v
bY : xV € R™ s (%Zb(wl,xi), —Zb > € R¥W,
i=1

and 1} is the maximizing Kantorovich potential between f&V and f} given by Brenier’s
theorem [303, Theorem 9.4] and defined by

WR( 1) = [ 190 ) = x PR (0, (70)

that is, the coupling (VN),f*N = fN is optimal for the W, distance. The relation
can be obtained by a formal derivation of , the rigorous proof is the content of
[303, Theorem 23.9]. The cornerstone of [268] is the following proposition, which gives
an explicit bound for the right-hand side of . For now on we fix o(x, 1) = /21, for
simplicity.

Proposition 1. Given a symmetric probability measure gV € Po((RY)N) and p € P(R?),
Salem introduces the quantity:

j(gN|bN, V®N) = / (AYN (xN) + AN (VYY) — 2dN )N (dXN)
RAN

TN Z /sz (Vo™ (x™), VN (xV)) = b(2*, 27), VN (x) — 2" )®N (dxY), (71)

ljl

where YN is the maximizing Kantorovich potential such that (Vi) 4v®N = gN. Assume
that the vector fields (b™ —Vlog fY),~q and (bx fs —V10g fs)s>0 are locally Lipschitz and
satisfy for any t > 0,

t t
/ / IbY — Vlog fN12dfNds +/ / bx fs — Vlog f,|*df.ds < +o0. (72)
0 JRIN 0 JR4

Then for alln >0 and all 0 < r < 't, it holds that
WE2(FEN, ) < WR(FEY, ) / TN, 72N )ds
t
tn / W2(£2N, fN)ds + gt / Fu(b, f)ds, (73)
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where

Fn(b, fs) = %ZZ/ b(x",27) — bx fo(a")|* fEV (dxV). (74)

The proof is detailed in [268, Proposition 1]. Under mild local Lipschitz assumptions
on b, the functional Fy can be easily bounded uniformly in N. The whole point is
therefore to find a good control of the functional J. Two main ideas are given.

e First, it is possible to prove (see [33, Lemma 3.2]):

[ (A0 G) AU (T0) = 24NN () 2 0. (75)

From this crude estimate, one can just neglect the corresponding term in and
retrieve all the results based on synchronous coupling (in particular McKean’s the-
orem and Theorem (3.3)).

e More generally, in order apply the Gronwall lemma in , it is desirable to bound
J from below by a W, distance. This lead [33] and later [268, 110] to introduce
the WJ inequality. In this context, a probability measure v € Po(R?) is said to
satisfy a symmetric WJ(k) inequality for a constant £ > 0 when for all symmetric
probability measure g € Po((R%)"), it holds that

W2 (9N, V) < T (g [bY, 5N, (76)

For a gradient system which possesses a unique stationary measure fi,, [268, Propo-
sition 3] shows that p., satisfies a WJ(k) inequality.

The main results [268, Theorem 2.2, Corollary 1] are summarised in the following
theorem.

Theorem 3.9 ([268]). Assume that o(z, 1) = /21, and b(x, 1) = b* pu(x) where
b(z,y) = =VV(r) —eVW(z —y),

with V(x) = |z|* — alz|? and W(x) = —|z|?, where a,e > 0. Let f¥ € Ps(R¥Y) N
Llog L(R™N). Then there exist ag > 0 and g9 > 0 such that if a < ay and € < &g, then
the nonlinear McKean-Vlasov equation has a unique stationary solution fi., € P2(RY) and
there ezist two constants C,a > 0 such that (for the normalised Wasserstein distance):

C
¥ >0, Wy (fY pl) < W (S ul)e ™ + -
Moreover if fo € Ps(R?) N Llog L(RY) and f& = f$N then there exists § € (0,1) such
that
sup W3 ( t®N,ftN) <CN*.

t>0

Proof (summary). Let us summarise the main steps of the proof.
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1. As usual, some a priori bounds are needed. In [268, Lemma 4.1], the potentials are
shown to satisfy an explicit property of convexity at infinity as well as an explicit
L bound near the origin. Then it is possible to prove classical moment estimates
which ensure that if the initial conditions have sufficiently many moments, then the
moments of any order of both f~ and f; are uniformly bounded in time.

2. The fundamental property is stated in [268, Proposition 3]. First, by [34, Propo-
sition 4.4 (iii)], given potentials which satisfy [268, Lemma 4.1], there exists a sta-
tionary solution pi, of the nonlinear McKean-Vlasov equation. Such a measure is a
minimizer of the free energy of the system. Then for a, e sufficiently small, such a
measure [io, is shown to satisfy a symmetric WJ(k) inequality for some k > 0.
This implies the uniqueness of fi.

3. In order to apply Proposition , it is necessary to check the assumption |[(72)| which
again follows from the preliminary bounds derived in [268, Lemma 4.1, Lemma 4.2].
Then since Fy can be bounded uniformly in N by a constant C'(a, ), the inequality
applied with the stationary measure ji, gives for any n > 0 and any 0 < r < ¢

(t—r)Cla,e)
n

(Moo?ft)gwg(ﬂgar I{ 77/W2 Moo?s)d+ (77)

Since this holds for any r < ¢, this implies that VV2 (,uoo Y ) is differentiable in ¢
and satisfies the differential inequality

DG o 1) < —(n— W2 (ueN, 1) + S22 (78)

dt n
The Gronwall lemma finally gives the first point of Theorem [3.9

4. The above point gives an optimal convergence rate towards the stationary measure
lios. To control the distance to f*V at any time ¢ > 0, the classical strategy is
to use on the one hand the exponential convergence of f; towards p, to control
the long-time behaviour and on the other hand the non uniform in time McKean’s
theorem to control the short time behaviour. First using [303, Theorem 23.9] and
the WJ(k) inequality satisfied by ji, it holds that

W2(fr, o) < W2(fo, poo)e ™™

Since the inequality is preserved by tensorization, the triangle inequality yields

C .
+ 5 FWEforpoc)e ™. (79)

Moreover, for f¥ = &V, using and (or equivalently, McKean’s theorem),
it holds that for all ¢t > 0,

Wy (FN, £2N) < Wi (Y, peN)e Cles)t

CeC(a,s,n)t

Wy (ftN7 t®N) < N (80)

Choosing Ty = dlog N, the result follows by combining for t > T and
for t < Tl.
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]

Remark 6. We have slightly changed the original formulation of inequalities and
[(77)] which are stated with r = 0 only in [268] but they actually hold with any r. However,
as pointed to us by an anonymous reviewer, the Gronwall lemma with negative parame-
ters does not hold true in integral form and the differential inequality is needed to
conclude. Moreover, in the inequality on top of page 5750 in [268], the measure y; should
read floo.

A similar result is obtained in [I10, Theorem C, Corollary D] also by means of a WJ
inequality but in the equivalent case where o is taken large enough. The authors consider
a broader class of potentials, though the main assumption remains convexity of V' outside
a ball of confinement. In fact, it seems that the result of [268] holds for potentials which
satisfy [268, Lemma 4.1], which is very similar to [I10, Assumptions (A-1)-(A-10)]. The
main difference with [268] is that the authors do not derive the general inequality
but prove an improved version of McKean’s theorem (using a synchronous coupling) in
the case of non independent initial conditions, see [110), Proposition B]. Both approaches
are motivated by [33], [34]. More precisely, they are based on [33, Proposition 3.4] which
gives a criterion for an invariant measure ji, to satisfy a WJ inequality. This leads to the
equivalent results [268, Proposition 3] and [110, Proposition 2.3].

3.3 Compactness methods for mixed systems and gradient flows

The content of this section develops the compactness arguments briefly introduced in
Section [2.3.2] (see also Section [[-4.2) in two cases. Section focuses on the functional
law of large numbers and the strong pathwise empirical propagation of chaos via martin-

gale arguments (see Definition [I-3.25]). Section uses the gradient-flow formulation to
prove a pointwise empirical propagation of chaos result for gradient systems.

3.3.1 Pathwise chaos via martingale arguments

We first state the assumptions on the generator of the particles process. In all this section
we consider a dense separable subspace of the set of test functions F C Cy(FE) such that
[-lc < Cx||.]|7. We assume that F is contained in the domain of L, for all u € P(E)

and F¥N C Dom(Ly).

Assumption 2 (Mean-field generator and initial well-posedness). The generator of the
process (XN);sq is of the mean-field type (2) and the associated martingale problem is
wellposed. Moreover the initial law f¥ € P(E™) satisfies the moment bound:

supE‘Xé’N|2 < +00.
N
Since L, can involve any differential operator with no homogeneous term and any

integral jump operator, this generator covers the case of the McKean-Vlasov diffusion
and of the mean-field jump processes. It can also be a mixed jump-diffusion generator.
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Assumption 3 (Bounds on the limit generator). There exists a constant Cp, > 0 such
that

Ve e E, Vo € F, sup sup {|Lug0(x)}2 + Iz, (¢, cp)(x)} < C’L(l + |x|2)

N uePy(E)

where the carré du champ operator is defined for regular test functions by

Iz, (o, ¥) = Lu[@“ﬂ] —oL,b =YLy

The main consequence of Assumption [3]is to ensure the uniform control of the second
moment on any interval [0,7] (weaker assumptions could thus be sufficient in specific
cases):

E [Sup \X,}’N\Q] <Cr(1+ExM), E [sup \M}N\Q] <cr(1+EIXM), (1)
t<T t<T
where X"V = Xé’N + MY + AN s the semimartingale decomposition of X" (see
Appendix [[-A.3.4). This is proved in [199, Lemma 3.2.2]. It relies on the use of Gronwall
lemma in It0’s formula: the bound on the generator controls the integral term and the
bound on the carré du champ operator controls the martingale part (see also Proposition
. For the jump and diffusion processes, Assumption [3| holds under the usual global
Lipschitz assumptions which also ensure the well-posedness of both the particle process
and the nonlinear system. We also recall that for the mean-field jump process

Iu (0, 0)(@) = / () — PP Pulz. dy),

E

and for the McKean-Vlasov diffusion,

Tr, (9, 0)(x) = 2(Ve()) alz, 1) Ve(z).

The main difference between the functional law of large numbers (Theorem |3.10|) and
the strong pathwise empirical propagation of chaos result (Theorem [3.11)) will be the
assumption on the limit law.

Functional law of large numbers.

We first prove a functional law of large numbers, that is the convergence of the sequence
of

FiN = Law((uxtw)o gtg) e P(D(0,T), P(E))). (82)

which means that the empirical process is seen as a random cadlag measure-valued process
t = pyn, where (X)), is the N-particle process given by Assumption 2l Two additional
assumptions are needed.

Assumption 4 (Limit continuity). The generator L satisfies:

o For every ¢ in F, (z,p) — L,p(x) is a bounded continuous function.
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o For every pn in P(E), ¢ — L,y is a Cy(E)-valued continuous mapping.

In the first point the topology on P(E) is the one induced by the weak convergence of
probability measures (cf. Definition . More precisely, a sequence of probability mea-
sures (pun)n is said to converge towards p when (uy,p) — (i, @) for any test function
p € Cp(E). For the second point, the topology is the topology of the uniform convergence.

This assumption is satisfied in particular for generators which are differential or in-
tegral operators with continuous integrable coefficients. This assumption is necessary to
take the limit within an equation, instead of using direct cadlag characterizations. The
last assumption concerns the limit law.

Assumption 5 (Limit uniqueness). For every T > 0 and any fo € P(FE), the limit
nonlinear weak PDE

d
V(p €F, &<ft730> = <ft7Lft90>7 (83)
has at most one unique solution in C([0,T], P(FE)).

Note that existence is not required as it will be included in the following propagation
of chaos result. However the uniqueness assumption at the limit is very strong, because
uniqueness is closely linked with convergence of approximate sequences (such as particle
systems). For physically relevant systems, uniqueness is often the most difficult issue.

Theorem 3.10 (Functional law of large numbers). Let (f¥)n be an initial fy-chaotic
sequence and let (XN), be the EN -valued N -particle process given by Assumption @ with
initial distribution f¥. Assume that Assumptions @ @ and @ hold true. Then the
nonlinear weak PDE|(83) is well-posed and its solution (f;); € C([0,T],P(E)) satisfies:

w,N
Form) v 57 %

€ P(D([0,T],P(E)).

ft)ogth

where F[ﬁé\f] is the law of the measure-valued empirical process defined by |(82).

To prove this theorem, we will follow a method which can be found in [236] and which
we adapt to the more abstract present framework.

Proof. The proof is split into several steps: using (the general) 1t6’s formula, we start with
some preliminary computations in the linear case which will be used to prove a tightness
result on the weak pathwise law F[’é% Then we identify the limit points by controlling
the stochastic remainder.

Step 1. Some preliminary computations for linear test functions.

Let us consider a one-particle test functions ¢ € F and let us define the average
N-particle test function

Pn s x = (v, ).
By Assumption [2] it holds that

N
1 .
EN@N (XN) - Z NL;LXN @(Iz) = <:uxN7 L[LXN 90> ) (84)
=1
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so that Ito’s formula gives

t
(s ) = (pay, ) + /O (has Ly p)ds + M, (85)

where MtN’” is a martingale. Using Assumption 2| again, the carré du champ operator
reads:

N
Ty (on,9n)( Z o; [P ] (x") = 2( e, LuxN(P>LuxN o; on (xM)].

i=1

Since L, , is linear and vanishes on constant functions, one obtains for any index 7 €
X

1,...,N},

N2Ly 01 [P3)(xXY) = Ly [¢%](2") + 2 (Z p(a? )) Ly ("),

JF

and

2N2</’LXN7 LuxNSD>LuxN i PN (XN) = 2p(z )Lu (') +2 (Z p(a) ) Hhy vt
J#i

We conclude that:

Ly (@n,on)(xN) = %<M><N7FLHXN (¢, 90)> (86)

The right-hand side goes to 0 as N — +o00 thanks to and Assumptions [2| and .

Step 2. Tightness of the sequence (F[g:;v})]\le'

We follow the method of [236]. The tightness is proved using Jakuboswki’s criterion

(Theorem |C.2)).

(i) We first prove that for any € > 0, there exists a compact set K. C P(E) such that
vt € [0,T], Puxy € Ko) >1—e

Since for every M > 0 and zy € E, the set

{y € P(E), /EdQE(x,xo)l/(dx) < M}

is compact for the weak topology on P (E), it is enough to prove that the uniform
L? moment bound on f&’N is propagated on [0,7] uniformly in N. Thanks to
Assumption |3} this is the content of [(81)}
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(ii) The set of linear functions on P(E) ® : v — (v,¢), ¢ € F separates points and
is closed under addition. We therefore fix ¢ € F and we prove the tightness of
the laws in P(D([0,T],R)) of the real-valued process (<MXtN, ¢)),- To do that, we
use Aldous criterion (Theorem and we use the decomposition [(85)] Since the
process is bounded, the first condition is automatically satisfied. Then, let us fix
two Z;-adapted stopping times 71 < 75 < 7 + 6 for a fixed # > 0. On the one hand,
by Doob’s optional sampling theorem, we have:

Elange ool =Bl — el - x| [ o).

T1

Using Lemma [I-A.19 and [(86)] we deduce that:

E[MY* - MYo] < E[ / 2 FEN(g?)N,@N)(XtN)dt} <o, 2.

T1

On the other hand, using|(84), Assumption [3|and |(81)], one gets (up to changing the

constant)
TS 2
( / L‘N@N(XtN)dt)

Formula therefore leads to

E < C, 0%

E[Wg - u»«qu@ﬂ <G, {92 + %]

We conclude using the Markov inequality that the conditions of Aldous criterion are
fulfilled.

Step 3. Skorokhod representation for limit points and well-posedness.

For any T > 0, the sequence (F, [‘é%) ~N>1 1s thus relatively compact for the weak topology
on P(D([0,T],P(E))). Let m be a limit point. Skorokhod representation theorem provides
then a probability space {2 on which a realisation of f1pn converges almost surely (up to
an extraction which we do not relabel) towards a w-distributed D([0,T], P(E))-valued
random variable ( ﬁ)ogtST, such that a.s. fy; = fy thanks to the initial chaos assumption.
We want to prove that f, is almost surely a solution of . Using Assumption [5, we will
deduce that this PDE is well-posed and that 7 is the Dirac mass at this solution. Using
the BDG inequality, it holds that:

E[ sup <MtN"P>1 <AE[[MM¥)7] = 4B [(M™ )],

0<t<T

where we have used that ([MY#]; — (M™%))o<;<r is a martingale. Using lemma [[-A.19
and Step 1 we conclude that

2 4 T
N,p < = < >
. |:Oiltl£T <Mt > :| B N]E |:/0 ’uXtN’ FL“XtN (QO, 90) dt:| N—>—+)oo 0,
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where we have used Assumption [3| Up to extracting once more, we can assume that the
above L? convergence is almost sure:

sup MY — 0, as. (87)
0<t<T N—+o0

By the first part of Assumption 4] (continuity with respect to ), we can take the limit in
(85)| and we obtain by dominated convergence that for all p € F,

Ve (0.T]. (g = (o) + / (o Lig)ds as.

To recover the limit equation, one needs to invert the “Vyp € F” term and the “almost
surely” mention. To do that, let us consider a dense countable subset (¢™),, of F (it exists
because F is a Polish space). The previous steps tells that for each ™, the set of issues
in Q such that the equality <(f;, ") = (fi, L7, ") does not hold for some 0 <t < T is
negligible. By countable union, the set of issues such that this equality does not hold for
every 0 < t < T for any of the ¢" is still negligible. We then use the continuity with
respect to ¢ from Assumption to conclude by density that (f;)o<i<7 almost surely solves

d - _
VQDGJ:, Vt € [O7T]’ E(ft790>:<ft7[/ﬁgp>

Theorem now proves that t — f; is almost surely continuous: indeed the vanishing
of jumps directly stems from the decomposition together with Equation , as
required by Theorem |C.3| (note this condition is reminiscent from Aldous criterion in Step
2). This shows that any m-distributed random function is almost surely a solution of .
Since this solution is unique by Assumption , this shows the well-posedness of and
proves that m = 4y, _,_,. where f; is the unique solution of . O

Example 1. In addition to the historical works [248] [160] already mentioned, this method
has been recently applied in [236] in a coagulation-fragmentation model leading to the
4-wave kinetic equation and in [I15] for a mean-field PDMP on a manifold leading to
a BGK equation. This approach also works to prove moderate interaction results [249].
This proof remains true for Boltzmann molecules, in which case the first step (which

corresponds to Lemma [A.1]) has to be replaced by Lemma .

Remark 7 (The need for quadratic estimates). This proof may seem surprising because
only one-particle test functions on E are considered even though it leads to a convergence
result on random measure-valued process. The quadratic estimates actually lie in the
computation of the quadratic variation of the martingale MtN’S" in Step 2 and in the control
of the carré du champ operator . This last computation is a special case of the more
general result in Lemma about the behaviour of the generator for polynomial test
functions of order two. Namely, taking a test function s = @' ® ©? € F*? and denoting
by
Y€ P(E)v RSD1®502(V) = <V®27 (,02>7
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the associated polynomial function on P(E), it holds that:

Ly[Rorape o py](x) = Ry, olep () + Rolor, yve? (k)
1
+ N</JXN, Ir, (¢, 902)>,

and the carré du champ estimate |(86)|stems from that since

Ly (@i, @) (xV) = Lx[Rprage 0 py] (xV)
- RL,,XN PlRp? (MxN) - RW@L#XN ? (HJXN) ) (88)

thanks to the mean-field property Lypn = <,uxN, L, g0>. Note that purely one particle-

related methods are not possible, because the weak convergence of ftk’N characterizing
Kac’s chaos has to hold at least with & > 2 (Lemma [2.3)).

Strong pathwise empirical chaos.

For the strong pathwise result, the goal is to prove the convergence of the sequence of
iy = Law (y, ) € P(P(D(0, T, E)), (89)

which means that the empirical process is seen as a random empirical measure on the
path space D([0,T],P(E)), to which belongs each component of the N-particle process
X[é\f 7 8iven by Assumption .

The proof of the following theorem can be found in [169] 229] and relies on the classical
and powerful framework described in [199]. This technique has also been used by Sznitman
[273] for Boltzmann models (see Section . The starting point is a strong uniqueness

result for the limit martingale problem.

Assumption 6 (Uniqueness for the limit martingale problem). Given an initial value
fo € P(E), there exists at most one probability distribution on the Skorokhod space fio 1) €
P(D([0,T], E)) such for all all ¢ € F,

MF = p(X) — o(Xo) — / Ly p(X,)ds,

is a flo.r1-martingale, where (X;); is the canonical process and fort >0, fy = (X¢)4fr1.

Note once more that this remains a strong assumption and that uniqueness for the limit
system is often the hardest property to prove for physical systems. However, existence is
not needed as it is included in the following theorem.

Theorem 3.11 (Strong pathwise empirical chaos). Let (f¥)y an initial fy-chaotic se-
quence and let X[é\fﬂ € D([0,T], EN) be the N -particle process given by Assumption@ with
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initial distribution f¥. Assume that Assumptz’ons@ @ and@ hold true. Then the nonlin-
ear mean-field martingale problem stated in Assumption [0 is well-posed and its solution
fo,n € P(D([0,T], E)) satisfies:

F[J(XT} - 5f[0,T] < P(P<D([O7T]a E))),

N—+4o00

where F[][XT] 15 the pathwise empirical law defined by .

Proof. The first step is to show the tightness of the sequence (F[](XT}) » 1n the space
Step 1. Tightness.

Thanks to the exchangeability and Lemma [I-3.15] it is sufficient to prove the tightness
of the sequence

FN = Law(Xl’N> e P(D([0,T], E)).

0,11 — [0,T]

The process (th’N)ogth can be characterized as a D-semimartingale (see Definition
A.18) thanks to Assumption [2| by taking on = ¢ ® 12V~ as a test function, given a
one-particle test function ¢ € F. It implies that

t
M = ()~ o(K8) — [ Ly ol(K)as

is a martingale. The Joffe-Metivier criterion can then be applied: Assumption
implies the tightness of (F [B’%) ns1- Moreover, using Lemma |[-A.19] and Assumption
the predictable quadratic variation is given by

t
(3059, = [Ty (9190, 0 1905-0) () s
0

t
t
= [t (o) (X2) s

Similarly, for & < N, taking on = 12¢ D @ » @ 120+ the following process is a
martingale:

t
Mt(’p’k’N — @(Xf’N) o SO(X(])C’N) _/(; LﬂxéVgp(X‘ny)dS

The predictable cross variation can be computed the same way taking oy = ¢ ® Y ®
1®(N—2)’

t
(MPIN MOANY = / Try(p@ 18V D 1Ry 1°0W2)(xN)ds=0.  (90)
0

It will be useful for Step 3.

Step 2. Skorokhod representation for limit points and continuity points.
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Let m € P(P(D([0,T], E))) be alimit point of (F[J(;{T])N>1' Using Skorokhod represen-
tation theorem, it is possible to consider a probability space and a m-distributed random
variable fjo 1 € P(D([0,T7], E)) such that (for the weak topology):

N e a.s.
Han o N Jo.1

Consider now n > 1 with some positive real numbers s; < ... < s, < s < t and some
functions ¢, ¢!, ..., " € F and let us consider the function:
Sn,S,t Ve P(D([O7T]7E))
t
o (v (9000 = 060 = [ L)) X)X ) € R

where v, = (X,)4v € P(E) denotes the r-marginal of v. Thanks to Assumption [4] the
map Fy, . s.s¢ would be continuous if the coordinates maps X — X; were continuous.
However these maps are not continuous in general for the Skorokhod topology. For u in
R, consider the event

77777

Ay = {Q e P(D([0,T), E)) : QX € D([0,T], E) : |AX,| > 0}) > o}.

The map Fj,
the set

snst Will thus be m-a.s. continuous when si,...,s,,s,t are taken out of

.....

J:={ueR,, n(A,) >0},

Adapting a proof from [169], let us show that J is at most countable. The key idea is that
given k > 1, a cadlag function X on a compact time-interval admits a finite numbers of
gumps with amplitudes bigger than 1/k. Let us denote by J (X, 1/k, [0, k]) the number of
jumps of X with amplitude |[AX;| > 1/k for ¢t € [0, k|. Define then for m > 1,

Al — {Q e P(D([0,T], E)) :
QU{X € D(0,T),E) : |AX,| > 1/k and J(X,1/k, [0, k]) < mk}) > 1/l<:}.

Moreover, the following properties hold.

e The sequence (Um21 Akm) _is non-decreasing (for the set inclusion) in k.

k>1

e For a fixed k > 1, the sequence (A%™),,5; is non-decreasing in m.

e The set A, can be decomposed as

A= U A

k>1m>1

The monotonic convergence of probability measures thus gives

m(A,) = lim W(U Aﬁ’m) = lim lim x(AM™).

k—+o0 k—-+o00 m—+00
m>1
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Introducing
Jhm = {u € [0,k], m(AP™) > 1/k},

J= U 7rm

k>1m>1

the same trick leads to

Let us now prove that J*™ is finite. If it were not, there would exist a sequence (u)n>1
of pairwise distinct numbers in [0, k] such that

vn>1, w(AP™) > 1/k.

We apply now (the consequence of) Lemma to (AF™),~1 in the probability space
Q = P(D([0,T],E)) for P = 7: for every n > 1, there exists an intersection involving
n of the A,, which has positive m-measure, and this leads to the existence of integers
17 < ... <1 such that

({@ePD(0,7].B) :¥1<j<n,

Q<{X € D([0.7), ) : |AX,,| > % and J (X, 1/k,[0,k]) < mk}) > %}) > 0.

The same reasoning can be applied within the probability, considering a probability mea-
sure @ € P(D([0,T], E)) such that for all j € {1,...,n},

Q({X e D([0,T),E) : |AX,,,| > 1/k and J(X,1/k,[0,k]) < mk}) > 1/k,
and applying Lemma with P = Q and Q = D([0,T], E) to the events

({X € D([0,T], ) : |AXy,| > 1/k and J(X,1/k,[0,k]) < mk:})K .
<j<n
Since n can be taken arbitrarily large, this allows to consider an arbitrary large intersection
of these events which has @)-positive measure. This is contradictory since the number of
jumps with amplitude bigger than 1/k allowed on [0, k] is at most mk.
This proves the finiteness of J*™ for any k,m > 1, so J is at most countable by
countable union. This implies the m-almost sure continuity of Fj,
outside an at most countable set D,. Outside of this set

sposit 10T S1,...,58p,8,t

-----

Fsl ..... SnyS,t (,UXN > — F51 ..... Sn,S,t (f[llT]) .

0,77/ N—+oco

Note this argument is more general and can be adapted to Boltzmann models as in [169],
see also Section [£.3]

Step 3. Identifying the limit points using the martingale problem.

To recover (m, F, 5. st), it is now sufficient to take the expectation. Using the
Cauchy-Schwarz inequality and then Fatou’s lemma, it holds that for sq, ..., s,, s, t outside

65



of D,

<’/T, ’Fsl,...,sn,s,t‘>2 S <7Ta F2

81,...,5n,s,t>

: 2
< m Eny [Fsl""’sn’s’t (MX[If)V,ﬂ)]

N—oo

N 2
1 N AN\ 11N n/yl,N
=B {NZ;(ME’ = MEN ) (XEN) e (XN

1
NEf[oN,T]
N —1
N

{{ (MY = MPPN) R (Ky,) w"(Xsn)}z]

EfﬁT] |:(Mt‘19,1,N _ M;D’l’N) (Mttp,Z,N . M;D’ZN) %

X P OXEY) . (XEN )R OREY) L (6N .

Assumption [3| ensures that MY AN i bounded in L2 by the carré du champ vector, so
that the first term on the right-hand side vanishes as N — +oco. For the second one, we
write:

B[ M7 N M o (X, Josys) | = MEMYMESY,

Then, since the cross-brackets are equal to zero, taking the expectation leads to:
717N 3y 7N —_
E[Mf M#2 ] ~0.

So the second term is actually equal to zero.

This proves Fj, . s, s is 0 m-almost surely: this holds for every 0 < s; < ... <5, <
s < t outside the countable set D, and every ¢, ', ..., 0" in F. By density of F in
Cy(E) and R, \ Dy in R, this allows to replace ¢*(Xs,) ... ¢"(Xs,) by any o((X,)o<r<s)-
measurable function to obtain

E|o06) ~ %)~ [ Lpo(arlo((Kocrea) | = 0% = o) = [ Ly px)ar

for m-almost every pathwise law fio 17, every ¢ in F and every s, ¢ outside the countable set
Dr. Alimit fip r-distributed process being cadlag, this is sufficient to prove that m-almost
every pathwise law fjo r) solves the martingale problem of Assumption @ Consequently,
this proves existence for this problem and since uniqueness holds, the problem is well-
posed and 7 has to be a Dirac measure ¢ o which concludes the proof. O

Example 2. In [75], the argument is reversed: Theorem states only an existence re-
sult which is then used to prove the strong uniqueness result using a synchronous coupling
argument. Propagation of chaos follows. This allows to treat the case of McKean-Vlasov
diffusions with more general interaction functions.
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3.3.2 Gradient systems as gradient flows

In this section we consider McKean-Vlasov gradient systems with:
b(z,pu) = =VV(x) = VW % u(z), o=+2I,

The following theorem states that the McKean-Vlasov gradient systems can be char-
acterised as gradient flows at the three levels of description: the nonlinear solution of
the limit equation, the N-particle distribution and the P(P(E))-valued curve inherited
from the nonlinear semigroup generated by the limit PDE. The notion of gradient-flow is

recalled in Section [[-4.2.2]

Theorem 3.12 (McKean-Vlasov as gradient flows). Let fy € Py(R?) and fI¥ € P3¥™(R¥Y)
admit a density. Let V,W be respectively a confinement potential and an interaction po-
tential which are both bounded below, \-convex for some X € R. Assume also that W 1is
symmetric and satisfies the doubling condition

3C >0, Vo,y eRY W(z+y) <C1+W(z)+W(y)).
1. In Po(RY), let the energy F be defined by:

Flp) = /R pla)log p(z)dz + » V(x)p(x)dz + % W(z —y)p(z)p(y)dy,

R4

whenever p has a density with respect to the Lebesque measure and F(p) = 400
otherwise. Then there exists a unique 2\-gradient flow f; for F such that lim o f; =
fo in Po(RY). Moreover f; is a weak distributional solution of the nonlinear McKean-
Viasov-Fokker-Planck equation |(4).

2. In Po(R™), let the energy FN be defined by:

AUAES S IV TTAIEES S B RIS

RaN
2N22 W(z" — 27)p™ (dx).

Then there exists a unique 3\-gradient flow fN for FN such that limg fN = f& in
Po(RY). Moreover [ is a weak distributional solution of the N-particle Liouville

equation .
3. In Py(Po(R?)), let the energy F> be defined by

Fo(m) = /P o Fm)

Then there exists a unique 3A-gradient flow m, for F°° such that lim; o7 = my =
limy o0 FLY € Po(P2(RY)). Moreover m; is explicitely given by

T = <§t>#ﬂ-07
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where Sy : Po(RY) — Py(RY) is the nonlinear semi-group generated by the McKean-

Viasov-Fokker-Planck equation (4 ) in the sense that the solution of this PDE is given
by fi = Si(fo) (see also Section and Section m

The first two points are classical, see [89, Theorem 6.31] or [5, Chapter 11]. The third
point is proved in |60, Lemma 19]. Within this setting, propagation of chaos is proved in
[60, Theorem 2.

Theorem 3.13 ([60]). Under the same assumptions as in Theorem and with the
same notations, for all T' > 0 it holds that

lim sup Wa(fN, 7)) =0,
N—+o00 tE[O,T]

where T is the N-th moment measure of 7 defined by:

N = / #Nr(dp) = / u(0)®V mo(dp).
PQ(Rd) PQ(Rd)

In particular if f is fo-chaotic, then

lim  sup Wa(fY, f&N) =o.
N—+o0 te[0,7] ( ¢ t )

The key result is [60, Lemma 13]. It is based on Ascoli’s theorem in the space
C([0,T], P2(P2(RY))) and states that there exists m = (m); € C([0,T], P2(P2(R%))) such
that the law of the empirical process ' := Law (1~ ) satisfies

2 N
sup Wi (FY,m) — 0,
te[O,T] 2 ( t N—4o00

up to extracting a subsequence and where W, = Wy, is the Wasserstein-2 distance on
Py (P(R%)) for the Wy distance on Py(RY) (see Definition [[-3.5). Using the fact that the
push-forward by the empirical measure map is an isometry for the Wasserstein distance, it
is possible to prove that this convergence is equivalent to the convergence of the N-particle
distribution:

2(¢N _N
sup W , T — 0.
[0.7] 2 ) N=eo

See for instance [60, Lemma 10] or [I84, Theorem 5.3]. Once a converging subsequence
is extracted, the limit 7 is identified as the unique gradient flow with energy F>° by
passing to the limit in the Evolution Variational Inequality which characterises the
gradient-flow with energy FV using a [-convergence result [60, Lemma 16].

3.4 Entropy bounds with very weak regularity

In this section, the problem is to weaken the regularity assumptions of Theorem for
the McKean-Vlasov diffusion with coefficients:

b(x, ) = b(x, K * p(x)), o =1y, (91)
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where b : R™ — R% is still assumed to be Lipschitz but the interaction kernel K : R¥xR?% —
R" has a very weak regularity. Among the methods that are introduced in Section [2.3]
the entropy-based methods are particularly adapted to handle weak regularity. From a
probabilistic point of view, the relative entropy functional (Definition naturally arises
as the rate function of a large deviation principle and entropy bounds are classically
obtained as an application of Girsanov theorem which does not require any particular
regularity assumptions (see for instance Lemma . The content of this section will
be based on the entropy methods introduced in [193, 194] and which can be seen as an
analytical counterpart of these observations. The main object of study will therefore be
the Liouville equation (rather than the system of SDEs) for which it is possible to define a
notion of entropy solution which is well adapted to the context (see Definition below).
For the limit solution f of , things are easier because it is possible to propagate the
regularity of fy and it is therefore possible to assume that f can be taken very regular.
The starting point is the evolution equation satisfied by H(fN|f2N).

Remark 8. We would like to emphasize the importance of the Girsanov theorem as the
underlying idea although this section contain purely analytical arguments. A probabilis-
tic pathwise version of the results presented in this section which are directly based on
Girsanov theorem can be found in [210] and [195]. These works focus more on the ability
to take an abstract general interaction function b rather than on regularity questions. We
will discuss these aspects in Section [3.6.2]

3.4.1 An introductory example in the L> case

As an introductory example to the work of [194], let us first start with the case where
K € L*(R%) (that is, compared to McKean’s theorem, the Lipschitz and continuity
assumptions on K are removed). The following computations are essentially formal but
the ideas will be used in a rigorous framework in the next paragraph. In particular, we
assume that f; is regular enough so that log f; can be taken as a test function in the
weak Liouville equation . Using the entropy dissipation relation on f which defines
the notion of entropy solution, the computations in the proof Lemma which leads
to can be fully justified. With @ = 1 in the conclusion, we recall that we obtained
(in integrated form):

HUEY) < HOEU) + N [ By (X ) — b2 £ as. (02

The goal is to find a uniform bound (in ) for the expectation on the right-hand side
in terms of H(fN|f®N). Gronwall lemma will then gives a bound on the entropy and
propagation of chaos will follow by Lemma Note that this quantity is not very far
from in the proof of McKean’s theorem. The main difference is that the expectation
on the right-hand side is an expectation with respect to f instead of an expectation with
respect to fEV. Of course the latter is more amenable as it allows to use the very simple
but efficient argument of Sznitman based on the law of large number and which uses only
the boundedness of K. The next idea is thus a change of measure argument which is the
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content of [194, Lemma 1]: for all > 0 and all py € L®(EY),

/E e () £ (axY) < niN(H(fm £2N) + log /E ) eVen (=) t@N(dXN)). (93)

This identity is a straightforward rewriting of H(fN|u) > 0 (which is always true) for the
probability density u := eV~ 2N/ Il BN eNen fON  Using this relation gives:

HONE) < B+ [ H 1)
+ %/0 log [EN exp <UN|b(x1,uxN) — b(xlvfs)IQ)ff)N(de)ds.

Expanding the square and using|(91)| as in the proof of McKean’s theorem leads to:

1 [t 1 [t
H(NPEN) < H(fS58N) +5/0 H(fNfEN)ds + 5/0 log Znds,
with R N
2
Zyi= [ ew (—"”wmp 3 wtah ot x])) £ (@),
where
Y(z,y) = K(z,y) — K x fi(2). (94)

The goal is to prove that Zy is bounded; the conclusion will then follow by Gronwall
lemma. Note that there is still the cancellation

Ve € E, /Ew(may)ﬂ(dy) =0,

but it is not possible to use it directly as in the proof of McKean’s theorem because now,
this quantity appears inside the exponential. Note however that Zy can be seen as the
partition function of a Gibbs measure with a potential which, up to the first variable
which plays a special role, is very much reminiscent of a polynomial potential of order
two in Theorem [[-4.6| The second assertion in Theorem precisely implies that Zy
is bounded. However, in this context, there is a way to bound Zy more directly (for n
small enough): this is the content of [194, Theorem 3]. The proof is based on the series
expansion:

<n|| [ SR w)

2,0=1

Then, by expanding the power term Jabin and Wang recover polynomial terms in ¢ and
by separating the terms with £ < N from the ones with k£ > N, they use combinatorial
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arguments to identify the right cancellations (using |(94)) which lead to the conclusion.
In conclusion, there exists a constant C' > 0 such that

1 t
H(fMEN) = H( év|f§§N)+5/ H(fN|fEY)ds + Ct,
0
and the result follows.

3.4.2 With W—1> kernels

In [194], the above arguments are presented in a completely rigorous framework in the
fully linear case
b(x,p) = F(z) + Kxp(x), o=1Is

where the state space is the d-dimensional torus £ = T¢. The force term F is implicitly
regular (to ensure that f can be taken regular) but the interaction kernel K : T¢ — T¢
is less than bounded, it is assumed to be an element of the following functional space.
Although it didn’t produce a quantitative estimate, a similar idea had been used in [148].

Definition 3.14. A vector field K such that [, K = 0 is said to belongs to W~1(T)
when there exists a matrix field V' in L>°(T¢) such that K = V-V. The definition extends
similarly to scalar functions.

The regularity on K is extremely weak. It includes the case K € L*° which is the
original framework of [193] but it is also possible to consider singular kernels and in
particular the Biot-Savart kernel in dimension 2:

where 2t is the rotation of x € R? by m and K is a correction which makes K periodic.
Other examples of relevant kernels include collision-like kernels where two particles in-
teract when they are exactly at a given distance. We refer the interested reader to [194,
Section 1.3] and to the end of this section for further examples. It is not easily possible to
construct SDE solutions of the particle system with this weak regularity, Jabin and Wang
thus introduce the following notion of entropy solution for the solution of the Liouville
equation.

Definition 3.15 (Entropy solution). A probability density f¥ € LY(T) for a time
t € [0,7] is an entropy solution to the Liouville equation when it solves in the
sense of distributions and for almost every t < T,

1 t v N |2
og ey [ Fhcha,
TN 2 Jo Jpav S

1 [ . o
= /W févlogfév—ﬁmzl/o o (V- F(a')+ V- K(z' —27)) f¥ (xV)dxVds. (95)
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It is much easier to prove that there exists an entropy solution, this typically comes
from a regularisation argument with a smoothened kernel [194, Proposition 1]. The en-
tropy dissipation inequality classically comes from a formal derivation of the entropy
[ f¥log £ and here it is taken as a definition. For the limit equation , one can ask
for a stronger regularity as in the main theorem [194, Theorem 1] stated below.

Theorem 3.16 (Pointwise McKean-Vlasov, W~ kernel [194]). Assume that V - F €
L®(T?) and that K € W=12°(T9) with V- K € W=1%(T%). Let fN be an entropy solution
of the Liowville equation in the sense of Definition [3.15. Assume the limit law satisfies
f e L>([0, T]), W2P(T?)) for any p < oo and inf f > 0. Then the following entropy bound
holds:

H(NFEN) < e (H (S F5N) + 1), (96)
where C' > 0 depends on d, the deriwative bounds on K, F, f and the initial condition.

We sketch the main arguments of the proof in the case F' = 0 for simplicity. The
starting point is as before the computations which lead to Lemma (for the details, see
the proof of Lemma but with a much finer analysis based on the divergence form
of the kernel K =V - V.

Proof (main ideas). The computations of Lemma [[-4.11| become fully rigorous with the
notion of entropy solution and the regularity assumptions on f [194, Lemma 2]. Carrying

on the computations up to the last step ((I-111){and using|(95)} Jabin and Wang obtained
the following inequality (in integrated form):

H(N YY) < H(EN)
N

_ Z/O . (K*MXN(xi) — K*fS(ZL‘i))Vlog fL?N(XN)fSN(dXN)dS

=1

N
J— . N — . N N
;/0 /W (V- K %y — V- K % ) ¥ (dxV)ds

_1 ' N| r®N

In Lemma/|l-4.11] the terms involving K are handled by using the Young inequality. Here,
owing to the assumptions on K, Jabin and Wang use the decomposition

K=K+K,

where K = V-V € W1(T%) with V- K =0, V € L*(T%) and K € L*. The term
involving K is slightly more technical because of the divergence term but it can be handled

following the same ideas than the ones used for K and leads to the same conclusion (see
[194] Lemma 4]). We skip the computations and focus on K (this is [194] Lemma 3]). By
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integration by parts, it holds that:

N

Z (K * pov (2%) = K * fo(2"))Vi1og fEN (xV) £V (dx)

dN
i=1 /T

T
_2/ V ok v (2) =V * fy(2)) :vwz—f?fvvxi(ﬁ%) dx™
Td s

+Z/ (V x pin (27) = V % ()

—: A(s) + B(s).

The two terms A and B are of different nature. For the first one, it is possible to use the
similar trick as the one at the end of the proof of Lemma [[-4.11] Using Cauchy-Schwarz
inequality and Young inequality, for any v > 0,

Afs) < T1(FN152Y) +—Z/ IV i () = V o fo(a) 21 (dx)
7
- L
ZZ/ Ve % pise () = Vi fil }fN(dX )
y e N d
= S I(FNEN) + ;Q;IA

where the constant C' > 0 comes from the bounds on f and V, s are the coordinates
of V. Choosing the appropriate v will cancel the Fisher information term in [(97)] It
remains to bound the terms A7 4(s) and B(s) (the term which involves K in |(97) would
give analogous terms). As in the conclusion of Lemma [[-4.11| and |(92)} since they are
observables of the particle system and it is possible to use the change of measure identity
(93)l For each Al 4(s), since V € L>(T?) it will give exactly the same kind of terms as at
the beginning of this section. They can be bounded uniformly in N using [194, Theorem
3]. For B(s), the change of measure identity yields:

B(s) < “H(f¥|f7V) + %bgzN,

dl>—‘

where Zy is of the form

Zy = / exp NN G (i )] FEN (dx™),
TdN
with G : o — (e ® 1, ¢9) is polynomial function of order two. Namely:
G(/L) = <lu ® 1, ¢2>7
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where V2£.(2)
x
o, 2) = (V(r —2) =V * fo(x)) : —2.
fs(x)
If V' were continuous, Theorem would say that limy_, 4 V™ Zy, exists and is finite
for a computable mgy > 0, which is more than what is needed here. However, in this case
V' is only bounded. The authors thus introduce a “modified law of large numbers” [194]
Theorem 4] which implies that Zy is bounded by a universal constant. The proof of [194]
Theorem 4] follows similar but much more difficult combinatorial arguments as the ones
in the proof of [I94, Theorem 3|. It is based on a fine use of the two cancellations:

/Td P2(x, 2) fs(dz) = 0, /Td bo(, 2) fo(dz) = 0,

for all z, z € T?. It also needs L? bounds on ¢, which depend on the regularity of f,. The
final bound then follows from Gronwall lemma as before. O

We conclude this section with some additional remarks and extensions of Theorem
0. 10l

1. Tt is interesting to see how the tricky combinatorial results [194, Theorem 3, Theorem
5] can lead to the desired law of large numbers: an insightful use of exchangeability
allows to remove extra continuity assumptions.

2. A reminiscent pattern is the compromise between regularity whether on the initial
equation through coefficients, or on the limit process by strong well-posedness result.
Here very weak regularity is taken for the particle process, but strong regularity on
the limit measure is required. This is in a sense, the opposite of what is done in
Section B.1.21

3. The setting of Theorem (3.16[ is in fact more general as it also allows a diffusion
coefficient o which depends on N (we took ¢ = 1). The behaviour is different
depending on whether oy > 0p > 0 (non-degenerate case) or oy — 0 (vanishing
diffusion case). The first case would add an additional term which depends on
lon — o] in the final bound [(96)] The vanishing diffusion case is handled by [194,

Theorem 2] under slightly stronger regularity assumptions on K.

4. The kinetic case (in R?) is the original one investigated in [193]. The modified law
of large number [193, Theorem 2] analogous to [194, Theorem 4] is slightly simpler
because of the symplectic structure of the system.

5. Recent extensions concern gradient systems with an interaction kernel of the form
K = —VW. The analysis in [42] 269, 125] is based on a new modulated free energy
which includes in its definition the Gibbs equilibrium measures of the particle and
nonlinear systems.
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6. Guillin, Le Bris and Monmarché [I74] have recently shown that Theorem can
be made uniform in time for a broad class of singular kernels which includes the
Biot-Savart kernel on the torus and the 2D vortex model (see Section [5.1.3). To
obtain this result, the authors use a control of the relative entropy by the Fisher
information which appears in |(97)!

7. The entropy methods described here could be referred as global entropy methods
because a bound on the global entropy H(fN|f&") (i.e. with N particles) gives a
local bound for the marginals of lower order k£ (by Lemma . In a recent work
[211], Lacker has developed local entropy methods to prove directly a bound on the
k-particle relative entropy

H( tk’N|ft®k> = (’)((k/N)Q),

for any k& < N (which also implies the bound | " — f&*||rv = O(£) by the
Pinsker inequality). The approach is based on a kind of BBGK hierarchy for the
family of k-particle relative entropies.

3.5 Concentration inequalities for gradient systems

In this section, we make a step forward after propagation of chaos and briefly state two
large deviation results for gradient systems. The first one is a weaker result which follows
from Theorem and the Bakry-Emery criterion. The second result is stronger but
requires a significant amount of work which will not be detailed here.

The Bakry-Emery criterion (Proposition is applied to McKean-Vlasov gradient
systems in Malrieu [220] to obtain concentration inequalities at the particle level. For
each observable ¢, it provides a quantitative estimate in both N and ¢ of the deviation
between the N-particle system and its McKean-Vlasov limit. When the latter converges
as t — 400 towards its unique invariant measure po, (see Corollary , this also pro-
vides confidence interval for the convergence of the N-particle system towards pio,. The
following theorem summarises the results of [220].

Theorem 3.17 (Concentration inequalities for gradient systems). Let us consider the
model with the coeﬂicients and a potential V' which is B-uniformly convex. Let fy
satisfy a log-Sobolev inequality with constant Ay (see Section and assume that the
N -particles are initially i.i.d. with common law fo. The following properties hold under
the same assumptions as in Theorem[3.3

1. There exists C' > 0 such that for alle >0, N > 2,t >0,

N 2
¢|S|1Llf§1P< %;w(xf) - [Ew(x)ft(dx) >e+ \/%) <2 E . (98)

2. There exists C' > 0 such that for alle > 0,, N >2,t >0,

N
1 ) C Nae2
sup Pl =) «(X{ _/SD(JC)MOO(d:c) >ed )=+ CeP] <2 3,
llip<1 (N; (x:) B V N
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where Ay > 0 is bounded from below and above and will be given in the proof.

Proof (sketch). A straightforward computation (see [220, Lemma 3.5]) shows that the N-
particle system satisfies the Bakry-Emery criterion (Proposition [[-13) with constant f.
Then, if fo satisfies LSI()g), [220, Corollary 3.7] shows that the one-particle distribution

tI’N satisfies a log-Sobolev inequality with constant A\; such that

1 1 —e 28t 26t

+ .
At B Ao

Thanks to Lemma [I-4.13] it implies that ftLN is concentrated around its mean with an
explicit error estimate. The first property therefore follows from the uniform in time
bound |(55). Then, the distance between f; and p. can be quantified in Wasserstein
distance:

”2(ftvuoo) S ”2(ftaft17N) +1 2( 7[’600 )+ g (M})SNHMOO)
C C
< N|, N

C
< —+Ce ™,
~ VN

where the first and third terms on the right-hand side of the first line are bounded by
CN~Y2 by (55'L the second term is controlled by the relative entropy by the Talagrand
inequality !I—llSi and the last line follows as in the proof Corollary . Letting N — 400
leads to

Wa(fis phoo) < Ce ",

The second property thus follows by inserting this last bound in (since the
Wasserstein-2 distance controls the Wasserstein-1 distance and using Proposition . O]

Theorem |3.17| quantifies how the empirical measure p xN s close from its limit (in
N and t) for e distance D; given by [(I-49)] The distance D; is dominated by the
stronger Wasserstein distance (both metricize the weak topology). Related stronger re-
sults have been shown by [36] using different techniques, based on the quantitative version
of Sanov theorem given by Theorem Note that compared to Malrieu’s results |(98)]
and , the goal is to interchange the supremum and the probability (thanks to the
Monge-Kantorovich duality formula Proposition . This comes at the price of stronger
assumptions and with an eventually worse rate of convergence. The following theorem
summarises the results of [36, Theorem 2.9 and Theorem 2.12].

Theorem 3.18 (Pointwise W; concentration inequalities). Let us consider the model[(3)
with coefficients assume that there exist some constants 3,7, € R such that the
potentials V., W satisfy

V2V > By, I < VW <A1,

and ;
Vz € RY, VYa >0, |VV(z)|=0O(e""").
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Assume that the initial data admits a finite square exponential moment:
doy > 0, / el £ (dz) < +o0.
R4

Then the following properties hold.
1. For all T > 0, there exists \,C > 0 such that for all € > 0, there exists N, such that
for N > N, :

IP( sup W) (MX}\H ft) > 8) < C(l + T5—2)e—>\N52'

0<t<T

2. In the uniformly convex case B > 0 and B+2v > 0, there exists X\, C, Ty, g9 > 0 such
that for all € > 0, there exists N such that for N > N, :

sup  P(Wi (i pioe) > ) < C(14272)e N,
>Ty log(eo /<) K

where [ 1S the unique invariant measure of the nonlinear McKean-Viasov system.
A pathwise generalisation is done in [30] in the case of a bounded time interval.

Theorem 3.19 (Pathwise W) concentration inequality). With the same assumptions as
in Theorem for all T > 0, there exist \,C > 0 such that for all € > 0, there exists
N. such that for N > N, :

P<W1 (NX[J({T]>f[0,T}) > 5) < C(l + Tg_Q)Q—ANg’

where Wy denotes the Wasserstein-1 distance on the path space C([0,T],R?) (see Defini-

tion .

3.6 General interactions

In this section, we discuss some results in the very general case of a McKean-Vlasov
diffusion of the form

b:RYx P(RY) = RY, o :RYx P(RY) — My(R), (100)

without assuming any particular form for these functions.

3.6.1 Extending McKean’s theorem

When b and o are Lipschitz for the Wasserstein distance, then McKean’s theorem and its
proof can be easily extended.
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Theorem 3.20. In let the drift and diffusion coefficients |(100) satisfy the following
Lipschitz bound for all (z,y) € E? and (u,v) € P(E)?:

max ([b(, 1) = by, )|, |0, 1) = oy, )] ) < L(Jx =yl + Walpz,0)).

Assume that fo € Py,(E) for some ¢ > 2. Then pathwise propagation of chaos in the
sense of Definition[2.5 holds for any T > 0, with p = 2 and with the synchronous coupling
introduced in Theorem[3.1. The convergence rate is given by

5(N7 T) = C(bv g, T)ﬁ(N),

where C(b,0,T) > 0 is a constant depending only on b,o,q and T and B(N) is given by
[145, Theorem 1] :

N2 4 N—(a=2)/a ifd <4 and g # 4
B(N) =< NY2log(1+ N)+ N~@2/4 ifd=4 and q # 4
N4 N~a=2)/a ifd>4 and q # d/(d—2)

Proof (sketch). We follow the same line of arguments of Sznitman’s proof. The main

change is that |(38)| should be replaced by
. . 2
B|o(X5, £) = b(F ey )| < LEWE (wy, 1) < CTIBON),

where the last inequality (with a constant C'(7) > 0) comes from [145, Theorem 1] since
the X* are independent and using a uniform moment bound on [0,7]. The inequality
(39)| still holds (with a different constant) thanks to the straightforward inequality

N
EW?(“?%“?@) < %ZE\Y{ —th’? =E|X]| - Xti‘%
j=1

for any ¢ € {1,..., N} by symmetry. The rest of the proof proceeds as before. O

The proof of Theorem is also detailed very concisely but precisely in [51), Section
1].

Remark 9 (Completeness and exchangeability). It may also be interesting to try to adapt
McKean’s argument (Section [3.1.1)) to the setting of Theorem [3.20, Most of the proof
remains unchanged, the main difficulty (which arises just after |(34))) is the control the
quantity

EW22 <MXthM7 /'LXtM> )

that is, we need to control the Wasserstein distance between two empirical measures with
different numbers of samples. To do that, we can mimic the proof of the Hewitt-Savage
Theorem in [I84] Theorem 5.1] and replace the Wasserstein distance by a Sobolev
norm H~* (Definition . Under some moment assumptions, it defines a distance
which is equivalent to the Wassertein distances [I84], Lemma 2.1]. Taking advantage of
the polynomial structure property stated in Lemma [[-3.4] it is shown in Proposition [[-17
that:

1 1
s — el <200l (5 - 37
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As a general rule, if b,o are globally Lipschitz for a Wasserstein metric, then it is
possible to extend any result obtained by (synchronous) coupling. The price to pay is a
possibly bad convergence rate, in particular with respect to the dimension d. Since the
convergence rate typically comes from the quantitative Glivenko-Cantelli theorem [145]
which is sharp in general, it seems hard to obtain better results with this technique. One
can also readily check that the approach of Section based on Ito’s formula can be
applied under convexity assumptions, for instance when

bz, p) = =VV(z) + bo(z, p),

where V' is convex and by : R? x P(R?Y) — R? is globally Lipschitz. Following these
ideas, the most general and comprehensive article that we are aware of is [6]. The authors
use the synchronous coupling method to prove pathwise propagation of chaos in various
Lipschitz and non Lipschitz cases for a mixed jump-diffusion model with simultaneous
jumps (see Example . Because of the jump interactions, the authors work in a
more amenable L' framework (the results are stated for the W; distance). Compared to
the L? framework of Theorem this brings some additional technicalities regarding
the diffusion part but it does not modify the argument. See also [168] for an earlier work
on jump-diffusion models in a L? framework but using martingale arguments similar to
[273, 274].

Finally, the globally Lipschitz framework of [6] has recently been weakened in [133]
where the author proves the well-posedness and the propagation of chaos for general
jump-diffusion McKean models with local Lipschitz coefficients but with an additional
assumption about bounded exponential moments. This result is reminiscent from [31]

(see Section |3.1.2)).

3.6.2 Chaos via Girsanov theorem

When o = I; (or more generally when o is non singular and does not depend on the
measure argument), under a Lipschitz assumption on the drift, it is also possible to
prove strong pathwise chaos in TV norm as in Corollary [l via a Girsanov transform
argument. When the drift is Lipschitz in Wasserstein distance, this follows immediately
from Theorem Lemma [2.8 and [145] (this extends Corollary [1]).

A recent strategy improves this idea without requiring the preliminary propagation of
chaos result which holds only with strong Lipschitz assumptions. The following theorem
is a weakened version of [210), Theorem 2.6].

Theorem 3.21 ([210]). Fiz T > 0 and I = [0,T]. In[(3) assume that o = I,, that b is
bounded and that b(z,-) is Lipschitz for the total variation norm uniformly in x. Then
for all k € N it holds that
: kN | e®k) _
Jim (1) =0

This result relies of course on Lemma [2.8] The strategy of [210] is then to use a crude
large deviation principle to show that the right-hand side of goes to zero as N — +o0.
The key argument is the following result: there exists a constant C' > 0 which depends
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only on b such that for all measurable open neighbourhood of f;,

: 1 —CT
11msuleogIP’<uX;v ¢ U) =e ;glfjH(Wf]).

N—+00
This result is a kind of Sanov theorem obtained by a change of measure argument from the
classical Sanov theorem applied to an i.i.d sequence of f;-distributed random variables.
This is [210, Theorem 2.6 (1)]. This result implies that ®(py~) — ®(fr) in probability for
all bounded continuous measurable ® on P(C([0,7],R%)) (see 210, Remark 2.8]). The
conclusion follows by noting that the right-hand side of is precisely an observable

of this form. The detailed proof is actually written in a much more general setting than
(100), since it is assumed that b and ¢ are of the form:

b:[0,7] x C([0,T],RY) x P(C([0,T],RY)) — R%, & : [0,7] x C([0,T],R?) — My(R),

that is they depend on the time argument and on the full pathwise trajectories of the
particles (instead of their local in time state). The diffusion matrix is assumed to be
invertible everywhere and does not depend on the measure argument. The power of
Girsanov theorem is precisely that despite this level of generality, the argument is not
much modified and the proof remains relatively short. The main change is maybe the
more careful look at the topology (since we work fully on the path space) and the questions
of measurability which are discussed in [210] Sections 2.1 and 2.2]. Various well-posedness
results for the particle and the nonlinear systems within this setting are also presented.

An important example of such generalized framework is the probabilitstic interpreta-
tion of the parabolic-parabolic Keller-Segel model

1
op(t,z) = —xV - (pV.) + §Ap (101a)
1
Oe(t,x) = —Ae+p+ §Ac, (101b)

where £, A > 0. Compared to the parabolic-elliptic Keller-Segel model , the ellip-
tic equation is replaced by a parabolic equation which models the diffusivity and
evaporation of the chemical substance. In [277, 284], the authors proposed the following
probabilistic interpretation of , which takes the form of a nonlinear non-Markovian
McKean-Vlasov process

t
4X, = b(t, X)dt + / (Koa p2) (X)ds ) + dB, (102a)
0

t
c(t,z) = e Mg, xco)(z) + / Pi_s % € g (x)ds, (102b)

0

where p; = Law(X}), ¢y is an initial concentration and
1 2|2

Ky(z) = xe Vg, bt,x) = xe MV(corg), gi(r)= WG_T.
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In this context, the natural mean-field particle version of can be obtained formally by
taking N independent Brownian motions and by replacing the density p; by the empirical
measure of the particle system. The singularity of Ky and the non-Markovian setting
raise many issues and the rigorous mean-field limit is proved in dimension one only in
[196] using a Girsanov transform argument. This argument has also been applied in [283]
in a Markovian setting similar to but with a time dependent force F' = F(t,x)
which belongs to the space L ([0, +00), LP(R?)), with exponents p,q € (2,00) such that
dr2<l

A drawback of the previous results is that there are not quantitative (as they rely
on a large deviation principle or on compactness arguments). A sharper analysis of the
Girsanov transform argument is presented in [195, Theorem 2.1] and leads to the same
kind of result with a quantitative optimal rate of convergence. The argument is very
probabilistic and can be understood as the probabilistic counterpart of [194] (see Section
. The assumptions are taken to ensure a fine control of the computations in Girsanov
theorem and may not be easily interpreted within our usual setting but various detailed
applications to more usual forms of McKean-Vlasov diffusion are presented, for instance
the case with only bounded coefficients (as in Section [3.4.1).

3.6.3 Other techniques

It turns out that it quickly becomes quite challenging to go beyond the nice globally
Lipschitz setting. Depending on the chosen topology, even seemingly simple linear cases
such as

bla,p) = K xp(r), K:R?xR?— R?

can become problematic: if K is unbounded, even if it has a linear growth, then b is not
continuous any more for the weak topology. In addition to the continuity, a sufficient set
of assumptions under which well-posedness and propagation of chaos can be proved are
given in [160, Section 5]. We reproduce it below.

Assumption 7 ([160]). Given p > 2 and R > 0, let us define

Poal®) = { e PERY, [ loPutao) < R},

endowed with the topology induced by the weak topology on P(RY) (in the sense of Defi-
nition . Assume that P,(R?) is equipped with the “inductive topology” defined by:
o C Py(R?) is open if and only if &/ NP, r(RY) is open in P, r(R?) for each R > 0.
Assume that there exists p > 2 such that

b: R x P,(RY) — RY, o : R x Py(RY) — My(R)

are continuous and that o(z,u) is invertible for all (x,p) € R? x P,(R?Y). Assume that
there exists C > 0 and Cgr > 0 for each R > 0 such that b,o satisfy the following
properties.
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e (Coercivity and growth). For all ;i € P(R?) with compact support

[ 1=t + 26 lap i) < (14 [ foutan)),

and for all R >0, p € P, r(RY), x € RY,

lo(z, )II” + 2{z, b(z, n)) < Cr(1 + |2[*).

e (Monotonicity). For all R > 0, for all p,v € P,r(RY) and for any coupling
I € P(R? x RY) between pu, v,

//Rd p [llo(z, 1) — oy, )||* + 2(x — y, b(z, 1) — b(y, V)>]+H(dx,dy) < Ch,

and
//Rded (llo(z, 1) — oy, v)|I* + 2(x — y, b(x, ) — by, v))) T(dz, dy)

< Cg // |z — y[*TI(dz, dy).
R4 xRd

Remark 10. Note that the inductive topology on P,(R¢) is not so far from the topology
induced by the W), distance. Actually, from [160, Proposition B.3], a sequence (i), in
P,(R?) converges towards p for the inductive topology if and only if

fn = iy, sup [ |z|Pun(de) < +oo,
n R4

where the convergence is the weak convergence. A slightly simpler set of assumptions
expressed in the space (P,(R%),W,,) is given for instance in [306, Section 2]. See also
the recent [241]. Note however that the inductive topology can also be defined when
the bound on the p-th moment is replaced by a bound on (u, ¢) for a fixed nonnegative
continuous test function ¢ on R?, usually called a Lyapunov function. The main results of
[160] are proved within this generalised setting. Additional topological details are given
in [160, Appendix BJ.

The very detailed article of Gértner [160] proves (weak) pathwise well-posedness and
propagation of chaos using martingale arguments. This extends earlier works due to
Funaki [I57] (for the well-posedness of the nonlinear system only) and Léonard [215].
For further works using martingale and compactness arguments, let us also mention [75]
for a slightly weakened Lipschitz assumption and [02] for a generalised case where the
particles depend on possibly correlated Brownian motions. Note that in this last case,
propagation of chaos does not always hold and the empirical measure process converges
weakly towards a (non-deterministic) measure-valued process.

While propagation of chaos has never stopped being an active field of research, it seems
that, regarding the case of very general interaction functions , the work of Gartner

82



has long stayed one of the most, if not the only, complete and general result. Almost three
decades later, this question enjoyed a sudden resurgence of interest, motivated mainly on
the one hand by biological models (in particular neuron models) and on the other hand
by the theory of mean-field games. In addition to the aforementioned works [6l 51], 210],
we will conclude this section with some recent directions of research which originate in
the mean-field games community. Note that due to the (necessary) higher degree of
technicality, we will not enter into much details. Classical references on the mean-field
games theory include [47, 46|, 53] 52].

e In [67], the authors prove a very neat bound of the form
k-1
C; 1
‘@(ft) - E‘I’(MxtN)‘ = Z; Fjj + O(m)
]:

where ® : Py(RY) — R, the constants C; do not depend on N and k depends on
the regularity of ®, b and o. In this context, regularity means differentiability in
the Wasserstein space (Py(R%),Ws5). As we have already seen in Section
regarding [240], 239], defining a differential calculus on the space of measures is not
an easy task. The framework detailed in [67, Section 2] is based on the notion of
“linear functional derivatives” and “L-derivatives” introduced in [47]. Note that
the authors still assume at least a uniform bound on the diffusion matrix but also
that b and o are globally Lipschitz for the W, distance. But contrary to the results
obtained using the Glivenko-Cantelli theorem [145], the constants C; do not depend
on the dimension. In fact, the framework of [67] is also applicable to the static case of
N p-distributed i.i.d random variables X and thus it provides explicit convergence
rate of E®(uyn) towards ®(u) for smooth observables on Py (R?). The above result
in both the static and McKean-Vlasov cases is obtained when ® is “(2k + 1)-times
differentiable with respect to the functional derivative”.

e In [71] (see also [69]) the authors revisit the question of the well-posedness of the
martingale problem associated to McKean-Vlasov equations with general interac-
tions and relate this question to the study of a class of (linear) parabolic type PDEs
on the Wasserstein space (the backward Kolmogorov equation with source term and
terminal condition). In the subsequent work [70], the problem is investigated at the
particle level which provides (quantitative) propagation of chaos results concern-
ing the trajectories of the particles, the convergence of their distribution and the
convergence of the emprirical measure process. The results hold when b and o are
bounded, Holder continuous in space and with two bounded and Hélder continuous
linear functional derivatives in the measure argument and when ¢ is also uniformly
elliptic. The strategy is also linked to the notion of regularization by noise and the
Zvonkin transform, see [309, 297].
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4 Boltzmann models

The probabilistic treatment of the Boltzmann model has been initiated by Kac in the
seminal article [204]. The original treatment of Kac model (Example is based on
the continuity of the generator Ly on the space of test functions (Cy(EY), | - |ls). The
arguments have been later generalised [49] for a wider class of models under boundedness
assumptions at the pointwise level (Section . A pathwise generalisation of Kac’s the-
orem is due to [169] (Section [4.2)). Many physical models (for instance and do
not fit into this framework because of the strong boundedness assumption on the collision
rate. To prove more general results, we will first discuss the historical stochastic martin-
gale arguments [281 273 (Section and then three historical arguments which have
recently been brought up to date and completed: first the SDE and coupling method due
to Murata [245] (Section [4.4)); then the pointwise study of the generator of the empirical
process initiated by Griinbaum [I72] (Section ; finally, we briefly present Lanford’s
approach [213] on the deterministic hard-sphere system (Section [4.6)).

4.1 Kac’s theorem via series expansions
The following theorem, originally due to Kac, is the most important result of this section.

Theorem 4.1 (Kac). Let (f)¥)y be a sequence of symmetric probability measures on EN
which is fo-chaotic for a given fo € P(E). Let (Z), be the N-particle process with initial
law f{¥ and with generator

1
Lyven =+ > Lo 0w,

1<j

with L@ given by Assumption |1| together with the uniform bound @ on the interaction
rate \. Let s € N, s > 1, and let 5 € Cy(E?®) be a test function. Then for any timet > 0
there exists f, € P(E) such that

Elp.(2Y)] o (1700

where we recall that Z; N denotes the process in E* extracted from the s first components
of ZN. Moreover f; is a weak measure solution of the general Boltzmann equation .

We present two proofs of this theorem. Both are based on the explicit solution of
the Liouville equation given by a series expansion. The first proof works at the level
of observables. The second proof is slightly shorter but also requires a L' framework
to work at the level of the laws (forward Kolmogorov point of view). The first proof is
due to Kac [204] for a one-dimensional caricature of a Maxwellian gas. The arguments
are generalised in [50]. Our presentation is also inspired by the work of McKean [224].
The second proof is the probabilistic version of Lanford’s approach on the deterministic
hard-sphere system (see Section . The bound @ and the fact that the interactions
are delocalised considerably simplify the proof. The detail of the proof can be found in
[260].
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Proof (at the level of the observables). Since the operator Ly is bounded for the || -
norm, the exponential series e’V is convergent and it holds that:

oo

k
E[p,(20")] = % 40 Lhps). (103)

The strategy is to apply the dominated convergence theorem to pass to the limit in this
series. The crucial observation is that the series converges for ¢ small enough, uniformly
in N. Using only the continuity estimate

£ @slloe < CAIN[@s]lco, (104)

would give the convergence on a time interval ¢t < 1/(NC(A)) and it would not be possible
to take the limit N — +o00. However, when s > 1 is fixed, better estimates are available
which are summarised in the following lemma. The basic idea is to split the general term

of the series into two parts [(105), one of order 1/N which vanishes when s is fixed and a
leading term of order one which converges and which will give the desired limit.

Lemma 4.2. Let us consider the linear operator D on Cy(E®) := UpsoCy(EY) defined for
Ps € Cb(ES) by:

s

(D) (2, ..., 2%, 25T = Z(L(2) Gisr1 (ps @ 1)) (24, ..., 2% 25T,

=1

Note that since Cy(E*) C Cy(E**Y) by the inclusion p, — o5 ® 1, the space Cy(E™) is
actually a vector space. The following properties hold.

(1) For all k,s such that k+ s < N,

us,k(@s) s,k s
o' Lhvpa) = =577 + oV (7, Dr), (105)

where us (ps) satisfies

s—l— k |
s e (05)] < C(A)* s l|oo———7— ' Z (s+0)? (106)

=0

,_a

where C(A) is the constant in|(104) (in particular, it does not depend on N nor on
k), and
sk (N—s)...(N=s—k+1)
alih) = e . (107)
(2) There exists ty > 0 which depends only on s and A such that the series|(103) converges
absolutely, uniformly in N and t € [0, to].

(3) For each k > 1, it holds that
(' Lhees) = (S5 Drey). (108)
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The second point is proved in [50, Lemma 3.1]. The only difference is that in our
setting, we have to take into account the constant A. Their proof is based on an estimate
similar to |(106)| obtained by a combinatorial argument which does not use the splitting
[(105)] The third point is essentially the content of [50, Lemma 3.3]. We give an alternative
proof here based on the properties of the operator D which was introduced by McKean
[224].

Proof. Let us start from the following observation: for all z!,..., 2" € E,
S 1 U
Lyps(zt, ... 2N) = Nﬁsgos(zl, o 2%)+ N Z (D)2 ..., 2% 2. (109)
l=s5+1

Note that Ly, is a function of N variables but it can be written as the sum of s functions
of s variables and (N — s) functions of (s + 1) variables. By symmetry we deduce that:
N —s

f§7N7£s¢s> + —<fOS+LN7DSOS>' (110)

<f(§V>£N905>: N

s
!
Moreover, the following continuity estimates hold for all s > 1,

[Ls0slloc < C(A)s][@slloo,  [Dpslloc < C(A)s][0s]]oo, (111)
where C'(A) depends only on A.

(1) The first point is proved by induction on & < N. The case k = 0 is the initial
chaoticity assumption and the case k = 1 immediately follows from |(110)] and |(111)]
Let us assume the result for £ > 1 and let us take s € N such that s + &£+ 1 < N.
Using , by exchangeability it holds that

s N —s
<févv£§c\/+1§03> = N<fé\[7£?v(55908)> + T<féva£§€v<D908)>
Since L is a function of s variables and Dy is a function of (s+ 1) variables with
(s+1)+k < N, the induction hypothesis for each of the two terms on the right-hand

side gives:

s [ usk(Lsps s,k) ) ps
(fo' L5 o) = (—’“( S")+aﬁv’%fo*’“”,D’f<.cssas>>>

N N
N —s (u, Do, s s
+— ( “"}\(f 2:) +ozﬁfl’k)(fo“”“’]v,D’““m) :
First we note that:
(s,k+1) b (s41,k)
N TN oy )
as expected. Then we set:
S s,k s+k, N —s
e (s) = Frts(Lape) + 5y (7Y DHLapa)) + =5 tsns(Dis). (112)
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The induction hypothesis can be used again to bound u; ;41(ps). First we note
that

??‘

-1

k-1
(s +k—2)! (s+k—1)!
(s —1)! Z(S—'—K)Q = s!
Te=0 ' 0
Thus using the continuity bounds|(111)|and the induction hypothesis|(106), we deduce
that:

(s+1+0)>%

o~
Il

k: 1

5 N —s (s + k
N|us,k(£8¢8)| + [uss1,(Des)| < C’(A)kHngS“w Z (s+1+10)7
=0
(113)
Moreover, it holds that ag{?k) < 1, so using [(111)| again leads to
s s+ k
saff Y DA Lap)) < oSS R g

(s = 1)!

Reporting [(113)| and |[(114)| into [(112)| finally gives:

k
(s + k;
‘US,k—i-l(SOS)l < C<A)k+1H905H00 E s+ E
=

which concludes the proof of the first point.

Let us split the series|(103)|into two parts, the first one for £k =0,..., N — s and the
second one for k > N — s+ 1. For the second part, we use the crude estimate:

15 @slloe < CAN*lps]loo-
Then using Stirling’s formula, the series
+00 k +00 k
Z (C(A)) NF < Z (C(M)?)
k=N—-s+1 ) k=N—-s+1
is convergent for ¢ < ( . Then using the first point it holds that:

N—s

N=s 4k
Z <f0 aLN90s> %Z k_ sk (ps) +
k=0

2
.

<f5+” D*p,).

x
f
z=| =

0

From |(106)| the following elementary estimate holds for k > 1:
tk (s+k— 2)

< <(J<A>t>'“||sos||oo(S+ f ] )<s+k—1>2
< WYl (14 557) k-1
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It follows that the series whose general term is (£*/k!)us x(¢s) is absolutely convergent
uniformly in N for ¢ small enough. Similarly, for the series whose general term is
bounded by

o s+k—1
U DR < et (T T

k’ s—1
< CWNHlole (14 25)

the same conclusion holds. This concludes the proof of the second point.

(3) This follows immediately from the first point, the fact that aj F) s1as N> +o0
and the initial chaoticity assumption.

O

Once the lemma is roved it follows that for any ¢ < ¢y there exists a family of
probability measures (f,” ) on E* such that

+0o Lk
s,N s t s+k
Ble.(27)] o (00 = D (™ D). (115)
k=0
It remains to prove that f*) = f&5 where f, = . The following argument is due to

McKean [224] who noted that the operator D is a derivation in the sense that for any
$1,89 € N
D(ps, @ ¢s,) = Dos, @ s, + 5, @ Depss,.

Leibniz rule therefore implies that for any s; + sy = s and @5, € Co(E®), @5, € Cyp(E*?),

| %

“+00 k
s s1+so+k _
O on ® o) = 3 z( ) () D, o DRy
k=0

_l’_
3
wll

k

~+

k _
(€> < ?(SH_Z Dé ><J§§(S2+k Z)a Dk_z@sz)
0

i
o
=

=
k

®(s1+k) s+€
!<0(1 ZE‘ fO ’ (1052>
0

= (£, o) 52, psy)-

J’_
8

?Eﬂ

—~

From which it follows that £ = £*V ® £ and therefore f*) = f®*. Then, by absolute
convergence of all the series, it is possible to differentiate with respect to time and directly
check that f; is a weak-measure solution of the Boltzmann equation: for a test function
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(2 € Cb<E),
d <Xtk ®k+2) 1~k+1
L) = 3 e, ey
5=0

—+o00 tk N
2
=Y LU DDy
k=0

= < ?2’])90)7

where the last line follows from with s = 2. Finally, since ¢y, does not depend on
the initial condition, the same reasoning applies on [tg, 2tg] and so on and therefore the
result holds for any ¢ > 0. O

Remark 11 (Convergence rate). Although we did not write it in the statement of the
theorem, it can be seen from the proof (Equation that for any ¢, E[ps(Z5™)]
converges towards (f°,¢,) at rate 1/N (with a constant which depends on ¢, and s).
This rate is optimal since it implies

Elo (2V) = (£, 0| = O(1/N).

Within this approach, the limit f; is defined weakly and the above proof is actually a
proof of existence of a weak-measure solution of the Boltzmann equation. The dual proof
follows the same arguments at the level of the laws. For simplicity, we present it in a L'
framework and follow closely the arguments of [260].

Proof (Forward point of view). Let the initial law f& € LY(EY) be in L'(EY), for all
N € N. We denote by f; N the s-marginal of the law of the particle system at time ¢ > 0.
By integrating the Liouville equation (in strong form) with respect to the variables s+ 1
to N, the s-th marginal fts’N is shown to satisfy the famous BBGKY hierarchy (see also

Section [[-3.2.1]):
s S s ps N —s s+1,
at t N = N‘C t7N + TCS,S+1 t+1 N7 (116)

where the operator Cs 4.1 : P(E*T!) — P(E?®) is defined as the dual of D restricted to
Cy(E?), for fE+D) ¢ P(E+1) and o, € Cy(E?),

(€ SS+1f (e+1)  Ps) = <f(s+1)aDS08>'
Equation |[(116)| can be re-written using Duhamel’s formula:

s s s N_S ¢ s s
= TRORY + S [0 e i an,
0

where T§§) is the Markov semi-group acting on P(E®) generated by L°. Iterating this
formula gives an explicit formula for the solution of |[(116), namely:

+o0
fts " Z N / / / S) t - t1>cs s+1T(S+1)(t1 - tQ)CS_H 542 .-
Cs+k 1 s+kT (e+#) ( )fSJrk thl . dtk, (117)
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where ozg{;’k) is given by |(107)] Just as in the previous proof, the goal is to show from this

series expansion that it is possible take the limit N — +o0o0 in the series and that the
limit defines a f;-chaotic family where f; solves the Boltzmann equation. The strategy is
again to show the uniform convergence of the series for small ¢ and then the term-by-term
convergence. The uniform convergence of the series is straightforward in a L' framework
since the operator ng) is an isometry in L'(E*) and for all s > 1:

VIO € LUE),  [Casaf sy < sOMIS oo,

Thus the series of the L' norms are bounded by,

—+00 tk 400
;s(s +1)...(s+k— 1)H(J(A)’“ < 3 (2C(A)L)*,

and uniform convergence in L' holds for ¢ < 1/(2C,). Assume that it is possible to prove
the existence and uniqueness of the solution f; of the Boltzmann equation, as an element
of C([0,t0], L*(E)) (typically by a fixed point method). Then a direct computation shows
that starting from f3** the function f* satisfies:

+00 Lk
s t s+k
1? - ECS,5+ICs+1,s+2 .- -Cs+k—1,s+kf§§( ’ )‘ (118)
k=0

Each term of this series is exactly the limit in L' of the corresponding term in the series

(117)| since
VIO e LNED), (TS = 1d)f9 ||y — 0.

N—+4o00

The proof can be terminated by iterating the argument for all ¢ > 0 as in the previous
proof. O]

Adding one-particle individual flows

To conclude this section, we briefly explain how to extend the result to the more general
case where each particle also has an individual flow given by an operator L(Y). As in
Section [2.2.3] let us consider a N-particle system defined by the operator

N
1
Lyon = Z LW o; oy + N Z L o o,
=1

1<J

where L% satisfies the assumptions of Theorem and where we assume that the operator
LM generates a continuous Markov semi-group acting on a sufficiently large subset of
Cy(E). For instance and as explained at the beginning of Section this extension is
particularly important as it includes the case of kinetic particles in £ = R? x R? where
the particles are subject to the free-transport between the collisions. Note however that,
as mentioned in Section [2.2.3] the boundedness assumption on the rate of collision in
Theorem does not allow the physically important case where two particles collide only
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when they are exactly at the same position, since in this case, the collision rate is a Dirac
delta and thus unbounded.

In the first approach, the proof is exactly the same with D replaced by D + S where
S is the linear operator on Cy(E>°) defined by

Vs € Cy(E®), ZL i s

The exponential formula does not converge when S is not continuous for the L*>
norm, which includes many interesting case such as free transport or diffusion. However,
when S generates a backward semi-group T on C,(E*) which is continuous for the L
norm, one can write

N ¢ d N
U 00 = 5N T(t)pa) + / ST e,

A direct computation shows that
d
T(ft?fa T<t - tl)@s) = <ft]¥a ‘CﬁT(t - t1)908>>

where L5 = N i<; L1705 Tterating this formula, one gets the backward series expan-
sion:

+00 ety th_1
(f s :,;/o /O /0 N Tt)LET (o — 1) . ..

LRt —ty)p,)dty ... diy,

Tedious combinatorial arguments lead to the term-by-term convergence:

<féva T(tk)‘cﬁT(tk—l - tk) """ ‘C]%T(t - t1)905>
v JEER P )DT (g — ) - - .. DT(t — t;)p,).

Note that when the exponential series T|(t) = e’ converges, then:

/ / / SR (DT by — i) ... .. DT(t — t1)p,)dtq, ... dt,

th s

With the second approach, the non-homogeneous case is thoroughly detailed in [260].
The main difference with the proof in the homogeneous case is that Equation|(118)[should
be replaced by

+oo
Z / / / t —t1)Cs, 5+1T(5+1) (t1 — t2)Csi1.542 -

Cerk—l,erkT(offk) (tk)f[;@(SJrk)dtl cee dtk
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where T is the Markov semi-group generated by > 7, LWo,;. The domination part is
similar to the homogeneous case and the term-by-term convergence becomes

(T = TD) £ 11 gey — 0.

4.2 Pathwise Kac’s theorem via random interaction graphs

Under the same (strong) hypotheses of Kac’s theorem, a more powerful result is due to
Graham and Méléard [169) 229]. The proof follows a completely different strategy and
relies on a trajectorial representation of the process based on the notion of interaction
graphs presented in the introductory Section Kac’s theorem states a pointwise
result, the following theorem works at the pathwise level.

Theorem 4.3. Let Ly be of the form with Assumption |1| and let us assume the
uniform bound[(9) Let T >0 be a fized time and I = [0,T]. Let fN € P(D([0,T], E)™)
be the pathwise law (with initial time marginal fé@N) of the N-particle system defined by
Ly and denote by [~ € P(D([0,T], E)*) its s-marginal for s € N. Then the following
properties hold.

(i) There is propagation of chaos in total variation norm: there exists C' > 0 such that
for any s € N :
AT 4+ A°T*

™ = ) ey < Csls = )—F— (119)

where the TV norm is the s-dimensional total variation norm.
(ii) There exist C > 0 and a probability measure fr € P(D([0,T], E)) such that

CeAT
N )

HfILN - fIHTV S
moreover fr solves the nonlinear Boltzmann martingale problem with initial time
marginal fo (see Definition m)

(iii) Let (ZN), be a particle process with law f. Then for all ® € Cy(D([0,T], E)),

E[(uzy — fr.®)|" = O(1/N).

The main result is the propagation of chaos in total variation norm with an explicit
convergence rate. The other properties follow more easily so we focus on the first point.

Proof (sketch). The proof is based on the observation that given an interaction graph
Gi(Te, Ri;) (as defined in Definition [2.9]), it is possible to construct a (forward) trajectorial
representation of the process (Z;), of particle i on [0,T]. To do so, the particles at time
t =0 (Z,z,...,Z%) are distributed according to fé“lH’N, where k' is the number
of distinct indices iy,...,ix. At each t; € Tg, the two corresponding particles collide
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according to the chosen interaction mechanism and between two collisions, the particles
evolve independently according to L1,
According to Lemma : if a random interaction graph (see Definition is first
sampled with rate A and rooted on 7 at time T, then (Z}), is distributed according to
N e P(D(0, T, E)).
Now let be given two indexes (7, j) and Q{}f the random interaction graph with rate A
rooted on (7, j) at time T'. Starting from either i or j and following the graph backward in

time, it is possible to extract two interaction subgraphs, denoted respectively by Q;]’-N for

the subgraph rooted on ¢ and QZJ’.N for the subgraph rooted on j. Two cases may happen:
either Qg is a connected graph or Qf}’ has two (disjoint) connected components given
by the two subgraphs gj;N and gg]N We denote by bafljv the event “Qij}f is a connected
graph”. Conditionally on the complementary event (&) )¢, the processes Z' = (Z}),

and Z7 = (Z]), are independent since their trajectorial representations depend on two
disjoints sets of independent random variables. Moreover, Law(Z?) = Law(Z7) = ;"
and Law(Z’, Z7) = f7". Therefore, it is sufficient to look at laws conditionally on oA

PN e i = (Law(2', 20| )) — Law(Z'|9)) @ Law(Z7|7)) | B/,
and it holds that

1Y = N @ £ ey < 2P(AY).

The question of propagation of chaos is thus reduced to the computation of the probability
of sampling a connected graph. This probability can be bounded by:

+oo
P(e]) <) QY(T),

where Q) (T) = P(2)(T)) and 2.7 (T') denotes the event “there is a route of size ¢ joining
i and j on [0,7]" (we recall that a route is simply a path in the interaction graph, see
Section for the precise definition), as depicted on the figure below:

A . .
1 J
7”@1

T

4 Ty

ng q

7

qu71
o ———o

Figure 2: A route of size g between 7 and j. The chain of interactions which links 7 and
J are depicted by horizontal lines as explained in Section [2.3.5]

Clearly,
A

A
QYT =1 e (7)<
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since this event is equal to {inf, T/ < T'}. Then for ¢ > 2, to construct a route of size
q it is necessary to first construct a route of size 1 from either ¢ or j and then a route of
size ¢ — 1 from the new index created to the other index i or j. Since branching happens
with a rate bounded by A, it holds that

T
QéV(T) < / Q<]1V—1<T — t)2Aexp (—2At) dt = Qév—l * ez (T),
0
where ey, is the density of the exponential law with parameter 2A. Therefore
QY (T) < QY » ey (D),
and a direct computation shows that

= AT + (AT)?

The same reasoning extends for any interaction graph rooted on an arbitrary number
of particles and gives the estimate |(119)l This ends the proof of the first point of the
theorem. The remaining steps are sketched below.

1. With a similar reasoning, it is possible to prove that the law of any particle converges
towards the law f; of the process constructed on a limit Boltzmann tree with rate
A. To do so, the argument is based on an estimate on the probability that there
is a recollision in the sampled random graph. Since as N — +o0o the number of
branches is bounded (of the order e*T), and that the Poisson processes have rate

A/N it holds that

eAT

1Y = frlley < Cw-

2. Since the convergence holds in total variation norm, the empirical measure process
converges in probability and in law towards f7.

3. It remains to prove that the law f; satisfies the nonlinear martingale problem. As in
the McKean-Vlasov case (see Section , it can be proved by passing to the limit in
the martingale problem satisfied by the N-particle system (which is possible thanks
to the previous step).

We refer the reader to [229] for the details of the proof. O

4.3 Martingale methods

The probabilistic treatment of the spatially homogeneous version of the Boltzmann equa-
tion of rarefied gas dynamics and the question of proving propagation of chaos via
martingale techniques has been initiated by [281]. Such techniques lead to very powerful
results as they only rely on abstract compactness criteria which apply on the path space.
A drawback of the approach is that it does not provide any rate of convergence. The
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framework is briefly explained in the introductory Section The paradigmatic proof
of strong pathwise empirical chaos is due to Sznitman [273]. The strategy is quite general,
it does not restrict to Boltzmann-like models and can be applied to various models, in
particular diffusion or jump models. A complete example in the case of McKean-Vlasov
diffusion with jumps is shown in Section [3.3.1] In this section we make some comments
specific to Boltzmann models and state the final result of [273]. Then we extend the
functional law of large numbers (Theorem proved in the mean-field case to general
Boltzmann models.

Strong pathwise empirical chaos.

Sznitman [273] considers Boltzmann parametric models as given by Definition in
E = R? and such that there exists a function ¢y : E x E x © — E which satisfies for all
z1,20 € F and 6 € O,

Yo(21, 22,0) = V121, 22,0) = Va(22, 21,0),
that is, (21, 22,0) = (Yo(21, 22,0), Vo (22, 21,0)).

The assumptions on the interaction function vy are as follows.

Assumption 8. There exists a continuous function m : E — R, such that m > 1,
limy) 5400 m(z) = +oo and such that the interaction function vy and the interaction rate
A satisfy:

(1) for all z1,20 € E and all § € O,
m('@b[)(Zl, 22, 9)) + m(d}O(ZQ? 21, 9)) S m(zl) + m(ZQ)v
(i1) there exists some real p with 0 < p <1, such that for all zy,25 € E

A(z1, 22) < m(z1)? + m(zq)P.

In most cases, the function m is a polynomial function of the form m(z) = 1+ |z|* and
the above assumptions are thus mostly used to control the moments of the particle system
or of the limiting equation which is often a crucial in Boltzmann models. Sznitman uses
the martingale characterisation of the N-particle system.

Assumption 9. For any T € [0, +o0], well-posedness holds true for the martingale prob-
lem associated to the N -particle system (. Deﬁm’tz’on supplemented with the condition.:
for allt >0,

/ [m(zng) +...+ m(ziva)} fN(azN)
D(R4,E)N
< / [m(z") + ..+ m(2) fo' (dz)].
EN
The main result [273, Theorem 3.3] is the following.
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Theorem 4.4. Let us assume that Assumptions @ and@ hold true. Let fo € P(E) and
let (f&)y a sequence of fo-chaotic probability measures on EV. Assume that

(i) there exists C' > 0 such that for all N > 1, m(Zl)+']'\',+m(ZN) < C f¥-almost surely,

(i4) supy [ (=) f (d2) < +oo,

Then the laws f}v € P(D(R.,E)N) are fi-chaotic where f; € P(D(R,, E)) satisfies
the nonlinear Boltzmann martingale problem (Definition m) supplemented with the
condition

t<T

VT >0, sup/ m(Zy)dfr(dZ) < +oc.
D(Ry,E)

The theorem states the usual pathwise propagation of chaos result. It is obtained as a
consequence of the strong pathwise empirical propagation of chaos. This setting includes
the case of the hard-sphere cross-section.

Functional law of large numbers.

Wagner [305] proves a functional law of large numbers for Boltzmann parametric models
of the form |(14)] with L) # 0, adding some individual flow to particles. The proof
is based on compactness arguments and a pointwise martingale characterisation of the
particle system. The nonlinear process is defined by a series expansion reminiscent from
Kac theorem (Theorem {.1)).

To conclude this section, we wish now to briefly discuss the extension of the method
of Theorem to Boltzmann-type collision systems. The first part of Assumption [2| has
to be replaced by

Assumption 10 (Boltzmann generator). The generator of the process (XN), is a Boltz-
manmn genemtor@] with LY = 0 and L® which satisfies Assumption |1l Moreover the
associated martingale problem (Definition 1s wellposed and the initial distribution
satisfies the second assumption of Theorem with m(z) = z and some p > 0.

We define the symmetrized version of L(?

L(2)902(Z1, Z2> + L(Q)SD2<Z27 21)

(21722>
= =5 | el )+ ealeh )

— (21, 22) — @229, zl)}F(Q)(zi, 25dzy, dzy).

L(y2n<102 (Z Z2)

This implies L{Zh[o! ® 2] = Lh[p? ® '] for every ¢!, ¢? € F. For the limit generator,

given p € P(E), we define L, as

Voe F,Vxe E, L,p(x <u, Sym [p®1 > </J,L£§2n 1](- ,x)>, (120)
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and equivalently ¢ ® 1 can be taken instead of 1 ® ¢ in the above definition. With this
definition, the general Boltzmann equation can be rewritten as in the mean-field case:

d
Vo€ F, lfid) = (fu Lig) (121)
we recall the notation:
Vv e P(E)’ R¢1®902<’/) = <V®27 901 ® 902>7

for the polynomial function on P(FE) associated to ¢ = ! ® p? € F®2. We will need the
following quadratic estimate:

Lemma 4.5 (Quadratic estimate for Boltzmann collisions). The quadratic estimates reads

cN[R‘Pl(X)SOQ © 'U'N] (XN) - RLMXN Plep? (IUXN) + R¢1®Lux1\1 ©? ('uXN)
1

1
+ NRL@H[@I@@?] (i) + N<’MXN’ FL”xN (" ('02)>‘

Proof. See Lemma in the appendix. O

Compared to the mean-field case |(88) a correcting crossed-term appears for Boltz-
mann collisions, but this term can be handled in the same way by Assumption [3| One
can eventually state the propagation of chaos theorem.

Theorem 4.6 (Functional law of large numbers for Boltzmann models). Let us assume
that Assumptions @ and@ hold true for L, given by . Then the weak Boltzmann
equation 15 wellposed and weak pathwise empirical propagation of chaos towards its
solution holds for the Boltzmann model on every time interval [0,T].

Proof (sketch). The proof is exactly the same as the one in the mean-field case (Theorem
3.10). The mean-field property reads this time

Ladn (xV) = (v @ pne, L0 @ 1]) = (e, Ly 0),

and Ito’s formula can be written the same way to complete Step 1. The control of the
carré du champ is provided by Lemma[4.5above. Step 2 and Step 3 are identical provided
that L, satisfies the boundedness continuity and uniqueness assumptions. O

4.4 SDE and coupling

In this section, we continue the discussion started at the end of Section and we
prove propagation of chaos for a class of Boltzmann parametric models (Definition
using a coupling argument based on a SDE representation of the particle system. The
main theorem of this section is due to Murata [245] in the particular case of the 2D
true Maxwellian molecules (non-cutoff). The technique of the proof has recently been
revisited in [83, 84]. The proof in this section globally follows the same presentation as
in [245] although we sometimes use modernised optimal transport arguments taken from
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[83]. The classical nonlinear SDE representation of the Boltzmann equation originally
due to Tanaka [278] for can be found in the proof. Let us first recall the setting of
Definition we take F' = R? we assume that the collision rate is constant A = A and
that the post-collisional distribution I'® is of the following form: for any ¢, € Cy(E?),

// 302(21,zg)F@)(zl,zQ,dzi,dz;) = / a2 (1 (21, 22, 0), 1221, 22, 0) )v(dF), (122)
ExE ©

with (¢, 2)(21, 22, ) g = (¥2,91)(22, 21, -)xv. We make the following reasonable Lips-
chitz and growth assumptions.

Assumption 11. The interaction functions 11,y satisfy the following properties.

(i) (Lipschitz). There exists a function L € L1(©) such that fori=1,2,

(0, 21, 22,21, 2) € O X B, [9hi(21, 22, 0) — i1, 23, 0)] < L(O)(l21 — 21| + |22 — 23)).

(ii) (Linear growth). There exists a function M € LL(©) such that fori=1,2,

V(0,21,22) €O X E X B, |i(21,29,6)] < M(0)(1 + |z1] + |22]).

Remark 12. One can alternatively assume (it is maybe more classical) that:
V(Zb %25 Zi? Zé) € E47 / |¢i(zla %25 0) - wi(zi, Zéa 6)‘1/((19) < C(‘Zl - ZH + ’ZQ - Zé‘)a
e

for a constant C' > 0 and similarly for the linear growth assumption.

Remark 13. It should be noted that the Lipschitz assumption does not hold true for 3D
Maxwell molecules. However, it holds true for 2D Maxwell molecules which is the original
setting of Murata’s proof.

Under the assumption of linear growth, it follows easily using Gronwall lemma that
the moments of all order are exponentially controlled for the nonlinear process.

Lemma 4.7. For all p > 1, there exist C'(p) > 0 such that for allt > 0,

/E |2[7 fe(dz) < ( /E |z]pf0(dz)) e[l

Without loss of generality (up to redefining a process with fictitious collisions), we also
assume that the interaction rate is a constant A and for all € ©, 2 € R%, ¢;(z, 2,0) = 2.
A system of stochastic differential equations corresponding to the particle system is given
by:

t
Zi—zi+ Z/ / / a(Z1-, 70 .0,0)Ny(ds, 9, do). (123)
)0 Je Jjoy
where
a(z1, 22,0,0) = (1 — 0)1(21, 22,0) + 0a(22, 21,0) — 21.

98



For all 4, j, \V;; is a Poisson random measure on Ry x © x {0, 1} with intensity £dtv(d6)do,
where do is the uniform measure on {0,1}. We also assume that for all 7, j, the Poisson
measure satisfy:

where for a Poisson measure A" on Ry x © x {0,1} with intensity £dtv(df)do, we write
N(2) =N (%),

where given a measurable set Z C R, x O x {0, 1},
B ={(t,0,0)](t,0,1 —0c) c B}

Classical results and classical references on this type of SDEs can be found in Appendix
[-A.7 The main result of this section is the following coupling estimate.

Theorem 4.8. Let T > 0. Let fo € Pi(E) and (Z})1<i<y be N independent initial
random variables with common law fy. Let us assume that Ly is of the form with T2
given by |(122) and X\ being a constant A, together with Assumption . Then there exist

e a N-particle system ZN with law fV,

e N nonlinear processes ZN which are independent and identically distributed with
common law f; solution of the Boltzmann equation

which satisfy the following property: there exists a constant C(T) > 0 depending only on
T and the constants in Assumption (11| such that for any constant n < (2d + 1)~* and for
all 1 <3 < N 4t holds that

N 1 i
sup E\Z; — Z}| <C(N) | —+ = ).
0T 12— 2] < ()<N’7 N>

Remark 14. Note that the particles defined by the processes (Z}), and (giv ), are jointly
constructed and numbered so that the coupling bound holds true for the ¢-th particle

for any fixed 7. Although the bound depends on the particle numbering, it does not

contradict the exchangeability: the random variables (Z},..., Z)) are exchangeable and

(7:, . ,Z{V) are i.i.d. but it does not imply that the random variables (Z} —Z}, o ZN—

Z{V ) are exchangeable (and indeed they are not). Nevertheless, the coupling bound still
provides propagation of chaos for any block of size k (and even for k = k(N) — 400 with

N provided that k& = o(NN)). Namely, for any fixed 1 < k < N, Theorem provides a
coupling bound for the k first particles (which are ftk’N—distributed) which implies that

kN rRk 1 k
s W g <o) (5 )
As usual the case k = 2 is sufficient. This coupling method requires more subtle arguments
than the analog for McKean-Vlasov processes (Theorem where the starting point can
be any particle system with N arbitrary independent Brownian motions. In the present
case, in order to prove the desired coupling bound, the analogous Poisson random measures
are constructed in the proof and define a specific particle numbering.
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Proof. Following Murata’s work, the proof is split into several steps. The first step is
devoted to the construction of the particle system. In the second step, the particle system
is coupled with a system of independent nonlinear SDEs a la Tanaka. The third step
introduces an intermediate system of non independent processes which is used as a pivot
between the particle system and the nonlinear system. In the fourth and fifth steps we
use the coupling to derive explicit error estimates and we conclude the proof.

Step 1. Construction of a particle system.

Following Murata’s work, let us define N? independent Poisson random measures N’ ijs
indexed by 1 <i,7 < N, on Ry x © x {0,1} x (0, %] with intensity Adtv(d)doda. We
consider the following filtration:

T = O'(Zé, Nij(%), 1 <i,j <N, 2 measurable subset).

N PN it is
YOl Ny it >

We define:

so that Nj; = Nj;. We write

'/\/;j(ds7d§7do-) = / /\/;jj(dS,de,dU, dO[),
(0,1/N]

so that Aj(ds,df) is a random Poisson measure on Ry x © with intensity 2dtv(df).
With this choice of Poisson measures, let (Z}), be the .Z;-adapted particle system given
by Equation |(123)l We can write:

— 7+ ///01}/ a(Zi-, 2" ,6,0)Ni(ds, 6, do, da), (124)

where for each w € Q, ¢t € [0,7] and « € [0, 1], we define

N
ZM(w,a) == Z

and for Z a measurable subset of R, x © x {0,1} x [0, 1], we define the Poisson random

measure: N
B):=> N;(B
j=1

Z} (w),

é\u

where
B, = {(t,G,a,a) € Ry x O x {0,1} x (0,1/N] | (t,0, 0,0+ (j — 1)/N) € gg}.

The key observation is the following: for each w € Q, Z!'(w,«) is a FE-valued process
constructed on the probability space ([0, 1], da) such that the a-law of Z!'(w) is fiz~ (d2).
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In the following, we call a-random variable a random variable constructed on ([0, 1], d«),
its law is called the a-law and we denote by E, the expectation on this space.

Step 2. Construction of a nonlinear system and coupling.

First let us define the random Poisson measures on R, x © x {0,1} x [0, 1]:
N
Ni(B) =) Niy(%)).
=1

They are independent. In [278], Tanaka introduced the following stochastic version of the
Boltzmann equation:

t 1
7§:Zg+/ // /a(?i,}Q—,H,U)Ni(ds,dg,dmda), (125)
0o Joe J{o1} Jo

where for each t and w, Y(w, @) is a E-valued a-random variable with a-law Law(Z?). It
can be checked that the Z? are independent and identically distributed with common law
f+ the solution of the Boltzmann equation. Note that as in the McKean-vlasov case, this
defines a class of processes given by a SDE which depends on the own law of the process.

Note that the above nonlinear processes are already coupled with the particle system
through the Poisson random measures and the initial condition. We go one step
further by choosing an appropriate process Y which couples optimally the solution of
the Boltzmann equation and the emprirical measure of the particle system. We take the
process Y given by the following key lemma.

Lemma 4.9 (Optimal empirical coupling). There exists a process Y = Yy(w, ) such that
(i) (Vi) is F-predictable
(i1) For each t and w, the a-law of Yy(w) is fi-.

(i1i) For each t and w,
Eo[| 2t (w) = Ye(w)[] = Wi(pzy, f2)-

Proof. Using [303], Corollary 5.22], we know that there exists a measurable mapping
Ry xQ = P(EXE), (t,w) — T,

such that m,, is an optimal transter plan between pzv and f;. Let us define for j €
{1,...,N} and # a measurable subset of E,

m(B x {2}})
(B X {Z]})

Glo(B) = = mw (2 x {Z]}|E x {Z]}).

Using a randomization lemma there exists an a-random variable g{vw(&) on the probability
space ([0, +], Nda) such that the a-distribution of g7 , is equal to G} . Then, let us define

for a € [0, 1],
N } i—1
Y;‘/(w7 CY) = Z ]113‘ (a)gt,w Q= T 5
j=1
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where I; = [(j — 1)/N, j/N]. Then one can check that
Po({Yi(a) € By N {Z{(a) = Z]}) = mu(2 x {Z]}),
which concludes the proof. O]

The third property (optimal coupling) and the above proof are exactly the content
of [83, Lemma 3|. Murata was obviously not aware of the optimal transport results that
we used but he managed to prove the existence of a coupling which is optimal up to an
arbitrary € > 0 which is enough for the rest of the argument.

Note that with this choice of Y, it is not clear anymore whether the nonlinear processes
remain independent. Fortunately they are, as stated in the following lemma.

Lemma 4.10. The processes (ZY), satisfy the following properties.
1. They are well defined F;-adpated processes

2. They are identically distributed and their law is a weak measure solution of the

Boltzmann equation |(10),.

3. They are independent.

Proof (sketch). The first two properties follow from Tanaka’s construction [278] which are
summarised in Murata’s article [245, Theorem 4.1 and Theorem 4.2]. The independence
is proved in [245, Lemma 6.4] (see also the proof of [83, Lemma 6]). The idea is to prove
(using elementary martingale properties) the independence of the measures defined by

N’?(%) 3:/ 14(s,0,0,Y(w,a))N;(ds,dd, do, da)
R4 x©x{0,1}x]0,1]

for any measurable subset Z C Ry x © x 0 x E. O

Step 3. An intermediate process.

At this point, we have defined N couples of processes (Z°, Z%) with the correct laws
and the nonlinear processes are independent. We are exactly in the good position to prove
the theorem. To carry out the proof let us notice that there are actually two couplings. In
addition to the optimal coupling defined by Lemma [4.9] there is also a coupling between
the jump times and between the jump random variables given by the Poisson measures N;
and N; which are not independent. As in Murata’s proof, we separate these two sources
of discrepancy by writing:

E|Z; — Zi| <E|Z} - Z}| + E|Zi - Z}], (126)

where the process Z’ is defined by:

t 1
7l =7} —1—/ / / / a(Z:-,Ys-,0,0)N;(ds,df, do, da).
o Je Jy13 Jo
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Note that the processes 7 are exchangeable but not independent. In [83], Cortez and
Fontbona consider only (an analog of) these processes and introduce later the nonlinear
processes. Nevertheless, these intermediate processes propagate chaos: this follows from
the following coupling bounded which holds true for the k first processes Z*, ..., Z* with
any fixed k. This result can be found in both works, [83] Lemma 6] and [245, Lemma
6.5].

Lemma 4.11. There exists a constant C(T') > 0 depending only on T and the constants
in Assumption[11] such that for all i < N,

sup E|Zi — Zi| < CO(T)~. (127)
0<t<T N

Proof. Let i < N. Using the definition of the Poisson random measures N; and N;, we
write:

’Zz z

/// / 7' Y ,0,0) —a(Z_,Y,-,0,0)|Ni(ds, d0, do, da)
{0,1}
/// / (wa—l—j_1),9,0)}Nij(ds,d9,da,da)
(0,1} N

+;/0 /@/01}/ Y- (w, a+]Tl)ﬁ,l—0)‘Nji(ds,d9,d0,da)

Using the assumptions on the functions v; and 1, and since ¢ < k, it leads after taking
the expectation to:

t . t
E[Z: - 7] gcl/ E[72—2§|ds+cz%/ E[|Zi] +|Zi]|ds
0

+203Z/ /(] 1)/N Ys(w, a)]da] ds

With the notations of the proof of Lemma 4.9, one can see that

J/IN
/ |Ys(w, @) |da
(

i—1)/N

E

zﬂﬂgwmamX{zﬂEx{ﬂb.

By exchangeability, we see that this expression is independent of 7 and since the a-law of
Yi(w) is fs for any (s,w), this expression is thus equal to

J/N 1
Ammmw@w4—ﬁémmw.

The conclusion thus follows from Gronwall lemma and Lemma (4.7 O]

E
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Step 4. Coupling bound.

Let us now focus on the estimate of the first term on the right-hand side of |(126)] We
write for any ¢ < N,

aeais [ [ ], [ ez oo

- a(Zﬁ;,, Yi(w,a),6,0) }/\/i(ds, df,do, da)

<[] [oarronz -z

+ L(0)| 2" (w, @) — Ya(w, a)\}/\@(ds, d6, do, dav).
Taking the expectation gives a constant M > 0 such that
t 1
E|Z] — Z]| < M/ E [|Z; ~Zi| +/ 17" (w, ) —Ys(w,oz)‘doz} ds
ot | B 0
< [E[|2 - 2|+ Wiz )]s
0

t ~. . ~.
< M/ B[|Zi 7|+ Y12~ 2|+ Wiluzy. 1)) s
0

J

where the second inequality is actually an equality and comes from the optimal coupling
property (Lemma and the third inequality follows from the triangle inequality and:

1M
Wl(NzNyﬁng Sy Z |z -7,

By classical arguments, we first sum this relation over ¢ and then divide by N to obtain
that the process S; := + >, E|Z; — Z{| satisfies:

t t
S, < M/ EW; (ugN,fs)ds + ZM/ Sds,
0 s 0

thus by Gronwall lemma and by exchangeability we get:

T
supE|Z; — Z’| =supE[S] < (M/ EW; (/@N,fs)ds) e?MT (128)
o :

t<T t<T

Step 5. Conclusion.

It remains to estimate the quantity
EW, (,Uéé\f? fs) .
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To do so, Murata proved a “decorrelation lemma” [245, Lemma 6.6] to directly estimate
quantities of the form

E[o(Z)e(Z)) = (o 127,

but as noted by [83], we can skip these computations using a recent result on exchange-
able systems (see [I84, Theorem 1.2] and Theorem [I-3.21)) which implies the equivalence
between the different notions of chaos in Wasserstein-1 distance. Namely it holds that,

o o~ 1\”

EWl(ﬂgNafs) § C (Wl(LaW(ZslaZg)>f§2) +N) ) (129)
for all v < (2d+1)~! where the constant C' depends on the moment of order 1. The right-
hand side is controlled by Lemma [4.11] (and the control of the moments). The conclusion
thus follows by gathering |[(129)], [(128)} |(127)| and |(126)|

]

We end this section with some additional remarks on the theorem and its proof and a
few more bibliographical comments.

1. The same proof works in the case of a non constant but bounded interaction rate,
with some Lipschitz conditions. In such case we do as usual and allow fictitious
collisions. The probability of a fictitious collision can be added in the Poisson
random measure.

2. Keeping a constant interaction rate, we have never used the fact that v(df) is a
probability measure. The only thing that we need is that the Lipschitz and growth
functions L(#) and M () are integrable. This theoretically allows us to consider
the case of non-cutoff particles when [, v(df) = +oo. This was one of the original
motivations of [245] which treats the case of non-cutoff 2D Maxwell molecules.

3. One of the advantages of such a coupling technique is that it gives an explicit
convergence rate. In our example we use crude Lipschitz and growth estimates which
classically lead to a bad behaviour with time. Just as in the McKean-Vlasov case,
uniform in time estimates can be obtained for specific models. An example can be
found in [83]. The authors study a “generalised” Kac model with linear interactions
and various conservation laws (which in particular imply uniform in time control of
the moments of the nonlinear law). The same method (together with an additional
coupling argument) leads to quantitative uniform in time propagation of chaos for
3D Maxwell molecules (with an optimal rate) in [84]. This latter work crucially
relies on a previous work by Rousset [266] dealing with the uniform (in N) trend to
equilibrium of the particle system, using coupling methods as in this subsection.

4. Similar techniques and in particular an “optimal coupling” argument are also used
in [155, B08] for a Nanbu system, so without binary collisions. This work illustrates
the power of coupling techniques as it treats a much more difficult case than the
one treated in this section. The authors managed to treat the case of hard-sphere
particles (unbounded cross section) but also hard-potential particles (unbounded
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cross section and non integrable interaction law). For similar results in the case of
binary collisions, see the recent article [I87].

5. Finally, we also point out that the idea of working with an optimal coupling between
the empirical measure of a particle system and its limit law also appears in an
earlier work [I42] by one of the authors of [83, 84]. In [142], the authors propose
a derivation of the Landau equation from a system of interacting diffusions. The
stochastic interpretation of the Landau equation is given by a nonlinear SDE (in the
sense of McKean) driven by a space-time white noise (instead of a classical Brownian
motion in the usual McKean-Vlasov case). The associated particle system is actually
better understood as a system of SDEs driven by martingale measures as described
in [235]. This setting goes beyond this review and we refer the interested reader
to the aforementioned articles for more details. In a sense, with modern eyes,
Murata’s work [245] may look incomplete, essentially because it does not (could
not) benefit from the recent development of optimal transport. It should be noted
however that the idea of optimal coupling appeared, apparently independently, in
two different contexts and several decades apart, in [245] and [142], respectively for
the derivation of the Boltzmann equation in the 70’s and for the derivation of the
Landau equation about 12 years ago. While coupling methods are nowadays a very
important subject in the literature on particle systems, the pioneering (and maybe,
in a sense, incomplete) work of Murata seems to have been largely forgotten.

4.5 Some pointwise and uniform in time results in unbounded
cases via the empirical process

In this section we gather some of the results obtained in [240] in two classical unbounded
cases: the true Maxwell molecules (i.e. without cutoff) and the hard-sphere molecules,
both in the spatially homogeneous setting (see Section and Example [[-12)). These
results are obtained via the abstract method developed in [239, 240] following the seminal
(incomplete) work of [I72]. The general method is described in Section [[-4.3)and Theorem
[-4.5 It reduces the problem to the careful check of five assumptions which are stated in
a simple form in Assumption but which are extended and stated in a more complex
form in [239, Section 3.1] in order to treat unbounded cases and the uniform in time
propagation of chaos.

Theorem 4.12 ([240]). Let fo € P2(R?) be compactly supported with zero momentum
and finite energy:

| entan =0, &= [ ukp)

and let f; be the solution at time t > 0 of the spatially homogeneous version of the
Boltzmann equation with initial condition fo and collision kernel B(u,o) given by
(18). For N > 1, the Kac sphere (or Boltzmann sphere) is defined by:

N N
1 . .
N N N d\N 2 i
S(E).—{V EGR)’NE [v']* =€, ;lv—()}.

i=1
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Fiz T € (0,400]. Assume that the initial N-particle distribution fY is either tensorized
Y = &N oris fo-chaotic and constrained on the Kac sphere S¥(E) (see [239, Lemma

4.4 and 4.7]).

e (Mazwell molecules). Let B be of the form or|(21) Then there exist a
subset F C Cy(RY) and come constants C(T) > 0 and x(d) > 0, which depend
respectively only on T and d, such that for any ¢, € F<*, 2k < N, it holds that

C(T)k?
sup SN = P o) < %kum.

Moreover when T = 400 then k(d) is given by [1458, Theorem 1] or [239, Lemma
4.2 . In the cutoff case for any T' < +o00, the result holds with the optimal

rate k(d) = 3.

e (Hard-spheres). Let B be of the form |(19) Then when T < +oo, there exist
a subset F C Cy(R?) and some constants C(T) > 0 and o > 0 such that for any
©p € FO% 2k < N, it holds that

C(T)i?
kN ek <
up [ = S| < o e I+l

Moreover if fqo is instead assumed to be bounded and to have a bounded exponential
moment and if f& is fo-chaotic and constrained on the Kac sphere SN (), then so
is the N-particle distribution f for all t > 0 and the previous estimate holds with
T = +o0.

The results of this theorem also imply the propagation of finite and infinite dimensional
Wasserstein-1 chaos as defined in Definition (see [239, Theorems 5.2 and 6.2]). The
authors also prove the propagation of entropic chaos (Definition for the cutoff
Maxwell molecules and the hard-spheres together with the relaxation towards equilibrium
with a rate independent of N (see [239, Theorem 7.1]). These results positively answer
many of the conjectures raised by Kac in his seminal article [204] (also known as the Kac’s
program in kinetic theory [239, Section 1.4]). In particular, it provides a “satisfactory
Justification of Boltzmann H-theorem” for unbounded models (which, with a modernised
terminology, corresponds to the notion of entropic chaos in the sense of Definition .

In the hard-sphere case, the results have recently been improved in a pathwise setting
in [I86]. The improvement is due to a better Holder stability result [I86, Theorem 1.6] for
the nonlinear Boltzmann flow which improves the control of the third term on the right-
hand side of and leads to a polynomial convergence rate (instead of logarithmic).

4.6 Lanford’s theorem for the deterministic hard-sphere system
4.6.1 The hard-sphere system

This section is the only one which concerns a completely deterministic system called
the hard-sphere system. A hard-sphere is a spherical particle defined by its position
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X7, its velocity V; and its diameter ¢ > 0. The hard-spheres are simply subject to the
free-transport but it is assumed that two hard-spheres cannot overlap. A system of N
hard-spheres is thus defined by the deterministic Newton equations for i € {1,..., N},

axi . 4w
— it 1
dt b de 0, (130)
on the domain:
Dy = {z" = (2", 0")ieqr,..ny € RI X RYY, Vi #£ j, [2° — 27| > £}, (131)

On the boundary of Dy, that is when two particles are at a distance e, the collision of
two hard-spheres is an elastic collision which preserves energy and momentum. Starting
with a pair of pre-collisional velocities (v*,v7), writing down the conservation laws leads
to the following formula for the post-collisional velocities:

v =t — i (yf — )y
(132)

VI =l ph (o — pd )T

where v ;= (2 — 29)/|2* — 27| € S¥71. This formula is not the same as but it can
be shown that they are actually equivalent [301, Chapter 1, Section 4.6], with a suitable
choice of 0. Pre-collisional means that (v, v7) are such that (v' —v?)-v"7 < 0. It can also
be checked that the post-collisional velocities satisfy (v™* — v7*) - %7 > 0. Note that this
transformation is an involution in the sense that if (v' — v7) - v* > (0 (that is the v and
v/ are in a post-collisional configuration), then gives the pre-collisional velocities.

For the hard-sphere system, the Liouville equation reduces to a simple transport
equation

N
OfN +D vV fN =0,
=1

on the domain |(131), The goal is to prove the propagation of chaos when N — +o0
and € = ey — 0 with a suitable scaling. The limit distribution f; = f;(z,v) satisfies the
Boltzmann equation with hard-sphere cross section, which reads in strong form:

Ofe +c - Vaufi = /Sd 1 Rd(y (0 =) (felm,v") filz,v") = fi(z,v) fi(x,v'))dvdd’, (133)
X
where the * notation denotes the post-collisional velocities for the couple (v',v).
We chose to include the hard-sphere system in this review because of its historical
importance. This is also at the same time one of the simplest physical model and one
of the most difficult to analyse and less well understood. Rigorous analytical results are
available only for short times, way too short to be physically relevant. In fact, the well-
posedness of the Boltzmann equation is itself a long-standing problem of interest.
The first formal derivation of the Boltzmann equation from a system of interacting
part