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Abstract

The notion of propagation of chaos for large systems of interacting particles
originates in statistical physics and has recently become a central notion in many
areas of applied mathematics. The present review describes old and new methods
as well as several important results in the field. The models considered include the
McKean-Vlasov diffusion, the mean-field jump models and the Boltzmann models.
The first part of this review is an introduction to modelling aspects of stochastic
particle systems and to the notion of propagation of chaos. The second part presents
concrete applications and a more detailed study of some of the important models
in the field.
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1 Introduction

When Boltzmann published his most famous article [24] one century and a half ago, the
study of large systems of interacting particles was entirely motivated by the microscopic
modelling of thermodynamic systems. Although it was far from being an accepted idea
at that time, Boltzmann postulated that since a macroscopic volume of gas contains a
myriad of elementary particles, it is both hopeless and needless to keep track of each
particle and one should rather seek a statistical description. He thus derived the equation
that now bears his name and which gives the time evolution of the continuum proba-
bility distribution (in the phase space) of a typical particle. With the H-theorem, he
also extended and justified the pioneering works of Maxwell and Clausius for equilibrium
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thermodynamic systems, paving the way alongside Gibbs for a consistent kinetic theory
of gases. The Boltzmann equation is derived from first principles under a crucial assump-
tion, called molecular chaos. This assumption was already known from Maxwell and is
often called the Stosszahlansatz since Ehrenfest. Informally, it translates the idea that,
despite the multitude of interactions, two particles taken at random should be statisti-
cally independent when the total number of particles grows to infinity. It is not so clear
how the appearance of probability theory should be interpreted in this context. In the
following years, the Stosszahlansatz and its consequences (the H-theorem) were the object
of a fierce debate among physicists as they seem to break the microscopic reversibility.
Beyond the scientific debate, it has raised metaphysical and philosophical questions about
the profound nature of time and randomness.

The rigorous justification of the work of Boltzmann and the status of molecular chaos
became true mathematical questions when Hilbert addressed them in his Sixth Problem
at the Paris International Congress of Mathematicians in 1900. Quoting Hilbert, the
problem which motivates the present work is to “[develop] mathematically the limiting
processes [. . . ] which lead from the atomistic view to the laws of motion of continua”.
Our starting point will be the seminal article of Kac [103]. More than half a century
after Hilbert, Kac gave the first rigorous mathematical definition of chaos and introduced
the idea that for time-evolving systems, chaos should be propagated in time, a property
therefore called the propagation of chaos. Kac was still motivated by the mathematical
justification of the classical collisional kinetic theory of Boltzmann for which he developed
a simplified probabilistic model. Soon after Kac, Mckean [122] introduced a class of
diffusion models which were not originally part of Boltzmann theory but which satisfy
Kac’s propagation of chaos property. In the classical kinetic theory of Boltzmann, the
problem is the derivation of continuum models starting from deterministic, Newtonian,
systems of particles. In comparison, the fundamental contribution of Kac and McKean is
to have shown that the classical equations of kinetic theory also have a natural stochastic
interpretation. This philosophical shift is addressed in the enlightening introduction of
Kac [104] written for the centenary of the Boltzmann equation.

Kac and McKean introduced a new mathematical formalism, gave many insights on
the stochastic modelling in kinetic theory and proved the two building block theorems
(Theorem II-3.1 and Theorem II-4.1). Their works have stimulated the development of
a rich and still active mathematical kinetic theory. Keeping strong connections with the
original theory of Boltzmann, some fundamental questions raised several decades ago have
been answered only recently (see for instance [17, 82, 127]). On the other hand, systems
of interacting particles are ubiquitous in many applications now and over the last two
decades, the tools and concepts developed in kinetic theory have somehow escaped the
realm of pure statistical physics. This review paper is motivated by the growing number
of models in applied mathematics where the notion of chaos plays a central role. Some
recent new domains of applications include the following ones. In mathematical biology
and social sciences, self-organization models describe systems of indistinguishable particles
(birds, insects, bacteria, crowds. . . ) with a behaviour which can hardly be predicted at the
microscopic scale but which are (sometimes) well explained by continuum models derived
within the framework of mathematical kinetic theory [8, 9, 131, 129, 59, 2, 153]. In
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another context, the recent theory of mean-field games studies the asymptotic properties
of games with a large numbers of players [30, 29, 36, 37]. Even more recently, systems of
particles have been used to model complex phenomena in data sciences, with applications
in Markov Chain Monte Carlo theory [63, 64, 65], in optimization [136, 151, 89, 39], or
for the training of neural networks [123, 139, 143, 47, 56]. Compared to the models in
statistical physics, many aspects should be reconsidered. To cite a few examples: the
basic conservation laws (of momentum, energy. . . ) do not always hold for biological
systems and may be replaced by other types of constraints (optimization constraints,
geometrical constraints. . . ); the intrinsic randomness (or uncertainty) of the models in
applied sciences is often a crucial modelling assumption; the complexity of the interaction
mechanisms entails new analytical tools etc. These differences have motivated many new
techniques, new insights on the question of propagation of chaos and in the end, new
results.

This review article on propagation of chaos is not the first one on the subject. The
course of Sznitman at Saint-Flour [147] studies many of the most important historical
probabilistic models. The probabilistic methods are explained in details in the book
[148] (in particular the courses of Méléard [124] and Pulvirenti [137]). More recently,
the review of Jabin and Wang [97] focuses on McKean mean-field systems and PDE
applications. By its nature, the notion of chaos lies in the interplay between probability
theory and Partial Differential Equations. The present review discusses both analytic and
probabilistic methods and includes many (very) recent results. We also refer to the article
by Hauray and Mischler [93] which is to our knowledge, the most complete reference on
Kac’s chaos (without propagation of chaos). For deterministic systems which will not be
considered here, we refer to the very thorough reviews [96, 84].

Outline.

The article is organised as follows.
Section 2 introduces the setting and the conventions that will be used throughout the

article. A gallery of the models which will be studied is presented; we will distinguish
McKean’s mean-field jump and diffusion models (Section 2.2) and Boltzmann-Kac models
(Section 2.3).

Section 3 is devoted to the description of the fundamental tools and concepts needed
in the study of exchangeable particle systems. The central notions of chaos (Section 3.3)
and propagation of chaos (Section 3.4) are defined in this section.

Section 4 is a review of the methods used to prove propagation of chaos. Several
probabilistic and analytical techniques are described as well as abstract theorems which
will be applied to specific models in the second part of this review.

Finally, for the reader’s convenience, we collect in Appendix A useful notions and re-
sults in Probability theory regarding stochastic processes in the Skorokhod space, Markov
processes, martingale methods, large deviations, the Girsanov transform and the theory
of Poisson random measures. Some corollaries of the quantitative Hewitt-Savage theorem
are gathered in Appendix B.

The second part of this review will be devoted on the one hand to the classical models
introduced by Kac and McKean and their recent developments and on the other hand to
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a gallery of recent applications in applied mathematics and beyond. Throughout this first
part, references to the second part are indicated by “II-” (for instance Section II-2 refers
to the second section of the second part).

Notations and conventions

Sets

C(I, E) The set of continuous functions from a time interval I = [0, T ] to a
set E, endowed with the uniform topology.

Cb(E), Ck
b (E) Respectively the set of real-valued bounded continuous functions and

the set of functions with k ≥ 1 bounded continuous derivatives on a
set E.

Cc(E) The set of real-valued continuous functions with compact support on
a locally compact space E.

C0(E) The set of real-valued continuous functions vanishing at infinity on
a locally compact space E, i.e. ϕ ∈ C0(E) when for all ε > 0, there
exists a compact set Kε ⊂ E such that |ϕ(x)| < ε for all x ∈ E outside
Kε.

D(I, E) The space of functions which are right continuous and have left limit
everywhere from a time interval I = [0, T ] to a set E, endowed with
the Skorokhod J1 topology. This is the space of the so-called càdlàg
functions. This space is also called the Skorokhod space or the path
space.

Lp(E) or Lpµ(E) The set of measurable functions ϕ defined almost everywhere on a
measured space (E, µ) such that the |ϕ|p is integrable for p ≥ 1. When
p = +∞, this is the set of functions with a bounded essential supre-
mum. We do not specify the dependency in µ when no confusion is
possible.

Md(R) The set of d-dimensional square real matrices.
M(E) The set of signed measures on a measurable space E.
M+(E) The set of positive measures on a measurable space E.
P(E) The set of probability measures on a space E.
Pp(E) The set of probability measures with bounded moment of order p ≥ 1

on a space E.

P̂N(E) The set of empirical measures of size N over a set E, that is measures
of the form µ = 1

N

∑N
i=1 δxi , where xi ∈ E.

R+ The set [0,+∞).
SN The permutation group of the set {1, . . . , N}.
Sd−1 The sphere of dimension d− 1.
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Generic elements and operations

C A generic nonnegative constant, the value of which may
change from line to line.

C(a1, . . . an) A generic nonnegative constant which depends on some fixed
parameters denoted by a1, . . . , an. Its value may change from
line to line.

diag(x) The d-dimensional diagonal matrix whose diagonal coeffi-
cients x1, . . . , xd are the components of the d-dimensional
vector x.

∇ · V The divergence of a vector field V : Rd → Rd or of a matrix
field V : Rd → Md(R), respectively defined by ∇ · V =∑d

i=1 ∂xiVi or componentwise by (∇ · V )i =
∑d

j=1 ∂xjVij.

A : B and ‖A‖ The Frobenius inner product of two matrices A,B ∈Md(R)
defined by A : B :=

∑d
i=1

∑d
j=1AijBij and the associated

norm ‖A‖ :=
√
A : A.

∇2V The Hessian matrix of a scalar field V : Rd → R defined
componentwise by (∇2V )ij = ∂2

xi,xj
V .

Id The d-dimensional identity matrix.
Id The identity operator on a vector space.
〈x, y〉 or x · y The Euclidean inner product of two vectors x, y ∈ Rd defined

by 〈x, y〉 ≡ x ·y :=
∑d

i=1 x
iyi. One notation or the other may

be preferred for typographical reasons in certain cases.
Mij The (i, j) (respectively row and column indexes) component

of a matrix M .
P(u) The projection matrix P(u) := Id− u⊗u

|u|2 on the plane orthog-

onal to a vector u ∈ Rd.
ϕ ∈ Cb(E) A generic test function on E.
ϕN ∈ Cb(EN) A generic test function on the product space EN .
Φ ∈ Cb(P(E)) A generic test function on the set of probability measures on

E.
u⊗ v, µ⊗ ν or ϕ⊗ ψ Respectively, the matrix tensor product of two vectors u, v ∈

Rd defined componentwise by (u ⊗ v)ij = uivj; the product
measure on E×F of two measures µ, ν respectively on E and
F ; the product function on E×F defined by (ϕ⊗ψ)(x, y) =
ϕ(x)ψ(y) for two real-valued function ϕ, ψ respectively on E
and F .

TrM The trace of the matrix M .
MT The transpose of the matrix M .
xN = (x1, . . . , xN) A generic element of a product space EN . The components

are indexed with a superscript.
xM,N = (x1, . . . , xM) The M -dimensional vector in EM constructed by taking the

M first components of xN .
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x = (x1, . . . , xd)
T and |x| A generic element of a d-dimensional space and its norm.

The coordinates are indexed with a subscript. The norm of
x denoted by |x| is the Euclidean norm.

Probability and measures

K ? µ The convolution of a function K : E × F → G with a measure µ on
F defined as the function K ? µ : x ∈ E 7→

∫
F
K(x, y)µ(dy) ∈ G.

When E = F = G = Rd and K : Rd → Rd, we write K ? µ(x) =∫
Rd K(x− y)µ(dy).

δx The Dirac measure at the point x.

µxN The empirical measure defined by µxN = 1
N

∑N
i=1 δxi where xN =

(x1, . . . , xN).
Eµ[ϕ] Alternative expression for 〈µ, ϕ〉 when µ is a probability measure.

When µ = P on (Ω,F , (Ft)t,P), the expectation is simply denoted
by E.

H(ν|µ) The relative entropy (or Kullback-Leibler divergence) between two
measures µ, ν, see Defintion 3.10.

〈µ, ϕ〉 The integral of a measurable function ϕ with respect to a measure µ.
Law(X) The law of a random variable X as an element of P(E) where X takes

its value in the space E.
(Ω,F , (Ft)t,P) A filtered probability space. Unless otherwise stated, all the random

variables are defined on this set. The expectation is denoted by E.
σ(X1, X2, . . .) The σ-algebra generated by the random variables X1, X2, . . ..
T#µ The pushforward of the measure µ on a set E by the measurable map

T : E → F . This is a measure on the set F defined by T#µ(A ) =
µ(T−1(A )) for any measurable set A of F .

‖ · ‖TV The Total Variation (TV) norm for measures.
Wp The Wasserstein-p distance between probability measures (see Defini-

tion 3.1).
X ∼ µ It means that the law of the random variable X is µ.
(Xt)t or (Zt)t The canonical process on the path space D(I, E) defined by Xt(ω) =

ω(t).
(XN

t )t or (ZN
t )t The canonical process on the product spaceD(I, E)N with components

XN
t = (X1

t , . . . ,X
N
t ).

Systems of particles and operators

E The state space of the particles, assumed to be at least a Polish space.
fNt The N -particle distribution in P(EN) at time t ≥ 0.

fk,Nt The k-th marginal of fNt .
fNI The N -particle distribution on the the path space in P(D(I, EN)) or

P(C(I, EN)) for a time interval I = [0, T ]. We identify D(I, EN) ' D(I, E)N .
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ft The limit law in P(E) at time t ≥ 0.
fI The limit law on the path space in P(D(I, E)) or P(C(I, E)).
FN
t The law of the empirical process in P(P(E)) at time t ≥ 0.

F µ,N
I The weak pathwise law of the empirical process in P(D(I,P(E))) on the time

interval I = [0, T ].
FN
I The strong pathwise law of the empirical process in P(P(D(I, E))) on the time

interval I = [0, T ].
LN The N -particle generator acting on (a subset of) Cb(E

N).
LN The N -particle generator acting on P(EN) defined as the formal adjoint of

LN .
L �i ϕN The action of an operator L on (a subset of) Cb(E) against the i-th variable

of a function ϕN in Cb(E
N), defined as the function in (a subset of) Cb(E

N)
L �i ϕN : (x1, . . . , xN) 7→ L[x 7→ ϕN(x1, . . . , xi−1, x, xi+1, . . . , xN)](xi). The
definition readily extends to the case of an operator L(2) acting on Cb(E

2) and
two indexes i < j in which case we write L(2) �ij ϕN .

(XN
t )t The N -particle process, with components XN

t = (X1,N
t , . . . , XN,N

t ) ∈ EN .
Often we write X i,N

t ≡ X i
t and (XN

t )t ≡ XN
[0,T ].

(ZNt )t An alternative notation for the N -particle process with ZNt =
(Z1,N

t , . . . , ZN,N
t ). Often used for Boltzmann particle systems or kinetic sys-

tems.

2 Models and properties

2.1 Particle systems, setting and conventions

The starting point of this review is a system of N particles

XN
I ≡ (XN

t )t∈I ≡ (X1,N
t , . . . , XN,N

t )t∈I ,

where each particle (X i,N
t )t∈I is a stochastic process with values in the state space E which

is at least Polish (i.e. separable and completely metrizable) and defined on a time interval
I = [0, T ] with T ∈ (0,+∞]. When no confusion is possible, we drop the N superscript
and only write X i

t ≡ X i,N
t for the i-th particle. The N -particles are not independent; they

are said to interact.
Throughout this review, (XN

t )t is a nice stochastic process in EN which satisfies the
strong Markov property and which has càdlàg sample paths (the related topology is the
J1 Skorokhod topology, see definition A.5). Several examples will be given in the next
sections but to fix ideas, the particle system will either be a Feller diffusion process in E =
Rd (or in a Borel subset or in a manifold) or a jump process in a more general state space
which satisfies the Cb-Feller property (i.e. the transition operator is strongly continuous
and maps Cb(E

N) to Cb(E
N)). One may also consider mixed jump-diffusion processes.

The N -particle process will often be given as the solution of a Stochastic Differential
Equation (SDE) but in full generality, it will be described by its generator denoted by LN
acting on Dom(LN) ⊂ Cb(E

N). The generator determines what is called the interaction

9



mechanism. The only but crucial assumption that is made on this interaction mechanism
is the symmetry or exchangeability.

Definition 2.1 (Exchangeability). A family (X i)i∈I of random variables is said to be
exchangeable when the law of (X i)i∈I is invariant under every permutation of a finite
number of indexes i ∈ I.

In a dynamical seting, the pathwise exchangeability is assumed in the sense that ex-
changeability holds for the family of processes (X i,N

I )1≤i≤N , at the level of trajectories.
Taking the time-coordinate (i.e. the push-forward of the family law by the map ω 7→ ω(t)),
this implies the pointwise exchangeability i.e. exchangeability for the position vector
(X 1,N

t , . . . ,XN,N
t ) at any time t ≥ 0. Formally, XN

t can be seen as an element of EN/SN ,
where SN denotes the group of all permutations of {1, . . . , N}, although for simplicity we
will keep using EN as the state space. Such a particle system will be called exchangeable.

The statistical description.

In statistical physics, the previous description in terms of stochastic process is sometimes
called the microscopic scale because the trajectory of each individual particle is recorded.
When N is large, the microscopic scale contains too much information and a statistical
description is sought. There are at least three statistical points of view on the particle
system, detailed below.

1. The easiest one, is simply given by the N -particle distribution fNt ∈ P(EN) at time
t ∈ I. From the general theory of Markov processes (see Appendix A.4), fNt satisfies
the forward Kolmogorov equation written in weak form:

∀ϕN ∈ Dom(LN),
d

dt
〈fNt , ϕN〉 = 〈fNt ,LNϕN〉. (1)

Here and throughout this review, the bracket notation 〈·, ·〉 denotes the integral of
a test function (here ϕN) against a probability measure (here fNt ).

Remark 1. Note that
〈fNt , ϕN〉 = 〈fN0 , uN(t, ·)〉,

where for xN ∈ EN , uN ≡ uN(t,xN) := E
[
ϕN(XN

t )|XN
0 = xN

]
solves the backward

Kolmogorov equation
∂tuN = LNuN .

The equation (1) thus describes the dynamics of an observable of the system.

Equation (1) is also called the master equation in a probabilistic context and is
better known as the Liouville equation in classical (deterministic) kinetic theory. In
this review, we follow this latter terminology and Equation (1) will be called the
(weak) Liouville equation. The forward Kolmogorov equation, or (strong) Liouville
equation, reads

∂fNt = LNfNt ,

10



where LN ≡ L?N is the dual operator of LN . In general, no explicit expression for LN
is available and it is thus easier to focus on the weak point of view. From the weak
Liouville equation, it is possible to compute the time evolution of any observable
of the particle system, that is of any of the averaged quantities 〈fNt , ϕN〉 for a test
function ϕN . The drawback is that fNt ∈ P(EN) belongs to a high dimensional
space (since N is large). However, by the exchangeability assumption, the law fNt
is a symmetric probability measure and it is thus possible to define for any k ∈ N
the k-th marginal fk,Nt ∈ P(Ek) by:

∀ϕk ∈ Cb(Ek), 〈fk,Nt , ϕk〉 := 〈fNt , ϕk ⊗ 1⊗(N−k)〉.

The exchangeability ensures that the term on the right-hand side does not depend on
the indexes of the k variables; for instance, it would be equivalent to take 1⊗(N−k)⊗ϕk
as a test function instead of ϕk ⊗ 1⊗(N−k). Each marginal distribution satisfies a
Liouville equation obtained from (1) by taking ϕk as a test function. This equation
may not be closed in the sense that, depending on LN , the right-hand side may
depend on fNt or on the other marginals.

Remark 2. Note that with a slight abuse we take ϕk in the space Cb(E
k) although

we should say that ϕk belongs to a subset of Cb(E
k) and is such that ϕk ⊗ 1⊗(N−k)

belongs to Dom(LN). We will often keep doing that in the following.

2. From the point of view of stochastic analysis, the particle system XN
I can be seen

as a random element of D(I, EN) ' D(I, E)N so its law is a probability measure on
the path space, denoted by fNI ∈ P(D(I, EN)). This pathwise law is generally given
as the unique solution of the following martingale problem (probability reminders
can be found in Appendix A).

Definition 2.2 (Particle martingale problem). Let T ∈ (0 + ∞]. A pathwise
law fN[0,T ] ∈ P

(
D
(
[0, T ], EN

))
is said to be a solution of the martingale prob-

lem associated to the particle system issued from fN0 ∈ P(EN) whenever for all
ϕN ∈ Dom(LN),

MϕN
t := ϕN

(
XN
t

)
− ϕN

(
XN

0

)
−
∫ t

0

LNϕN
(
XN
s

)
ds, (2)

is a fN[0,T ]-martingale, where (XN
t )t≥0 denotes the canonical process on the Skorokhod

space D
(
[0, T ], EN

)
defined for ω ∈ D

(
[0, T ], EN

)
by XN

t (ω) = ω(t).

Note that the time marginal or pointwise law is given by fNt = (XN
t )#f

N
I . The

weak Liouville equation (1) can be recovered by taking the expectation in (2). This
description is called pathwise and the previous one pointwise.

3. Finally an exchangeable particle system can also be described by its empirical mea-
sure:

µXNt :=
1

N

N∑
i=1

δXi,N
t
∈ P(E). (3)

11



Contrary to fNt , the measure µXNt is a random object : it can be seen as a measure-

valued random variable whose law is the push-forward measure of fNt by the applica-
tion µN : xN ∈ EN 7→ µxN ∈ P(E). Thanks to the exchangeability, the expectation
of the empirical measure gives the first marginal of fNt :

∀ϕ ∈ Cb(E), E〈µXNt , ϕ〉 = 〈f 1,N
t , ϕ〉.

It follows that from the empirical measure, it is possible to reconstruct the law of
any individual particle. As we shall see later, in fact, it characterises the full N -
particle distribution fNt . Its pathwise version is the empirical measure on the path
space:

µXNI :=
1

N

N∑
i=1

δXi
I
∈ P(D(I, E)),

where each particle X i
I is seen as a D(I, E)-valued process.

The mesoscopic scale.

The main concern of this review is the description of the limit dynamics when N → +∞.
This will be given by a nonlinear object which describes the average behaviour of the
system. Various points of view may be adopted: from the previous discussion, a natural
idea is to study the limit N → +∞ of the statistical objects fk,Nt , for all k ∈ N, or µXNt .
The central notion of this review is the propagation of chaos property which states that
for all t ∈ I there exists ft ∈ P(E) such that,

∀k ∈ N, fk,Nt −→
N→+∞

f⊗kt , (4)

for the weak convergence of probability measures and provided that this property holds
true when t = 0. As we will see in the following, the property (4) is equivalent to

µXNt −→
N→+∞

ft, (5)

for the convergence in law (note that the limit is a deterministic object). The term
propagation introduced by Kac [103] refers to the idea that the above convergence at t = 0
is sufficient to prove the convergence at a later time. As we shall see in the following, the
status of the time variable is a central question: one may try to quantify the convergence
speed with respect to t, analyse its behaviour when I = [0,+∞) is infinite or study the
more general question of the pathwise convergence of the trajectories. All these aspects
will define as many notions of propagation of chaos.

In (4), the tensor product indicates that any k particles taken among the N become
statistically independent when N → +∞. Any subsystem of the N -particle system thus
behaves as a system of i.i.d processes with common law ft (note that the particles are
always identically distributed by the exchangeability assumption). This translates the
physical idea that for large systems, the correlations between two (or more) given particles
which are due to the interactions become negligible. By looking at the whole system, only
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an averaged behaviour can be observed instead of the detailed correlated trajectories of
each particle. This level of description is called the mesoscopic scale in statistical physics.

The central question is therefore the description of the limit law ft. In turns out that
in most cases, it is relatively easy to see that ft is formally the solution of one of the
following nonlinear problems.

1. The solution of a (nonlinear) Partial Differential Equation (PDE) obtained from the
Liouville equation by some closure assumption. In some cases, ft can also be seen
as the law of a nonlinear Markov process in the sense of McKean, typically the law
of a nonlinear SDE (these notions will be properly defined later). Just as in the
classical case, the two approaches are linked by Itō’s formula.

2. The solution of a (nonlinear) martingale problem. This description is more general
than the previous one since it gives a probability measure on the path space fI ∈
P(D(I, E)) with time marginals (ft)t.

For each of the particle systems considered in this review, the program is thus the follow-
ing:

(1) Prove that the limit (4) or (5) exists in a suitable topology.

(2) Identify the limit as the solution of a nonlinear problem.

(3) Prove that the nonlinear problem is wellposed so that the limit is uniquely defined.

Note that the three steps can be carried out in any order. In this review the main concern
will be the first step, which is the core of the propagation of chaos property. This also
provides an existence result for the nonlinear problem of the second step. The third step
is often proved beforehand. Actually, in many cases, the nonlinear problem has its own
dedicated literature; many of its properties are known and may be useful to carry out the
first step.

We conclude this introductory section by a brief overview of the models studied in
this work and which will be detailed in the following subsections.

Section 2.2.2 is devoted to the description of various diffusion processes, starting from
the prototypical example introduced in the seminal work of McKean [122, 120]. At the
microscopic scale, the particle system is defined as a system of interacting Itō processes,
where the interaction depends only on (observables of) the empirical measure (3). Phys-
ically, it means that each particle interacts with a single averaged quantity in which the
other particles contribute with a weight of the order 1/N . This type of interaction is called
mean-field interaction and the propagation of chaos is a particular instance of a mean-field
limit. In section 2.2.3 the diffusion interaction is replaced by a jump mechanism.

Section 2.3 presents another class of models which extends the work of Kac [103]
on the Boltzmann equation. The N -particle process is driven by time-discrete pairwise
interactions which update the state of only two particles at each time. In classical kinetic
theory, the particles are said to collide.
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Remark 3 (Notational convention). We will adopt the following notational convention:
the N -particle mean-field processes are denoted by the letter X and the Boltzmann N -
particle processes by the letter Z. Historically, many of the Boltzmann models that we
are going to study are spatially homogeneous versions of a Boltzmann kinetic system. We
thus also use the letter Z for kinetic systems, that is systems where each particle Zi

t is
defined by its position and its velocity, respectively denoted by the letters X i

t and V i
t .

2.2 Mean-field models

2.2.1 Abstract mean-field generators and mean-field limits

A mean-field particle system is a system of N particles characterised by a generator of
the form

LNϕN(xN) =
N∑
i=1

Lµ
xN
�i ϕN(xN), (6)

where given a probability measure µ ∈ P(E), Lµ is the generator of a Markov process
on E. Throughout this review, the notation L �i ϕN denotes the action of an operator L
defined on (a subset of) Cb(E) against the i-th variable of a function ϕN ∈ Cb(EN); in
other words, L �i ϕN is defined as the function:

L �i ϕN : (x1, . . . , xN) ∈ EN 7→ L[x 7→ ϕN(x1, . . . , xi−1, x, xi+1, . . . , xN)](xi) ∈ R.

There are two main classes of mean-field models, depending on the form of the generator
Lµ.

1. In Section 2.2.2, Lµ is the generator of a diffusion process, and the associated N -
particle system is called a McKean-Vlasov diffusion.

2. In Section 2.2.3, Lµ is the generator of a jump process and the N -particle system is
called a mean-field jump process. When Lµ is the sum of a pure jump generator and
the generator of a deterministic flow, the process is called a mean-field Piecewise
Deterministic Markov Process (PDMP for short).

It is also possible to consider mixed processes when Lµ is the sum of a diffusion generator
and a jump generator.

It is classically assumed that the domain of the generator Lµ does not depend on µ.
This domain will be denoted by F ⊂ Cb(E).

In that case, it is easy to guess the form of the associated nonlinear system obtained
when N → +∞. Taking a test function of the form

ϕN(xN) = ϕ(x1),

where ϕ ∈ F , one obtains the one-particle Kolmogorov equation:

d

dt
〈f 1,N
t , ϕ〉 =

∫
EN

Lµ
xN
ϕ(x1)fNt (dxN).
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Note that the right-hand side depends on theN -particle distribution. As already discussed
in the introduction, if the limiting system exists then, its law ft at time t ≥ 0 is typically
obtained as the limit of the empirical measure process: when XN

t ∼ fNt ,

µXNt −→
N→+∞

ft.

This also implies f 1,N
t → ft. Reporting formally in the previous equation, it follows that

ft should satisfy

∀ϕ ∈ F , d

dt
〈ft, ϕ〉 = 〈ft, Lftϕ〉. (7)

This is the weak form of an equation that is called the (nonlinear) evolution equation.
Note that the evolution equation is nonlinear due to the dependency of L on the measure
argument ft. With a slight abuse, we will often simply write Cb(E) instead of F in the
following.

This is a very analytical derivation. Its probabilistic counterpart is the following
nonlinear martingale problem.

Definition 2.3 (Nonlinear mean-field martingale problem). Let T ∈ (0,+∞] and let
us write I = [0, T ]. A pathwise law fI ∈ P(D([0, T ], E)) is said to be a solution of
the nonlinear mean-field martingale problem issued from f0 ∈ P(E) whenever for all all
ϕ ∈ F ,

Mϕ
t := ϕ(Xt)− ϕ(X0)−

∫ t

0

Lfsϕ(Xs)ds, (8)

is a fI martingale, where (Xt)t is the canonical process and for t ≥ 0, ft := (Xt)#fI . the
natural filtration of the canonical process is denoted by F .

Note that fI contains much more information than the evolution equation (7) and as
the notation implies, ft = (Xt)#fI ∈ P(E) solves the evolution equation. If the nonlinear
martingale problem is wellposed then the canonical process (Xt)t is a time inhomogeneous
Markov process on the probability space (D([0, T ], E),F , fI). This may seem a little bit
abstract for now but in what follows, we will see that most often, given the usual abstract
probability space (Ω,F ,P), one can define a process on Ω such that its (pathwise) law
is a solution of the nonlinear martingale problem. Such process is called nonlinear in the
sense of McKean or simply nonlinear for short.

2.2.2 McKean-Vlasov diffusion

Let be given two functions

b : Rd × P(Rd)→ Rd, σ : Rd × P(Rd)→Md(R) (9)

respectively called the drift vector and the diffusion matrix. For a fixed µ ∈ P(Rd), the
following generator is the generator of a diffusion process in Rd:

∀ϕ ∈ C2
b (Rd), Lµϕ(x) := b(x, µ) · ∇ϕ+

1

2

d∑
i,j=1

aij(x, µ)∂xi∂xjϕ, (10)
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where a(x, µ) := σ(x, µ)σ(x, µ)T. The N -particle generator (6) associated to this class
of diffusion generators defines a process called a McKean-Vlasov diffusion process. The
associated N -particle process is governed by the following system of SDEs:

∀i ∈ {1, . . . , N}, dX i,N
t = b

(
X i,N
t , µXNt

)
dt+ σ

(
X i,N
t , µXt

)
dBi

t (11)

where B1
t , . . . , B

N
t are N independent Brownian motions.

Remark 4. Note that there are actually dN independent one-dimensional Brownian
motions. This remark may be helpful in cases where the Brownian motions in the different
directions are different. In particular, for kinetic particles defined by their positions and
velocities, the noise is often added on the velocity variable only (this case is nevertheless
covered by (11) with a block-diagonal matrix σ with a vanishing block on the position
variable).

In this case, the evolution equation (7) can be written in a strong form and reads:

∂tft(x) = −∇x · {b(x, ft)ft}+
1

2

d∑
i,j=1

∂xi∂xj{aij(x, ft)ft} (12)

This is a nonlinear Fokker-Planck equation which is used in many important modelling
problems (see Example 1). This equation was obtained (formally) previously using only
the generators when N → +∞. Here, there is an alternative way to derive the limiting
system: looking at the SDE system (11), the empirical measure can be formally replaced
by its expected limit ft. Since all the particles are exchangeable, this can be done in any
of the N equations. The result is a process (X t)t which solves the SDE:

dX t = b
(
X t, ft

)
dt+ σ

(
X t, ft

)
dBt. (13)

where Bt is a Brownian motion and X0 ∼ f0. Moreover, since for all i, X i
t has law f 1,N

t

and since it is expected that f 1,N
t → ft, the process X t and the distribution ft should be

linked by the relation
ft = Law(X t).

The dependency on its law of the solution of a SDE is a special case of what is called a
nonlinear process in the sense of McKean. It would now be desirable to prove that the
process (13) is well defined or (equivalently) that the PDE (12) or the martingale problem
(8) are wellposed. The following result gives the reference framework in which all these
objects are well defined.

Proposition 1. Let us assume that the functions b and σ are globally Lipschitz: there
exists C > 0 such that for all x, y ∈ Rd and for all µ, ν ∈ P2(Rd) it holds that:

|b(x, µ)− b(y, ν)|+ |σ(x, µ)− σ(y, ν)| ≤ C
(
|x− y|+W2(µ, ν)

)
,

where W2 denotes the Wasserstein-2 distance (see Definition 3.1). Assume that f0 ∈
P2(Rd). Then for any T > 0 the SDE (13) has a unique strong solution on [0, T ] and
consequently, its law is the unique weak solution to the Fokker-Planck equation (12) and
the unique solution to the nonlinear martingale problem (8).
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The proof of this proposition is fairly classical. In some special linear cases (see below),
it can be found in [122, Section 3], [147, Theorem 1.1] or [124, Theorem 2.2]. For the
most general case which includes the above proposition, we refer to [35, Theorem 1.7].
The proof is based on a fixed point argument that is sketched below.

Proof. Let us define the map:

Ψ : P2

(
C([0, T ],Rd)

)
→ P2

(
C([0, T ],Rd)

)
, m 7→ Ψ(m),

where for m ∈ P2

(
C([0, T ],Rd)

)
, Ψ(m) is the law (on the path space) of the solution

(Xm
t )0≤t≤T of the following SDE:

dXm
t = b(Xm

t ,mt)dt+ σ(Xm
t ,mt)dBt.

Note that the map t ∈ [0, T ] 7→ mt ∈ P2(Rd) is continuous for the W2-distance where mt

is the time marginal of m. The goal is to prove that Ψ admits a unique fixed point.
Let m,m′ ∈ P2

(
C([0, T ],Rd)

)
and let t ∈ [0, T ]. Then by the Burkholder-Davis-Gundy

inequality (see Proposition 16) and the Lipschitz assumptions on b and σ, one can prove
that there exists a constant C > 0 such that:

E
[

sup
0≤s≤t

∣∣Xm
s −Xm′

s

∣∣2]
≤ CT

(∫ t

0

E
[

sup
0≤r≤s

∣∣Xm
r −Xm′

r

∣∣2]ds+

∫ t

0

W 2
2 (ms,m

′
s)ds

)
.

A similar computation will be detailed in the proof of Theorem II-3.1. By Gronwall
lemma, we obtain that for a constant C(T ) it holds that:

E
[

sup
0≤s≤t

∣∣Xm
s −Xm′

s

∣∣2] ≤ C(T )

∫ t

0

W 2
2 (ms,m

′
s)ds.

Let us denote by W2 the Wasserstein-2 distance on the space of probability measures on
a path space of the form C([0, t],Rd) for a given t ∈ [0, T ] not specified in the notation.
For any t ∈ [0, T ], we also write m[0,t] ∈ P2

(
C([0, t],Rd)

)
for the restriction of m on [0, t].

Then by definition of Ψ and W2, we conclude that:

W2
2

(
Ψ
(
m[0,t]

)
,Ψ
(
m′[0,t]

))
≤ C(T )

∫ T

0

W 2
2 (ms,m

′
s)ds

≤ C(T )

∫ T

0

W2
2

(
m[0,s],m

′
[0,s]

)
ds.

By iterating this inequality, the k-th iterate Ψk of Ψ satisfies:

W2
2

(
Ψk(m),Ψk(m′)

)
≤ c(T )k

∫ T

0

(T − s)k

(k − 1)!
W2

2

(
m[0,s],m

′
[0,s]

)
ds

≤ (c(T )T )k

k!
W2

2 (m,m′),

from which it can be seen that Ψk is a contraction and thus admits a unique fixed point
for k large enough.
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Example 1. Depending on the form of the drift and diffusion coefficients, the McKean-
Vlasov diffusion can be used in a wide range of modelling problems. Some examples are
gathered below and many other will be given in Section II-5.

1. The first case is obtained when b and σ depend linearly on the measure argument.
Namely, for n,m ∈ N, let us consider two functions

K1 : Rd × Rd → Rm, K2 : Rd × Rd → Rn,

and let us take

b(x, µ) = b̃(x,K1 ? µ(x)), σ(x, µ) = σ̃(x,K2 ? µ(x)),

where b̃ : Rd × Rm → Rd and σ̃ : Rd × Rm → Md(R). When K1, K2 and b̃, σ̃ are
Lipschitz and bounded, the propagation of chaos result is the given by McKean’s
theorem (Theorem II-3.1).

In many applications, σ is a constant diffusion matrix, K1(x, y) ≡ K(y − x) for
a fixed symmetric radial kernel K : Rd → Rd and b(x, µ) = K ? µ(x). The case
where K has a singularity is much more delicate (see Section II-3.1.2, Section II-
3.4, Section II-3.2.2) but contains many important cases. For instance, in fluid
dynamics, when K is the Biot and Savart kernel K(x) = x⊥/|x|2 in dimension
d = 2 and σ(x, µ) ≡

√
2σI2 for a fixed σ > 0, the limit Fokker-Planck equation

reads:
∂tft +∇ · (ftK ? ft) = σ∆ft, (14)

By invariance by translation, the quantity ω = ft− 1 is the solution of the so-called
vorticity equation which can be shown to be equivalent to the 2D incompressible
Navier-Stokes system (see [98]).

In biology, still in dimension d = 2 but with K(x) = x/|x|2, the equation (14) is an
example of the Patlak-Keller-Segel model for chemotaxis (see [28]). Other examples
in mathematical physics and mathematical biology are presented in Section II-5.1.

Another important model of this form is the Kuramoto model obtained when E = R
and K(θ) = K0 sin(θ) for a given K0 > 0. In this case, the particles model the
frequencies of a system of oscillators which tends to synchronize, see for instance
[1, 117, 13, 14] and Section II-5.2.1.

2. The case of the so-called gradient systems is a sub-case of the previous one when
σ(x, µ) ≡ σId for a constant σ > 0 and

b(x, µ) = −∇V (x)−
∫
Rd
∇W (x− y)µ(dy), (15)

where V,W are two symmetric potentials on Rd respectively called the confinement
potential and the interaction potential. The limit Fokker-Planck equation

∂ft =
σ2

2
∆ft +∇ · (ft∇(V +W ? ft)),
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is called the granular-media equation and will be studied in Section II-3.1.3. An
important issue is the long-time behaviour of gradient systems which is often studied
under convexity assumptions on the potentials (see Section II-3.1.3, Section II-3.2.1,
Section II-3.2.3).

3. A kinetic particle Zi,N
t = (X i,N

t , V i,N
t ) ∈ Rd × Rd is a particle defined by two ar-

guments, its position X i,N
t and its velocity V i,N

t defined as the time derivative of
the position. The evolution of a system of kinetic particles is usually governed by
Newton’s laws of motion. In a random setting, the typical system of SDEs is thus
the following: for i ∈ {1, . . . , N},{

dX i,N
t = V i,N

t dt

dV i,N
t = F

(
X i,N
t , V i,N

t , µXNt
)
dt+ σ

(
X i
t , V

i,N
t , µXNt

)
dBi

t,

where F : Rd×Rd×P(Rd)→ Rd and σ : Rd×Rd×P(Rd)→Md(R). Note that it is
often assumed that the force field induced by the interactions between the particles
depends only on their positions, which is why we have written

µXNt :=
1

N

N∑
i=1

δXi,N
t
∈ P(Rd)

instead of µZNt ∈ P(Rd × Rd). This special case of the McKean-Vlasov diffusion

in E = Rd × Rd is also often called a second order system by opposition to the
first order systems when E = Rd. Note that when σ = 0, the limit Equation
(12) is the renowned Vlasov equation which is historically one of the first and most
important models in plasma physics and celestial mechanics. In the following, we
will nevertheless most often consider stochastic models although some of the results
still apply in this deterministic case (in particular the important Theorem II-3.1).
For a detailed account of the Vlasov equation in this context, we refer to the review
article [96]. Several examples of stochastic kinetic particle systems are given in
Section II-5.2.2 which deals with swarming models. For instance, the (stochastic)
Cucker-Smale model [51, 92, 38, 42] describes a system of bird-like particles which
interact by aligning their velocities to the ones of their neighbours:

dV i
t =

1

N

∑
j 6=i

K(|Xj
t −X i

t |)(V
j
t − V i

t ) + σdBi
t,

where σ ≥ 0 is a noise parameter and K : R+ → R+ is a smooth nonnegative
function vanishing at infinity which models the vision of the particles. Other classical
models of this form include the attraction-repulsion models [69, 41] or the stochastic
Vicsek models [62, 60, 61].

4. The general case (9), where b and σ have a possibly nonlinear dependence on µ can
be extended to even more general cases. A simple extension is the case of time-
dependent functions b and σ. They may also be random themselves and the x and
µ arguments may be replaced respectively by a full trajectory on C([0, T ],Rd) and
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a pathwise probability distribution on P(C([0, T ],Rd)). The most general setting is
thus:

b : [0, T ]× Ω× C([0, T ],Rd)× P(C([0, T ],Rd))→ Rd.

Such cases may be very difficult to handle but have recently been used in the theory
of mean-field games [30, 107, 36, 37, 29]. Under strong Lipschitz assumptions (in
the appropriate topology), some very general results can be obtained by a relatively
simple adaptation of the proofs valid in the linear case (see Section II-3.6.1). For
more general systems, we will only briefly mention some existing results in Section
II-3.6.2 and Section II-3.6.3.

Remark 5 (Martingale measures). Starting from an arbitrary nonlinear Fokker-Planck
with operator (10), one may wonder if it can always be written (at least formally) as
the limit of a particle system. The McKean-Vlasov diffusion positively answers when the
diffusion matrix in the Fokker-Planck equation is of the form a(x, µ) = σ(x, µ)σ(x, µ)T.
For more general matrices a, the situation is more complicated. For instance the Landau
equation would correspond to a matrix of the form a(x, µ) =

∫
Rd σ(x, y)σ(x, y)Tµ(dy). In

this case, the problem has been studied with a stochastic point of view in [81] and later in
[125] and [76] where an explicit approximating particle system is given (see also Section
II-5.1.4). The N -particle system is characterised as the solution of a system of N SDEs
similar to (11) but where the N Brownian motions are replaced by N martingale measures
with intensity µXNt (dy) ⊗ dt. The notion of martingale measure which originates in the
Stochastic PDE literature is studied for instance in [73]. Except for the cases investigated
in the aforementioned works and although it seems to generalise many of the models
presented in this review, there is, to the best of our knowledge, no general theory of
propagation of chaos for particle systems driven by martingale measures.

2.2.3 Mean-field jump processes and PDMPs

In this section E is any Polish space. Let us be given a family of probability measures
called the jump measures :

P : E × P(E)→ P(E), (x, µ) 7→ Pµ(x, dy),

and a positive function, called the jump rate:

λ : E × P(E)→ R+, (x, µ) 7→ λ(x, µ),

For a given µ ∈ P(E) the following generator is the generator of a pure jump process :

Lµϕ(x) = λ(x, µ)

∫
E

{ϕ(y)− ϕ(x)}Pµ(x, dy).

We will also consider the case of a PDMP when

Lµϕ(x) = a · ∇ϕ(x) + λ(x, µ)

∫
E

{ϕ(y)− ϕ(x)}Pµ(x, dy), (16)

where, with a slight abuse of notation, a · ∇ denotes the transport flow associated to a
function a : E → E. Using the family of generators (16), the N -particle system with
mean-field generator (6) can be constructed as follows.
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• To each particle i ∈ {1, . . . , N} is attached a Poisson clock with jump rate λ(µXNt , X
i
t).

The jump times of particle i are denoted by (T in)n.

• Between two jump times, the motion of a particle is purely deterministic:

∀n ∈ N, ∀t ∈ [T in, T
i
n+1), dX i

t = a(X i
t)dt, (17)

• At each time T in, a new state is sampled from the jump measure on E:

X i
T in
∼ PµXN

Ti−n

(
X i
T i−n

, dy
)
∈ P(E). (18)

One expects that in the limit N → +∞, the law ft of a particle will satisfy the
evolution equation (7) which, in this case, reads:

d

dt
〈ft, ϕ〉 = 〈ft, a · ∇xϕ〉+

∫∫
E×E

λ(x, ft){ϕ(y)− ϕ(x)}Pft(x, dy)ft(dx), (19)

for all ϕ ∈ Cb(E). Two important cases are given in the following examples.

Example 2 (Nanbu particle system). Let us take a = 0 and λ = 1 for simplicity. When
the jump measure is linear in µ, i.e. is of the form:

Pµ(x, dy) =

∫
z∈E

Γ(1)(x, z, dy)µ(dz),

where Γ(1) : E × E → P(E), then the mean-field generator (6) describes a N -particle
system where at each jump, a particle with state x chooses uniformly another particle,
say which has a state z, and sample a new state according to the law Γ(1)(x, z, dy). In [88],
this particle system is called a Nanbu particle system in honour of Nanbu who introduced
a similar system in [132] and used it as an approximation scheme for the Boltzmann
equation of rarefied gas dynamics (38). This equation will be described more thoroughly
in Section 2.3.3. When Γ(1) is an abstract law, the associated mean-field jump particle
system generalizes the one introduced by Nanbu and the limit equation is the following
general Boltzmann equation (written in weak form):

d

dt
〈ft, ϕ〉 =

∫
E×E×E

ϕ(y)Γ(1)(x, z, dy)ft(dx)ft(dz)− 〈ft, ϕ〉,

for all ϕ ∈ Cb(E). A more classical derivation of the general Boltzmann equation will be
given in Section 2.3 and the subsequent Example 7 provides an alternative point of view
on the Nanbu particle system.

Example 3 (BGK type model). In kinetic theory the state space is E = Rd × Rd and
the N particles are given by Zi

t = (X i
t , V

i
t ) with X i

t the position and V i
t the velocity of

particle i at time t. Without external force, it is natural to expect that the particles
evolve deterministically and continuously between two jumps as

dX i
t = V i

t dt, dV i
t = 0.
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Moreover, the post-jump distribution and the jump rate often do not depend specifically
on the pre-jump velocity of the jumping particle but only on its position and on the
distribution of particles. Thus we take:

Pµ((x, v), dx′, dv′) = δx(dx
′)⊗Mµ,x(v

′)dv′,

where given µ ∈ P(E) and x ∈ Rd, Mµ,x is a probability density function. In this case,
Equation (7) becomes:

d

dt
〈ft, ϕ〉 = 〈ft, v · ∇xϕ〉+

∫∫
Rd×Rd

λ(ft, x){ϕ(x, v′)− ϕ(x, v)}Mft,x(v
′)dv′ft(dx, dv),

and its strong form reads:

∂tft(x, v) + v · ∇xft(x, v) = λ(x, ft)
(
ρft(x)Mft,x(v)− ft(x, v)

)
,

where the spatial density of the particles at time t is defined by:

ρft(x) :=

∫
Rd
ft(x, v)dv.

When Mft,x is the Maxwellian distribution

Mft,x(v) =
ρf

(2πT )d/2
exp

(
|v − u|2

2T

)
,

with (ρfu, ρf |u|2+ρfT ) =
∫
Rd(v, |v|

2)ft(x, v)dv, then this equation is called the Bhatnagar-
Gross-Krook (BGK) equation [15]. It is used in mathematical physics as a simplified
model of rarefied gas dynamics (for a detailed account of the subject, we refer the inter-
ested reader to the reviews [58] and [155] or to the book [45]).

In this review, we found useful to distinguish a class of mean-field jump models that
we call parametric models which are defined by a jump measure of the form

Pµ(x, dy) =
(
ψ(x, µ, ·)#ν

)
(dy),

where ν ∈ P(Θ) is a probability measure on a fixed parameter space Θ and

ψ : E × P(E)×Θ→ E.

In this case, for all test function ϕ ∈ Cb(E),∫
E

ϕ(y)Pµ(x, dy) =

∫
Θ

ϕ
(
ψ(x, µ, θ)

)
ν(dΘ).

The N -particle process associated to a parametric model admits a SDE representation
using the formalism of Poisson randon measure which is briefly recalled in Appendix A.7.
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Example 4 (SDE representation for parametric models). Let us assume for all θ ∈ Θ, the
function ψ(·, ·, θ) : E×P(E)→ E is Lipschitz for the distance on E and the Wasserstein-1
distance on P(E), with a Lipschitz constant L(θ) > 0 and a function L ∈ L1

ν(Θ). This
(classical) hypothesis will ensure the wellposedness of the SDE representations of both
the particle system and its nonlinear limit, see [4, Section 3.1] and [86, Theorem 1.2 and
Theorem 2.1].

To each particle i ∈ {1, . . . , N} is attached an independent Poisson random measures
N i(ds, du, dθ) on [0,+∞)× [0,+∞)×Θ with intensity measure ds⊗du⊗ν(dθ) where dt
and du denote the Lebesgue measure. The N independent random measures N i play a
comparable role to the N independent Brownian motions which define a McKean-Vlasov
diffusion in (11). In the present case, the mean-field jump N -particle process is the
solution of the following system of SDEs driven by the measures N i

X i
t = X i

0 +

∫ t

0

a(X i
s)ds

+

∫ t

0

∫ +∞

0

∫
Θ

{
ψ
(
X i
s− , µXN

s−
, θ
)
−X i

s−

}
1(

0,λ
(
Xi
s−
,µXN

s−

)](u) N i(ds, du, dθ). (20)

In neurosciences, the variable X i
t represents the membrane potential of a neuron indexed

by i at time t and the Poisson random measures model the interactions between the
neurons due to the chemical synapses. A random jump is called a spike. In the model
introduced by [78], the effect of the spikes is to reset the potential of the membrane to a
fixed value, fixed to 0. In Equation (20) this corresponds to the simple case where X i

t ∈ R+

and ψ ≡ 0. Note that in this particular case there is no need to consider a parameter space
Θ and N i is a Poisson random measures on [0,+∞) × [0,+∞) only. Note that in [78],
the deterministic drift a ≡ a(x, µ) also depends on the empirical measure of the system:
it models the effect of electrical synapses which tends to relax the membrane potential
of the neurons towards the average potential of the system. An additional interaction
mechanism is described in the subsequent example.

Example 5 (Simultaneous jumps). The neurons models [57, 78, 4] extend the (paramet-
ric) mean-field jump model (20) to allow simultaneous jumps at each jump time T in. It
models the effect that at each spiking event of a neuron i, the membrane potential of all
the other neurons j 6= i is also increased by a small amplitude.

In the parametric setting with E = Rd (or more generally when E has a vector
space structure), the mean-field jump model with simultaneous jumps is a defined by the
following objects.

• The jump rate function:

λ : (x, µ) ∈ E × P(E) 7→ λ(x, µ) ∈ R+.

• A symmetric probability measure νN on the N -fold product of the parameter space
ΘN . We also assume that there exists a symmetric probability measure on ΘN

such that νN coincides with the projection of ν on the first N coordinates. This
assumption is natural to be able to take the limit N → +∞. In [4], the parameter
space is Θ = [0, 1].
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• The main jump measure

Pµ(x, dy) =
(
ψ(x, µ, ·)#ν

)
(dy),

where
ψ : E × P(E)×Θ→ E, (x, µ, θ) 7→ x+ α(x, µ, θ),

and α : E × P(E)×Θ→ E is the jump amplitude.

• The collateral jump measures

P̃N
µ (x, z, dy) =

(
ψ̃N(x, z, µ, ·)#ν2

)
(dy),

where

ψ̃N : E × E × P(E)×Θ2 → E, (x, z, µ, θ1, θ2) 7→ x+
α̃(x, z, µ, θ1, θ2)

N
,

and α̃ : E × E × P(E) × Θ2 → E is the collateral jump amplitude. It satisfies
α̃(x, x, µ, θ1, θ2) = 0 for all x ∈ E, µ ∈ P(E) and θ1, θ2 ∈ Θ. In [78], the amplitude
is fixed α̃(x, z, µ, θ1, θ2) ≡ 1 for x 6= z.

The N -particle process can be defined as before by an algorithmic description. At each
time T in, a parameter θ ∼ νN is drawn and then the state of particle i is updated by
adding the jump amplitude

α

(
X i
T i−n

, µXN
Ti−n

, θi

)
.

But in this case, at time T in, all the other particles j 6= i also jumps by the amplitude

α̃

(
Xj

T i−n
, X i

T i−n
, µXN

Ti−n
, θj, θi

)
N

.

When the parameters α, α̃ satisfy the Lipschitz integrability conditions of [4, Section 3.1],
a SDE representation of the particle system can also be given. As before, letN i(ds, du, dθ)
be a set of N independent Poisson random measures on [0,+∞)×[0,+∞)×ΘN with inten-
sity ds⊗du⊗ν, where ds and du denote the Lebesgue measure. The SDE respresentation
of the N -particle system is given by the following system of SDEs:

X i
t = X i

0 +

∫ t

0

a(X i
s)ds

+

∫ t

0

∫ +∞

0

∫
ΘN

{
ψ
(
X i
s− , µXN

s−
, θi

)
−X i

s−

}
1(

0,λ
(
Xi
s−
,µXN

s−

)](u) N i(ds, du, dθ)

+
∑
j 6=i

∫ t

0

∫ +∞

0

∫
ΘN

{
ψ̃N
(
X i
s− , X

j
s− , µXN

s−
, θi, θj

)
−X i

s−

}
×

× 1(
0,λ
(
Xj

s−
,µXN

s−

)](u) N j(ds, du, dθ). (21)
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Compared to the previous framework, in addition to the main jump operator (16), each
particle is also subject to the collateral jump generator defined for all ϕ ∈ Cb(E) and
x ∈ E by:

L̃Nµ ϕ(x) := N

∫∫
E×E

λ(z, µ){ϕ(y)− ϕ(x)}P̃N
µ (x, z, dy)µ(dz). (22)

Note that this generator depends on N but it satisfies the weak limit: for all ϕ ∈ C1
b (E),

x ∈ E and µ ∈ P(E),

L̃Nµ ϕ(x) −→
N→+∞

L̃µϕ(x) :=

∫∫
E×Θ2

λ(z, µ)α̃(x, z, µ, θ1, θ2) · ∇ϕ(x)µ(dz)ν2(dθ1, dθ2).

The N -particle system is thus defined by the mean-field generator (6) which takes the
form:

∀ϕN ∈ Cb(EN), LNϕN :=
N∑
i=1

{
Lµ �i ϕN + L̃Nµ �i ϕN

}
.

In the limit N → +∞, the nonlinear evolution equation (7) is expected to become:

∀ϕ ∈ C1
b (E),

d

dt
〈ft, ϕ〉 = 〈ft, Lftϕ〉+ 〈ft, L̃ftϕ〉.

Note that this is the equation satisfied by the law of the solution of the following nonlinear
SDE:

X t = X0 +

∫ t

0

a(Xs)ds

+

∫ t

0

∫ +∞

0

∫
ΘN
α(Xs− , fs, θ1)1(

0,λ
(
Xs− ,fs

)](u) N (ds, du, dθ)

+

∫ t

0

∫∫
E×Θ2

λ(z, fs)α̃(Xs, z, fs, θ1, θ2)fs(dz)ν2(dθ1, dθ2)ds, (23)

with Law(Xs) = fs. In the last equation, N (ds, du, dθ) is a Poisson random measure
on [0,+∞) × [0,+∞) × ΘN with intensity ds ⊗ du ⊗ ν(dθ) where ds and du denote the
Lebesgue measure.

Mean-field jump processes and PDMPs are not so common in the literature compared
to the McKean-Vlasov diffusion models or the Boltzmann models (Section 2.3). The
Nanbu particle system serves as a simplified Boltzmann model (see Example 7). Mean-
field jump processes can also be used as an approximation of a McKean-Vlasov diffusion.
Since the dynamics only relies on a sampling mechanism on the state space E, compared
to diffusion processes, it allows more flexibility and avoids some technicalities for instance
when E has a more complex geometrical structure, typically when E is a manifold. In
applications, mean-field jump processes model a motion called run and tumble which is
classical in the study of the dynamics of populations of bacteria. As already mentioned,
Example 5 corresponds to a toy example of neuron model. More realistic examples often
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consider a combination of (simultaneous) jumps and a diffusive behaviour, see [4] and the
references therein. The nonlinear martingale problem associated to mixed jump-diffusion
models is studied in [87] where the wellposedness is proved under classical Lipschitz and
boundedness assumptions on the parameters (see also Section II-3.3). Other neuron mod-
els based on a mean-field jump process will be described in Section II-5.2.3.

2.3 Boltzmann models

2.3.1 General form

Given a Polish space E, a Boltzmann model is a N -particle system with an infinitesimal
generator acting on ϕN ∈ Cb(EN) of the form:

LNϕN =
N∑
i=1

L(1) �i ϕN +
1

N

∑
i<j

L(2) �ij ϕN , (24)

where ϕN ≡ ϕN(z1, . . . , zN) is a test function on the product space EN . The operator L(2)

acts on two-variable test functions and stands for binary interactions between particles.
The operator L(1) acts on one-variable test functions and describes the individual flow of
each particle (and possibly the boundary conditions). More explicitly, let us recall the
notations, for (z1, . . . , zN) ∈ EN and i < j,

L(1) �i ϕN(z1, . . . , zn) = L(1)
[
u 7→ ϕN(z1, . . . , zi−1, u, zi+1, . . . , zN)

]
(zi)

and

L(2) �ij ϕN(z1, . . . , zn)

= L(2)
[
(u, v) 7→ ϕN(z1, . . . , zi−1, u, zi+1, . . . , zj−1, v, zj+1, . . . , zN)

]
(zi, zj).

These models are called Boltzmann models in reference to the famous Boltzmann equation
of rarefied gas dynamics which is a fundamental equation for mathematicians, physicists
and philosophers. It will be explained at the end of this section (see Equation (38)) how it
can be obtained as the limit of a general particle system of the form (24). The specificity
of Boltzmann models is that the particles interact only at random times by pair and not
individually with an average of all the other particles as in mean-field models. In full
generality, the state space E is an abstract space. In classical kinetic theory, E = Rd×Rd

is the phase space of positions and velocities and two particles interact when they are
close enough: they are said to collide and by analogy, we will keep this terminology to
refer to an interaction between two particles even in an abstract space. In addition to
these pairwise interactions, each particle is also subject to an individual flow prescribed
by the operator L(1). Typical examples in kinetic theory include

• (Free transport) L(1)ϕ(x, v) = v · ∇xϕ,

• (Space diffusion) L(1)ϕ(x, v) = ∆xϕ.

• (Velocity diffusion) L(1)ϕ(x, v) = ∆vϕ.

26



When two particles collide, the effect of the collision is prescribed by the operator L(2).
In kinetic theory, this operator acts on the velocity variable only but in full generality, in
an abstract space E, it will be assumed to satisfy the following assumptions.

Assumption 1. The operator L(2) satisfies the following properties.

(1) The domain of the operator L(2) is a subset of Cb(E
2).

(2) There exist a continuous map called the post-collisional distribution

Γ(2) : (z1, z2) ∈ E × E 7→ Γ(2)(z1, z2, dz
′
1, dz

′
2) ∈ P(E × E),

and a symmetric function called the collision rate

λ : (z1, z2) ∈ E × E 7→ λ(z1, z2) ∈ R+,

such that for all ϕ2 ∈ Cb(E2) and all z1, z2 ∈ E,

L(2)ϕ2(z1, z2) = λ(z1, z2)

∫∫
E×E
{ϕ2(z′1, z

′
2)− ϕ2(z1, z2)}Γ(2)(z1, z2, dz

′
1, dz

′
2). (25)

(3) For all z1, z2 ∈ E, the post-collisional distribution is symmetric in the sense that

Γ(2)(z1, z2, dz
′
1, dz

′
2) = Γ(2)(z2, z1, dz

′
2, dz

′
1). (26)

(4) The function λ is measurable on {(z1, z2) ∈ E2, z1 6= z2} and for all z ∈ E, λ(z, z) =
0.

Remark 6. The assumption that λ is a (measurable) function prevents from considering
the true classical Boltzmann inhomogeneous case in kinetic theory λ(z1, z2) = δx1=x2 (that
is, two particles collide when they are exactly at the same position), which is beyond the
scope of this review (see however Example 15). The collision rate is often assumed to be
uniformly bounded

sup
z1,z2∈E

λ(z1, z2) ≤ Λ <∞.

This cutoff assumption is unfortunately not physically relevant for many models where
an infinite number of collisions may happen in finite time.

Note that when E is a locally compact Polish space, the Riesz-Markov-Kakutani theo-
rem states that any linear operator on the space of two-variable test functions in Cc(E×E)
can be written in the form (25). The third assumption ensures that the law fNt defined
by the backward Kolmogorov equation remains symmetric for all time provided that fN0
is symmetric. This follows from the observation that under (26), the action of any trans-
position τ ∈ SN on Cb(E

N) commutes with LN :

τ−1LNτ = LN .

27



Example 6 (Jump amplitude). When E = Rd (or more generally when E has a vector
space structure), the interaction law Γ(2) is often given in terms of jump amplitudes.

Given the law Γ̂(2) of the jump amplitudes of the form:

Γ̂(2) : (z1, z2) ∈ Rd × Rd 7→ Γ̂(2)(z1, z2, dh, dk) ∈ P(Rd × Rd),

the post-collisional law Γ(2) is the image measure of Γ̂(2) by the translation

(h, k) ∈ Rd × Rd 7→ (z1 + h, z2 + k) ∈ Rd × Rd,

so that∫∫
R2×Rd

ϕ2(z′1, z
′
2)Γ(2)(z1, z2, dz

′
1, dz

′
2)

=

∫∫
Rd×Rd

ϕ2(z1 + h, z2 + k)Γ̂(2)(z1, z2, dh, dk).

This is the case investigated in [124, 88].

A very simple N -particle process with generator LN of the form (24) is given in the
following straightforward proposition.

Proposition 2. Let ZNt = (Z1
t , . . . , Z

N
t ) be the N-particle process defined by the three

following rules.

(i) For each (unordered) pair of particles (i, j), consider an independent non homoge-
neous Poisson process with rate λ(Zi

t , Z
j
t )/N .

(ii) Between two jump times, the particles evolve independently according to L(1).

(iii) At each jump time Tij of a pair (i, j), update the states of the particles by:(
Zi
Tij
, Zj

Tij

)
∼ Γ(2)

(
Zi
T−ij
, Zj

T−ij
, dz′1, dz

′
2

)
. (27)

Then the generator of (ZNt )t is LN given by (24) under Assumption 1.

Note that if λ(z1, z2) remains of order 1, the factor 1/N on the right-hand side of (24)
ensures that any particle undergoes on average O(1) collisions per unit of time, which is
crucial to take the limit N → +∞. Let us now describe what this limit may look like.
Ultimately, the goal is to describe the limiting behaviour of the one-particle distribution
function f 1,N

t . More generally, taking a test function of the form

ϕN = ϕs ⊗ 1N−s,

for s < N and ϕs ∈ Cb(Es), the weak Liouville equation (1) becomes:

d

dt
〈f s,Nt , ϕs〉 =

s∑
i=1

〈f s,Nt , L(1) �i ϕs〉+
1

N

∑
1≤i<j≤s

〈f s,Nt , L(2) �ij ϕs〉

+
N − s
N

s∑
i=1

〈f s+1,N
t , L(2) �i,s+1 (ϕs ⊗ 1)〉.
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This equation is not closed and involves the (s+ 1)-marginal. This hierarchy of equations
is called the BBGKY hierarchy (see Section 3.2.1). The nonlinear model associated to
the Boltzmann particle system is obtained by taking the closure:

∀t ≥ 0, ∃ft ∈ P(E), ∀s ∈ N, f s,Nt −→
N→+∞

f⊗st , (28)

which is called the chaos assumption. The fundamental question in this review is to
justify when this property holds. If the chaos assumption holds, then taking s = 1 in the
Liouville equation shows formally that the one-particle distribution converges towards the
weak measure solution f of:

d

dt
〈ft, ϕ〉 = 〈ft, L(1)ϕ〉+ 〈f⊗2

t , L(2)(ϕ⊗ 1)〉,

which is called the general Boltzmann equation. Using Assumption 1, this equation can
be rewritten

d

dt
〈ft, ϕ〉 = 〈ft, L(1)ϕ〉

+

∫
E3

λ(z1, z2)
{
ϕ(z′1)− ϕ(z1)

}
Γ(2)(z1, z2, dz

′
1, E)ft(dz1)ft(dz2), (29)

or in a more symmetric form, using (26):

d

dt
〈ft, ϕ〉 = 〈ft, L(1)ϕ〉

+
1

2

∫
E4

λ(z1, z2)
{
ϕ(z′1) + ϕ(z′2)− ϕ(z1)− ϕ(z2)

}
Γ(2)(z1, z2, dz

′
1, dz

′
2)ft(dz1)ft(dz2) (30)

All the Boltzmann type equations in this review are special instances of this general
equation for a specific choice of λ and Γ(2). Note that the general Boltzmann equation
(29) is written in weak form. Examples of Γ(2) which lead to more classical Boltzmann
type equations used in the modelling of rarefied gas dynamics and written in strong form
are given in Section 2.3.3. Here, we can only formally write the dual version of (29):

∂tft = L(1)?ft +Q(ft, ft),

where Q is called the collision operator which is a (symmetric) quadratic operator on
P(E)× P(E)→M(E), defined weakly, for ϕ ∈ Cb(E), by:

〈Q(µ1, µ2), ϕ〉 =

1

2

∫
E4

λ(z1, z2)
{
ϕ(z′1) + ϕ(z′2)− ϕ(z1)− ϕ(z2)

}
Γ(2)(z1, z2, dz

′
1, dz

′
2)µ1(dz1)µ2(dz2).

Example 7 (Nanbu particle system, continuation of Example 2). The general Boltzmann
equation (29) only depends on the marginals of Γ(2). In other words, the detail of the
interaction mechanism at the particle level is lost in the limit. As a consequence, one can
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construct different mechanisms which lead to the same Boltzmann equation. For instance,
let the marginal of Γ(2) be denoted by:

∀(z1, z2) ∈ E2, Γ(1)(z1, z2, dz
′
1) := Γ(2)(z1, z2, dz

′
1, E).

Let us consider the new post-collisional law:

Γ̃(2)(z1, z2, dz
′
1, dz

′
2)

=
1

2

(
Γ(1)(z1, z2, dz

′
1)⊗ δz2(dz′2) + Γ(1)(z2, z1, dz

′
2)⊗ δz1(dz′1)

)
,

and let us denote by L̃N the new corresponding N -particle generator (with L(1) un-
changed). This is the generator associated to a particle system such that when a collision
occurs, only one particle among the two updates its state (according to the law Γ(1)) while
the state of the other particle remains unchanged. Such mechanism is called a Nanbu in-
teraction mechansim following the terminology of [88, 132]. Nevertheless, one can check
that the Boltzmann equation associated to this process is exactly (29) with an interaction
rate λ replaced by λ/2. In the limit N → +∞, one cannot distinguish this system from
the system where both the particles update their states after a collision.

Note that as explained in Example 2 the Nanbu particle system is also a special case
of a mean-field jump process (see Section 2.2.3) with:

λ(z, µ) =

∫
E

λ(z, z′)µ(dz′) ≡ (λ ? µ)(z),

and

Pµ(z, dz′) =

∫
z′′∈E λ(z, z′′)Γ(1)(z, z′′, dz′)µ(dz′′)∫

z′′∈E λ(z, z′′)µ(dz′′)
.

The two following examples are two variants of the Boltzmann model.

Example 8 (External clock). The authors of [34] consider a model where the time be-
tween two collisions is given by a Poisson process with fixed rate ΛN , Λ > 0, independently
of the particles. When a collision occurs, the pair (i, j) of particles which interact is cho-
sen among all the pairs of particles with probability pi,j(ZNt ), normalised so that for all
ZN ∈ EN ∑

i<j

pi,j(ZN) = 1.

In this case,

LNϕN(ZN) = ΛN
∑
i<j

pi,j(ZN)L(2) �ij ϕN(ZN).

The situation differs from the previous case where a collision rate is attached to each
pair of particles and no normalisation constraint is imposed. Dropping the normalisation
constraint and taking pi,j(ZN) = λ(Zi, Zj)/Λ would give exactly (24). In the case

∀i < j, pi,j(ZN) =
2

N(N − 1)
,
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that is when all the pairs are chosen with the same probability, then the situation is
equivalent to the previous case with all the collision rates equal to the constant Λ. In
[34], propagation of chaos is proved in this case only. It is believable that propagation of
chaos does not hold when interactions are driven by a clock independent of the particles.

Example 9 (Non cutoff models). In this review, we made the choice to distinguish
the jump rate λ and the post-collisional distribution Γ(2). An alternative choice in the
literature (see for instance [124]) is to consider λ ≡ 1 and a collision kernel

Γ(2) : (z1, z2) ∈ E × E 7→ Γ(2)(z1, z2, dz
′
1, dz

′
2) ∈M+(E × E),

which is a positive measure but not necessarily a probability distribution. The collision
rate λ is thus directly encoded in the total mass of the collision kernel. Two cases may
happen, for given z1, z2 ∈ E, either

Γ(2)(z1, z2, E, E) < +∞

or
Γ(2)(z1, z2, E, E) = +∞.

The first case is called the cutoff case. This case is equivalent to the previous case (24)
with Assumption 1 and the following post-collisional law and collision rate:

Γ̃(2)(z1, z2, dz
′
1, dz

′
2) =

Γ(2)(z1, z2, dz
′
1, dz

′
2)

Γ(2)(z1, z2, E, E)
, λ̃(z1, z2) = Γ(2)(z1, z2, E, E).

In the second case, called the non-cutoff case, the lack of integrability means that there are
an infinite number of collisions in finite time. Such system therefore cannot be simulated
by a particle system as in Proposition 2. Nevertheless it still makes sense to consider the
abstract Markov process defined by the generator LN . Non-cutoff models are historically
important as explained in Section 2.3.3. Non-cutoff models are often handled by approx-
imating them by cutoff models. In this review we implicitly consider cutoff models but
we will occasionally specify when a technique can be extended to non-cutoff cases.

The nonlinear limit can also be defined as the solution of a more general martingale
problem.

Definition 2.4 (Nonlinear Boltzmann martingale problem). Let T > 0 and f0 ∈ P(E).
We write I = [0, T ]. We say that fI ∈ P(D([0, T ], E)) is a solution to the nonlinear Boltz-
mann martingale problem with initial law f0 when for any test function ϕ ∈ Dom(L(1)),

Mϕ
t = ϕ(Zt)− ϕ(Z0)−

∫ t

0

{L(1)ϕ(Zs) +Kϕ(Zs, fs)}ds,

is a fI-martingale, where (Zt)t is the canonical process, fs = (Zs)#fI and for µ ∈ P(E)
and z1 ∈ E,

Kϕ(z1, µ) :=

∫∫
E×E

λ(z1, z2){ϕ(z′1)− ϕ(z1)}Γ(1)(z1, z2, dz
′
1)µ(dz2).
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Existence and uniqueness for the nonlinear Boltzmann martingale problem holds under
classical Lipschitz and boundedness assumptions on the parameters. It is a special case
of the model studied in [87]. Note that this martingale problem is also a special case of
the nonlinear mean-field martingale problem (Definition 2.3) with

Lµϕ(z) = L(1)ϕ(z) +Kϕ(z, µ).

This translates the fact that the Boltzmann equation is obtained as the limit of both the
Boltzmann model and the Nanbu particle system which is a special case of mean-field
jump process.

We end this section with a classical useful proposition which states that when the
collision rate λ is uniformly bounded, then the situation is essentially the same as when
it is constant.

Proposition 3 (Uniform clock trick). Assume that

sup
z1,z2∈E

λ(z1, z2) ≤ Λ <∞, (31)

and let (Z̃Nt )t be the process defined by the three following rules.

(i) To each pair of particles is attached an independent Poisson process with rate Λ/N .

(ii) Between two jump times, the particles evolve independently according to L(1).

(iii) When the clock of the pair (i, j) rings at time Tij, then the states of the particles is
updated with probability λ(Z̃i

t , Z̃
j
t )/Λ by:(

Z̃i
T+
ij
, Z̃j

T+
ij

)
∼ Γ(2)

(
Z̃i
T−ij
, Z̃j

T−ij
, dz′1, dz

′
2

)
,

and with probability (1−λ(Z̃i
t , Z̃

j
t )/Λ), nothing happens (this case is called a fictitious

collision).

Then the law of (Z̃Nt )t is equal to the law of the process constructed in Proposition 2.

Proof. Let us compute the generator L̃N of the process (Z̃Nt )t. It holds that

L̃NϕN =
N∑
i=1

L(1) �i ϕN +
1

N

∑
i<j

L̃(2) �ij ϕN ,

with, given ϕ2 ∈ Cb(E2),

L̃(2)ϕ2(z1, z2) = Λ

∫ 1

0

{
1
η≤λ(z1,z2)

Λ

(∫∫
E×E

ϕ2(z′1, z
′
2)Γ(2)(z1, z2, dz

′
1, dz

′
2)

)
+ 1

η≥λ(z1,z2)
Λ

ϕ(z1, z2)
}

dη − Λϕ2(z1, z2)

= Λ× λ(z1, z2)

Λ

∫∫
E×E

ϕ2(z′1, z
′
2)Γ(2)(z1, z2, dz

′
1, dz

′
2)

+ Λ

(
1− λ(z1, z2)

Λ

)
ϕ2(z1, z2)− Λϕ2(z1, z2)

= L(2)ϕ2(z1, z2),

and thus LN = L̃N and the two processes are equal in law.
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2.3.2 Parametric Boltzmann models

In many applications, the post-collisional distribution is explicitly given as the image
measure of a known parameter space (Θ, ν) endowed with a probability measure ν (or a
positive measure with infinite mass in the non cutoff case). Analogously to the case of
mean-field jump models (see Example 4), in this review, we distinguish this particular
class of models and we call them parametric Boltzmann models.

Definition 2.5 (Parametric Boltzmann model). Let be given two measurable functions

ψ1 : E × E ×Θ→ E, ψ2 : E × E ×Θ→ E,

which satisfy the symmetry assumption

∀(z1, z2) ∈ E2, (ψ1, ψ2)(z1, z2, ·)#ν = (ψ2, ψ1)(z2, z1, ·)#ν. (32)

Let the function ψ be defined by

ψ : E × E ×Θ→ E2, (z1, z2, θ) 7→
(
ψ1(z1, z2, θ), ψ2(z1, z2, θ)

)
.

A parametric Boltzmann model with parameters (Θ, ψ) is a Boltzmann model of the form
(24) with Assumption 1 and a post-collisional distribution of the form:

∀(z1, z2) ∈ E2, Γ(2)(z1, z2, dz
′
1, dz

′
2) = ψ(z1, z2, ·)#ν.

The symmetry assumption (32) is the equivalent of (26) in this special case. In par-
ticular, for any two-variable test function ϕ2 ∈ Cb(E2) and any (z1, z2) ∈ E × E,∫∫

E×E
ϕ2(z′1, z

′
2)Γ(2)(z1, z2, dz

′
1, dz

′
2) =

∫
Θ

ϕ2(ψ1(z1, z2, θ), ψ2(z1, z2, θ))ν(dθ)

=

∫
Θ

ϕ2(ψ2(z2, z1, θ), ψ1(z2, z1, θ))ν(dθ),

where the last equality follows from (32). A sufficient condition for (32) to hold is the
case investigated in [145] with:

ψ2(z1, z2, θ) = ψ1(z2, z1, θ).

In terms of particle systems, following Proposition 2, in a parametric model, when a
collision occurs, a parameter θ ∼ ν is sampled first and then the states of the particle is
updated by: (

Zi
T+
ij
, Zj

T+
ij

)
= ψ

(
Zi
T−ij
, Zj

T−ij
, θ

)
.

Example 10 (Symmetrization). Wagner [158] treats the case of particle systems with a
generator of the form: for zN = (z1, . . . , zN) ∈ EN and ϕN ∈ Cb(EN),

LNϕN(zN) =
N∑
i=1

L(1) �i ϕN(zN)

+
1

2N

∑
i 6=j

λ̃(zi, zj)

∫
Θ̃

{
ϕN
(
zN
(
i, j, θ̃

))
− ϕN

(
zN
)}
ν̃(dθ̃), (33)
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where λ̃ : E × E → R+, Θ̃ is a parameter set endowed with a probability measure ν̃ and
zN(i, j, θ̃) is the N dimensional vector whose k component is equal to

zk(i, j, θ̃) =


zk if k 6= i, j

ψ̃1(zi, zj, θ̃) if k = i

ψ̃2(zi, zj, θ̃) if k = j

,

for two given functions ψ̃1, ψ̃2 : E ×E × Θ̃→ E. The main difference with the generator
(24) is that Wagner distinguishes the pairs (i, j) and (j, i) while in (24) we consider
unordered pairs of particles but add the symmetry assumption (26). Consequently, the
double sum in (33) runs over all indices i, j = 1, . . . , N while in the sum (24), it runs over
the indices i < j. Nevertheless, using a simple symmetrization procedure, the model (33)
fits into the previous general framework with

Θ = Θ̃× [0, 1], ν(dθ) = ν̃(dθ̃)⊗ dσ,

where θ = (θ̃, σ) ∈ Θ, dσ is the uniform probability measure on [0, 1] and for z1, z2 ∈ E
we define

λ(z1, z2) =
λ̃(z1, z2) + λ̃(z2, z1)

2
,

ψ1(z1, z2, θ) = 1
σ≤ λ̃(z1,z2)

2λ(z1,z2)

ψ̃1(z1, z2, θ̃) + 1
σ>

λ̃(z1,z2)
2λ(z1,z2)

ψ̃2(z2, z1, θ̃),

ψ2(z1, z2, θ) = 1
σ≤ λ̃(z1,z2)

2λ(z1,z2)

ψ̃2(z1, z2, θ̃) + 1
σ>

λ̃(z1,z2)
2λ(z1,z2)

ψ̃1(z2, z1, θ̃).

One can check that the functions ψ1 and ψ2 satisfy (32) and that the generator (24) of the
associated parametric model (Definition 2.5) is equal to (33). In this case, the Boltzmann
equation (29) reads

d

dt
〈ft, ϕ〉 = 〈ft, L(1)ϕ〉+

1

2

∫
Θ̃×E2

{
λ̃(z1, z2)

[
ϕ
(
ψ̃1(z1, z2, θ̃)

)
− ϕ(z1)

]
+ λ̃(z2, z1)

[
ϕ
(
ψ̃2(z2, z1, θ̃)

)
− ϕ(z1)

]}
ν̃(dθ̃)ft(dz1)ft(dz2),

or equivalently after the change of variables (z1, z2) 7→ (z2, z1),

d

dt
〈ft, ϕ〉 = 〈ft, L(1)ϕ〉+

1

2

∫
Θ̃×E2

λ̃(z1, z2)
{
ϕ
(
ψ̃1(z1, z2, θ̃)

)
+ ϕ

(
ψ̃2(z1, z2, θ̃)

)
− ϕ(z1)− ϕ(z2)

}
ν̃(dθ̃)ft(dz1)ft(dz2). (34)

The introductory section of [158] contains many examples of such models, in particular
models (in Russian) due to Leontovich in the 30’s and Skorokhod in the 80’s that we did
not manage to find. A more recent example inspired by economic models of wealth
distribution [119] is given in [48]. The authors assume E = R with L(1) = 0, λ = 1,
Θ̃ = R4 and

ψ̃1

(
z1, z2, (L,R, L̃, R̃)

)
= Lz1 +Rz2,
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and
ψ̃2

(
z1, z2, (L,R, L̃, R̃)

)
= L̃z2 + R̃z1.

In this model, the state of a particle represents the wealth of an individual and the
parameters (L,R, L̃, R̃) specify how a trade between two individuals affect their wealth.
This model generalises a famous model due to Kac [103] which will be discussed in the
next section. From the modelling point of view, it is more natural to use generators of
the form (33); several additional examples will be given in particular in Section II-5.2.4
for socio-economic models. On the other hand, the generator form (24) will simplify some
computations in Section II-4.

In the parametric framework, the particle system can be advantageously written as
the solution of a system of SDEs driven by Poisson measures. In a famous article, Tanaka
[149] proposed a SDE approach to study the nonlinear Boltzmann system of rarefied gas
dynamics (which will be presented in the next section). He introduced a class of nonlinear
SDEs driven by Poisson random measures which will be described in Section II-4.4. As we
shall see, although it is relatively easy to write a system of coupled SDEs which describes
the particle system, its relationship with Tanaka’s SDE is not completely straightfoward.
Around the same time, Murata [130] tackled the question and proved the propagation of
chaos (for a specific model) using a coupling argument between the two systems of SDEs.
The idea is of course reminiscent of the well-known McKean’s theorem and all the works
reviewed in Section II-3.1 for McKean-Vlasov systems. Note however that Murata’s work
is among the first ones which use the very fruitful idea of coupling to prove propagation
of chaos. His argument is based on a clever but not so easy optimal coupling argument
which seems to have been largely forgotten in the subsequent literature. A recent series
of articles [80, 48, 49] has proposed a more contemporary point of view on the question.
The arguments are very similar to Murata’s but take advantage of the development of
the theory of optimal transport. Let us also mention that these articles seem to be based
on [76] which also introduces an optimal coupling argument reminiscent of Murata’s but
in a different context, namely the derivation of the Landau equation from a system of
interacting diffusion processes. We will continue this discussion in Section II-4.4.

Example 11 (Semi-parametric model). A natural extension of the parametric model
would consider a measure on Θ which depends on the state of the particles, for instance
one can consider a post-collisional distribution of the form∫∫

E×E
ϕ2(z′1, z

′
2)Γ(2)(z1, z2, dz

′
1, dz

′
2)

=

∫
Θ

ϕ2

(
ψ1(z1, z2, θ), ψ2(z1, z2, θ)

)
q(z1, z2, θ)ν(dθ) (35)

where for all z1, z2 ∈ E, q(z1, z2, ·) is a probability density function with respect to the
measure ν ∈ M+(E). Wagner [158] considered such model that will be called semi-
parametric in this review. If there exists M > 0 and q0(θ) a probability density function
with respect to ν such that

∀z1, z2 ∈ E, ∀θ ∈ Θ, q(z1, z2, θ) ≤Mq0(θ), (36)
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then the situation can be reduced to the parametric case thanks to an accept-reject scheme
similar to the one in Proposition 3. Namely in the extended parameter space

Θ̃ = Θ× [0, 1],

endowed with the probability measure q0(θ)dθ ⊗ dη, let us define the function

ψ̃(z1, z2, (θ, η)) =

{ (
ψ1(z1, z2, θ), ψ2(z1, z2, θ)

)
if η ≤ q(z1,z2,θ)

Mq0(θ)

(z1, z2) if η > q(z1,z2,θ)
Mq0(θ)

.

Then up to a time rescaling t→ tM , the parametric model (Θ̃, ψ̃) is equivalent in law to
the semi-parametric model. Note that (36) automatically holds when Θ is compact and
q bounded.

2.3.3 Classical models in collisional kinetic theory

The foundations of kinetic theory lie in the seminal work of Boltzmann and Maxwell who
attempted to understand the large scale behaviour of a gas of particles defined in the
phase space E = Rd × Rd by their position and velocity. Many interactions mechanisms
can be considered, depending on the physical assumptions. The starting point is the
Newton equations satisfied by the N -particle system (ZNt )t, for i ∈ {1, . . . , N},

dX i
t

dt
= V i

t

dV i
t

dt
= −

N∑
j=1

∇V (|Xj
t −X i

t |)
, (37)

where V is a (smooth) repulsive potential, typically an inverse power law. Another impor-
tant system is the hard-sphere system which will be described in Example 15. Without
any other assumption, it is not clear that this set of equations defines a binary collision
process. In fact, it is more reminiscent of a mean-field system without the (crucial) 1/N
scaling in front of the sum. Boltzmann and Maxwell considered the case of dilute gases
(also called rarefied gas), that is gases where the density of particles is so small that in
the sum in (37), there is typically no more than one non-zero term. The dynamics of each
particle is therefore mainly driven by the free transport until the particle comes very close
to another particle which induces a deviation of its trajectory (as well as the trajectory
of the other particle) depending on the potential V . During this process, everything is
deterministic and the only source of randomness comes from the initial condition. The
probabilistic interpretation presented in this section is due to Kac. Boltzmann derived
the equation satisfied by the one-particle distribution when N → +∞. In its most general
form, the Boltzmann equation of rarefied gas dynamics reads (in strong form):

∂tft(x, v) + v · ∇xft

=

∫
Rd

∫
Sd−1

B(v − v∗, σ)
(
ft(x, v

′
∗)ft(x, v

′)− ft(x, v∗)ft(x, v)
)

dv∗dσ, (38)
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where 
v′ =

v + v∗
2

+
|v − v∗|

2
σ

v′∗ =
v + v∗

2
− |v − v∗|

2
σ

, (39)

are the post-collisional velocities. The parameter σ ∈ Sd−1 is often called the scattering
angle. This transformation preserves energy and momentum. The function B : Rd ×
Sd−1 → R+ is of the form

B(u, σ) = Φ(|u|)Σ(θ), (40)

with cos θ = u
|u| · σ, θ ∈ [0, π]. The function Φ is called the velocity cross-section and the

function Σ is called the angular cross-section. The function B is referred as the collision
kernel (in the literature, it is also sometimes called the cross-section). It is customary to
write B(u, σ) ≡ B(|u|, cos θ). Depending on the choice of the potential V , some of the
most important collision kernels derived by Maxwell are listed below.

• (Hard-sphere)
Φ(|u|) = |u|, Σ(θ) = 1. (41)

• (Inverse-power law potentials)

Φ(|u|) = |u|γ, γ =
s− (2d− 1)

s− 1
, s > 2,

and Σ has a non-integrable singularity when θ → 0, so that∫ π

0

Σ(θ)dθ = +∞

• (Maxwell molecules)

Φ(|u|) = 1,

∫ π

0

Σ(θ)dθ = +∞. (42)

• (Maxwell molecules with Grad’s cutoff)

Φ(|u|) = 1,

∫ π

0

Σ(θ)dθ < +∞. (43)

We will not go further into the description of the Boltzmann equation. The interested
reader will find a thorough discussion and analysis of these different models in the reviews
[155, 58] or in the classical books [43, 45]. We also mention the book [44] which contains
a very interesting biography of Ludwig Boltzmann as well as a scientific discussion of the
physics of his time and of his legacy.

This review is focused on the rigorous derivation of the Boltzmann equation from
a system of particles. On the right-hand side of (38), the variable x (position) only
appears as a parameter: this is the limit where collisions between two particles happen
only when the two particles are at the same position. From a mathematical point of
view, this purely local interaction mechanism makes the derivation very difficult if not
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impossible with stochastic tools (see [124]). A deterministic example (Lanford’s theorem)
is nevertheless given in Example 15 and Section II-4.6. Apart from this result we will
focus on simplified mechanisms: either spatially homogeneous Kac models (Example 12
and Example 13) or kinetic mollified models (Example 14). Both cases have a natural
probabilistic interpretation which fits into the framework of Section 2.3.1.

Example 12 (Spatially homogeneous Boltzmann equation). In the case of a spatially
homogeneous problem, the difficulty due to the local interaction does not appear. In this
case the so-called spatially-homogeneous Boltzmann equation of rarefied gas dynamics
describes a gas of particles defined by their velocity only:

∂tf(t, v) =

∫
Rd

∫
Sd−1

B(v − v∗, σ)
(
ft(v

′
∗)ft(v

′)− ft(v∗)ft(v)
)

dv∗dσ, (44)

This last equation can be shown to be the strong form of the Boltzmann equation (29) with
a parametric post-collisional distribution given by the cross-section B. The N -particle
stochastic process associated to this equation is given by Proposition 2. More precisely,
the (spatially-homogeneous) hard-sphere model and the (spatially-homogeneous) model
of Maxwell molecules with Grad’s cutoff fit into the framework of Section 2.3.2 with:

ψ1(v, v∗, θ) = v′, ψ2(v, v∗, θ) = v′∗,

and

λ(v, v∗) = Φ(|v − v∗|)
∫ π

0

Σ(θ)dθ,

Γ(v, v∗, dz
′, dv∗, dv

′
∗) = ψ(v, v∗, ·)#

(
Σ∫ π

0
Σ(θ)dθ

)
.

To be more precise, with this particular choice of the parameters, the weak-form of the
general Boltzmann equation (30) reads:

d

dt
〈ft, ϕ〉

=
1

2

∫
Rd×Rd×Sd−1

{
ϕ(v′) + ϕ(v′∗)− ϕ(v)− ϕ(v∗)

}
ft(v)ft(v∗)B(v − v∗, σ)dvdv∗dσ.

The strong form (44) is obtained thanks to the following classical involutive unit Jacobian
changes of variables which allow to exchange (v, v∗) and (v′, v′∗) :

(v, v∗, σ)→ (v′, v′∗,
~k), (v, v∗)→ (v∗, v),

with ~k = (v − v∗)/|v − v∗| (see [155, Chapter 1, Section 4.5]). The collision kernel B is
invariant by these changes of variables so we can keep its arguments unchanged.

The non-cutoff cases are more difficult to handle due to the non-integrability of the
angular cross-section (see Example 9).
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The following example describes the so-called Kac model, which is a one dimensional
caricature of a gas of Maxwellian molecules. Beyond the relative simplicity of the model,
the seminal article of Kac [103] is of particular importance because it introduces the
mathematical definition of propagation of chaos.

Example 13 (Kac model). Within the framework of Section 2.3.2, the Kac model is
defined in E = R by L(1) = 0 and the post-collisional distribution∫∫

R×R
ϕ2(z′1, z

′
2)Γ(2)(z1, z2, dz

′
1, dz

′
2)

:=
1

2π

∫ π

−π
ϕ2(z1 cos θ + z2 sin θ,−z1 sin θ + z2 cos θ)dθ

and the collision rate λ(z1, z2) = ν = constant. Then the weak Boltzmann equation
becomes

d

dt
〈ϕ, ft〉 =

ν

2π

∫∫
R×R

∫ π

−π
{ϕ(z1 cos θ + z2 sin θ)− ϕ(z1)}ft(dz1)ft(dz2).

With the change of variable (with θ fixed)

(z′1, z
′
2) = (z1 cos θ + z2 sin θ,−z1 sin θ + z2 cos θ),

followed by θ 7→ −θ (both changes of variable have unit jacobian), Kac obtained the
following equation in strong form:

∂tft(z1) =
ν

2π

∫
R

∫ π

−π
{f(z′1)f(z′2)− ft(z1)ft(z2)}dz2dθ.

We refer the reader to [32, 126] for a thorough analysis and discussion of the Kac model
and its generalisations in kinetic theory. Keeping a collision rate λ constant the authors
of [34] generalised the arguments of the proof of the propagation of chaos to a larger
class of models. This generalised result, that we will call Kac’s theorem, will be discussed
in Section II-4.1. As already mentioned in Section 2.3.2, the Kac model is also a special
instance of the model studied in [48] within a framework which will be described in Section
II-4.4.

The work of Kac had a very strong influence on the literature so that Boltzmann
models with L(1) = 0 are sometimes called Kac models, or also homogeneous Boltzmann
models.

Example 14 (Mollified Boltzmann models). The interaction mechanism of a kinetic
particle system is said to be purely local when, within the framework of Section 2.3.1, the
collision rate is taken equal to

λ((x1, v1), (x2, v2)) = δx1,x2 .
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This indicates that two particles interact if and only if they are exactly at the same
position. As explained in [124], the probabilistic interpretation of purely local models is
extremely difficult and one can rather consider the smoothened version:

λ((x1, v1), (x2, v2)) = K(|x1 − x2|),
where K is a smooth mollifier with fixed radius (i.e. a non negative radial function which
tends to zero at infinity and which integrates to one). The post-collisional distribution is
unchanged and acts only on the velocity variable:

Γ(2)(z1, z2, dz
′
1, dz

′
2) ≡ Γ(2)(v1, v2, dv

′
1, dv

′
2)⊗ δx1(dx′1)⊗ δx2(dx′2).

This model is called a mollified Boltzmann model. Its probabilistic treatment is discussed
in [88] and [124]. Note that with a general state space E, all the models in Section 2.3.1
and in particular the one in Proposition 2 are implicitly mollified Boltzmann models.
Most of the models reviewed in Section II-4 are mollified models. Purely local Boltzmann
models can be recovered by letting the mollifier converge to a Dirac deltaK → δ0 (formally
or with a quantitative control). Another example of purely local Boltzmann model is the
hard-sphere system defined in the next Example 15.

Example 15 (Hard-sphere system). A hard-sphere is a spherical particle defined by its
position, its velocity and its diameter ε > 0. Moreover, it is assumed that two hard-spheres
cannot overlap. A system of N hard-spheres is thus defined on the domain:

DN :=
{
zN = (xi, vi)i∈{1,...,N} ∈ (Rd × Rd)N , ∀i 6= j, |xi − xj| ≥ ε

}
.

The dynamics of the hard-sphere system is a special degenerate case of (37) with a van-
ishing potential but with an additional boundary condition which tells what happens on
the boundary of DN , that is when two particles are at a distance ε (the term collision
is here self-explanatory). The collision of two hard-spheres is an elastic collision which
preserves energy and momentum. Starting with a pair of pre-collisional velocities (vi, vj),
writing down the conservation laws leads to the following formula for the post-collisional
velocities:

vi∗ = vi − νi,j · (vi − vj)νi,j

vj∗ = vj + νi,j · (vi − vj)νi,j
, (45)

where νi,j := (xi − xj)/|xi − xj| ∈ Sd−1. This representation is not the same as the
representation (39) but it can be shown that they are actually equivalent [155, Chapter
1, Section 4.6]. Pre-collisional means that (vi, vj) are such that (vi − vj) · νi,j < 0. It
can also be checked that the post-collisional velocities satisfy (vi∗ − vj∗) · νi,j > 0. Note
that this transformation is an involution in the sense that if (vi − vj) · νi,j > 0 (that is
the vi and vj are in a post-collisional configuration), then (45) gives the pre-collisional
velocities. Note also that this dynamical system is completely deterministic.

The large scale behaviour when N → +∞ and ε → 0 is given by the Boltzmann
equation (38) with the hard-sphere cross-section. Under the chaotic assumption (28) at
time t = 0, Lanford’s theorem [108] states that in the Boltzmann-Grad limit Nεd−1 → 1,
(28) also holds for later time. This scaling was introduced by Grad in [85]. The proof of
Lanford’s theorem is extremely difficult. We will briefly review the main ideas in Section
II-4.6. Our presentation will follow closely [82].
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3 Notions about chaos

3.1 Topology reminders: metrics and convergence for probabil-
ity measures

Since propagation of chaos is about the convergence of probability measures, we first need
to present the topological tools that will be constantly used in the following. The content
of this section is fairly classical, most of the results specific to our topic can be found in
[93], see also [96, Section 3.4], [127, Section 2.5], [128, Section 3] or [154]. A more general
overview of the topology of the space of probability measures can be found in the classical
books [157, 16, 135].

3.1.1 Distances on the space of probability measures

Let (E , dE ) be a Polish space. For p ≥ 1, a measure µ in P(E ) admits a finite p-th moment
when there exists x0 ∈ E such that

EX∼µ
[
dE (X, x0)p

]
:=

∫
E

dE (x, x0)pµ(dx) < +∞.

This property does not depend on x0. The space of probability measures with finite p-
th moment is denoted by Pp(E ). The Wasserstein distance on Pp(E ) will be the most
important one in the following.

Definition 3.1 (Wasserstein distances). For p ≥ 1, the Wasserstein-p distance between
the probability measures µ and ν in Pp (E ) is defined by

WdE ,p(µ, ν) := inf
π∈Π(µ,ν)

(∫
E×E

dE (x, y)pπ(dx, dy)

)1/p

= inf
X∼µ
Y∼ν

E [dE (X, Y )p]1/p

where Π(µ, ν) is the set of all couplings of µ and ν, that is to say, the set of probability
measures on E × E with first and second marginals respectively equal to µ and ν.

The total variation distance can be understood as a Wasserstein-1 distance with the
trivial distance dE (x, y) = δx,y.

Definition 3.2 (Total variation norm). The total variation distance between two prob-
ability measures µ and ν in P (E ) is defined by

‖µ− ν‖TV = 2 inf
X∼µ
Y∼ν

P(X 6= Y ).

Since P(E ) can be seen as a subset of the dual space Cb(E )?, natural strong norms on
P(E ) are induced by usual norms on functional spaces. The following proposition links
these distances to dual norms:
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Proposition 4 (Duality formulae). The total variation and Wasserstein-1 distances sat-
isfy:

‖µ− ν‖TV = sup
‖ϕ‖∞≤1

{∫
E

ϕ(x)µ(dx)−
∫

E

ϕ(x)ν(dx)

}
and

Wd,1(µ, ν) = sup
‖ϕ‖Lip,dE

≤1

{∫
E

ϕ(x)µ(dx)−
∫

E

ϕ(x)ν(dx)

}
where

‖ϕ‖Lip,dE
:= sup

x 6=y

|ϕ(x)− ϕ(y)|
dE (x, y)

.

Proof. See [156, Theorem 1.14]

Another important class of dual norms is given by the negative Sobolev norms W−s,p.
Let us emphasize two special cases.

Definition 3.3 (Some negative Sobolev norms). When E = Rd we define the following
norms.

• For µ, ν ∈ P(E ) and s > d
2

‖µ− ν‖2
H−s :=

∫
Rd
|µ̂(ξ)− ν̂(ξ)|2 dξ

(1 + |ξ|2)s
,

where µ̂ is the Fourier transform of µ.

• The dual norm of the Euclidean Lipschitz semi-norm

‖µ− ν‖W−1,∞ := sup
‖ϕ‖W1,∞≤1

〈µ− ν, ϕ〉

where the W 1,∞ Sobolev norm is ‖ϕ‖W 1,∞ = ‖ϕ‖∞ + ‖∇ϕ‖∞.

An important property of the nagative Sobolev norm H−s is its polynomial structure
(see [93, Lemma 2.9]).

Lemma 3.4. The negative Sobolev norm H−s, s > d/2 on Rd satisfies for any µ, ν ∈
P(Rd),

‖µ− ν‖2
H−s =

∫
R2d

Φs(x− y)(µ⊗2 − µ⊗ ν)(dx, dy)

+

∫
R2d

Φs(x− y)(ν⊗2 − ν ⊗ µ)(dx, dy) (46)

where Φs(z) :=
∫
Rd e−iz·ξ(1 + |ξ|2)−sdξ.

Proposition 5 (Comparison of distances). Assume the distance dE to be bounded. The
following uniform topological equivalences hold.
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• The TV distance dominates the Wassertein-1 distance W1.

• ‖ · ‖Lip,dE
is equivalent to ‖ · ‖W 1,∞ (see [93, Equations (2.4) and (2.5)]) and this

implies the same for W1 and ‖ · ‖W−1,∞ distances.

• The W2-distance dominates the W1-distance, and for s > d+1
2

the W1-distance dom-
inates the square of the H−s-distance.

• For measures in Pp(E ) with p > 0 and s ≥ 1, the H−s distance dominates the W1

distance up to a positive exponent.

• For measures in Pp(E ) with p > 2, the W1-distance dominates the W2-distance up
to a positive exponent.

Proof. See [93, Lemma 2.1], which gives a quantitative version of this.

Finally, let F = {ϕk, k ∈ N} be a countable and separating subset of Cb(E ) (see
Definition 3.7 below) and such that ‖ϕk‖∞ ≤ 1 for all k ∈ N. Then the following
expression defines a distance on P(E) for any p ≥ 1

Dp(µ, ν) :=

(
+∞∑
k=1

1

2k
|〈µ− ν, ϕk〉|p

)1/p

. (47)

In the literature, the most encountered distances are D1 and D2 which are used as a
convenient tool to metricise the notion of weak convergence defined below (see Example
16). To conclude, we summarise the main cases of interest for the Wasserstein distance
and other related distances.

Definition 3.5. In problems related to propagation of chaos, the Wasserstein distances
are often used in the following cases.

• When E = E is the state space of the particles, endowed with a distance dE, we do
not specify the dependency in dE:

WdE ,p ≡ Wp

When E = Rd, the bounded moment assumption can be removed by using the
bounded distance d̃E(x, y) := inf(|x− y|, 1).

• When E = Ek, k ∈ N is a product space of the state space (E, dE), unless otherwise
specified we follow [93] and use the normalised distance: for xk = (x1, . . . , xk) and
yk = (y1, . . . , yk),

dEk(x
k,yk) :=

1

k

k∑
i=1

dE(xi, yi),

and we simply write Wd
Ek
,p ≡ Wp. When we use the non-normalised distance

d̃Ek(x
k,yk) :=

k∑
i=1

dE(xi, yi),
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we write Wd̃
Ek
,p ≡ W̃p. In the special case E = Rd endowed with the Euclidean

norm, we will rather use the normalised distance,

dp
Ek

(xk,yk) :=
1

k

k∑
i=1

|xi − yi|p,

and the non-normalised one

d̃p
Ek

(xk,yk) :=
k∑
i=1

|xi − yi|p,

so that W̃ p
p (µ, ν) = kW p

p (µ, ν).

• The continuous path space E = C
(
[0, T ],F

)
is endowed with the uniform topology

dE

(
(Xt)t, (Yt)t

)
:= sup

t∈[0,T ]

dF (Xt, Yt)

Two important cases are F = E and F = Ek for k ∈ N and is useful to note that

C
(
[0, T ], Ek

)
' C

(
[0, T ], E

)k
• The Skorokhod space E = D([0, T ],F ) is endowed with the Skorokhod distance

(see Section A.2). It is often more convenient to use the uniform topology although
it does not make the space complete. However, as the uniform topology is stronger
than the Skorokhod topology, any estimate in Wasserstein distance for the uniform
topology implies the same estimate for the Skorokhod topology, see [4, Section 3].

• When E = P(F ) is a probability space over a space F which is typically one of
the aforementioned spaces, we will mainly encounter three cases:

Wp := WWp,p WD1 := WD1,1 WH−s := WH−s,2

3.1.2 Convergence in the space of probability measures

Since P(E ) is a subset of Cb(E )?, a weak topology is induced by the weak-? topology on
Cb(E )?.

Definition 3.6. (Weak convergence) The weak convergence of a sequence of probability
measures (µN)N towards µ ∈ P(E ) is defined as the related weak-? convergence in Cb(E )?.
More precisely, a sequence of probability measures (µN)N is said to converge weakly
towards µ when

∀ϕ ∈ Cb(E ), 〈µN , ϕ〉 −→
N→+∞

〈µ, ϕ〉.

The corresponding topology is the weakest topology which makes the evaluation maps
ν 7→ 〈ν, ϕ〉 measurable. In probability theory, the related convergence for µN -distributed
random variables is also called convergence in law or convergence in distribution.
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In many examples, the set of continuous bounded test functions is too large and it is
necessary to work with a smaller subspace, for instance the domain of a generator. The
minimal needed assumptions on a subspace of test functions are given by the following
definition (see [74, p.112]).

Definition 3.7 (Separating and convergence determining class). A subset F ⊂ Cb(E ) is
called separating whenever for all µ, ν ∈ P(E ), the condition

∀ϕ ∈ F , 〈µ, ϕ〉 = 〈ν, ϕ〉,

implies that µ = ν. The subset F is said to be convergence determining whenever for any
sequence (µN)N in P(E ) and µ ∈ P(E ), the condition

∀ϕ ∈ F , 〈µN , ϕ〉 −→
N→+∞

〈µ, ϕ〉,

implies that µN → µ weakly. Note that a convergence determining set is also separating
(the converse is false in general).

Example 16. The following sets are convergence determining.

• By the Portmanteau theorem [16, Theorem 2.1], the set UCb(E ) of bounded uni-
formly continuous functions on E is convergence determining (for any equivalent
metric on E ).

• When E is locally compact, the space Cc(E ) of continuous functions with compact
support is convergence determining [74, Chapter 3, Proposition 4.4]. The space
C0(E ) of continuous functions vanishing at infinity is thus also convergence de-
termining. Note that the space P(E ) is not a closed subspace of Cc(E )? (nor of
C0(E )?).

• When E is locally compact, the Stone-Weierstrass theorem implies that C0(E ) is
separable. Thus, any dense countable subset F = {ϕk, k ∈ N} ⊂ C0(E ) is conver-
gence determining. Without loss of generality we can assume that ‖ϕk‖∞ ≤ 1 for all
k ∈ N. Consequently, the distance (47) metricises the weak-convergence. Indeed,
since each term of the series (47) is bounded by 2−k, the convergence Dp(µN , µ)→ 0
as N → +∞ is equivalent to 〈ϕk, µN〉 → 〈µ, ϕk〉 for all k ∈ N. It is also possible
to take ϕk Lipschitz with a Lipschitz constant bounded by 1 for all k ∈ N and
vanishing at infinity.

• In general Cb(E ) is not separable so there is no obvious other countable conver-
gence determining set. There exists nevertheless another classical choice when E is
only separable. By a theorem due to Urysohn, any separable metric space can be
topologically imbedded in [0, 1]N and it is therefore possible to construct on E an
equivalent metric d̃E which makes (E , d̃E ) a totally bounded set. The completion Ẽ
of this space is therefore compact and the set UCb(E ) under this metric is isomor-
phic to the set Cb(Ẽ ) which is separable since Ẽ is compact (by Stone-Weierstrass
theorem). In conclusion, there exists a countable dense subset F = {ϕk, k ∈ N} in
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UCb(E ). Up to replacing ϕk by ϕk/‖ϕk‖∞ one can assume that the ϕk are bounded
by 1 and the distance (47) thus metricises the weak convergence, see [135, Theorem
6.6] and [144, Theorem 1.1.2]. Note that (P(E ), D1) is separable and D1 is equiv-
alent to a complete metric, see the remark which follows [144, Theorem 1.1.2] and
[54, Remark 3.2.2].

• Since the space Lip(E ) is dense in the space Cb(E ), the functions ϕk in the above
examples can be taken Lipschitz (with a Lipschitz constant bounded by 1).

The weak convergence is thus metricised by a D1 distance. Since this distance is weaker
than the Wasserstein-1 distance (it can be seen by Proposition 4), this implies that the
topology induced by the Wasserstein distance is stronger than the topology induced by
the weak convergence. The topology induced by the Wasserstein distance is described by
the following theorem.

Theorem 3.8 (Wassertein topology). Let (E , dE ) be a Polish space and p ≥ 1. The
Wasserstein distance WdE ,p metricises the weak convergence in Pp(E ), defined as the
convergence against bounded continuous test functions and the convergence of the p-th
moments.

Proof. [157, Theorem 6.9]

In the following, an important case is the case E = P(E). Weak convergence of mea-
sures in P(P(E)) is thus defined as the convergence against test functions in Cb(P(E)).
Their representation is not intuitive, except for linear test functions of the kind µ 7→ 〈µ, ϕ〉
where ϕ belongs to Cb (E). The following results (stated in a more probabilistic frame-
work) show that these functions are sufficient to prove weak convergence.

Proposition 6 (Measure-valued convergence inWD1). Let D1 be a distance given by (47)
and Example 16 which metricises the weak convergence on P(E). Consider a sequence
(µN)N of P(E)-valued random variables and another random probability measure µ. The
following properties hold.

(i) If WD1(Law(µN),Law(µ)) → 0 as N → +∞ then (µN)N converges in law towards
µ.

(ii) If E|〈µN − µ, ϕ〉| → 0 as N → +∞ for all ϕ ∈ UCb(E), then it holds that
WD1(Law(µN),Law(µ))→ 0 and (µN)N converges in law towards µ.

Proof. Let us recall [135, Theorem 6.1] that the space of bounded uniformly continuous
functions is convergence determining. Thus, let Φ ∈ Cb(P(E)) be a function which is
uniformly continuous for the metric D1. For any ε > 0, there exists δ(ε) > 0 such that
for any µ, ν ∈ P(E),

D1(µ, ν) ≤ δ(ε)⇒ |Φ(µ)− Φ(ν)| ≤ ε.

The first point then directly stems from the Markov inequality:

|〈Law(µN)− Law(µ),Φ〉| ≤ E|Φ(µN)− Φ(µ)| ≤ ε+ 2‖Φ‖∞P(|Φ(µN)− Φ(µ)| ≥ ε)

≤ ε+
2‖Φ‖∞
δ(ε)

ED1(µN , µ).
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Since this is true for any Law(µN),Law(µ)-distributed random variables µN , µ this finally
gives

|〈Law(µN)− Law(µ),Φ〉| ≤ ε+
2‖Φ‖∞
δ(ε)

WD1(Law(µN),Law(µ)),

and the conclusion follows. For the second point, using the expression (47) for D1 (µN , µ),
the monotonic convergence theorem gives

WD1(Law(µN),Law(µ)) ≤
+∞∑
k=1

1

2k
E|〈µN − µ, ϕk〉|,

and then the dominated convergence theorem concludes the proof.

Remark 7 (Comparison to W1). For E locally compact, it has been proven at the same
time that

WD1(Law(µN),Law(µ)) ≤ sup
‖ϕ‖Lip≤1

E|〈µN − µ, ϕ〉|.

Since

sup
‖ϕ‖Lip≤1

E|〈µN − µ, ϕ〉| ≤ E

[
sup

‖ϕ‖Lip≤1

|〈µN − µ, ϕ〉|

]
= EW1(µN , µ),

this pinpoints, taking the infimum on the Law(µN),Law(µ)-distributed random variables
µN , µ, that W1 is stronger than WD1 and both are stronger than the weak convergence
on P(P(E)).

Corollary 1 (Sufficient conditions in a deterministic case). With the same assumptions
as above, if µ is a deterministic P(E)-valued random variable (i.e. Law(µ) ∈ P(P(E)) is
a Dirac mass), then the following assertions are equivalent.

(i) WD1(Law(µN),Law(µ))→ 0 as N → +∞

(ii) For all bounded uniformly continuous function ϕ on E, E|〈µN − µ, ϕ〉| → 0 as
N → +∞.

The second assertion is also equivalent to E|〈µN−µ, ϕ〉|2 → 0 as N → +∞ for all bounded
uniformly continuous function ϕ on E.

Proof. The direct implication uses the fact WD1 metricises the convergence in law of
measure-valued random variables and that ν 7→ |〈ν − µ, ϕ〉| is continuous for the weak-?
topology on P(E) when µ is deterministic. The converse implication is the second point
of the previous proposition.

The previous results can be found in [63, Section 2] or in [154, Section 5, Lemma 10]
for an equivalent argument in E = Rd. In the previous lemma, only linear test functions
are used. This notion can be generalised by considering the algebra of polynomials on
P(E). Its definition and main properties are stated in the following lemma.
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Lemma 3.9. Let E be a Polish space. For k ∈ N and ϕk ∈ Cb(E
k), the monomial

function of order k on P(E) is defined by:

Rϕk : P(E)→ R, µ 7→ 〈µ⊗k, ϕk〉.

The linear span of the set of monomial functions is called the algebra of polynomial func-
tions on P(E). The following properties hold.

(i) Every monomial is bounded and continuous on P(E) for the weak topology.

(ii) The algebra of polynomial functions is a convergence determining subset of Cb(P(E)).

(iii) If E is compact then the algebra of polynomials is dense in Cb(P(E)).

Proof. (i) First it is clear that every monomial and thus every polynomial is bounded.
Let (µN)N be a sequence in P(E) and µ ∈ P(E) such that µN → µ as N → +∞.
For any k ∈ N, and any tensorized test function ϕk ∈ ϕ1 ⊗ . . . ⊗ ϕk ∈ Cb(Ek), it
holds that

〈µ⊗kN , ϕk〉 =
k∏
j=1

〈µN , ϕj〉 −→
N→+∞

〈µ⊗k, ϕk〉.

Then using [74, Chapter 3, Proposition 4.6], the set Cb(E)⊗k ⊂ Cb(E
k) is con-

vergence determining and thus µ⊗kN → µ⊗k. It implies that for all ϕk ∈ Cb(E
k),

Rϕk(µN)→ Rϕk(µ) and Rϕk is therefore continuous.

(ii) From the first point, the algebra of polynomials is a subset of Cb(P(E)). Let D1

be a metric of the form (47) such that (P(E), D̃1) is a Polish space for a metric

D̃1 which is equivalent to D1. A set of functions F ⊂ Cb(P(E)) is said to strongly
separates points when for every µ ∈ P(E), and δ > 0, there exists a finite set
{Φ1, . . . ,Φk} ⊂ F such that

inf
ν:D1(µ,ν)≥δ

max
1≤j≤k

|Φj(ν)− Φj(µ)| > 0.

Since D1 is equivalent to a complete metric, [74, Chapter 3, Theorem 4.5] states
that F is convergence determining if F strongly separates points. It is thus enough
to prove that the algebra of polynomial functions contains a subset which strongly
separates points. Let (ϕk)k be the sequence of functions in Cb(E) which defines
D1. Then the set {Rϕk , k ∈ N} ⊂ Cb(P(E)) strongly separates points. Indeed, let
µ ∈ P(E), let δ > 0 and let m ∈ N be such that 2−m < δ/4. For any ν ∈ P(E) such
that D1(µ, ν) ≥ δ, it holds that

m∑
k=1

|〈µ, ϕk〉 − 〈ν, ϕk〉| ≥ δ

2
,

and hence max1≤k≤m |〈µ, ϕk〉 − 〈ν, ϕk〉| ≥ δ/(2m). The conclusion follows.

(iii) This follows from the Stone-Weierstrass theorem, since P(E) is compact in this case.
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3.1.3 Entropic convergence

Powerful tools to compare measures are also given by the Kullback-Leibler divergence,
which is traditionally called the relative entropy in our context, and the related Fisher
information.

Definition 3.10 (Entropy, Fisher information and entropic convergence). Given two
probability measures µ, ν ∈ P(E ) (or more generally two measures), the relative entropy
and Fisher information are respectively defined by

H(ν|µ) :=

∫
E

dν

dµ
log

(
dν

dµ

)
dµ, I(ν|µ) :=

∫
E

∣∣∣∣∇ log

(
dν

dµ

)∣∣∣∣2dµ,

where dν/dµ is the Radon-Nikodym derivative and where the Fisher information is well-
defined only when E has a smooth manifold structure. When the two measures are
mutually singular, by convention, the relative entropy and Fisher information are set to
+∞. These quantities are dimensionally super-additive, equality being achieved only for
tensorized distributions, in the sense that given ν ∈ P(E×E ) with marginals ν1, ν2 ∈ P(E )
and µ ∈ P(E ), then

H(ν|µ⊗ µ) ≥ H(ν1|µ) +H(ν2|µ),

equality being achieved if only if ν = ν1 ⊗ ν2. Moreover H(ν|µ) ≥ 0 and H(ν|µ) = 0 if
and only if µ = ν. The entropic convergence of a sequence (µN)N in P(E ) towards µ is
defined by the convergence of the relative entropy:

H(µN |µ) −→
N→+∞

0.

The relative entropy between two probability measures is also called the Kullback-
Leibler divergence.

Remark 8 (Towards dimension free quantities). For µN , νN ∈ P(EN), the normalized
entropy HN(νN |µN) := 1

N
H(νN |µN) can be handful, since it leads to estimates which do

not depend on N when µN = µ⊗N is tensorized; the same holds for W1(µ⊗N , ν⊗N) when
W1 is defined using the normalized distance on EN , see [93, Proposition 2.6]. An extension
to random measures π ∈ P(P(E )) is provided in [93] setting H(π) = Eν∼πH(ν|µ) for a
given µ ∈ P(E ).

The entropic convergence is stronger than the strongest distance.

Proposition 7 (Pinsker inequality). The following inequality implies that the entropy
convergence is stronger than the convergence in total variation norm:

‖µ− ν‖2
TV ≤ 2H(ν|µ). (48)

The link with the Wassertein-2 distance can be recovered through the following propo-
sition.

Proposition 8 (HWI inequality). Under mild assumptions (see [134]), there exists λ > 0
such that

H(ν|µ) ≤ W2(µ, ν)
√
I(ν|µ)− λ

2
W 2

2 (µ, ν).

Further results which link the relative entropy and the distances on P(E ) will be given
in Section 4.4.3. The relative entropy will play an important role in Section 4.4.2.
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3.2 Representation of symmetric particle systems

This section introduces the various points of view to describe a system of particles. So far,
we have mainly discussed the case of finite systems described by theN -particle distribution
function fNt at time t. The first Section 3.2.1 will detail more of its properties. Then, as
the goal is to deal with the limit N → +∞, a framework for infinite particle systems is
needed, this will be described in Section 3.2.2.

3.2.1 Finite particle systems

Let N ∈ N be a fixed finite number of particles. In full generality, there is only one
property of the N -particle distribution function that is always true: at any time and for
any of the models considered, it is a symmetric probability measure on EN (the particle
system is said to be exchangeable). Let us therefore consider in this section a symmetric
probability measure fN ∈ Psym(EN) (in a static framework, it does not depend on the
time). There exist two main representations of fN which are based on this symmetry
assumption.

The marginal distributions and the BBGKY hierarchy.

The symmetry assumption implies that for any k ≤ N , we can define the k-th marginal
distribution on Ek by:

∀ϕk ∈ Cb(Ek), 〈fk,N , ϕk〉 = 〈fN , ϕk ⊗ 1⊗(N−k)〉,

and fk,N ∈ Psym(Ek) is itself a symmetric probability measure. The N -th marginal is
of course the measure fN itself. However, keeping in mind that the final goal is to take
N → +∞, one can consider for any fixed k ∈ N the limit of fk,N in P(Ek), which is not
possible for fN directly since it belongs to a space which depends on N . As we shall see
in the following, it is often enough to treat the case k = 2.

In a dynamic framework, when fNt solves the Liouville equation (1), for each given
k ∈ N, a natural idea is to derive an equation for the k-th marginal distribution by
considering a test function in (1) of the form ϕN = ϕk ⊗ 1⊗(N−k) with ϕk ∈ Cb(Ek). For
Boltzmann models, this computation as already been sketched in Section 2.3.1 and gave:

d

dt
〈fk,Nt , ϕk〉 =

k∑
i=1

〈fk,Nt , L(1) �i ϕk〉+
1

N

∑
1≤i<j≤k

〈fk,Nt , L(2) �ij ϕk〉

+
N − k
N

k∑
i=1

〈fk+1,N
t , L(2) �i,k+1 (ϕk ⊗ 1)〉. (49)

For mean-field systems, let us look at the special linear case:

∀ϕ ∈ F , Lµϕ(x) =

∫
E

L̃xϕ(y)µ(dy),
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where for any x ∈ E, L̃x is a Markov operator on F (such that for all ϕ ∈ F and y ∈ E,

the map x 7→ L̃xϕ(y) is measurable). Then one can check similarly (using the symmetry
of fNt ) that the k-th marginal of the Liouville equation satisfies:

d

dt
〈fk,Nt , ϕk〉 =

1

N

∑
1≤i,j≤k

∫
Ek
L̃xi �i ϕk

(
x̂i,j
)
fk,Nt

(
dxk
)

+
N − k
N

k∑
i=1

∫
Ek+1

L̃xi �i ϕk
(
x̂i,k+1

)
fk+1,N
t

(
dxk+1

)
, (50)

where we recall the notation xk = (x1, . . . , xk) ∈ Ek and for i ≤ k, x̂i,j denotes the vector
in Ek where the i-th element is replaced by xj.

In both equations (49) and (50), the important point to notice is that the leading term
(in N) on the right-hand side depends on the (k + 1)-th marginal. Since fk,Nt depends
on fk+1,N

t for any k < N , this gives a hierarchy of N equations, the N -th one being
the Liouville equation itself. This hierarchy is called the BBGKY hierarchy, from the
names of the mathematicians Bogolioubov, Born, Green, Kirkwood and Yvon. It is more
customary to write the BBGKY in the forward form. For the classical Boltzmann model
of Section 2.3.3, using the notations of (38) and (39), the first equation of the hierarchy
reads,

∂f 1,N
t (x, v) + v · ∇xf

1,N
t

=
N − 1

N

∫
Rd

∫
Sd−1

B(v − v∗, σ)
(
f 2,N
t (x, v′∗, x, v

′)− f 2,N
t (x, v∗, x, v)

)
dv∗dσ.

We refer to the classical reference [45] for a more detailed derivation of the BBGKY
hierarchy associated to this model and to [33] for another class of Boltzmann models.

For the mean-field case, let us consider the diffusion operator in E = Rd given by:

L̃xϕ(y) = K(x, y) · ∇yϕ(y) + ∆yϕ(y),

where K : Rd × Rd → Rd is a symmetric function with K(x, x) = 0 for all x ∈ Rd. Then
the first equation of the BBGKY hierarchy in forward form reads:

∂tf
1,N(x) = −N − 1

N
∇x ·

{∫
Rd
K(x, z)f 2,N

t (x, z)dz

}
+ ∆xf

1,N
t (x).

Note that in both cases, if
f 2,N
t = f 1,N

t ⊗ f 1,N
t , (51)

then, up to the factor (N − 1)/N , the first marginal f 1,N
t solves the nonlinear limit

problem, respectively the Boltzmann equation (38) and the Fokker-Planck equation (12)
(with b(x, µ) = K ? µ(x) and σ =

√
2Id). The relation (51) is called a closure assumption

because under this assumption, the marginals (here the first one) satisfy a closed equation.
The question of Kac’s chaos and the propagation of chaos is precisely to justify this closure
assumption in the asymptotic limit N → +∞. Indeed, the relation (51) is never true since
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it means that any two particles are statistically independent (which is not the case since
they interact).

The BBGKY hierarchy is useful only in the linear cases described above. For general
mean-field models with an operator Lµ which has a more complicated dependence in
µ, it is not possible to derive a BBGKY hierarchy: this procedure would only say that
fk,Nt depends on the whole distribution fNt which is not informative. For the Boltzmann
model described above, the proof of the propagation of chaos and the justification of
the closure assumption (51) are reviewed in Section II-4.6 (this result is the renown
Lanford’s theorem). We also mention that, beyond propagation of chaos, different closure
assumptions than (51) can be considered as an approximating procedure in a numerical
perspective, see for instance [12] for the mean-field model described above.

The empirical measure.

With a more probabilistic point of view, a symmetric measure fN ∈ P(EN) means that
any system XN = (X1, . . . , XN) ∈ EN of fN -distributed random variables is invariant in
law under any permutation of the indexes. Such an exchangeable system is equivalently
described by its (random) empirical measure

µXN =
1

N

N∑
i=1

δXi ∈ P(E), (52)

as this measure contains all the statistical information up to the particle numbering (a
quantitative version is stated in the Lemma 3.11 below). One can immediately see the
advantage of such representation: it is possible to work with only one element which
belongs to the fixed space P(E), in contrast to fN ∈ P(EN) or to the N marginal
distributions. To be completely rigorous, one should work in the quotient space EN/SN ,
whose elements x̄N gather all the permutations of the vector xN ∈ EN . There is the one
to one mapping:

µN : EN/SN → P̂N(E), x̄N 7→ µxN , (53)

where P̂N(E) denotes the space of empirical measures of size N on E. Since µXN ∈
P̂N(E) ⊂ P(E) is a random element, a somehow unfortunate complication arises for the
space of observables Cb(P(E)): in this framework, test functions are continuous bounded
functions on (a subset of) the set of probability measures (endowed with the weak topol-
ogy). This is clearly more difficult to handle than usual test functions on EN or Ek.

Remark 9. Note that the two sets Cb(E
N/SN) and Cb(P̂N(E)) are naturally identified

by taking the composition with the previous map. Moreover, since all the measures
considered are symmetric, integration on EN/SN is equivalent to integration on EN .
This is why, with a slight abuse, the test functions always belong to Cb

(
EN
)
.

From the point of view of measure theory, the representation (52) means that the law
fN is replaced by its push-forward by the map (53) (seen as a map EN → P(E)), defined
by:

FN := (µN)#f
N ∈ P(P(E)).

The following lemma shows that FN is enough to characterise fN .

52



Lemma 3.11 (Approximation rate of marginals). For k ≤ N , let the moment measure
F k,N ∈ P(Ek) be defined by:

∀ϕk ∈ Cb(Ek), 〈F k,N , ϕk〉 =

∫
P(E)

〈ν⊗k, ϕ〉FN(dν).

Then as N → +∞, it holds that:∥∥fk,N − F k,N
∥∥

TV
≤ 2

k(k − 1)

N
. (54)

Coming back to the probabilistic point of view, FN is the law of the random measure
µXN where XN ∼ fN . The moment measures can thus be written

F k,N = E
[
µ⊗kXN

]
,

where this expression is understood in the weak sense, for all ϕk ∈ Cb(Ek),

〈F k,N , ϕk〉 =
〈
E
[
µ⊗kXN

]
, ϕk
〉

= E
[〈
µ⊗kXN , ϕk

〉]
.

Proof. Given a test function ϕk ∈ Cb(Ek), using the symmetry of fk,N , it holds that:〈
EXNµ⊗kXN , ϕk

〉
=

∫
EN

〈
µ⊗k
xN
, ϕk
〉
fN
(
dxN

)
,

and

〈fk,N , ϕk〉 =

∫
EN

1

N !

∑
σ∈SN

ϕk
(
xσ(1), . . . , xσ(k)

)
fN
(
dxN

)
.

Consequently,

∣∣〈fk,N − EXNµ⊗kXN , ϕk
〉∣∣ ≤ sup

xN∈EN

∣∣∣∣∣ 1

N !

∑
σ∈SN

ϕk
(
xσ(1), . . . , xσ(k)

)
−
〈
µ⊗k
xN
, ϕk
〉∣∣∣∣∣.

Moreover,

1

N !

∑
σ∈SN

ϕk
(
xσ(1), . . . , xσ(k)

)
=

1

AkN

∑
i1,...,ik

pairwise distinct

ϕk
(
xi1 , . . . , xik

)
,

and 〈
µ⊗k
xN
, ϕk
〉

=
1

Nk

∑
i1,...,ik

pairwise distinct

ϕk
(
xi1 , . . . , xik

)
+Rk,N ,

where AkN := N !/(N − k)! and RN,k ≤ ‖ϕ‖∞(1 − AkN/N
k). The conclusion follows by

noticing that

1− AkN
Nk
≤ 1−

(
1− k − 1

N

)k
≤ k(k − 1)

N
,

and using Proposition 4.

53



This (elementary) lemma is known at least since [90] where it was used to prove
propagation of chaos (see Section 4.3). This lemma can also be seen as finite system version
of the de Finetti theorem, see [67, Theorem 13]. The case of infinite systems is discussed
in the following section. Note that the result of [67, Theorem 13] is actually an existence
result for a measure FN ∈ P(P(E)) which satisfies (54). Finally the empirical measure
map is an isometry for the Wasserstein distance as shown in the following proposition.

Proposition 9 (Proposition 2.14 in [93]). Let fN , gN be two symmetric probability mea-
sures on EN and let FN = (µN)#f

N and GN = (µN)#g
N be the associated empirical law

in P(P(E)). Then it holds that

W1

(
fN , gN

)
=W1

(
FN , GN

)
.

This result also holds for the Wasserstein-2 distance [40, Lemma 11].

3.2.2 Infinite particle systems and random measures

In the previous section, finite exchangeable particle systems are described either by the
marginal distributions or by the empirical measure. In this section the framework to take
the limit N → +∞ is presented. An infinite set of exchangeable random variables
(X1, X2, . . .) is described by one of the two following objects.

1. The infinite hierarchy of marginals distributions fk ∈ Psym(Ek), k ∈ N such that

fk = Law
(
X1, . . . , Xk

)
.

They satisfy the compatibility relation: for every 1 ≤ j ≤ k,

∀ϕj ∈ Cb(Ej), 〈fk, ϕj ⊗ 1⊗(k−j)〉 = 〈f j, ϕj〉. (55)

In other words, the j-particle marginal of fk is f j.

2. The infinite sequence of random empirical measures of size N , N ∈ N,

µXN =
1

N

N∑
i=1

δXi . (56)

The two representations are linked by the de Finetti and Hewitt-Savage theorems stated
below. Let us first state some preliminary useful results.

Given an infinite system of exchangeable particles (X i)i≥1, important measurable
events are given by two particular σ-algebras.

Definition 3.12 (Symmetric and asymptotic σ-algebras). Let Csym(EN) denote the set of
symmetric continuous R-valued functions on EN which are invariant under permutations
of their arguments.
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• The σ-algebra of exchangeable events (i.e. events which do not depend on any finite
permutation of the X i) is defined by:

S∞ :=
⋂
k≥1

σ
(
σ
(
ϕk(X

1, . . . , Xk), ϕk ∈ Csym(Ek)
)
, Xk+1, Xk+2, . . .

)
,

where we recall that σ(X1, X2, . . .) is the σ-algebra generated by the random vari-
ables X1, X2, . . ..

• The asymptotic σ-algebra (whose events do not depend on any finite number of the
X i) is defined by:

A∞ :=
⋂
k≥1

σ
(
Xk+1, Xk+2, . . .

)
.

The fundamental result for exchangeable systems is the following proposition.

Proposition 10 ([115]). For exchangeable systems, the following equality holds

S∞ = A∞.

Corollary 2 (Hewitt-Savage 0-1 law). In the special case where the X i are i.i.d. variables
(and then automatically exchangeable), then any event in the σ-algebra S∞ or in the σ-
algebra A∞ has measure 0 or 1. This is known as the Kolmogorov 0-1 law for A∞ and
the Hewitt-Savage 0-1 law for S∞.

Since the empirical measures (56) are random measures, a criteria for the convergence
in law in P(P(E)) is often needed; this motivate the following results. A thorough
discussion of the theory of random measures can be found in [54]. An important notion
is the notion of moment measure already introduced earlier and properly defined below.

Definition 3.13 (Moment measures). For k ∈ N, the k-th moment measure of a measure
π ∈ P(P(E)) is defined by:

πk :=

∫
P(E)

ν⊗kπ(dν) = Eν∼π
[
ν⊗k
]
∈ P(Ek).

This definition is understood in the weak sense, so that 〈πk, ϕk〉 = Eν∼π〈ν⊗k, ϕk〉 for any
ϕk in Cb(E

k).

Note that the sequence of moment measures (πk)k satisfies the compatibility property.
They also characterise the convergence in P(P(E)).

Lemma 3.14 (Convergence of random measures). A sequence (πN)N of random measures
in P(P(E)) converges weakly towards π ∈ P(P(E)) if and only if

∀k ≥ 1, πkN −→
N→+∞

πk,

where the convergence is the weak convergence in P(Ek).

55



Proof. The direct implication stems from the fact the maps π 7→ πk are continuous for the
respective weak-? topologies. For the converse, the weak convergence of (πkN)N towards
πk implies that for all ϕk ∈ Cb(E

k), 〈πN , Rϕk〉 → 〈π,Rϕk〉 where Rϕk is the monomial
function:

Rϕk : ν ∈ P(E) 7→
∫
Ek
ϕk(x

1, . . . , xk)ν⊗k(dx1, . . . , dxk) ∈ R.

The conclusion follows from Lemma 3.9.

The following lemma is a useful tightness criterion in P(P(E)); it can be found in [147,
Proposition 2.2 (2.5)], where the first moment measures π1 is referred as the intensity
measure related to π (this terminology reminiscent of the intensity of a Poisson random
measure).

Lemma 3.15 (Tightness for random measures). The tightness of a sequence (πN)N in
P(P(E)) is equivalent to the tightness of the sequence (π1

N)N in P(E).

Proof. The direct implication stems from the fact the map π 7→ π1 is continuous for the
respective weak-? topologies. For the converse, assume the (π1

N)N is tight. For every
ε > 0, there exists a compact subset Kc

ε ⊂ E such that π1
N(Kc

ε) ≤ ε for every N . By the
Markov inequality, for every k ≥ 1 and every N ≥ 1, it holds that

πN

({
ν ∈ P(E), ν

(
Kc
ε(k2k)−1

)
≥ 1

k

})
≤ kπ1

(
Kc
ε(k2k)−1

)
≤ ε

2k
,

so that

πN

(⋂
k≥1

{
ν ∈ P(E), ν

(
Kc
ε(k2k)−1

)
≤ 1

k

})
≥ 1−

∑
k≥1

ε

2k
= 1− ε.

Since the intersection at the last line is a compact subset of P(E), the sequence (πN)N is
tight.

Example 17 (The case of empirical measures). This lemma is particularly interesting
for random empirical measures µXN , since it reduces the question of tightness of (µXN )N
in P(P(E)) to tightness of (X1,N)N in P(E).

The following theorems are the two main results of this section. The first one states
that (the law of) a random measure can always be represented by an infinite exchangeable
particle system. This theorem is due to de Finetti and can be found in [54, Theorem
11.2.1].

Theorem 3.16 (De Finetti representation theorem for random measures). Let π ∈
P(P(E)). Then there exists a sequence (X i)i≥1 of E-valued exchangeable random variables
such that the following properties hold.

(1) For any k ≥ 1, (X1, . . . , Xk) has joint distribution πk.
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(2) The weak limit

µ = lim
k→+∞

1

k

k∑
i=1

δXi ∈ P(E),

exists almost surely and µ is π-distributed.

(3) The random measure µ is S∞-measurable, and conditionally on S∞ the random vari-
ables X i are independent and µ-distributed.

Example 18. A famous example is given in [54]: a de Finetti representation of the
Fleming-Viot measure-valued process is given by the Moran particle system.

Note that the last property says that exchangeability implies conditional independence
and thus exchangeable particles are not so far from i.i.d. variables.

Conversely, an infinite exchangeable particle system is always associated to a unique
element in P(P(E)). The following theorem is also due to de Finetti in the case of
Bernoulli random variables. It has been generalised to any exchangeable Borel measurable
variables in a Polish space by Hewitt and Savage. The following quantitative version of
the Hewitt-Savage theorem is due to [93, Theorem 5.1].

Theorem 3.17 (De Finetti, Hewitt-Savage). Let E be a locally compact Polish space. Let
(fN)N be an infinite sequence of symmetric probability measures on EN , N ∈ N, which
satisfy the compatibility relation (55). Then the following properties hold.

(1) There exists a unique π ∈ P(P(E)) such that:

fN = πN :=

∫
P(E)

ν⊗Nπ(dν).

(2) When E ⊂ Rd is a Borel set, for any s > d/2, the sequence (Law(µXN ))N≥1 is a
Cauchy sequence in P(P(E)) for the distance WH−s (see Definition 3.5) : for any
N,M ≥ 1,

W2
H−s

(
Law(µXN ),Law(µXM )

)
≤ 2‖Φs‖∞

(
1

N
+

1

M

)
,

where Φs is defined by (46) and XN ∼ fN . The limit of this sequence is the measure
π characterised above.

Proof (some ideas). The original argument of Hewitt and Savage is based on the Krein-
Milman theorem and the fact that tensorised measures are extreme points of the convex
set Psym(E). A constructive quantitative approach due to Diaconis and Freedman is
based on the approximation Lemma 3.11, see [67, Theorem 14] in the compact case. An
alternative argument based on the density of polynomial functions in P(E) (thanks to
the Stone-Weierstrass theorem) is due to Pierre-Louis Lions. We refer the interested
reader to [140, Section 2.1] and the references therein. For the second point proved in [93,
Theorem 5.1], the Cauchy-estimates relies on the polynomial structure of the H−s-norm
(46) combined with the observation that fN+M is a transference plan between fM and fN
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(by the compatibility property). It turns the problem into controlling E‖µXN −µXM‖2
H−s

for (XN ,XM) ∼ fN ⊗ fM . Once convergence is shown, the limit is identified by the
moment measures and Lemma 3.11. Convergence can be obtained in stronger metrics
than W2

H−s , see Corollary 5 in the appendix.

3.3 Kac’s chaos

3.3.1 Definition and characterisation

The notion of chaos was introduced in the seminal article of Mark Kac [103].

Definition 3.18 (Kac’s chaos). Let f ∈ P(E). A sequence (fN)N≥1 of symmetric prob-
ability measures on EN is said to be f -chaotic when for any k ∈ N and any function
ϕk ∈ Cb(Ek),

lim
N→+∞

〈fN , ϕk ⊗ 1⊗N−k〉 = 〈f⊗k, ϕk〉. (57)

It means that for all k ∈ N, the k-th marginal satisfies fk,N → f⊗k for the weak topology.
Kac’s chaos can be equivalently defined by considering only tensorized test functions
ϕk = ϕ1 ⊗ . . . ⊗ ϕk, since the algebra of tensorized functions in Cb(E) is a convergence-
determining class according to [74, Chapter 3, Theorem 4.5 and Proposition 4.6, pp.113-
115].

Interpreting fN as the law of an exchangeable system of N particles, the property (57)
means that for any group of k particles, the particles become statistically independent as
N tends to +∞, hence the terminology of chaos. The results of the previous sections on
finite and infinite exchangeable systems lead to the following useful characterization of
Kac’s chaos.

Lemma 3.19. Each of the following assertions is equivalent to Kac’s chaos.

(i) There exists k ≥ 2 such that fk,N converges weakly towards f⊗k.

(ii) The random measure µXN with XN ∼ fN converges in law towards the deterministic
measure f .

This classical result can be found in [147, Proposition 2.2].

Proof. Clearly, Kac’s chaos implies (i). Then using Proposition 6, it can be proved that
(i)⇒ (ii). Let XN ∼ fN . It is enough to prove that for any ϕ ∈ Cb(E),

E
∣∣〈µXN − f, ϕ〉∣∣2 −→

N→+∞
0.

Assume (57) with k = 2; it then also holds for k = 1. Using the symmetry of fN , it holds
that

E
∣∣〈µXN − f, ϕ〉∣∣2 =

1

N2

N∑
i,j=1

E
[
ϕ(X i)ϕ(Xj)

]
− 2

N
〈f, ϕ〉

N∑
i=1

E
[
ϕ(X i)

]
+ 〈f, ϕ〉2

=
1

N
E
[
ϕ(X1)2

]
+
N − 1

N
E
[
ϕ(X1)ϕ(X2)

]
− 2〈f, ϕ〉E

[
ϕ(X1)

]
+ 〈f, ϕ〉2,
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where the symmetry of fN has been used. Since ϕ is bounded, the first term goes to 0 as
N → ∞. The remaining expression vanishes using (57) with k = 1, 2. This proves (ii).
Then the condition (ii) implies Kac’s chaos. If FN := Law(µXN ) → δf , then according
to Lemma 3.14, the k-th moment measure F k,N converges weakly towards f⊗k for every
k ≥ 1. The approximation Lemma 3.11 implies that fk,N converges weakly towards f⊗k

for every k ≥ 1.

Remark 10 (Chaos as a limit of de Finetti representations). Kac’s chaos tells that the
marginals fk,N converge towards the marginals of an infinite system (X i)i≥1 of i.i.d. f -
distributed particles. By the de Finetti and Hewitt-Savage theorems, the sequence of
empirical measures of this latter system converges towards a random measure µ which is
S∞ = A∞-measurable. By the Hewitt-Savage 0-1 law, this σ-algebra is trivial so that µ
is a deterministic measure. The last part of de Finetti representation Theorem 3.16 tells
that conditionally on S∞, the X i are µ-distributed so this allows to conclude Law(µ) = δf .

Remark 11 (Chaos as a law of large numbers). Fix ϕ in Cb(E). Given a bounded
continuous function θ : R→ R, the function ν 7→ θ(〈ν, ϕ〉) is still bounded and weakly-?
continuous on P(E). The convergence in law of µXN towards f thus implies that

ϕ(X1,N) + . . .+ ϕ(XN,N)

N
− E

[
ϕ(X1,N)

]
=
〈
µXN , ϕ

〉
−
〈
f 1,N , ϕ

〉
−→

N→+∞
0,

where the convergence is the convergence in law. This relation is reminiscent of the law
of large numbers. If the X i were moreover i.i.d. (in this case no need to write X i,N , X i

is enough) the law of large numbers would state〈
µXN , ϕ

〉
−→

N→+∞
E
[
ϕ(X1)

]
a.s.,

so that almost surely µXN → Law(X1) weakly. In the general case where particles X i,N

are only exchangeable (no more i.i.d.), Kac’s chaos states an analogous but weaker result
since the convergence of µXN towards f is only weak; but it however differs since f is the
law of a typical particle in the limit system, and not the law of X1,N as in the i.i.d. case,
because X1,N still depends on N (i.e. on the other particles). Fluctuations of 〈µXN , ϕ〉
in the law of large numbers are described through the central limit theorem; the same
can be done for chaos with concentration inequalities and large deviation principles (see
Section II-5.4.1).

Remark 12 (Chaos, limit hierarchy and moment measures). Taking (formally) the limit
N →∞ in the BBGKY hierarchy (Section 3.2.1) gives an infinite set of coupled equations
on (fkt )k≥1 which satisfy the compatibility relation (55). This system is Kac’s chaotic when
this limit hierarchy has the factorisation property, that is to say fkt = f⊗kt for every k ≥ 1;
this implies that the related P(P(E))-representation of the system is δft . This infinite
hierarchy is called the Boltzmann hierarchy in kinetic theory (see [45] and Section II-4.6)
By the Hewitt-Savage Theorem 3.17 it is uniquely associated to an element π ∈ P(P(E)).
We thus point out that the Boltzmann hierarchy coincides with the system of moment
measures of π: this object is also commonly used, in another context, in the study of
measure-valued processes [54].
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The following property will be useful for time-dependent systems, its proof is straight-
forward, see [147, Proposition 2.4].

Proposition 11 (Chaos transportation). Let (fN)N be a f -chaotic sequence and let T :
E → F be a f -almost surely continuous map between Polish spaces. Then the sequence
(T#f

N)N is T#f -chaotic.

3.3.2 Quantitative versions of Kac’s chaos

Kac’s chaos is a non quantitative property which relies only on the weak convergence.
Quantitative (stronger) versions can naturally be defined using the topological framework
of Section 3.1. The following definitions of quantitative chaos can be found in [93]. A
strating point is the notion of chaos in Wasserstein distance. In practise, W2 is well-
adapted to the study of diffusion processes, while W1 is often used for jump processes.

Definition 3.20 (Chaos in Wasserstein-p distance). Let p ∈ N, let (fN)N be a sequence
of symmetric measures on EN and let f ∈ P(E). The following three notions of chaos in
Wasserstein-p distance were introduced in [93]:

• (Wasserstein-p Kac’s chaos). For all k ∈ N,

Ωk

(
fN , f

)
:= Wp

(
fk,N , f⊗k

)
−→

N→+∞
0. (58)

• (Infinite dimensional Wasserstein-p chaos).

ΩN

(
fN , f

)
:= Wp

(
fN , f⊗N

)
−→

N→+∞
0. (59)

• (Wasserstein-p empirical chaos). For XN ∼ fN ,

Ω∞
(
fN , f

)
:=Wp(Law(µXN ), δf ) −→

N→+∞
0, (60)

where Wp is a Wasserstein-p distance on P(P(E)) (see Defintion 3.5 for the con-
ventions used when p = 1, 2).

When moment bounds are available and p = 1, the three notions of chaos (58), (59)
and (60) are actually equivalent. Such a result would not hold if the Wasserstein-1 distance
were replaced by another Wasserstein-p distance.

Theorem 3.21 (Equivalence in Wasserstein-1 distance). Let E = Rd and let q ≥ 1 such
that the sum of moments of order q of f and f 1,N are bounded by a constant Mq ∈ (0,∞).
Then for any constant γ < (d+ 1 + d/q)−1, there exists C = C(d, q, γ) ∈ (0,∞) such that
for any k, ` ∈ {1, . . . , N} ∪ {∞} with ` 6= 1:

Ωk(f
N , f) ≤ CM 1/q

q

(
Ω`(f

N , f) +
1

N

)γ
,

where Ωk and Ω` are defined in Definition 3.20 with p = 1.

60



Proof (some ideas). See [93, Theorem 1.2] and [93, Theorem 2.4]. In particular, the link
between (60) and (59) stems from Proposition 9 which states that

W1

(
fN , f⊗N

)
=W1

(
Law(µXN ),Law(µXN )

)
,

where XN ∼ f⊗N -distributed. Given such XN , W1

(
Law(µX̄N ), δf

)
≤ EW1

(
µX̄ , f

)
and

the quantitative laws of large numbers from [77] can be applied.

Definition 3.22 (Strong entropic and TV chaos). Stronger notions can also be defined
using stronger norms.

• (fN)N is f -TV chaotic when for every k ≥ 1, ‖fk,N − f⊗k‖TV → 0 as N → +∞.

• (fN)N is f -strong entropic chaotic when for every k ≥ 1, H
(
fk,N |f⊗k

)
→ 0 as

N → +∞.

The second one is stronger than the first one by Pinsker’s inequality (48).

In Definition (3.22) and in (58), a stronger convergence can be obtained when the fixed
k ∈ N is replaced by a function k ≡ k(N) which depends on N . In that case, the chaos is
said to hold for blocks of size k(N). The infinite dimensional chaos (60) corresponds to
the case k(N) = N .

When E = Rd (or E ⊂ Rd) is endowed with the Lebesgue measure denoted by σ
below, other stronger versions of Kac’s chaos can also be defined using the notions of
entropy and Fisher information. The following notions can be found in [93].

Definition 3.23 (Entropy and Fisher chaos). Let σN denote the Lebesgue measure on
EN .

• (fN)N is f -entropy chaotic when f 1,N → f weakly and H(fN |σN )
N

→ H(f |σ).

• (fN)N is f -Fisher chaotic when f 1,N → f weakly and I(fN |σN )
N

→ I(f |σ).

Using sharp versions of the HWI inequality, these notions are classified in a quantita-
tive way in [93].

Proposition 12. Each of the below assertions implies the following.

• (fN)N is f -Fisher chaotic.

• (fN)N is f -Kac chaotic with
(
I(fN |σN )

N

)
N

bounded.

• (fN)N is f -entropy chaotic.

• (fN)N is f -Kac chaotic.
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In classical kinetic theory, another important notion of quantitative chaos arises when
the N particles are constrained to evolve on the so-called Kac’s sphere:

EN =
{
vN ∈ RN , |v1|2 + . . . |vN |2 = N

}
⊂ RN ,

or on the Boltzmann’s sphere:

EN =
{
vN ∈ (R3)N , |v1|2 + . . . |vN |2 = N, v1 + . . .+ vN = 0

}
⊂ (R3)N .

In these cases, the adapted notions of entropy chaos and Fisher chaos using a dedicated
sequence of reference measures (σN)N are defined in [93] and [32].

Finally, for any quantitative version of Kac’s chaos, a convergence rate is considered
as optimal (i.e. of the same order of the fluctuations) when it implies:

∀k ∈ N,∀ϕk ∈ Cb(Ek), |〈fk,N , ϕk〉 − 〈f⊗k, ϕk〉| = O(1/
√
N).

3.4 Propagation of chaos

This section finally presents the central concept of this review, the notion of propagation
of chaos, which is a dynamical version of Kac’s chaos. Let us fix a final time T ∈ [0,+∞]
and let us write I = [0, T ]. Let XN

I = (XN
t )t∈I be a time-evolving (stochastic) càdlàg

system of N -exchangeable particles in E with a f0-chaotic initial distribution fN0 ∈ P(EN)
where f0 ∈ P(E). One aims to compare the law of a typical particle with a limit flow
of measures (ft)t∈I , where ft ∈ P(E). The propagation of chaos property is said to hold
when the initial chaos is propagated at later times. This property can hold either at the
level of the law or at the level of trajectories.

Definition 3.24 (Pointwise and pathwise propgation of chaos). Let fN0 ∈ P(EN) be the
initial f0-chaotic distribution of XN

0 at time t = 0.

• Pointwise propagation of chaos holds towards a flow of measures (ft)t ∈ C(I,P(E))
when the law fNt ∈ P(EN) of XN

t is ft-chaotic for every time t ∈ I. Note that
the flow of measures is continuous in time as it is the solution of a PDE, but the
(random) trajectories of the particles are càdlàg.

• Pathwise propagation of chaos holds towards a distribution fI ∈ P(D(I, E)) on the
path space when the law fNI ∈ P

(
D(I, E)N

)
of the process XN

I (seen as a random
element in D(I, E)N) is fI-chaotic.

The pointwise level is the analytical point of view where (ft)t is the solution of a PDE.
At the pathwise level, the limit distribution f[0,T ] is often identified as the solution of a
nonlinear martingale problem.

3.4.1 Quantitative and uniform in time propagation of chaos.

As in Section 3.3.2, it is possible to define quantitative versions of the propagation of
chaos by using any of the quantitative notions of Kac’s chaos. Then, one can wonder if
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the propagation of chaos holds uniformly in time, i.e. independently on T . For instance,
a typical quantitative pointwise propagation of chaos estimate reads:

δ
(
fk,Nt , f⊗kt

)
≤ ε(N, k, T )

(
1 + δ

(
fk,N0 , f⊗k0

))
, (61)

where δ is any of the distances on Ek defined in Section 3.1, k ∈ N is fixed, t ∈ [0, T ]
and ε(N, k, T ) → 0 as N → +∞. Propagation of chaos holds uniformly in time when
ε(N, k, T ) does not depend on T . As we shall see, it is usually possible to prove propaga-
tion of chaos uniformly in time only for physical models which enjoy some conservation
properties. A closely related question when propagation of chaos holds on I = [0,+∞) is
the ergodicity of the process as t → +∞. For instance, one may wonder if it possible to
take the double limit N → +∞ and t→ +∞ in (61). It would be possible for instance if
propagation of chaos held uniformly in time and ft converged towards an equilibrium f∞
as t → +∞. This would give a relaxation estimate on δ(fk,Nt , f⊗k∞ ). This question is of
particular importance in the study of the Boltzmann equation (38) in view of the famous
H-theorem. Relaxation towards equilibrium at the particle level, will be mentioned in
Section II-4.5 for the spatially homogeneous Boltzmann equation (44) and in Section II-
3.1.3 for diffusion processes associated to the granular media and Vlasov-Fokker-Planck
equations. On the other hand, it is sometimes possible to prove that propagation of chaos
does not hold uniformly in time, an example is given in [33, 34].

3.4.2 Pointwise from pathwise.

Pathwise propagation of chaos is more general since it keeps tracks of the whole trajec-
tory of the particles. When pathwise propagation of chaos holds, it implies pointwise
propagation of chaos: since the coordinate maps are continuous, this directly stems from
Proposition 11 (it is also a consequence of the convergence of the finite dimensional dis-
tributions [74, Chpater 3, Theorem 7.8]). Note however, that this does not preserve the
convergence rates. The converse does not always hold (see the counterexample below). In
general, pathwise results are more difficult to obtain and can be proved only on finite time
intervals. Pointwise propagation of chaos provides also more flexibility since it allows to
work on C(I,S), where S may be a subset of P(E) or a larger topological space. For
instance, useful spaces to study fluctuations are the class of tempered distributions in [55]
or negative weighted Sobolev spaces in [124]. In a more analytical perspective, when (ft)t
solves a known PDE, S is more naturally identified to a functional space, for instance a
Sobolev space [102, 128].

3.4.3 Propagation of chaos via the empirical process.

The characterisation of Kac’s chaos via the empirical measure given in Lemma 3.19 implies
that pointwise propagation of chaos is equivalent to the convergence in law of the random
measure µXNt towards the deterministic measure ft for any t ∈ [0, T ]. At the pathwise
level, there are two notions of pathwise empirical propagation of chaos which are presented
below. To begin with, a slightly more general definition of the empirical measure map is
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needed. Given a set E the empirical measure map is defined by:

µE
N : E N → P(E ), xN 7→ µxN .

In the following, E is a Polish space; it will be either the state space E (in which case we
may omit the superscript E as in (53)) or the path space. The following maps link the
pathwise and pointwise properties.

• (The evaluation map). For any t ∈ [0, T ],

XE
t : D([0, T ],E )→ E , ω 7→ ω(t).

• (The projection map).

ΠE : P
(
D([0, T ],E )

)
→ D

(
[0, T ],P(E )

)
, µ 7→

(
(XE

t )#µ
)

0≤t≤T .

The pathwise and pointwise N -particle distributions are linked by

fNt =
(
XE

N

t

)
#f

N
[0,T ] = ΠEN

(
fN[0,T ]

)
(t).

The empirical measure process is the measure-valued process defined by:(
µXNt

)
t
≡
(
µE
N(XN

t )
)
t
.

Since this is the image of a process this readily defines the laws for all t ∈ [0, T ],

FN
t := (µE

N)#f
N
t ∈ P(P(E)),

and the pathwise version:

F µ,N
[0,T ] := (µE

N◦)#f
N
[0,T ] ∈ P(D([0, T ],P(E))),

where µE
N◦ is the natural extension of µE

N on the path space defined by:

µE
N◦ : D([0, T ], EN)→ D([0, T ],P(E)), ω 7→ µE

N ◦ ω.

Hence, it holds that

FN
t = ΠP(E)

(
F µ,N

[0,T ]

)
(t) = (X

P(E)
t )#F

µ,N
[0,T ].

But there is another choice: it is also possible to define the pathwise empirical distribution
as the push-forward of the N -particle pathwise distribution by the empirical map:

FN
[0,T ] := (µDN)#f

N
[0,T ] ∈ P(P(D([0, T ], E))),

where we write D = D([0, T ], E). This probability distribution is linked to FN
t and F µ,N

[0,T ]

by:
F µ,N

[0,T ] = (ΠE)#F
N
[0,T ], FN

t = (X
P(E)
t ◦ ΠE)#F

N
[0,T ].
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In summary, there are three levels of description of the empirical process. In the following
diagram, each space on the top row is a probability space endowed with a probability
measure which is the law of the specific version of the random empirical process in the
bottom row. The spaces are linked by the maps ΠE and X

P(E)
t .(

P(D([0, T ], E)), FN
[0,T ]

)
ΠE−→

(
D([0, T ],P(E)), F µ,N

[0,T ]

)
X
P(E)
t−→

(
P(E), FN

t

)
µXN

[0,T ]
7−→

(
µXNt

)
0≤t≤T 7−→ µXNt

.

This gives three notions of empirical propagation of chaos.

Definition 3.25 (Empirical propagation of chaos). Let (ft)t ∈ C([0, T ],P(E)) be a flow
of measures and let f[0,T ] ∈ P(D([0, T ], E)) be such that for any t ∈ [0, T ],

ft = ΠE(f[0,T ])(t).

There are three notions of empirical propagation of chaos defined below (the convergence
is the weak convergence).

1. (Pointwise empirical propagation of chaos). For all t ∈ [0, T ], the law FN
t satisfies

FN
t −→

N→+∞
δft ∈ P(P(E)). (62)

2. (Functional law of large numbers). The law F µ,N
[0,T ] satisfies

F µ,N
[0,T ] −→N→+∞

δΠE(f[0,T ]) ≡ δ(ft)t ∈ P
(
D([0, T ],P(E))

)
. (63)

3. ((Strong) pathwise empirical propagation of chaos). The law FN
[0,T ] satisfies

FN
[0,T ] −→

N→+∞
δf[0,T ]

∈ P
(
P(D([0, T ], E))

)
. (64)

The (strong) pathwise property (64) is stronger than the functional law of large num-
bers (63) which is stronger than the pointwise property (62).

Remark 13. The functional law of large numbers (63) is also a pathwise property which
is weaker than (64). To distinguish it with the pathwise empirical propagation chaos
(64) we may occasionally call the latter property strong pathwise empirical propagation
of chaos.

The implication (64)⇒(63) is not straightforward because the map ΠE is not continu-
ous everywhere. The result holds because the limit is a Dirac mass, this is proved in [124,
Theorem 4.7] using a result of Léonard [112, Lemma 2.8]. The implication (63)⇒(62) is
more classical, this is the convergence of the finite dimensional distributions stated in [74,
Chapter 3, Theorem 7.8].

The converse implications do not hold in general. In fact, since the map ΠE is not
injective the strong pathwise property is meaningless when only the flow of measures
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(ft)t is known and f[0,T ] is not specified. A counterexample is given in [147, Chapter

1, Section 3(e)]. Sznitman builds two one-dimensional processes XN
[0,T ] and X̃N

[0,T ] such
that for both processes, the strong pathwise empirical propagation chaos holds but with
two different limits f[0,T ] and f̃[0,T ] and with the equality of the flows of time-marginals

ΠE(f[0,T ]) = ΠE(f̃[0,T ]). The process X̃N
[0,T ] is obtained by a re-ordering procedure from

XN
[0,T ] which thus ensures the equality of the empirical measure processes:

∀t ∈ [0, T ], µXNt = µX̃Nt
.

Finally, by Lemma 3.19, the pointwise empirical propagation of chaos is equivalent to
the pointwise propagation of chaos in the sense of Definition 3.24. Similarly, the strong
pathwise empirical propagation of chaos is equivalent to the pathwise propagation of
chaos. On the other hand the functional law of large numbers is an intermediate notion
in between pointwise and pathwise propagation of chaos.

4 Proving propagation of chaos

Several methods are available to prove propagation of chaos. The choice of the method
depends on several aspects, including the following ones.

• How is the particle system defined? A SDE representation allows to control
directly the trajectory of each particle. If the system is an abstract Markov process
defined by its generator only, one has to pass to the limit inside a “statistical object”:
for instance the Liouville equation (1) or a martingale problem (Definition 2.2).

• How well is the limit process known? As mentioned in Section 2.1, it is some-
times possible to prove at the same time the propagation of chaos and an existence
result for the limit object. Many “historical” proofs are based on this idea and ex-
ploit at the particle level a property of completeness (as in McKean’s original proof,
Section II-3.1.1), a compactness criterion based on a martingale formulation (Sec-
tion II-3.3) or an explicit series expansion for the solution of the Liouville equation
in the case of a Boltzmann problem (as in Kac’s original proof, Section II-4.1). Over
the years, the study of the limit problem, in parallel to the question of propagation
of chaos, has stimulated the development of new techniques where wellposedness
results or regularity properties of the limit problem are used to control the particle
system. Ultimately, a trade-off has always to be done between regularity of the
N -particle system and regularity of the limit process. The key idea is to write the
N -particle system and the limit process in a common framework which allows to
compare them.

• Which kind of propagation of chaos? In Sections 3.3 and 3.4, several notions
of chaos and propagation of chaos are introduced. The first distinction to keep in
mind is between pathwise and pointwise properties. Then one may seek quantita-
tive estimates. Pathwise chaos is stronger and it is often simpler to get pointwise
quantitative estimates.
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Keeping these aspects in mind, the present section is organised as follows. Section 4.1
is devoted to an introduction of coupling methods in several cases. These methods (or
most of them) exploit a SDE representation of the particle system (it therefore requires
some regularity at the microscopic level and often a wellposedness result for the limit
system) and lead to the quantitative pathwise or pointwise propagation of chaos. Section
4.2 introduces some ideas to prove the tightness (and thus the compactness) of the law
of the empirical process. This leads to non-quantitative pathwise propagation of chaos
results, but as it is only based on the properties of the generator of the N -particles process,
it remains valid for a wide class of models. A pointwise study of the empirical process
via the asymptotic analysis of its generator is described in Section 4.3. This leads to a
quantitative abstract theorem with a comparable range of applications as the compactness
methods. In Section 4.4, some ideas related to large deviations are presented. It leads to
strong (non quantitative) abstract results which go beyond but include the propagation of
chaos. Although these results are often too strong or too abstract to be used in practise,
the ideas can be reinterpreted to prove propagation of chaos for particle systems with
a very weak regularity or with a complex interaction mechanism which are difficult to
handle with other methods. Finally, in the case of Boltzmann models, specific tools can
be used as described in Section 4.5.

We recall that several applications of these methods will be presented in the second
part of this review, in particular in Sections II-3 and II-4.

4.1 Coupling methods

4.1.1 Definition

Definition 4.1 (Chaos by coupling the trajectories). Let be given a final time T ∈ (0,∞],
a distance dE on E and p ∈ N. Propagation of chaos holds by coupling the trajectories
when for all N ∈ N there exist

• a system of particles (XN
t )t with law fNt ∈ P(EN) at time t ≤ T ,

• a system of independent processes
(
XN
t

)
t with law f⊗Nt ∈ P(EN) at time t ≤ T ,

• a number ε(N, T ) > 0 such that ε(N, T ) −→
N→+∞

0,

such that (pathwise case)

1

N

N∑
i=1

E
[
sup
t≤T

dE
(
X i
t , X

i
t

)p] ≤ ε(N, T ), (65)

or (pointwise case)

1

N

N∑
i=1

sup
t≤T

E
[
dE
(
X i
t , X

i
t

)p] ≤ ε(N, T ). (66)
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By definition of the Wasserstein-p distance (Definition 3.1) and Jensen inequality, the
bounds (65) and (66) imply the infinite dimensional chaos (Definition 3.20), respectively:

Wp

(
fN[0,T ], f

⊗N
[0,T ]

)
−→

N→+∞
0, sup

t≤T
Wp

(
fNt , f

⊗N
t

)
−→

N→+∞
0,

where we recall that the Wasserstein-p distance is associated to the normalised distance
on EN (Definition 3.5). The definition can also be weakened by assuming that only the
first k(N) < N particles are coupled instead of the whole system of the N particles. This
would imply propagation of chaos of the form (58).

Remark 14. Note that by exchangeability of the particles all the expectations in the
sums (65) and (66) are equal and the assertions therefore imply the convergence of the
one-particle distribution in Wasserstein-p distance on P(E).

The coupling between the trajectories also implies the quantitative empirical chaos
stated in the following lemma in the pointwise case. This is a simple application of [77].

Lemma 4.2. Let E = Rd and assume that ft has a bounded moment of order q > p. If
there exists a (pointwise) coupling as in Definition 4.1 then

sup
t≤T
Wp

p

(
FN
t , δft

)
≤ ε(N, T ) + βd(N),

where βd(N) is given by:

βd(N)

= C(p, q)


N−1/2 +N−(q−p)/q if p > d/2 and q 6= 2p
N−1/2 log(1 +N) +N−(q−p)/q if p = d/2 and q 6= 2p
N−p/d +N−(q−p)/q if p < d/2 and q 6= d/(d− p),

for a constant C(p, q) > 0 which depends only on p and q.

Proof. By the triangle inequality, for all t ≤ T ,

Wp
p

(
fµ,Nt , δft

)
≤ EW p

p

(
µXNt , ft

)
≤ EW p

p

(
µXNt , µXNt

)
+ EW p

p

(
µXNt , ft

)
.

The second term on the right-hand side of the last inequality is bounded by βd(N) using
[77, Theorem 1]. Moreover the bound (66) implies that

EW p
p

(
µXNt , µXNt

)
≤ ε(N, T ).

Note that the convergence rate depends on the dimension. When moments of suffi-
ciently high order are available, βd(N) is of the order N−1/2 for p > d/2 and N−p/d for
p < d/2.

We now summarise the most common methods used to construct a coupling in the
sense of Definition 4.1.
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4.1.2 Synchronous coupling.

When the particle system can be written as the solution of a system of SDEs as in (11)
or (20), a simple coupling choice consists in constructing N nonlinear processes by taking
respectively the same Brownian motions and Poisson random measures as those defining
the particle system. This choice is called synchronous coupling.

For the McKean-Vlasov diffusion, the synchronous coupling is thus based on the N

independent processes XN

t = (X
1

t , . . . , X
N

t ) defined as the solutions of the N SDEs:

dX i
t = b

(
X i
t, ft
)
dt+ σ

(
X i
t, ft
)
dBi

t, (67)

for i ∈ {1, . . . , N} where (Bi
t)t is the same Brownian motion as in (11) and where we

recall that ft = Law
(
X i
t

)
. Since the Brownian motions Bi

t are independent, this gives N
independent copies of (13). The Theorem II-3.1 (and Theorem II-3.20) in Section II-3.1.1
will show that this coupling choice leads to an optimal convergence rate (in N) for any
T > 0 but with a constant which depends exponentially in T . This comes from the fact
that comparing the trajectories of (67) and (11) is similar to a stability analysis of the N

processes X i
t − X

i

t. When the coefficients are globally Lipschitz, the classical Gronwall-
based methods imply the stability on any time interval but with an constant which grows
exponentially with the time variable.

The synchronous coupling is by far the most popular choice of coupling method in
the literature since [147]. We point out that this was not the original choice of McKean:
in the seminal work [122], McKean uses a synchronous coupling between the N -particle
system and the subsystem of the N first particles of a system of M > N particles. The
proof thus does not necessitate to prove the well-posedness of the nonlinear SDE (13)
as a preliminary step (since it is never used). It is actually a proof of existence which
constructs a solution of (67) by a completeness argument together with a probabilistic
reasoning (based on Hewitt-Savage 0-1 law) to recover the independence.

Similar ideas can be applied for parametric mean-field jump processes (with or without
simultaneous jumps). Given the N SDEs (20), the synchronous coupling is defined by:

X i
t = X i

0 +

∫ t

0

a
(
X i
s

)
ds

+

∫ t

0

∫ +∞

0

∫
Θ

{
ψ
(
X i
s− , fs, θ

)
−X i

s−

}
1(

0,λ
(
Xi
s−
,fs

)](u) N i(ds, du, dθ), (68)

for i ∈ {1, . . . , N}, where ft = Law
(
X i
t

)
and where the Poisson random measures N i

are the same as in (20). Equation (68) can be extended straightforwardly to the case of
simultaneous jumps (Example 5). It is then possible to prove similar results as in the case
of the McKean-Vlasov diffusion. A complete analysis can be found in [4] (see also Section
II-3.6).

To end this section, let us also mention the recent coupling method introduced in [94]
which reverses the role of the empirical particle system and the nonlinear law. The author
introduces the particle system defined conditionally on XN

t by:

dX̃ i
t = b

(
X̃ i
t , µXNt

)
dt+ σ

(
X̃ i
t , µXNt

)
dB̃i

t.
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Note that the processes X̃ i
t are not independent. More details on how to close the argu-

ment (using a generalised Glivenko-Cantelli theorem for SDEs) will be given in Section
II-3.2.2. The main advantage is that it allows more singular interactions, namely only
Hölder instead of Lipschitz.

Remark 15. Coupling methods should still be possible when no SDE is available, since
it is always possible to write an evolution equation for an observable ϕ

(
XN
t

)
using the

general Itō’s formula for Markov processes (see Section A.3.4). The analog of an SDE can
then be recovered taking for ϕ some coordinate functions.

4.1.3 Reflection coupling for the McKean-Vlasov diffusion.

Except in specific cases (see Section II-3.1.3), it is usually not possible or difficult to get
uniform in time estimates using a synchronous coupling. One reason is that the strategy
can be seen as a stability analysis for the nonlinear system (13) which classically leads to
Gronwall type estimates with a constant which depends exponentially in T . The recently
introduced reflection coupling [71, 72] tries to make a better use of the diffusion part to
get (hopefully) uniform in times estimates under mild assumptions.

To better understand the idea, let us start with the case of two classical diffusion
processes. The solution (Xt, Yt) of the following system of SDEs in Rd is called a coupling
by reflection:

dXt = b(Xt)dt+ σdBt

dYt = b(Yt)dt+ σ(Id − 2ete
T
t )dBt,

where b : Rd → Rd is the (locally Lipschitz) drift function, σ > 0 is a constant and

et = (Xt − Yt)/|Xt − Yt|.

Moreover, after the coupling time T := inf{t ≥ 0, Xt = Yt}, for t ≥ T the processes are
set to Xt = Yt. Let b satisfy for all x, y ∈ Rd,

〈x− y, b(x)− b(y)〉 ≤ −σ
2

2
κ(|x− y|)|x− y|2,

where κ : R+ → R satisfies lim infr→+∞ κ(r) > 0. In order to measure the discrepancy
between the two processes rt := |Xt − Yt|, for any fixed smooth function f , Itō’s formula
gives:

df(rt) = r−1
t 〈Xt − Yt, b(Xt)− b(Yt)〉f ′(rt)dt+ 2σ2f ′′(rt)dt+ dMt,

where Mt is a martingale. Compared to what the synchronous coupling would give,
thanks to Itō’s correction, the coupling by reflection adds a new term in the drift. Using
the assumptions on b, the drift term is now bounded by

2σ2

(
f ′′(rt)−

1

4
rtκ(rt)f

′(rt)

)
.
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If f is such that there exists c > 0 such that for all r ≥ 0

f ′′(r)− 1

4
rκ(r)f ′(r) ≤ − c

2σ2
f(r), (69)

then it gives:
E[f(rt)] ≤ e−ctE[f(r0)]. (70)

The idea of [71] is to introduce a positive concave function f so that df (x, y) := f(|x−y|)
defines a distance on Rd and such that the bound (69) holds. From (70), this finally gives
the following exponential “contraction bound” in Wasserstein distance:

W1,df (µt, νt) ≤ e−ctW1,df (µ0, ν0), (71)

where µt, νt ∈ P(E) are the laws of Xt, Yt at time t ≥ 0. This strategy is successfully
applied in [71, 72] to get quantitative contraction and convergence rates for linear and
nonlinear gradient McKean-Vlasov systems, even in non convex settings.

Coming back to particle systems, in [70, 116], the authors have shown that this idea
can be applied to McKean-Vlasov systems (11) (which can be seen as a classical diffusion
equation in the high-dimensional space RdN). They use a componentwise reflection cou-
pling between a particle system and a system of N independent nonlinear McKean-Vlasov
systems. The analog of the exponential contraction rate (71) thus provides a proof of the
uniform in time propagation of chaos for gradient systems with milder assumptions than
the ones in Section II-3.1.3 obtained with a synchronous coupling. This will be reviewed
in Section II-3.2.1.

Remark 16 (Extension to more general diffusions). This idea is more natural but not
restricted to the case where the diffusion matrix is constant. It can be extended to more
general diffusion matrices by “twisting” the metric in Rd to recover a constant diffusion
matrix in a modified metric. See [71] for additional details as well as [118] for a similar
reasoning in a different context.

4.1.4 Optimal jumps

For mean-field jump processes and Boltzmann models, the particles interact only at dis-
crete (random) times. They update their state according to a sampling mechanism with
respect to a known measure which depends on the empirical measure of the system (see
(18) and (27)). The strategy adopted in [68] for mean-field jump processes (see Section
2.2.3) consists in constructing a trajectorial representation of the particle and the nonlin-
ear systems in which the jumps are coupled optimally. Taking the same sequence of jump
times (T in)n for the particle X i

t and its coupled nonlinear version X i
t, a post-jump state is

sampled for the nonlinear process first:

X i
T in
∼ Pf

Tin

(
X i
T i−n

, dy
)
,

and then the post-jump state for the particle is defined as the image:

X i
T in

= T
(
X i
T in

)
, (72)
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where T is an optimal transfer map for the W1 distance between the jump measures:

T#Pf
Tin

(
X i
T i−n

, dy
)

= PµXN
Ti−n

(
X i
T i−n

, dy
)
,

and
E
∣∣∣X i

T in
−X i

T in

∣∣∣ = W1

(
Pf

Tin

(
X i
T i−n

, dy
)
, PµXN

Ti−n

(
X i
T i−n

, dy
))
.

The existence of the optimal transfer map T is a classical result in optimal transport
theory; it holds under mild assumptions, see [46, 75] and the references therein. Under
Lipschitz assumptions on the jump measure, it can be deduced that

E
∣∣∣X i

T in
−X i

T in

∣∣∣ ≤ C

(∣∣∣X i
T i−n
−X i

T i−n

∣∣∣+W1

(
fT in , µXN

Ti−n

))
. (73)

This crude estimate may be refined when the jump measure has a known expression.
Note that in the case of a parametric model (Example 4), the synchronous coupling of
the Poisson random measures (68) gives an alternative coupling and an explicit transfer
map:

X i
T in

= ψ
(
X i
T i,−n

, fT in , θ
)
, X i

T in
= ψ

(
X i
T i,−n

, µXi

T
i,−
n

, θ
)
, (74)

where θ ∼ ν(dθ) is the same random variable for the two post-jump states. This coupling
is not necessarily optimal but under Lipschitz assumptions on ψ it still implies

E
∣∣∣X i

T in
−X i

T in

∣∣∣ =

∫
Θ

∣∣∣ψ(X i
T i,−n

, fT in , θ
)
− ψ

(
X i
T i,−n

, µXi

T
i,−
n

, θ
)∣∣∣ν(dθ)

≤ C

(∣∣∣X i
T i−n
−X i

T i−n

∣∣∣+W1

(
fT in , µXN

Ti−n

))
.

Both couplings (72) and (74) ensure that the N nonlinear processes (X i
t)t remain

independent, which is crucial. At each jumping time T in, the error between X i
t and X i

t

due to the jump is controlled by (73). A discrete stability analysis then ensures the
propagation of the error exponentially in time. Between the jumps, the trajectories are
either deterministic or can be controlled by a standard synchronous coupling. This proves
the propagation of chaos on any time interval but with a (very) bad behaviour with respect
to time.

For Boltzmann models, the situation is more difficult because two particles “jump” at
the same time. As discussed in Section 2.3.2, it is also not completely straightforward to
build a SDE representation of the nonlinear process. Moreover, contrary to the mean-field
jump processes where the jump measures are typically assumed to have a smooth density,
for Boltzmann models, the jumps are obtained by sampling directly from the empirical
measure of the system. Since this measure is singular but the solution of the Boltzmann
equation is not, an optimal transfer map may not exist. The strategy adopted in [130]
and then in [48, 49, 80] is based on the analysis of the optimal transfer plan (which exists)
between the empirical measure of the particle system and the law of the nonlinear system
at each jump time. This strategy also needs a kind of synchronous coupling for the jump
times. As in the previous cases, propagation of chaos then results from a Gronwall type
estimate with a bad behaviour in time, and in this case only for marginals (or block) of
size k(N) = o(N). This will be discussed more thoroughly in Section II-4.4.
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4.1.5 Analysis in Wasserstein spaces: optimal coupling

The Liouville equation associated to a McKean-Vlasov process with interaction parame-
ters

b(x, µ) ≡
∫
Rd
b(x, y)µ(dy), σ(x, µ) ≡ σId, σ > 0,

can be written:

∂tf
N
t = −∇ · (bNfNt ) +

σ2

2
∆fNt , (75)

where

bN : xN ∈ RdN 7→

(
1

N

N∑
i=1

b(x1, xi), . . . ,
1

N

N∑
i=1

b(xN , xi)

)
∈ RdN .

This equation can be rewritten as a continuity equation:

∂tf
N
t = −∇ ·

((
bN − σ2

2
∇ log fNt

)
fNt

)
. (76)

Similarly, the associated nonlinear McKean-Vlasov equation is a continuity equation in
Rd with velocity vector

b ? fs −
σ2

2
∇ log fs.

Continuity equations are strongly linked to the theory of gradient flows [3, 53], which in
turn provides new insights on the study of McKean-Vlasov processes. In addition to the
present section, see also Section II-3.3.2.

The two recent works [142, 66] are based on a classical result in gradient flow theory
(see for instance [157, Theorem 23.9]) which gives an explicit dissipation rate between
the solutions of two continuity equations. In the present case, it gives an explicit control
of the time derivative of W2(fNt , f

⊗N
t ) in terms of the so-called maximizing Kantorovich

potential ψNt which links the two laws by:

(∇ψNt )#f
⊗N
t = fNt , W 2

2 (fNt , f
⊗N
t ) =

∫
RdN
|∇ψNt (xN)− xN |2f⊗Nt (dxN).

The existence of ψNt is ensured by Brenier’s theorem [157, Theorem 9.4]. This approach of
propagation of chaos follows the work of [19, 20] where the authors have derived explicit
contraction rates in Wasserstein-2 distance for linear Fokker-Planck equations and for the
nonlinear granular media equation (which is the nonlinear mean-field limit associated to
the gradient system (15)). Starting from the same result [157, Theorem 23.9], the authors
of [19, 20] introduced a new transportation inequality, the so-called WJ inequality which
is then exploited at the particle level in [142, 66]. This analysis provides uniform in time
propagation of chaos and convergence to equilibrium results for gradient systems in non
globally convex settings. The work of [142] also provides a new unifying analytical vision
of previous coupling approaches. These techniques will be detailed in Section II-3.2.3.
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4.2 Compactness methods

In this section the main ideas to prove propagation of chaos via compactness arguments
are presented. The main advantage of this approach is its wide range of applicability as it
can be adapted to jump, diffusion, Boltzmann or even mixed models. The main drawback
is that it does not provide any convergence rate.

Compactness methods are based on the empirical representation of the process de-
scribed in Section 3.4. It therefore reduces the problem of the convergence of a sequence
of probability measures on a space which does not depend on N but which in turn is
much more delicate to handle than E as it is itself a probability space. The first approach
described below is the stochastic analysis approach which is by now classical; the second
approach is a more recent analytical approach based on the theory of gradient-flows.

4.2.1 Martingale methods.

Starting from the martingale characterisation of the particle system (Definition 2.2), it is
possible to prove the functional law of large numbers (63) and the strong pathwise empir-
ical propagation of chaos (64) using the traditional sequence of arguments in stochastic
analysis (see for instance [100]).

(1) First prove the tightness of the sequence
(
F µ,N

[0,T ]

)
N

(functional law of large numbers)

or
(
FN

[0,T ]

)
N

(strong pathwise). This will come from usual tightness criteria (see Sec-

tion A.2 and Section II-C) but requires some care regarding the spaces (namely, the
path space with values in a set of probability measures). The classical and more
advanced tools which are used are reminded in Appendix A. By Prokhorov theorem,
it is then possible to extract a converging subsequence towards a limit, respectively
π ∈ P(D([0, T ],P(E))) (functional law of large numbers) or π ∈ P(P(D([0, T ], E)))
(strong pathwise).

(2) Then identify the π-distributed limit points as solutions respectively of the weak limit
PDE or the limit martingale problem. Again, this may require some care, in particular
for càdlàg processes due to the topology of the Skorokhod space.

(3) Finally prove the uniqueness of the solution of the previous problem. Usually well-
posedness (that is existence and uniqueness) can be proved beforehand although ex-
istence is not required (it is automatically provided by the tightness). In conclusion,
π is a Dirac delta at the desired limit point.

Strong pathwise empirical chaos (64) is not significantly harder to prove than the weaker
functional law of large numbers (63) but it requires the uniqueness property of the limit
martingale problem which is a stronger assumption than the corresponding one for the
weak limit PDE. The strong pathwise case is detailed in Méléard’s course [124, Section
4].

This approach is historically linked to the study of the spatially homogeneous Boltz-
mann equation of rarefied gas dynamics (44): Tanaka [150] proved weak pathiwse em-
pirical chaos for hard-spheres and inverse power Maxwellian molecules. Strong pathwise
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empirical chaos is proved in [145] for a class of parametric Boltzmann models which in-
cludes the stochastic hard-sphere model. See also [158] for a functional law of large num-
bers applied to a large class of parametric Boltzmann models. The martingale method
is exploited to treat the case of the McKean-Vlasov diffusion in [146] (with boundary
conditions) and in [133, 83] (functional law of large numbers with general interaction
functions), see also [111]. Strong pathwise empirical chaos is proved for a mixed jump-
diffusion mean-field model in [88, 124]. See also [79, Theorem 4.1] for a strong pathwise
result on a cutoff approximation of a non-cutoff Boltzmann model.

The corresponding results will be detailed in Section II-3.3.1 in the mean-field case
and in Section II-4.3 for Boltzmann models.

4.2.2 Gradient flows.

This second approach gives a pointwise version of the empirical propagation of chaos and
is restricted to the McKean-Vlasov gradient system (15). It is entirely analytical and
exploits recent results of the theory of gradient flows [3, 53, 157]. We briefly recall below
one definition of gradient-flows in a metric space.

Definition 4.3 (Gradient flows in (E , dE )). Let (E , dE ) be a geodesic metric space.

1. (Absolutely continuous curves and metric derivative). A E -valued contin-
uous curve µ : (a, b) ⊂ R → E is said to be absolutely continuous whenever there
exists m ∈ L1

loc(a, b) such that

∀a < s ≤ t < b, dE (µs, µt) ≤
∫ t

s

m(r)dr.

In this case, the limit

|µ′|(t) = lim
s→t

dE (µs, µt)

|t− s|
,

exists for almost every t ∈ (a, b) and is called the metric derivative of µ at the point
t.

2. (Gradient flow). Let T ∈ (0,+∞] and let µ ∈ C([0, T ),E ) be an absolutely
continuous curve. Let us consider λ ∈ R and a λ-convex map F : E → R ∪ {+∞}.
Then µ is called a λ-gradient flow associated to the energy F whenever F(µt) < +∞
for all t ∈ [0, T ) and µ satisfies the following Evolution Variational Inequality (EVI)
:

∀a.e. t ∈ [0, T ), ∀ν ∈ E ,
1

2

d

dt
d2

E (µt, ν) +
λ

2
d2

E (µt, ν) ≤ F(ν)−F(µt). (77)

In the following, gradient flows will be considered in the two cases (E , dE ) = (P2(Rd),W2)
and (E , dE ) = (P2(P2(Rd)),W2). The fundamental result to keep in mind is that evolu-
tionary PDEs, as defined below, have a unique distributional solution which is a gradient-
flow.
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Definition 4.4 (Evolutionary PDEs). An evolutionary PDE is a PDE of the form

∂tρ = ∇ ·
(
ρ∇δF(ρ)

δρ

)
,

where F : P2(Rd)→ R∪{+∞} and where the first variation of F is defined as the unique

(up to an additive constant) measurable function δF(ρ)
δρ

: Rd → R such that the equality

d

dh
F(ρ+ hχ)

∣∣∣
h=0

=

∫
δF(ρ)

δρ
dχ,

holds for every measure χ such that ρ+ hχ ∈ P(Rd) for small enough h.

In a recent article [40], the authors prove the pointwise empirical propagation of
chaos for gradient systems (15) using a gradient flow characterisation of (fNt )t and (FN

t )t
seen as time continuous curves with values respectively in P2(RdN) and P2(P2(Rd)).
The argument is based on a compactness criterion in the space C([0, T ],P2(P2(Rd)))
which follows from Ascoli’s theorem. Under the initial chaos hypothesis, the limit of
(FN

t )t as N → +∞ is also identified as a gradient-flow and is shown to be the curve
(δft)t ∈ C([0, T ],P2(P2(Rd))). Gradient flows are identified by the EVI (77) which plays
a comparable role as the martingale characterisation in a stochastic context.

The results of [40] will be summarised in Section II-3.3.2.

4.3 A pointwise study of the empirical process

This section is devoted to an analytical pointwise study of the empirical process within
the framework developed in [127, 128] following an idea of [90]. We also refer to [126] for
a review of these results.

The goal is to obtain a quantitative control of the evolution of the law FN
t of the

empirical process seen as the law of a P(E)-valued process. This control is obtained via
a careful asymptotic analysis of the infinitesimal generator of the empirical process which
is shown to converge (in a sense to define) towards the generator of the flow of the limit
PDE starting from a random initial condition and also seen as a measure-valued process.
This method is intrinsically very abstract and can be applied to a wide range of models
(in theory, at least to all the models studied in the present review). The main idea traces
back to Grünbaum and his study of the spatially homogeneous Boltzmann hard-sphere
model (44) [90]. However, the seminal article of Grünbaum was incomplete and based
on an unproven assumption (which happened to be false in some cases). The study of
measure-valued Markov processes is in general very delicate. This is mainly due to the
fact that P(E) is only a metric space and not a vector space which causes several technical
problems, the most important one being the precise definition of the notion of infinitesimal
generator. A probabilistic point of view can be found in [54]. In the framework introduced
by [127, 128], a new notion of differential calculus in P(E) is defined in order to give a
rigorous definition of the limit generator. The question of propagation of chaos is then
stated in a very abstract framework which leads to an abstract theorem (Theorem 4.5)
which can be applied to various models after a careful check of a set of five assumptions
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(Assumption 2). Most of these assumptions are related to the regularity of the nonlinear
solution operator semigroup of the limit PDE. A notable application of this method is the
answer to many of the questions raised by Kac in his seminal article [103] related to the
spatially homogeneous Boltzmann equation (44). This will be reviewed in Section II-4.5.

The rest of this section is organised as follows. The generator and transition semi-
group of the empirical process are defined next. An introductory toy example using this
formalism is presented in Subsection 4.3.2. This leads to propagation of chaos for only a
very small class of linear models. The next two Subsections 4.3.3 and 4.3.4 present the
core of the abstract framework and the main difficulties of the approach, in particular the
notion of differential calculus needed to define the limit generator. In the last Subsection
4.3.5 the five assumptions and the abstract theorem of [128] are stated.

4.3.1 The empirical generator.

In Section 3.4, the empirical process has been defined as the image of the N -particle
process by the empirical measure map µN . This process is a P̂N(E)-valued Markov
process and it is possible to define its transition semi-group and generator by pushing-
forward those of the N -particle process. More precisely, the empirical transition semi-
group is given by:

T̂N,tΦ(µxN ) = TN,t[Φ ◦ µN ](xN), (78)

and the empirical generator by:

L̂NΦ(µxN ) = LN [Φ ◦ µN ](xN). (79)

This is a consequence of the identity:

T̂N,tΦ
(
µXNs

)
= E

[
Φ
(
µXNt+s

)
|XN

s

]
= E

[
(Φ ◦ µN)

(
XN
t+s

)
|XN

s

]
= TN,t[Φ ◦ µN ]

(
XN
s

)
.

Note that the empirical semi-group and generator are well defined as operators Cb(P(E))→
Cb(P̂N(E)) and the initial law FN

0 = (µN)#f
N
0 is a probability measure on P̂N(E).

Nonetheless, in order to take the limit N → +∞, it is more convenient to look at the
empirical process as a P(E)-valued process since P̂N(E) ⊂ P(E).

Example 19 (The empirical generator for a mean-field jump process). For mean-field
generators, this simply reads

L̂NΦ(µxN ) =
N∑
i=1

Lµ
xN
�i [Φ ◦ µN ]

(
xN
)
.

In the special case of a mean-field jump process, one has a more explicit formula:

L̂NΦ(µxN ) =
N∑
i=1

∫
E

λ
(
xi, µxN

)[
Φ

(
µxN −

1

N
δxi +

1

N
δy

)
− Φ(µxN )

]
Pµ

xN

(
xi, dy

)
= N

〈
µxN , λ(·, µxN )

∫
E

[
Φ

(
µxN −

1

N
δ· +

1

N
δy

)
− Φ(µxN )

]
Pµ

xN
(·, dy)

〉
.
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4.3.2 A toy-example using the measure-valued formalism

The model presented in this section is a simple introduction to the measure-valued formal-
ism. We follow an idea which was originally suggested to us by P.-E. Jabin. As we shall
see, simple computations can lead to propagation of chaos in the limited case of linear
models. Let us consider XN

t = (X1
t , . . . , X

N
t )t be a PDMP (see Section 2.2.3) defined by

• a deterministic flow:
dX i

t = a(X i
t)dt,

where a is C1 and globally Lipschitz,

• a jump transition kernel P : E × P(E)→ P(E), (x, µ) 7→ Pµ(x, dy),

• a constant jump rate λ ≡ 1.

We take E = Rd for simplicity. From (79), the associated empirical process is a
measure-valued Markov process with generator:

L̂NΦ(µ) = (a · ∇Φ)(µ) +N

∫∫
E×E

{
Φ

(
µ− 1

N
δx +

1

N
δy

)
− Φ(µ)

}
Pµ(x, dy)µ(dx),

where Φ ∈ Cb(P(E)) ⊂ Cb(P̂N(E)) is a test function on P(E) and (a ·∇Φ) is well defined
when Φ is a polynomial. We recall the notation FN

0 (dµ) ∈ P(P(E)) for the initial law
(supported on the set of empirical measures) and FN

t (dµ) ∈ P(P(E)) for the law at

time t of the measure-valued Markov process with generator L̂N . For all test functions
Φ ∈ Cb(P(E)), one can write the evolution equation for the observables of the empirical
process:

d

dt

∫
P(E)

Φ(µ)FN
t (dµ) +

∫
P(E)

Φ(µ)∇ · (aFN
t )(dµ)

= N

∫
E×E×P(E)

{
Φ

(
µ− 1

N
δx +

1

N
δy

)
− Φ(µ)

}
Pµ(x, dy)µ(dx)FN

t (dµ). (80)

The right-hand side is the jump operator and on the left-hand side there is a transport
operator, again well defined for Φ polynomial. Let us also recall the associated nonlinear
jump operator acting on Cb(E) :

Lµϕ(x) :=

∫
E

{ϕ(y)− ϕ(x)}Pµ(x, dy). (81)

Its associated carré du champ operator is denoted by Γµ. Our goal is to try to prove
pointwise empirical propagation of chaos: namely that for any t > 0,

FN
t −→

N→+∞
δft ,

where ft ∈ P(E) is the solution of the following weak PDE:

∀ϕ ∈ Cb(E),
d

dt
〈ft, ϕ〉+ 〈a · ∇ϕ, ft〉 = 〈ft, Lftϕ〉.
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To this purpose, we will try a “direct analytical approach” and compare directly FN
t

to its limit with a weak distance. Note that it is possible to do that because we work
in P(P(E)) which is a space which does not depend on N (it is one of the main clear
advantage of the approach).

Let us consider the distance WD2 , which is the Wasserstein-1 distance on the space
P(P(E)) associated to the distance D2 on P(E) (see Definition 3.5). Since the limit is a
Dirac mass, it holds that

W2
D2

(
FN
t , δft

)
=

∫
P(E)

D2
2(µ, ft)F

N
t (dµ) =

+∞∑
n=1

1

2n

∫
P(E)

〈µ− ft, ϕn〉2FN
t (dµ),

and it is then enough to bound the quantity

gN(t) := sup
‖ϕ‖Lip≤1

∫
P(E)

〈µ− ft, ϕ〉2FN
t (dµ). (82)

Let us fix a test function ϕ ∈ Lip1(E). In order to control the deterministic flow, we
define the (time-dependent) “modified test function” ϕ̃ ≡ ϕ̃(s, x) as the solution of the
backward transport equation: {

∂sϕ̃+ a · ∇xϕ̃ = 0
ϕ̃(s = t, x) = ϕ(x)

(83)

Since a is a globally Lipschitz vector-field, the function ϕ̃ is Lipschitz for all s ≤ t with
Lipschitz semi-norm:

‖ϕ̃‖Lip ≤ e(t−s)‖a‖Lip . (84)

We define

g̃ϕ(s) =

∫
P(E)

〈µ− fs, ϕ̃〉2FN
s (dµ), (85)

where we do not specify the dependency in N for notational simplicity. In order to apply
a Gronwall-like argument, we fix t > 0 and for s < t, thanks to (80), we compute the
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time derivative:

g̃′ϕ(s) =
d

ds

∫
P(E)

〈µ− fs, ϕ̃〉2FN
s (dµ)

=
d

ds

[∫
P(E)

〈µ, ϕ̃〉2FN
s (dµ)− 2〈fs, ϕ̃〉

∫
P(E)

〈µ, ϕ̃〉FN
s (dµ) + 〈fs, ϕ̃〉2

]
=

∫
P(E)

〈µ, ϕ̃〉2∂sFN
s (dµ)− 2〈fs, ϕ̃〉

∫
P(E)

〈µ, ϕ̃〉∂sFN
s (dµ)

− 2〈∂sfs, ϕ̃〉
∫
P(E)

〈µ, ϕ̃〉FN
s (dµ) + 2〈fs, ϕ̃〉〈∂sfs, ϕ̃〉

+ 2

∫
P(E)

〈µ, ϕ̃〉〈µ, ∂sϕ̃〉FN
s (dµ)

− 2〈fs, ∂sϕ̃〉
∫
P(E)

〈µ, ϕ̃〉FN
s (dµ)

− 2〈fs, ϕ̃〉
∫
P(E)

〈µ, ∂sϕ̃〉FN
s (dµ) + 2〈fs, ϕ̃〉〈fs, ∂sϕ̃〉.

Using the fact that for two test functions ϕ1, ϕ2 ∈ Cb(E):∫
P(E)

〈µ, ϕ1〉〈µ, ϕ2〉∂sFN
s (dµ) =

∫
P(E)

{
〈µ, a · ∇xϕ1〉〈µ, ϕ2〉+ 〈µ, ϕ1〉〈µ, a · ∇xϕ2〉

+ 〈µ, ϕ1〉〈µ, Lµϕ2〉+ 〈µ, Lµϕ1〉〈µ, ϕ2〉+
1

N
〈µ,Γµ(ϕ1, ϕ2)〉

}
FN
s (dµ),

a direct computation shows that:

g̃′ϕ(s) =

∫
P(E)

(
〈µ, ϕ̃〉 − 〈fs, ϕ̃〉

)(
〈µ, Lµϕ̃〉 − 〈fs, Lfsϕ̃〉

)
FN
s (dµ)

+
1

N

∫
P(E)

〈µ,Γµ(ϕ̃, ϕ̃)〉FN
s (dµ)

By the arithmetic-geometric mean inequality, we obtain:

g̃′ϕ(s) ≤ 1

2

∫
P(E)

〈µ− fs, ϕ̃〉2FN
s (dµ) +

1

2

∫
P(E)

(
〈µ, Lµϕ̃〉 − 〈fs, Lfsϕ̃〉

)2
FN
s (dµ)

+
1

N

∫
P(E)

〈µ,Γµ(ϕ̃, ϕ̃)〉FN
s (dµ).

The last term on the right-hand side can be controlled using a mild moment assumption:

∃γ > 0, ∀x ∈ E,
∫
E

|x− y|2Pµ(x, dy) ≤ γ,

which implies
Γµ(ϕ̃, ϕ̃) ≤ γ‖ϕ̃‖2

Lip ≤ γe2(t−s)‖a‖Lip .
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we deduce that:

g̃′ϕ(s) ≤ 1

2
g̃ϕ(s) +

γe2(t−s)‖a‖Lip

N
+

1

2

∫
P(E)

(
〈µ, Lµϕ̃〉 − 〈fs, Lfsϕ̃〉

)2
FN
s (dµ). (86)

Unfortunately it is not possible in general to close the argument. One would like to bound
the last term on the right-hand side of (86) by a quantity of the form (85) (possibly with
a different ϕ). This is hopeless in general because (85) depends on (the square of) a linear
quantity in µ but due to the nonlinearity, the collision operator

〈Q(µ), ϕ̃〉 := 〈µ, Lµϕ̃〉

is at least quadratic in µ (or controlled by a quadratic quantity as soon as Pµ is Lipschitz
in µ for a Wasserstein distance). This fact is analogous to the BBGKY hierarchy at the
level of the empirical process. It is possible to close the argument only in linear cases, for
instance when

Pµ(x, dy) =

∫
z∈E

K(y, z)µ(dz)dy,

where K : E ×E → R+ is a fixed symmetric interaction kernel with
∫
E
K(y, z)dy = 1 for

all z ∈ E. In this case the collision operator is a linear operator:

〈Q(µ), ϕ̃〉 = 〈µ,K ? ϕ̃〉 − 〈µ, ϕ̃〉. (87)

Reporting into (86), we get,

g̃′ϕ(s) ≤ 1

2
g̃ϕ(s) +

γe2(t−s)‖a‖Lip

N
+

∫
P(E)

〈µ− fs, ϕ̃〉2FN
s (dµ)

+

∫
P(E)

〈µ− fs, K ? ϕ̃〉2FN
s (dµ).

Since the Lipschitz norm of ϕ̃ is controlled by (84) and that this bound is preserved by
the convolution with K, using (82), we conclude that:

g̃′ϕ(s) ≤ 5

2
gN(s)e2(t−s)‖a‖Lip +

γe2(t−s)‖a‖Lip

N
.

Integrating between 0 and t, and taking the supremum over ϕ on the left-hand side, we
can apply Gronwall lemma and conclude that

W2
D2

(
FN
t , δft

)
≤ gN(t) ≤ C(γ, a, t)

(
W2

D2

(
FN

0 , δf0

)
+

1

N

)
. (88)

Note that the first term on the right-hand side depends only on the initial condition and
can be controlled using [77] : this will determine the final rate of convergence since it is
worst than the optimal rate O(N−1).

Remark 17. Note that despite its relative simplicity, the model (87) has its own interest.
In [34, 33] it is called the “choose the leader” model. In population dynamics, it is also
a time-continuous version of the so-called Moran model [54]. It describes the “neutral”
evolution of a population of individuals where the death and reproduction events happen
simultaneously. The kernel K plays the role of a mutation kernel. A different scaling
which leads to a different limit is presented in Section II-5.4.2.
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4.3.3 The limit semi-group and the nonlinear measure-valued process

The previous approach is too coarse as it tries to compare directly the empirical law FN
t

to its limit δft . By looking only at the expectation of some fixed (though infinitely many)
observables, we do not keep track of the detailed dynamics of the particle system. In this
section we give some insights on an approach which is originally due to Grünbaum [90] but
which is has been made rigorous in [128, 127]. Rather than looking only at the law FN

t ,
the idea is to compare the empirical process and a “nonlinear” measure-valued process
through their semi-groups and generators, thus effectively keeping track of the dynamics.
Note that we could define an “obvious” nonlinear empirical process by taking the image by
µN of N i.i.d. ft-distributed processes. This would lead us to compare F̃N

t = (µN)#f
⊗N
t

to FN
t = (µN)#f

N
t but this would not be simpler than comparing directly fNt to f⊗Nt .

This could be handled by the coupling approach (Section 4.1). Instead, the approach of
[127, 128] considers the nonlinear dynamics in P(E) from the PDE point of view. In the
most abstract setting, the limiting nonlinear law ft is the solution of

∂tft = Q(ft), (89)

where Q is a nonlinear operator. Assuming that this PDE is wellposed, this gives rise to
a nonlinear time-continuous semi-group (St)t≥0 acting on P(E) such that the solution of
(89) is given as:

ft = St(f0),

where f0 ∈ P(E) is the initial condition and

St+s = St ◦ Ss = Ss ◦ St, ∂tSt = Q ◦ St.

From the stochastic point of view, the operator St is the dual of the transition operator
T f0
t of a nonlinear Markov process in the sense of McKean (see Appendix A.4). The main

observation is that the deterministic dynamics (89) can be seen as a stochastic process
in P(E), for instance, it is possible to choose a random initial condition: although it is
expected to be a given f0 ∈ P(E), it is also natural to take as initial condition the same
as the one of the empirical process, that is a random empirical measure with N points
sampled from fN0 . Remember that fN0 is assumed to be initially f0-chaotic. With this
choice, the goal is to compare the empirical process

(
µXNt

)
t

and the nonlinear process(
St(µXN0 )

)
t
. The laws of these processes in P(P(E)) at time t > 0 are respectively given

by:
FN
t = (µN)#S

N
t (fN0 ), FN

t := (St ◦ µN)#f
N
0 , (90)

where SNt denotes the N -particle semigroup acting on P(EN), so that fNt = SNt (fN0 ). The
semigroups (SNt )t and (St)t describe the forward dynamics of the probability distributions.
The dynamics of the observables is described by the dual operators acting on the space
of test functions on Cb(P(E)). As explained at the beginning of this section, for the
particle dynamics, everything is given in terms of (TN,t)t which is the semigroup acting
on Cb(E

N/SN). For the nonlinear system, the following operator is defined in [128, 127]:

∀Φ ∈ Cb(P(E)), ∀ν ∈ P(E), T∞,tΦ(ν) := Φ
(
St(ν)

)
, (91)
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so that ∫
EN

T∞,tΦ
(
µxN

)
fN0
(
dxN

)
=
〈
FN
t ,Φ

〉
=

∫
EN

Φ
(
St
(
µxN

))
fN0
(
dxN

)
.

Note that the dependence on N is only in the initial condition. On the other hand, it
holds that: ∫

EN
T̂N,tΦ

(
µxN

)
fN0
(
dxN

)
=
〈
FN
t ,Φ

〉
,

so very loosely speaking, the goal is to prove the convergence of the semi-groups:

T̂N,t −→
N→+∞

T∞,t.

In a classical setting, the convergence of a sequence of semi-groups acting on a set of test
functions over a Banach space is solved by Trotter [152] by proving the convergence of the

generators. The generator L̂N associated to T̂N,t is defined by (79), although its image is

restricted to the subdomain Cb(P̂N(E)) ⊂ Cb(P(E)). The generator of (T∞,t)t is much
more delicate to define because P(E) is only a metric space and not a Banach space. Its
precise and rigorous definition is one of the main contributions of [128, 127]. We will give
insights on this later, but for now let us assume that it is possible to define a generator
L∞ on a sufficiently large subset of Cb(P(E)) and such that for Φ in this subset,

d

dt
T∞,tΦ = L∞[T∞,tΦ] = T∞,tL∞Φ. (92)

We now briefly explain how generator estimates will give an estimate on the discrepancy
between FN

t and FN
t . First, using Lemma 3.11, it is sufficient to look at the moment

measures F k,N
t , F k,N

t ∈ P(Ek) for all k ∈ N. Let ϕk ∈ Cb(Ek) be a test function and let

Rϕk(ν) ≡ Φk(ν) := 〈ν⊗k, ϕk〉,

be the associated polynomial function. We recall that the operators TN,t and LN are
directly linked to their empirical versions (78), (79) by µN and the linear transpose map:

µT
N : Cb(P(E))→ Cb

(
EN
)
, Φ 7→ Φ ◦ µN .

By definition, it holds that:〈
F k,N
t , ϕk

〉
=
〈
FN
t ,Φk

〉
=
〈
fN0 , TN,t[Φk ◦ µN ]

〉
=
〈
fN0 , TN,t[µ

T
NΦk]

〉
,

and 〈
F k,N
t , ϕk

〉
=
〈
FN
t ,Φk

〉
=
〈
fN0 , T∞,tΦ ◦ µN

〉
=
〈
fN0 ,µ

T
N [T∞,tΦk]

〉
.

The difference between these two quantities is controlled by using the formula for 0 ≤ t ≤
T :

TN,tµ
T
N − µT

NT∞,t = −
∫ t

0

d

ds

[
TN,t−sµ

T
NT∞,s

]
ds

=

∫ t

0

TN,t−s
[
LNµT

N − µT
NL∞

]
T∞,sds,
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which leads to the following bound:∣∣∣〈F k,N
t ϕk

〉
−
〈
F k,N
t , ϕk

〉∣∣∣ ≤ ∫ t

0

∣∣〈fN0 , TN,t−s[LNµT
N − µT

NL∞
]
T∞,sΦk

〉∣∣ds
=

∫ t

0

∣∣〈fNt−s, [LNµT
N − µT

NL∞
]
T∞,sΦk

〉∣∣ds
=

∫ t

0

∣∣〈fNt−s,LN [T∞,sΦk ◦ µN ]− L∞[T∞,sΦk] ◦ µN

〉∣∣ds
≤ T sup

0≤t≤T

∥∥∥(L̂N [T∞,tΦk]− L∞[T∞,tΦk]
)
◦ µN

∥∥∥
∞
. (93)

At this point, in order to obtain a convergence bound in N , a generator estimate is needed
to compare the behaviour of the empirical generator L̂N to the one of L∞ against T∞,tΦk

(the map µN is just an artefact to write this comparison in EN).

Remark 18. The estimate (93) can be made more uniform in time as soon as the particle
system preserves some quantity m : EN → R+, in which case (93) becomes:∣∣∣〈F k,N

t ϕk
〉
−
〈
F k,N
t , ϕk

〉∣∣∣
≤ sup

0≤t≤T

∥∥∥ 1

m

(
L̂N [T∞,tΦk]− L∞[T∞,tΦk]

)
◦ µN

∥∥∥
∞

∫ T

0

〈fNt−s,m〉ds.

In Section 4.3.5 we will review the abstract theorem of [128] which shows how to recover
propagation of chaos in the usual framework from an estimate on (93). Before doing that,
we give more insights on the definition of the generator L∞ within the framework of [128].

4.3.4 More on the limit generator

As an introductory example, let us consider a mean-field generator of the form (6) and a
tensorized test function of order two:

ϕ2 = ϕ1 ⊗ ϕ2,

as well as the associated polynomial function on P(E) defined by Φ2(ν) = 〈ν⊗2, ϕ2〉.
We recall that it is not a restriction to consider tensorized test functions [74, Chapter 3,
Theorem 4.5 and Proposition 4.6, pp.113-115]. Then, a direct computation which is
detailed in Lemma II-A.1 (a similar computation is also used in the proof of Theorem
II-3.10) gives:

LN [Φ2 ◦ µN ](xN) = 〈µxN , LµxNϕ
1〉〈µxN , ϕ

2〉+ 〈µxN , ϕ
1〉〈µxN , LµxNϕ

2〉

+
1

N

〈
µxN ,ΓLµ

xN
(ϕ1, ϕ2)

〉
,

where Γ is the carré du champ operator. In order to have

‖(L̂N [Φ2]− L∞[Φ2]) ◦ µN‖∞ −→
N→+∞

0,
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the operator L∞ should necessarily satisfy:

L∞Φ2(ν) = 〈ν, Lνϕ1〉〈ν, ϕ2〉+ 〈ν, ϕ1〉〈ν, Lνϕ2〉.

This computation is generalised (see Lemma II-A.2) to any k-fold tensorized test function

ϕk = ϕ1 ⊗ . . .⊗ ϕk,

and the operator L∞ is defined against monomial functions by:

L∞Φk(ν) =
k∑
i=1

〈Q(ν), ϕi〉
∏
j 6=i

〈ν, ϕj〉, (94)

where Φk(ν) = 〈ν⊗k, ϕk〉 and with a slight abuse of notation, we write

〈Q(ν), ϕ〉 ≡ 〈ν, Lνϕ〉,

for the integral of a test function ϕ against Q(ν) (which is not a probability measure).
The relation (94) can be extended to any polynomial by linearity. We would also get the
same relation (with a different operator Q) for a Boltzmann operator (see Lemma II-A.3).

A natural idea would be to use the relation (94) as a definition of an operator acting
on polynomials and then extend it to the completion of the space of polynomials, which
is a large Banach subset of Cb(P(E)). However, this would not necessarily imply that
the right-hand side of (93) goes to zero for any Φ (since for a given polynomial, the
convergence implied by Lemma II-A.2 may not be uniform in the degree or number of
monomials) and proving this convergence does not seem to be an easy task. We recall
that the final goal is to apply L∞ to the test functions

T∞,tΦk(ν) =
〈
St(ν)⊗k, ϕk

〉
, (95)

which are not polynomial in general. In particular, the relation (94) needs to be extended
to be able to write

L∞Φk(ν) =
k∑
i=1

〈
Q
(
St(ν)

)
, ϕi
〉∏
j 6=i

〈
St(ν), ϕj

〉
,

in order to have (92).

Remark 19. The stochastic point of view gives more insight on the form of the nonlinear-
ity in (95). Under the assumption that ft is the law of a nonlinear Markov process in the
sense of McKean (see Appendix A.4), one can write the dual form when ϕk = ϕ1⊗. . .⊗ϕk:

T∞,tΦk(ν) =
k∏
i=1

〈
ν, T νt ϕ

i
〉
, (96)

where T νt is the nonlinear transition operator of the process. Up to the dependency of
T νt on the measure argument ν, the test function T∞,tΦk is thus close to be a polynomial.
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When T νt does not depend on ν, ft = S(f0) is the law of a classical time homogeneous
Markov process and thus satisfies a linear equation. In this case, everything is much
simpler because the operator T∞,t acts on the space of polynomial and it is not necessary
to extend L∞ to a larger subspace of Cb(P(E)). One could actually bypass the definition
of the limit generator. Note also that the linear case is the framework of our toy example
in Section 4.3.2. Unfortunately, in the nonlinear case, the dual backward form (96) does
not really seem to be more helpful since T νt has no reason to behave well with respect to
its measure argument. We finally point out that all the argument in [128, 127] is more
general as it is entirely based on (95) and does not use the fact that ft is the law of
a nonlinear Markov process in the sense of McKean (even though it is the underlying
application case).

In his seminal article [90], Grünbaum originally relies on a clever completion of the
space of polynomial functions. He then identifies L∞ and proves the convergence of the
generators on a class C ′ of “continuously differentiable functions” on P(E). In order to
apply Trotter’s result on T∞,t, Grünbaum uses an unproven smoothness assumption on the
nonlinear operator St which ensures that (95) belongs to the class C ′. This assumption
has since been proved to be false for some models.

The generator L∞ is rigorously defined in [128, 127] using a new notion of differential
calculus on the space P(E) that is very briefly sketched below. The fundamental idea is to
consider a distance on P(E) inherited from a normed vector space G. Let mG : E → R+

be given together with the weighted subspace of probability measures:

PG(E) := {f ∈ P(E), 〈f,mG〉 < +∞}.

The weight function mG may typically be a polynomial function (in which case PG is
the space of probability measures with a bounded moment) but may also depend on the
normed vector space G which is assumed to contain the space of increments:

IPG(E) :=
{
f1 − f2, f1, f2 ∈ PG(E)

}
⊂ G. (97)

This naturally defines a distance on PG(E) by:

∀f1, f2 ∈ PG(E), dG(f1, f2) := ‖f1 − f2‖G.

Several examples and their relation with the distances defined in Section 3.1 are detailed
in [128, Section 3.2]. With this notion of distance, a test function Φ : PG(E) → R is
said to be continuously differentiable at f ∈ PG(E) when there exists a continuous linear
application dΦ[f ] : G → R and a constant C > 0 such that:

∀g ∈ PG(E),
∣∣Φ(g)− Φ(f)− 〈dΦ[f ], g − f〉G′,G

∣∣ ≤ CdG(f, g). (98)

Note that the bracket in the inequality is the duality bracket between G ′ and G. The main
difference with the usual notion of differentiability in a Banach space is that the space
of increments (97) has no vectorial structure. More details on this notion of differential
calculus is given in [128, Section 3.3 and Section 3.4] with a special focus on polynomial

86



functions. This definition can be extended to higher order differentiability and to functions
with values in PG̃(E) instead of R (which is the case of the operator St).

The definition of L∞ then directly comes from the differentiation of the definition of
the pullback semigroup (91): let Φ be a continuously differentiable function on PG(E),
then for all ν ∈ PG(E), by the composition rule (see [128, Lemma 3.12]), it holds that:

L∞Φ(ν) =
d

dt
T∞,tΦ(ν)

∣∣∣
t=0

=
d

dt
Φ
(
St(ν)

)∣∣∣
t=0

=

〈
dΦ[ν],

d

dt
St(ν)

∣∣∣
t=0

〉
= 〈dΦ[ν], Q(ν)〉. (99)

This computation is almost rigorous up to the assumption that Q(ν) ∈ G. The pre-
cise assumptions on (St)t which make this computation fully rigorous are given by [128,
Assumption (A2)] and will be summarised in the next section.

Example 20 (Generators estimate for jump processes). Quite formal computations may
also motivate the introduction of a proper notion of differential calculus on P(E) and lead
to generators estimates. Taking the example of jump processes, we have seen that:

L̂NΦ(µxN ) =
N∑
i=1

∫
E

λ
(
xi, µxN

)[
Φ

(
µxN −

1

N
δxi +

1

N
δy

)
− Φ(µxN )

]
Pµ

xN

(
xi, dy

)
.

The term in the integral is precisely of the form (98) with an increment of size 1/N .
Assuming that it is possible to differentiate Φ, we get:

L̂NΦ(µxN )

=
N∑
i=1

∫
E

λ
(
xi, µxN

)[〈
dΦ(µxN ),− 1

N
δxi +

1

N
δy

〉
+ o

(
1

N

)]
Pµ

xN

(
xi, dy

)
= 〈dΦ(µxN ), Q(µxN )〉+ o(1) = L∞Φ(µxN ) + o(1),

where Q is given in the weak form by the left-hand side of (19) (with a = 0).

4.3.5 The abstract theorem

The main theorem [128, Theorem 2.1] is based on the following set of assumptions. The
first one is the only one which concerns the particle system (it is always implicitly as-
sumed). The second and third ones are motivated by the previous sections. The fourth
and fifth ones are stated more informally, more details on their role will be given in the
sketch of the proof of the main theorem.

Assumption 2. The following assumptions are respectively numbered (A1) to (A5) in
[128].

(1) (On the particle system). The N-particle semigroup (TN,t)t≥0 is a strongly con-
tinuous semigroup on Cb(E

N) with generator LN .
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(2) (Existence of the pull-back semigroup). There exists a Banach space G such
that the nonlinear semigroup (St)t on PG(E) is Lipschitz for the distance dG uniformly
in time. The operator Q : PG(E)→ G is bounded and δ-Hölder for a δ ∈ (0, 1]. This
implies the existence of the limit generator L∞ defined by (99) (see [128, Lemma
4.1]).

(3) (Generators estimate). There exists a sequence ε(N) such that ε(N) → 0 as
N → +∞ and such that for sufficiently regular test functions Φ on PG(E),∥∥(L̂NΦ− L∞Φ) ◦ µN

∥∥
∞ ≤ ε(N)‖Φ‖Ck,1(PG(E)), (100)

where ‖ · ‖Ck,1(PG(E)) is a norm related to the notion of higher order differentiability.

(4) (Differential stability of the nonlinear semigroup). The nonlinear semi-group
(St)t is differentiable (for the generalised version of the notion of differentiability
mentioned above) and its derivatives are uniformly controlled in time.

(5) (Weak stability of the nonlinear semigroup). For a Banach space G̃ possibly
different from G, the nonlinear semi-group is Lipschitz for the distance dG̃. More
generally this can be replaced by the existence of a concave modulus of continuity
ΘT : R+ → R+ such that for all f0, g0 ∈ PG̃(E),

sup
0≤t≤T

dG̃
(
St(f0), St(g0)

)
≤ ΘT

(
dG̃(f0, g0)

)
.

The following abstract theorem is stated and proved in [128, Theorem 2.1].

Theorem 4.5 (The abstract theorem in [128]). Let Assumption 2 hold true. Let T > 0,
k ∈ N and N ≥ 2k. Then there exist a continuously embedded subset F ⊂ Cb(E) and
some absolute constants C,C(T ) > 0 such that for any tensorized test function

ϕk = ϕ1 ⊗ . . .⊗ ϕk ∈ F⊗k,

it holds that:

sup
0≤t≤T

∣∣〈fk,Nt − f⊗kt , ϕk
〉∣∣ ≤ C

k2‖ϕk‖∞
N

+ k2C(T )‖ϕk‖F1ε(N)

+ k‖ϕk‖F2ΘT

(
WdG̃

(
FN

0 , δf0

))
, (101)

where ε(N) is defined in Assumption 2(3), WdG̃
is a Wassertein distance on the space

P(P(E)) related to G̃ given by Assumption 2(5) and ‖ · ‖F1 and ‖ · ‖F2 are some norms
on Cb(E

k) which are defined in the complete version of Assumption 2 (see [128, Section
4]).

Proof (main ideas). The proof in [128] relies on three main steps:

• Approximate fk,Nt by F k,N
t thanks to Lemma 3.11.
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• Approximate f⊗kt = S⊗kt (f0) by EXN0 S
⊗k
t (µNX0

) = F k,N
t . Since initial chaos µNX0

→ f0

is assumed, this should stem from the regularity on the limit equation.

• Compare the time evolution of F k,N
t to the one of F k,N

t , which motivates the content
of Section 4.3.3 and Section 4.3.4.

We recall that F k,N
t and F k,N

t are the moment measures (Definition 3.13) associated
to the laws FN

t and FN
t defined by (90). Each of the three terms on the right-hand side

of (101) thus comes from the splitting:〈
fk,Nt − f⊗kt , ϕk

〉
=
〈
fk,Nt − F k,N

t , ϕk
〉

+
〈
F k,N
t − F k,N

t , ϕk
〉

+
〈
F k,N
t − f⊗kt , ϕk

〉
. (102)

The first term on the right-hand side is handled with rate O(k2N−1) by the approximation
Lemma 3.11, using purely combinatorial arguments. The second term is technically the
most difficult one. Assumption 2(2) gives a precise meaning of the relation (93) formally
derived earlier. The role of Assumption 2(3) is thus self-explanatory and Assumption
2(4) ensures that Φ = T∞,tΦk has enough regularity to be taken as a test function in
(100). The third term contains two approximations: the first one is how well the initial
data is approximated by a (random) empirical measure and then how well this error is
propagated in time, which is Assumption 2(5).

Applications of the abstract Theorem 4.5 to classical models can be found in [128].
The assumptions are rigorously justified for Maxwell molecules with cut-off (see Section
2.3.3), the classical McKean-Vlasov diffusion (with a non-optimal convergence rate) and
a mixed jump-diffusion model. The main advantage of this abstract method is its wide
range of applicability, although each model requires a careful and dedicated verification of
the five assumptions. The choice of the different spaces G indeed strongly depends on the
structure of the model. In the companion paper [127], the abstract method is developed
in a more general framework: the five assumptions are modified to include conservation
relations in order to treat the case of Boltzmann models with unbounded collision rates,
possibly uniformly in time. The results will be summarised in Section II-4.5.

Remark 20 (BBGKY hierarchy, statistical solution and limit generator). We previously
made the remark that taking the limit N → +∞ in the BBGKY hierarchy (49) or (50)
leads to an infinite hierarchy of equations called the Boltzmann hierarchy (Remark 12). By
the Hewitt-Savage theorem, at every time t > 0, the Boltzmann hierarchy is associated
to a unique πt ∈ P(P(E)) which is sometimes called a statistical solution of the limit
problem. In [127, section 8], the authors show that for cutoff Boltzmann models, given
an initial π0 ∈ P(P(E)), the statistical solution πt is the unique solution to the evolution
equation

∂tπ = L∞πt,

where L∞ is the formal adjoint of the limit generator L∞ on Cb(P(E)). It means that πt
satisfies the weak equation

∀Φ ∈ Cb(P(E)),
d

dt
〈πt,Φ〉 = 〈πt,L∞Φ〉.
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When π0 = δf0 , there exists a unique statistical solution which is chaotic in the sense
that this solution is equal to δft where ft solves the nonlinear PDE. As already explained
many times, this fact is equivalent to the propagation of chaos. Moreover it is proven in
[127, section 8] that the operators which generate (in a sense which is made rigorous) the
BBGKY-hierarchy converge towards the generators of the processes related to moment
measures of πt. However it should be noted that in general there exists many other
statistical solutions. The notion of statistical solution is an important notion in fluid
mechanics, where it originates.

4.4 Large Deviation Related Methods

Various approaches related to large deviations theory are investigated here. It is possible
to motivate them by looking back at Remark 11, which suggests that chaos can be seen
as a kind of weak law of large numbers, as it implies the weak convergence:

〈µXN , ϕ〉 − EXN
[
ϕ
(
X1,N

)]
−→

N→+∞
0.

When a strong law of large numbers holds, it is natural to look at the fluctuations of
〈µXN , ϕ〉 by establishing some weak central limit theorem. Nonetheless one can look at
this issue the other way round, trying to deduce some weak law of large numbers from a
fluctuation result. Indeed, the usual central limit theorem implies a weak version of the
law of large numbers, although the latter is classically proven using quite different tools.
Note however that if one is only interested in the law of large numbers, a large deviation
result may be quite overworked. Moreover, quantitative results which usually out of the
scope of large deviations theory which focuses on asymptotic results. Nonetheless, as we
shall see, large deviation theory provides new tools and useful insights on propagation of
chaos. In Section 4.4.1 we give a mostly historical description of large deviation results
which imply as a byproduct a weak form propagation of chaos in some specific cases.
These results are related to Laplace’s theory of fluctuations, which has been widely used
in statistical physics to study out of equilibrium systems. The relative entropy functional
(Definition 3.10) plays a crucial role in this analysis: in Section 4.4.2, we gather classical
results which link propagation of chaos and entropy bounds. Section 4.4.3 is devoted to
the study of (quantitative) concentration inequalities which will be useful in the following
sections to strengthen propagation of chaos results. We will later give a brief overview of
“pure” large deviation results which go beyond propagation of chaos in Section II-5.4.1.
Some classical material on large deviation theory can be found in Appendix A.5.

4.4.1 Chaos through Large Deviation Principles

In the seminal article [10], the authors improve results from [106] and [23] on Large
Deviation Principles (LDP) for Gibbs measure and obtain as a byproduct a pathwise
propagation of chaos result for the McKean-Vlasov diffusion. Firstly, [10, Theorem A]
below states a large deviation principle for Gibbs measures with a polynomial potential.
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Theorem 4.6 (Polynomial Potential). Let E be a Polish measurable space. Let µ0 ∈
P(E ). Let us consider a random vector XN in E N , distributed according to the Gibbs
measure:

µN
(
dxN

)
=

1

ZN
exp [NG(µxN )]µ⊗N0

(
dxN

)
, (103)

where ZN is a normalization constant and G is a polynomial function on P(E ) (called the
energy functional) of the form:

G(µ) =
r∑

k=2

〈µ⊗k, Vk〉,

for some symmetric continuous bounded functions Vk on E k. Then the laws of µXN
satisfy a large deviation principle in P(P(E )) with speed N−1 and rate function µ 7→
H(µ|µ0)−G(µ)− infP(E )(H(·|µ0)−G).

Denote by m0 the infimum of H(·|µ0) − G in P(E ) and Pm0 the set of probability
measures which achieve it. The study of Pm0 is related to the study of the quadratic form
Θν on L2

0 (E , dν) (the space of centered square ν-integrable functions on E) defined for
any ν in Pm0 by:

∀f, g ∈ L2
0(E , dν), 〈Θνf, g〉 :=

r∑
k=2

k(k − 1)〈νk, f ⊗ g ⊗ 1k−2Vk〉.

The following [10, Theorem B] quantifies the fluctuations of µXN in the non-degenerate
case. Analogous results for the degenerate case are given in [10, Theorem C].

Theorem 4.7 (Chaos and Fluctuations). Assume that Pm0 is non degenerate in the sense
that for all ν ∈ Pm0,

Ker(Id−Θν) = {0}.

In this case, let us consider the quantities:

d(ν) := [det(Id−Θν)]
−1/2, d̄(ν) :=

d(ν)∑
ν′∈Pm0 d(ν ′)

.

Then the following properties hold.

1. The set Pm0 is finite.

2. limN→∞ eNm0ZN =
∑

ν∈Pm0 d(ν).

3. For any integer k ≥ 1 and any ϕ in Cb(E k),

〈µN , ϕ⊗ 1⊗N−k〉 −−−→
N→∞

∑
ν∈Pm0

d̄(ν)〈ν⊗k, ϕ〉.

4. The random measures µXN ∈ P(E ) satisfy local and global Central Limit Theorems.
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When Pm0 reduces to a single non-degenerate minimizer f , then the third assertion
exactly tells that the sequence (µN)N is f -chaotic.

Going back to an interacting particle system, let fN0 ∈ P(EN) be an initial law and
fN[0,T ] ∈ P(C([0, T ], EN)) ' P(C([0, T ], E)N) be the pathwise law of the particle system

with initial law fN0 . In the same way, let f[0,T ] ∈ P(C([0, T ], E)) be the law of the targeted
limit nonlinear process with initial law f0 ∈ P(E). Following [10] and [11], pathwise chaos
on [0, T ] can be recovered from the above theorem, essentially by taking E = C([0, T ], E).

Corollary 3 (Pathwise chaos from LDP). Assume that the following properties hold.

1. fN0 is a Gibbs measure of the form (103) with respect to f⊗N0 for a polynomial energy
functional G ∈ Cb(P(E)).

2. The functional µ ∈ P(E) 7→ H(µ|f0) − G(µ) admits a unique minimizer µ? which
is non-degenerate.

3. fN[0,T ] is a Gibbs measure of the form (103) with respect to f⊗N[0,T ] for a polynomial

energy functional G ∈ Cb(P(C([0, T ], E))).

4. The functional ν ∈ P(C([0, T ], E)) 7→ H(ν|f[0,T ]) − G(ν) has a unique minimizer
f ?[0,T ] which is non-degenerate. Moreover, f ?[0,T ] is the pathwise law of the nonlinear
process with initial condition µ?.

Then the sequence
(
fN[0,T ]

)
N

is f ?[0,T ]-chaotic.

The two first two assumptions are related to the initial data. The propagated property
is more the LDP than the chaoticity since the initial measure is assumed to be Gibbsian
and no more chaotic as usual. To recover the usual setting, the first assumption has to be
replaced by the f0-chaoticity of fN0 , that is to say G = 0. The unique minimizer of H(·|µ0)
is thus in this case µ? = f0 and f ?[0,T ] = f[0,T ] is the desired law for the limit nonlinear
process. The third assumption tells that the Gibbs form of the density is also valid at
the pathwise level. For a McKean-Vlasov diffusion with regular coefficients (typically

Lipschitz [52],[118]), the Gibbs density
dfN

[0,T ]

df⊗N
[0,T ]

can typically be computed using Girsanov’s

formula (see Appendix A.6). Thus the remaining difficulty often lies in the fourth point.

Example 21 (Application to several models). Checking that the above assumptions hold
can be very technical. To give a flavour of the possible applications, we mention here a
few examples.

• (McKean-Vlasov system with regular gradient forces and constant diffusion). The
assumptions are exhaustively checked in the original paper [10], leading to the de-
sired pathwise chaos on finite time intervals.

• (McKean-Vlasov system with only continuous drift and Hölder position dependent
diffusion). Pathwise chaos is proved in the seminal work [55] by establishing a LDP
principle and by showing that the limit law is the only minimizer of the related rate
function. The method is close to the one which is described above, but it is driven in
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some abstract dual spaces in order to weaken the regularity conditions: the diffusion
can depend on the position with Hölder-regularity (but does not depend on its law),
but no such regularity is needed for the non-linear drift.

• (Hamiltonian systems with random medium interactions). Pathwise chaos is proved
in [52] by extending the above method. The main difficulty in this system comes
from the control of the random jumps and from the random medium.

• (Curie-Weiss and Kuramoto models). Once again, it is an application of the above
method. The Curie-Weiss model is obtained as a corollary in [55] and [52], while
the Kuramato model is the last part of [52]. The method is applied to analogous
jump processes with random interactions in [113]. See also Section II-5.2.1.

4.4.2 Chaos from entropy bounds

The theorems stated in the previous Section 4.4.1 strongly suggest that the relative en-
tropy (between the N -particle distribution and the tensorised limit law) is an important
quantity to look at. In fact, Pinsker inequality (48) implies that∥∥fNt − f⊗Nt ∥∥2

TV
≤ 2H

(
fN |f⊗N

)
,

so if the right-hand side goes to zero as N → +∞, it implies propagation of chaos in Total
Variation norm. But as it can be expected, it is very demanding to prove that the relative
entropy vanishes. The following lemma shows that a simple bound may be sufficient for
a slightly weaker result.

Lemma 4.8 (Dimensional bounds on entropy, [50]). Let E be a measurable space. For
every symmetric probability measure fN on E N , and every nonnegative integer k(N) ≤ N ,
it holds that

H
(
fk(N),N

∣∣f⊗k(N)
)
≤ k(N)

N
H
(
fN |f⊗N

)
. (104)

A bound on H(fN |f⊗N) thus implies propagation of chaos in Total Variation norm for
blocks of size k(N) = o(N). This technique is by now classical and various applications
will be presented in the following sections.

Remark 21. Note that a bound on H(fN |f⊗N) implies that the normalised entropy goes
to zero as N → +∞ :

H̃(fN |f⊗N) :=
1

N
H(fN |f⊗N) −→

N→+∞
0.

A first historical example of entropy bound for Gibbs measures (with a continuous
bounded but non necessarily polynomial potential) can be found in the article [11] sub-
sequent to [10].

Theorem 4.9 (Entropy bound for Gibbs measures, [11]). Let µN be a non degenerate
Gibbs measure of the form (103). Then, with the same notations as in Theorem 4.7, the
measure µN? =

∑
ν∈Pm0 d̄(ν)ν⊗N satisfies the entropy bound

lim sup
N→+∞

H
(
µN |µN?

)
< +∞.
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Note that this result strengthens [11, Theorem B] (Theorem 4.7). As before, this
readily implies pathwise propagation of chaos.

Corollary 4 (Pathwise McKean-Vlasov, C2
b potentials [11]). Under the non degener-

acy assumption [11, Assumption (A1)], the pathwise entropy bound on [0, T ] holds for
McKean-Vlasov gradient systems with C2

b coefficients.

Theorem 4.9 is very strong and quite general. It is mainly intended for true Gibbs
measures and in our case, it may look too powerful (besides, the hypothesis may not be
easily checked). In the literature, there are more direct approaches to bound the entropy.

The two following lemmas are valid respectively in the pathwise and the pointwise cases
for the McKean-Vlasov diffusion. Under very weak assumptions on the drift, Girsanov
theorem (Appendix A.6) provides an explicit expression of the relative entropy as an
observable of the particle system. The classical application is a strengthening result:
if this observable can be controlled by a weak form of propagation of chaos, then the
entropy bound strengthens the weak propagation of chaos result into strong (pathwise)
propagation of chaos in TV norm, see for instance Corollary II-1.

Lemma 4.10 (Pathwise entropy bound). Let T > 0 and I = [0, T ]. Assume that the
nonlinear martingale problem associated to the McKean-Vlasov diffusion (Definition 2.3
and (10)) with

b : Rd × P(Rd)→ Rd, σ = Id,

is wellposed and let fI ∈ P(C([0, T ],Rd)) be its solution. For N ∈ N, let fNI ∈ P(C([0, T ], (Rd)N))
be the law of the associated particle system (XN

t )t. Then, for any k ≤ N it holds that

H
(
fk,NI |f

⊗k
I

)
≤ k

2
E
[∫ T

0

∣∣b(X1
t , µXNt

)
− b(X1

t , ft)
∣∣2dt

]
. (105)

This lemma is a mere application of Girsanov’s theorem; for simplicity, the result is
stated in the case of a constant diffusion matrix but it is also valid in the case of a diffusion
matrix which depends on the positional argument but not on the measure argument (see
Remark 22).

Proof. Since the nonlinear martingale is wellposed, it is well-known (see [105, Chapter
5, Proposition 4.6] or [74, Chapter 5, Proposition 3.1]) that we can construct a filtration

and N independent adapted fI-Brownian motions (B
i

t)t on the path space such that

dXit = b(Xit, ft)dt+ dB
i

t, (106)

where we recall that XN
t = (X1

t , . . . ,X
N
t ) is the canonical process on C([0, T ],RdN) '

C([0, T ],Rd)N . In other word, the canonical process is a weak solution of the nonlinear
McKean-Vlasov SDE on the path space (C([0, T ],Rd),F , fI). For i ∈ {1, . . . , N} let us
define the processes:

∆i
t = b

(
Xit, µXN

t

)
− b(Xit, ft).

and

HN
t :=

N∑
i=1

[∫ t

0

∆i
s · dB

i

s −
1

2

∫ t

0

|∆i
s|2ds

]
.
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It is classical to check that exp(HN) defines a fI-martingale (see [105, Chapter 3, Corollary
5.16]). Then by Girsanov theorem (see Appendix A.6) on the product space (C([0, T ],Rd)N ,F⊗N , f⊗NI ),
it is possible to define a probability measure fNI on C([0, T ],Rd)N such that for i ∈
{1, . . . , N}, the processes

Bi
t := B

i

t −
∫ t

0

Xisds (107)

are N independent fNI -Brownian motions. Reporting (107) into (106) we see that

dXit = b
(
Xit, µXN

t

)
dt+ dBi

t.

In other words, (XN
t )t is a weak solution of the McKean-Vlasov particle system on the

path space (C([0, T ],Rd)N ,F , fNI ) and, as the notation implies, fNI is the N -particle
distribution. Moreover, the Girsanov theorem gives a formula for the Radon-Nikodym
derivative:

dfNI
df⊗NI

= exp(HN
T ) = exp

(
N∑
i=1

[∫ t

0

∆i
s · dB

i

s −
1

2

∫ t

0

|∆i
s|2ds

])
.

As an immediate consequence, it is possible to compute the relative entropy as follows:

H(fNI |f⊗NI ) := EfNI

[
log

dfNI
df⊗NI

]
= EfNI

[
HN
T

]
= EfNI

[
N∑
i=1

[∫ t

0

∆i
t · dB

i

t −
1

2

∫ T

0

|∆i
t|2dt

]]

= EfNI

[
N∑
i=1

[∫ T

0

∆i
t · dBi

t +
1

2

∫ T

0

|∆i
t|2dt

]]

=
1

2
EfNI

[
N∑
i=1

∫ T

0

|∆i
t|2dt

]
,

which, by exchangeability, eventually gives:

H(fNI |f⊗NI ) =
N

2
EfNI

[∫ T

0

|b(X1
t , µXN

t
)− b(X1

t , ft)|2dt

]
.

Coming back to our usual notations on the abstract probability space (Ω,F ,P) on which
a particle system (XN

t )t ∼ fNI is defined, it simply means that

H(fNI |f⊗NI ) =
N

2
E
[∫ T

0

|b(X1
t , µXNt )− b(X1

t , ft)|2dt

]
.

The conclusion follows from Lemma 4.8.

95



Remark 22. The inequality (105) is actually an equality (see the proof of [107, Theorem
2.6(3)]). This relatively direct computation can be seen as a very special case of [114,
Theorem 2.4]. The result readily extends to the case of time-dependent parameters b, σ
and to the case of a non constant diffusion matrix σ ≡ σ(t, x) which does not depend
on the measure argument and which is assumed to be invertible everywhere. The only
difference in (105) is that b should be replaced by σ−1b. An even more general setting is
the one given in [107] where

b : [0, T ]× C([0, T ],Rd)× P(C([0, T ],Rd))→ Rd, σ : [0, T ]× C([0, T ],Rd)→Md(R),

are assumed to be jointly measurable. This does not affect the final result (105) nor the
argument.

Remark 23. It is worth noticing that this approach does not seem to be restricted to
diffusion processes. On the one hand, the full Girsanov theory can be applied to jump
processes as well (see [114] and the references therein) and it is actually a very powerful
and general result in the theory of stochastic integration [109, Section 5.5]. On the other
hand, any model presented in this review can be written as the solution of a very general
martingale problem. To the best of our knowledge, an analogous generalised result does
not seem to exist in the literature yet. For the Nanbu system, it may be contained in
[111, Theorem 2.11].

In a pointwise setting, the time derivative of the relative entropy can be directly
computed using the generator of the particle system.

Lemma 4.11 (General bound on the time-derivative entropy). Let ft ∈ P(Rd) be the
solution of (12) at time t with

b : Rd × P(Rd)→ Rd, σ = Id,

and let fNt ∈ P((Rd)N) be the law of the associated particle system. Then for every α > 0
it holds that

d

dt
H
(
fNt |f⊗Nt

)
≤ α− 1

2
I
(
fNt |f⊗Nt

)
+
N

2α
E
[∣∣b(X1

t , µXNt
)
− b(X1

t , ft)
∣∣2] . (108)

The following proof is mostly formal as we assume that the limit ft and log ft are
regular enough to be taken as test functions. The computations can be fully justified in
the cases where the lemma will be applied.

Proof. Let us recall that the generator of the N -particle system is defined by

LNϕN(xN) =
N∑
i=1

Lµ
xN
�i ϕN(xN),

where, given µ ∈ P(E),

Lµϕ(x) := 〈b(x, µ),∇ϕ〉+
1

2
∆ϕ.
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The Kolmogorov equation for the N -particle system reads:

d

dt

〈
fNt , ϕN

〉
=
〈
fNt ,LNϕN

〉
.

The Kolmogorov equation associated to a system of N independent ft-distributed particles
reads:

d

dt

〈
f⊗Nt , ϕN

〉
=
〈
f⊗Nt , L�Nft ϕN

〉
,

where we define the generator

L�Nft ϕN :=
N∑
i=1

Lft �i ϕN .

The relative entropy is defined by:

H
(
fNt |f⊗Nt

)
= EXNt ∼fNt

[
log

dfNt
df⊗Nt

(
XN
t

)]
≡
〈
fNt , log

fNt
f⊗Nt

〉
.

In the last term,
dfNt

df⊗Nt
has been replaced by

fNt
f⊗Nt

, which makes sense since fNt and ft are

probability density functions. Using the product derivation rule:

d

dt
H
(
fNt |f⊗Nt

)
=

〈
fNt ,LN

(
log

fNt
f⊗Nt

)〉
+

〈
fNt ,

d

dt
log

fNt
f⊗Nt

〉
The last term can be written〈

fNt ,
d

dt
log

fNt
f⊗Nt

〉
=

〈
fNt ,

f⊗Nt
fNt

d

dt

fNt
f⊗Nt

〉
=

〈
f⊗Nt ,

d

dt

fNt
f⊗Nt

〉
.

The mass conservation for fNt gives〈
f⊗Nt ,

fNt
f⊗Nt

〉
=
〈
fNt , 1

〉
= 1,

and therefore 〈
f⊗Nt ,

d

dt

fNt
f⊗Nt

〉
= −

〈
f⊗Nt , L�Nft

fNt
f⊗Nt

〉
.

Using the definition of the generator, we get:

L�Nft
fNt
f⊗Nt

(xN) =
N∑
i=1

〈
b(xi, ft),

fNt
f⊗Nt

(xN)∇xi log
fNt
f⊗Nt

(xN)

〉
+

1

2
∆

(
fNt
f⊗Nt

)
.
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And thus it holds that

d

dt
H
(
fNt |f⊗Nt

)
= EfNt

[
N∑
i=1

〈
b(X i

t , µXNt )− b(X i
t , ft),∇xi log

fNt
f⊗Nt

(XN
t )

〉]

+
1

2

〈
fNt ,∆

(
log

fNt
f⊗Nt

)〉
− 1

2

〈
f⊗Nt ,∆

(
fNt
f⊗Nt

)〉
= EfNt

[
N∑
i=1

〈
b(X i

t , µXNt )− b(X i
t , ft),∇xi log

fNt
f⊗Nt

(XN
t )

〉]

− 1

2

〈
f⊗Nt ,

∣∣∣∣∇ fNt
f⊗Nt

∣∣∣∣2
〉
. (109)

and the last term involves〈
f⊗Nt ,

∣∣∣∣∇ fNt
f⊗Nt

∣∣∣∣2
〉

=

〈
fNt ,

∣∣∣∣∇ log
fNt
f⊗Nt

∣∣∣∣2
〉

=: I(fNt |f⊗Nt ).

Therefore Cauchy-Schwarz inequality and Young inequality give for any α > 0

d

dt
H
(
fNt |f⊗Nt

)
≤ α− 1

2
I
(
fNt |f⊗Nt

)
+

1

2α

N∑
i=1

E
[∣∣b(X i

t , µXNt
)
− b(X i

t , ft)
∣∣2] .

The conclusion follows since particles are exchangeable.

Remark 24. Several points should be noticed :

• It is possible to take α = 1 in order to get rid of the Fisher information as in [91],

but a further control on W2

(
µXNt , ft

)
is then needed, see [91].

• Before the splitting which introduces α, Cauchy-Schwarz’s inequality would have
lead to a bound close to the HWI inequality in our special case.

To end this section, we would like to emphasize the fact that these results do not
require any particular regularity on the drift (this is a well-known but remarkable property
of Girsanov’s transform). As a general rule, entropy related methods are well suited to
handle cases with singular interactions. An example with exceptionally weak regularity
assumptions will be given in Section II-3.4. Another example with a complex abstract
interaction mechanism will be presented in Section II-3.6.2.

4.4.3 Tools for concentration inequalities

Large Deviation principles imply propagation of chaos, but they do not always give a way
to quantify it since their result is often purely asymptotic (for instance, Sanov theorem
is non-quantitative). In this section, we gather some results which quantify the deviation
of an empirical measure of N samples around its mean. These results are valid for any
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fixed (sufficiently large) N . We first state a classical concentration inequality, obtained
as the consequence of a Log-Sobolev inequality. This inequality and other related func-
tional inequalities are deep structural properties of the system which will also be used to
study ergodic properties and long-time propagation of chaos (Section II-3.1.3). Then we
state quantitative versions of Sanov theorem which strengthen the above concentration
inequality.

The following Log-Sobolev inequality is another kind of entropy bound.

Definition 4.12 (Log-Sovolev Inequality). For λ > 0, a probability measure µ with finite
second moment satisfies a Logarithmic-Sobolev Inequality LSI(λ) when for all ν in P(E)

H(ν|µ) ≤ 1

2λ
I(ν|µ),

where I is the Fisher information (Definition 3.10).

An important consequence is the following lemma.

Lemma 4.13 (Concentration, see Ledoux [110]). If a probability measure µ satisfies a
LSI(λ) then for any Lipschitz test function ϕ with Lipschitz constant bounded by 1 and
for any ε > 0, it holds that

PX∼µ
(∣∣ϕ(X)− E[ϕ(X)]

∣∣ ≥ ε
)
≤ 2e−

λε2

2 . (110)

This lemma is typically applied in EN for XN
t ∼ fNt with the function

ϕ
(
XN
t

)
=

1

N

N∑
i=1

ϕ(X i
t),

where ϕ is 1-Lipschitz on E. The Lipschitz norm of the function ϕ is bounded by 1/
√
N .

A classical result [134, Theorem 1] shows that under mild assumptions, the Log-
Sobolev inequality also implies the following Talagrand inequality.

Definition 4.14 (Talagrand Inequalities). For any real p ≥ 1 and λ > 0, a probability
measure µ with finite p-th moment satisfies a Talagrand inequality Tp(λ) when for all
ν ∈ P(E),

Wp (ν, µ) ≤
√

2H (ν|µ)

λ
. (111)

This inequality is all the more strong as λ and p are big (it is a consequence of
Jensen’s inequality). It is known that T2 implies some Poincaré inequality and a handful
characterization is available for T1 inequalities, see [22]. Talagrand inequalities are also
useful to quantify ergodicity with respect to the Wassertein distance. Here is another
characterization.

Lemma 4.15 (Square-exponential moment). A probability measure µ with finite expec-
tation satisfies a T1 inequality if and only if there exist α > 0 and x ∈ E such that∫
E

eα|x−y|
2
µ(dy) < +∞.
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Note that Talagrand inequalities allow to recover usual Wassertein convergence (and
then convergence in law) from entropic convergence. Concentration inequalities can also
stem from Talagrand inequalities, although the stronger Logarithmic Sobolev inequality
is more often used in this context. The Logarithmic Sobolev inequality can be established
thanks to the following criterion.

Proposition 13 (Bakry, Emery [6, 5]). Consider a diffusion process with semi-group
(Pt)t≥0, generator L and carré du champ operator Γ : (ϕ, ψ) 7→ 1

2
[L(ϕψ)−ϕL(ψ)−ψL(ϕ)].

Assume that there exists a real λ such that for every regular function ϕ

Γ2(ϕ) ≥ λΓ(ϕ)

where Γ2(ϕ) = 1
2
[L(Γ(ϕ))− 2Γ(ϕL(ϕ))]. Then the following properties hold.

• For all x ∈ Rd and all t > 0, if P0 = δx, then Pt satisfies LSI
(

λ
1−e−λt

)
(where the

semi-group Pt is identified with the transition probability measure that it generates).

• If λ > 0, the semi-group is ergodic and Pt converges towards the invariant measure
µ with rate

H(Pt|µ) ≤ Ce−2λt.

In the previous concentration result (110), the test function is fixed before computing
the probability. One could take the supremum over all 1-Lipschitz test functions, this
would correspond to a weak chaos for the D1 distance. To get stronger estimates on
the Wasserstein distance between µXNt and ft, the supremum needs to come inside the
probability. This is not an easy task, it requires a quantitative version of Sanov theorem,
which is proved in [21, Theorem 2.1].

Theorem 4.16 (Pointwise Quantitative Sanov [21]). Consider a probability measure µ
on Rd which satisfies Tp(λ) for p ∈ [1, 2] and λ > 0 and which has a bounded square-
exponential moment. Let XN ∼ µ⊗N be a system of N i.i.d µ-distributed random variables.
Then for any λ′ < λ and ε > 0, there exists a constant Nε (which depends also on d and
the square-exponential moment of µ) such that for all N ≥ Nε,

P(Wp(µXN , µ) > ε) ≤ e−γp
λ′
2
Nε2 ,

where γp > 0 is an explicit constant which depends only on p.

The following pathwise generalization is proved in [18, Theorem 1].

Theorem 4.17 (Pathwise Quantitative Sanov and Pathwise chaos [18]). Under the same
assumptions, the above theorem holds for a measure µ on the Hölder space C0,α([0, T ],Rd)
with α ∈ (0, 1].

Except the last one, the results in this section are stated in a static framework. Ex-
amples of time dependent systems and applications to propagation of chaos are detailed
in Section II-3.5.

100



4.5 Tools for Boltzmann interactions

4.5.1 Series expansions

Let us consider first the homogeneous Boltzmann system with L(1) = 0. When the collision
rate λ satisfies the uniform bound (31), then it can be directly checked that the operator
LN is continuous for the L∞ norm:

∀ϕN ∈ Cb(EN), ‖LNϕN‖∞ ≤ Λ(N − 1)‖ϕN‖∞.

Without loss of generality (see Proposition 3), we will assume here that λ ≡ Λ is constant.
As a consequence, the exponential series etLN is absolutely convergent for t < 1/(Λ(N−1))
and there is a semi explicit formula for an observable ϕN ∈ Cb(EN) at any time t ≥ 0:

E
[
ϕN(ZNt )

]
=

+∞∑
k=0

tk

k!
〈fN0 ,LkNϕN〉,

where (ZNt )t is the particle process with initial law fN0 ∈ P(EN). Then, considering a
test function ϕN ≡ ϕs ⊗ 1⊗(N−s) which depends only on s variables for a fixed s ∈ N, the
term on the right-hand side depends only on N through known quantities, namely the
initial law fN0 and the operator LN . The initial law fN0 is assumed to be f0-chaotic so
there is an asymptotic control of all its marginals when N → +∞. In its seminal article
[103], Kac managed to pass to the limit directly in the series on the right-hand side using
a dominated convergence theorem argument. This necessitates in particular to prove the
absolute convergence of the series on a time interval independent of N when s is fixed.
The argument has been generalised in [34] and will be thoroughly discussed in Section
II-4.1. As a byproduct it will show the existence of a solution of the Boltzmann equation
in the form of an explicit series expansion. The final formula (II-115) will be a direct
extension of the “exponential formula” obtained by McKean in [121] for the solution of
a simpler Boltzmann model in E = {−1, 1} (the so-called 2-state Maxwellian gas). In a
famous work, Wild [159] showed that the solution of the Boltzmann equation for cut-off
Maxwellian molecules has a semi-explicit representation in the form of an infinite sum (see
also [155, Chapter 4, Section 1], [31] and the references therein). McKean showed that for
the 2-state Maxwellian gas, the Formula (II-115) obtained by propagation of chaos can
be interpreted as the dual version of a Wild sum.

This approach is only focused on the evolution of observables oof the form 〈fNt , ϕN〉
for a fixed ϕN and does not study directly the evolution of the N -particle law fNt . The
evolution of fNt is given by the forward Kolmogorov equation. This dual point of view on
Kac’s theorem is studied in [137] and will also be reviewed in Section II-4.1. The starting
point is the BBGKY hierarchy:

∂tf
s,N
t =

s

N
Lsf s,Nt +

N − s
N
Cs,s+1f

s+1,N
t ,

where Cs,s+1 : P(Es+1)→ P(Es) is defined for f (s+1) ∈ P(Es+1) and ϕs ∈ Cb(Es) by

〈
Cs,s+1f

(s+1), ϕs
〉

:=
s∑
i=1

∫
Es+1

L(2) �i,s+1 [ϕs ⊗ 1](zs+1)f (s+1)(dzs+1).
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Let T
(s)
N (t) = exp(t s

N
Ls) denote the semi-group acting on P(Es) generated by s

N
Ls. Then,

interpreting the last term on the right-hand side as a perturbation of a linear differential
equation, Duhamel’s formula reads:

f s,Nt = T
(s)
N (t)f s,N0 +

N − s
N

∫ t

0

T
(s)
N (t− τ)Cs,s+1f

s,N
τ dτ.

Iterating this formula gives a semi-explicit series expansion in terms of the initial condi-
tion:

f s,Nt =
+∞∑
k=0

α
(s,k)
N

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

T
(s)
N (t− t1)Cs,s+1T

(s+1)
N (t1 − t2)Cs+1,s+2 . . .

Cs+k−1,s+kT
(s+k)
N (tk)f

s+k,N
0 dt1 . . . dtk,

where α
(s,k)
N = (N−s) . . . (N−s−k+1)/Nk if s+k ≤ N and α

(s,k)
N = 0 otherwise. Taking

the limit N → +∞ in this series is the dual viewpoint of the previous approach. If the
limit exists, propagation of chaos holds whenever the result can be identified as the infinite
hierarchy of tensorised laws f⊗st where ft solves the Boltzmann equation. Note that this
approach can be easily extended to inhomogeneous Boltzmann systems where L(1) 6= 0,
in which case the semi-group T

(s)
N should be replaced by the semi-group generated by∑s

i=1 L
(1)? �i+ s

N
Ls. A famous example is given by Lanford’s theorem (see Section II-4.6).

The study of the evolution of observables is however more natural for abstract systems
when there is no known explicit formula for the dual operators Ls and Cs,s+1 acting on
the particle probability distributions.

4.5.2 Interaction graph

In an abstract Boltzmann model given by the generator (24) in Section 2.3, the binary
interactions can be represented by graph structures. Given a trajectorial realisation of
the particle system, the interaction graph of a particle (or a group of particles) is built
backward in time and retain the genealogical interactions which determine the particle at
the current time (i.e. the history of the collisions). Before building graphs from particle
realisations, the minimal structure of such a possible graph is detailed in the following
definition.

Definition 4.18 (Interaction graph). Consider an index i ∈ {1, . . . , N} (it will stand
later for the index of a particle). An interaction graph for i at time t > 0 is the data of

1. a k-tuple Tk = (t1, . . . , tk) of interaction times t > t1 > t2 > . . . > tk > 0,

2. a k-tuple Rk = (r1, . . . , rk) of pairs of indexes, where for ` ∈ {1, . . . , k}, the pair
denoted by r` = (i`, j`) is such that j` ∈ {i0, i1, . . . , i`−1} with the convention i0 = i
and i` ∈ {1, . . . , N}.

Such an interaction graph is denoted by Gi(Tk,Rk).
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t1

t2

t3

t4

i i1 i2 i4

Figure 1: An interaction graph. The vertical axis represents time. Each particle is
represented by a vertical line parallel to the time axis. The index of a given particle is
written on the horizontal axis. The construction is done backward in time starting from
time t where only particle i is present. At each time t`, if i` does not already belong to
the graph, it is added on the right (with a vertical line which starts at t`). The couple
r` = (i`, j`) of interacting particles at time t` is depicted by an horizontal line joining
two big black dots on the vertical line representing the particles i` and j`. for instance,
on the depicted graph, r2 = (i2, i). Note that at time t3, r3 = (i1, i2) (or indifferently
r3 = (i2, i1)) where i1 and i2 were already in the system. Index i3 is skipped and at time
t4, the route is r4 = (i4, i1). The recollision occurring at time t3 is depicted in red.

Given a trajectorial realisation of a Boltzmann particle system, the interaction graph
of the particle i retains the minimal information needed to compute the state of particle i
at time t > 0. It is constructed as follows.

• The set (i1, . . . , ik) is the set of indexes of the particles which interacted directly or
indirectly with particle i during the time interval (0, t) (an indirect interaction means
that the particle has interacted with another particle which interacted directly or
indirectly with particle i) – note that the i`’s may not be all distinct.

• The times (t1, . . . , tk) are the times at which an interaction occurred.

• For ` ∈ {1, . . . , k}, the indexes (i`, j`) are the indexes of the two particles which
interacted together at time t`.

Following the terminology of [88], a route of size q between i and j is the union of q
elements r`k = (i`k , j`k), k = 1, . . . , q such that i`1 = i, i`k+1

= j`k and j`q = j. A route of
size 1 (i.e a single element r`) is simply called a route. A route which involves two indexes
which were already in the graph before the interaction time (backward in time) is called a
recollision. This construction is more easily understood with the graphical representation
of an interaction graph shown on Figure 1.

The definition of interaction graphs can be extended straightforwardly starting from
a group of particles instead of only one particle. This representation does not take into
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account the physical trajectories of the particles, it only retains the history of the inter-
actions among a group of particles. Note that the graph is not a tree in general since the
i`’s are not necessarily distinct. It is a tree when no recollision occurs.

Interaction graphs are a classical tool in the study of Boltzmann particle systems. As
we shall see in Section II-4.6 they are particularly useful to give a physical interpreta-
tion of the series expansions discussed in the previous section. The connections between
interaction graphs and series expansions are more thoroughly discussed in [121] and [31].

In a more probabilistic setting, the following definition extends the construction of an
interaction graph to the case of random parameters.

Definition 4.19 (Random interaction graph). Let Λ > 0, N ∈ N, i ∈ {1, . . . , N} and
t > 0. Let (Tm,`)1≤k<`≤N be N(N − 1)/2 independent Poisson processes with rate Λ/N .
For each Poisson process Tm,` we denote by (Tm,`n )n its associated increasing sequence of
jump times. The sets of times Tk = (t1, . . . , tk) and routes Rk = (r1, . . . , rk) are defined
recursively as follows. Initially, t0 = t and i0 = i and for k ≥ 0,

tk+1 = max
`,p,n

{
T i`,pn |T i`,pn < tk, ` ≤ k

}
. (112)

Then, given (`, p, n) such that tk+1 = T i`,pn , ik+1 = p and jk+1 = i` so that rk+1 = (ik+1, jk+1).
The procedure is stopped once the set on the right-hand side of (112) is empty (it hap-
pens almost surely after a finite number of iterations). The resulting interaction graph
Gi(Tk,Rk) is called the random interaction graph with rate Λ rooted on i at time t. The
definition is extended similarly starting from a finite number of indexes (i0, i1, . . . , ik)
instead of just i.

As explained before, a realisation of a Boltzmann particle system immediately gives
an interaction graph for each particle. More importantly, given an interaction graph, it
is possible to construct a forward realisation of a Boltzmann particle. More precisely,
when the interaction graph is sampled as a random interaction graph following, then the
following straightforward lemma constructs a forward realisation of a stochastic process
whose pathwise law is equal to f 1,N

[0,t] , the first marginal of the law fN[0,t] of a Boltzmann

particle system given by the generator (24) on the time interval [0, t].

Lemma 4.20. Let us consider the Boltzmann setting given by Assumption 1 together with
the uniform bound (31) on λ. Given a realisation of a random interaction graph sampled
beforehand as in the previous definition, apply the following procedure:

1. At time t = 0, let the particles Zi`
0 be distributed according to the initial law.

2. Between two collision times, the particles evolve according to L(1).

3. At a collision time t`, with probability λ(Zi`
t−`
, Zj`

t−`
)/Λ, the new states of particles i`

and j` are sampled according to(
Zi`
t+`
, Zj`

t+`

)
∼ Γ(2)

(
Zi`
t−`
, Zj`

t−`
, dz1, dz2

)
.
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Then the process (Zi
s)s≤t is distributed according to the one-particle marginal f 1,N

[0,t] of the

law fN[0,t] of a Boltzmann particle system given by the generator (24) on the time interval

[0, t].

This trajectorial construction of a particle (sub-)system is used in [88, 124]. Using
purely combinatorial arguments the authors prove a pathwise version of Kac’s theorem
with an explicit optimal convergence rate in total variation norm. The main idea is that
it is possible to compute the probability of sampling a bad interaction graph, that is a
graph which would give a system of particles with too much correlation. When N → +∞,
this probability goes to zero. As a consequence, when N is large, with high probability,
the particle system is close to a system of independent particles which are shown to be
distributed according to the solution of the Boltzmann equation. This will be reviewed in
Section II-4.2. As in the proof of Lanford’s theorem (Section II-4.6), a fundamental idea is
to reduce the problem to the estimation of the number of recollisions in a sampled graph
or to the number of graphs in which two given particles are linked by a route of arbitrary
size. Indeed, in the probabilistic setting, if a random binary tree with branching rate
Λ is sampled first and then a particle system is constructed as above but starting from
independent particles, then this gives a trajectorial representation of a process whose law
is the solution of the Boltzmann equation (29).

A Probability reminders

For the convenience reader, classical elements of stochastic analysis and probability theory
which are used throughout this review are gathered in this section. The Sections A.1, A.2
and A.3 are devoted to the classical construction of stochastic processes on the Skorokhod
space. Notions related to the theory of Markov processes and their links with linear and
nonlinear PDEs can be found in Section A.4. Section A.5, Section A.6 and Section
A.7 summarize probability results regarding respectively large deviations, the Girsanov
theorem and Poisson random measures.

A.1 Convergence of probability measures

The two following classical theorems complete the results of Section 3.1.1 and Section
3.1.2 to study the limit of sequences of probability measures.

The first theorem links weak convergence and almost sure convergence of random
variables.

Theorem A.1 (Skorokhod’s representation theorem). Let (fn)n∈N be a sequence of prob-
ability measures on a Polish space E which converges weakly towards f ∈ P(E) as
n → +∞. Then there exist a probability space (Ω,F ,P) and some E-valued random
variables X,Xn defined on this space for all n ∈ N, such that

Law(Xn) = fn, Law(X) = f, Xn(ω) −→
n→+∞

X(ω), P-a.s.
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The second theorem is the widely used Prokhorov’s theorem which gives a helpful
characterization of compactness for the weak convergence topology. The following results
can be found for instance in [16, Section 5]. Compactness is linked to the notion of
tightness defined below.

Definition A.2 (Tightness). A family (fi)i∈I of probability measures on a separable
metric space E (endowed with its Borel σ-field) is said to be tight when for every ε > 0,
there exists a compact set Kε ⊂ E such that

∀i ∈ I, fi(Kε) > 1− ε.

A sequence of random variables is said to be tight when the sequence of their laws is tight.

Theorem A.3 (Prokhorov’s Theorem). A tight sequence (fn)n∈N of probability measures
on E is weakly relatively compact. Conversely, if E is also complete, any weakly relatively
compact family (fn)n∈N is tight.

A.2 Skorokhod’s topology and tightness on the Skorokhod space

A stochastic process is a random function from a time interval to a state space (E, ρ)
assumed to be Polish. Throughout this article, the stochastic process are assumed to
belong (at least) to the Skorokhod space of càdlàg functions.

Definition A.4 (càdlàg). Let T in (0,+∞]. A function x : [0, T ]→ E is said to belongs
to the Skorokhod space D([0, T ], E) of càdlàg functions when x is right-continuous and
has a left-limit at any time t ∈ [0, T ]:

x(t−) := lim
s→t
s<t

x(s) exists, x(t) = x(t+).

We recall that a càdlàg function admits an at most countable number of discontinuities.

The law of a stochastic process is therefore an element of P(D([0, T ], E)). In order
to characterize the compact sets of this space, it is first necessary to precise the topology
on D([0, T ], E). For a much more detailed study of the Skorokhod space, we refer to [16,
Section 12].

Definition A.5 (Skorokhod J1 topology). Let Λ denote the set of strictly increasing
homeomorphisms from [0, T ] onto itself. The Skorokhod J1 metrics on D([0, T ], E) is
defined by

d(x, y) := inf
λ∈Λ

{
sup

0≤t≤T
ρ
(
x(t), y(λ(t))

)
+ sup

s<t

∣∣∣∣log
λ(t)− λ(s)

t− s

∣∣∣∣}.
Endowed with this metric, the Skorokhod space D([0, T ], E) is complete and separable.
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This topology is weaker than the one of continuous functions, which does not make
D([0, T ], E) a complete space. However, estimates in the strong ‖.‖∞ metrics implies
estimates a complete metric, up to a fixed multiplicative constant. In practise, working
with the ‖.‖∞ metrics is thus often sufficient.

Let us recall that for a continuous function x ∈ C([0, T ], E), the continuity modulus
is defined for 0 < δ < T by

wx(δ) := sup
0≤t≤T−δ

wx[t, t+ δ], wxI = sup
s,t∈I

ρ(x(t), x(s)).

A function x belongs to C([0, T ], E) if and only if limδ→0wx(δ) = 0. For càdlàg functions,
another notion of modulus is defined.

Definition A.6 (càdlàg modulus). The càdlàg-modulus on D([0, T ], E) is defined by

w′x(δ) := inf
{ti}

max
i
wx[ti−1, ti),

where the infimum is taken over sub-divisions {ti} of [0, T ] such that mini ti+1 − ti > δ.
A function x belongs to D([0, T ], E) if and only if limδ→0w

′
x(δ) = 0.

An analog of the Ascoli-Arzela theorem in the space of càdlàg functions is given by
[16, Theorem 12.3]. It states that a subset A ⊂ D([0, T ], E) is relatively compact if and
only if

(1) supx∈A ‖x‖∞ <∞;

(2) limδ→0 supx∈Aw
′
x(δ) = 0.

In some cases, it is easier to use the modulus

w′′x(δ) := sup
t1≤t≤t2
t2−t1≤δ

|x(t1)− x(t)| ∧ |x(t)− x(t2)|,

see [16, Theorem 12.4]. Using these results the following tightness criterion for probability
measures on D([0, T ], E) is proved in [74, Chapter 3, Corollary 7.4]).

Theorem A.7 (Basic tightness criterion in D). For each n ∈ N, let (Xn
t )t be an adapted

E-valued càdlàg process on the filtered probability space (Ω,F , (Ft)t,P). The sequence
(Xn

t )t is tight if and only if the following two conditions hold.

(1) For every ε > 0 and every rational number t ≥ 0, there exists a compact set Kε,t ⊂ E
such that

lim inf
n→+∞

P(Xn
t ∈ Kε,t) ≥ 1− ε.

(2) For every ε > 0 and T > 0, there exists δ > 0 such that

lim sup
n→+∞

P
(
w′Xn|[0,T ]

(δ) ≥ ε
)
≤ ε.

Still, this criterion remains abstract and requires to find a suitable partition of the
time interval to evaluate the càdlàg modulus. The tightness criteria which are used to
prove propagation of chaos will be detailed in Appendix II-C.
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A.3 Stochastic processes and martingales

In the following, let (Ω,F ,P) be a probability space. This section reminds the reader
of the basic properties related to stochastic processes and martingales. An exhaustive
rigorous study can be found in the classical books [74, Chapter 2], [99], [138] or [109].
The present section also summarizes elements of [100].

A.3.1 Martingales

Definition A.8 (Stochastic process). A stochastic process with state space E (a measur-
able space) and indexed by a set I (often I = [0, T ]) is a function X : I×Ω→ E such that
Xt = X(t, ·) is a E-valued random variable (that is is to say ω 7→ Xt(ω) is measurable)
for every t ∈ I.

(1) The (pathwise) law of (Xt)t is the push-forward measure fI = X#P on a space F(I, E)
of functions I → E.

(2) The time marginal laws are the push-forward measures on E defined for any t ∈ I
by ft = XEt #fI , provided that the evaluation maps XEt : F(I, E) → E,ω 7→ ω(t) are
measurable.

The stochastic process X = (Xt)t∈I can be seen as a F(I, E)-valued random variable. For
a given ω ∈ Ω, (Xt(ω))t≥0 is called a sample path (or trajectory) of X.

From now on let I = [0, T ] with T ∈ (0,+∞].

Example 22 (Canonical stochastic process). Given a probability distribution on the
space of functions I → E, fI ∈ P(F(I, E)), the canonical stochastic process with law fI
is X = (XEt )t∈I defined on the probability space (F(I, E),F , fI): the law of X is indeed
X#fI = fI .

Definition A.9 (Filtration). A filtration is an increasing family of σ-algebras (Ft)t≥0,
i.e. such that Fs ⊂ Ft for s ≤ t. A filtration is said to be:

(1) complete when
∀t ≥ 0, {A ⊂ Ω, A ⊂ B, P(B) = 0} ⊂ Ft;

(2) right-continuous when

∀t ≥ 0, Ft = Ft+ , Ft+ :=
⋂
ε>0

Ft+ε.

In the following, let (Ω,F , (Ft)t≥0,P) be a filtered probability space, whose filtration is
assumed to be complete and right-continuous, together with F =

⋃
t≥0 Ft.

Definition A.10 (Regularity for stochastic processes). A stochastic process X = (Xt)t≥0

is said to be

(1) adapted to the filtration (Ft)t≥0 when the random variable Xt is Ft-measurable;
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(2) predictable when X is measurable for the σ-algebra generated by the sets (s, t] × F
for 0 ≤ s ≤ t and F ∈ Fs ;

(3) with finite variation paths when a.s. (Xt(ω))0≤t≤T has bounded variation on any finite
time-interval [0, T ] ;

(4) continuous (resp. càdlàg, right-continuous...) when for P-almost every ω ∈ Ω, the
sample path (Xt(ω))t≥0 is a continuous (resp. càdlàg, right-continuous...) function of
t.

Definition A.11 (Martingale and sub-martingale). An adapted real-valued process X =
(Xt)t≥0 such that E|Xt| < +∞ for every t ≥ 0 is a (Ft)t-martingale when

∀t, s ≥ 0, E[Xt+s|Ft] = Xt.

It is a sub-martingale when

∀t, s ≥ 0, E[Xt+s|Ft] ≥ Xt.

These definitions are extended componentwise to RN -valued processes.

Sub-martingales enjoy many useful properties, starting with the following proposition
[74, Chapter 2, Proposition 2.9].

Proposition 14 (Càdlàg modification). If X = (Xt)t≥0 is a sub-martingale, then there
exists an adapted real-valued process Y = (Yt)t≥0 such that

∀t ≥ 0, P (Xt = Yt) = 1, (113)

and Y is càdlàg outside a countable set of times t. In the following this set is assumed to
be ∅, so (sub-)martingales will be considered as càdlàg processes.

Equation 113 means that Y is a modification of X. The following inequality controls
the growth of sub-martingales.

Proposition 15 (Doob’s maximal inequality). Given a sub-martingale (Xt)t≥0, T > 0
and any p > 1, it holds that

E
∣∣∣ sup

0≤t≤T
Xt

∣∣∣p ≤ ( p

p− 1

)p
E|XT |p.

A.3.2 Local martingales and quadratic variation

In order to define a stochastic integral, the notion of martingale needs to be weakened to
the notion of local martingale.

Definition A.12 (Local martingale). A real-valued process (Mt)t≥0 is a local martingale
when there exists a sequence (τn)n∈N of stopping times such that τn → +∞ and (Mt∧τn)t≥0

is a martingale for every n ≥ 0. This definition is extended componentwise to RN -valued
processes.
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Definition A.13 (Quadratic variation). The quadratic variation [M ] = ([M ]t)t≥0 of a
(local) square integrable martingale (Mt)t≥0 is defined as the limit in probability

[M ]t := lim
δ(π)→0

∑
tn∈π

(
Mtn+1∧t −Mtn∧t

)2
,

where π is a subdivision 0 = t0 < t1 < . . . of R+ with mesh δ(π) = supn(tn+1 − tn). It
is the only (up to modification) adapted increasing process with jumps ∆[M ]t = ∆M2

t =
M2

t −M2
t− such that (M2

t − [M ]t)t is a (local) martingale.

Example 23 (The case of finite variation paths). When (Mt)t≥0 has finite variation paths,
it is straightforward to check that

[M ]t =
∑
s≤t

(∆Ms)
2.

Definition A.14 (Cross-variation). The cross-variation [M,N ] = ([M,N ]t)t≥0 of two
(local) square integrable martingales (Mt)t≥0 and (Nt)t≥0 is defined by

[M,N ]t :=
1

2

(
[M +N ]t − [M ]t − [N ]t

)
.

It is the only (up to modification) adapted increasing process with jump at time t >
0, ∆[M,N ]t = ∆(MN)t = MtNt − Mt−Nt− such that (MtNt − [M,N ]t)t is a (local)
martingale.

Proposition 16 (BDG inequality). For every p ≥ 1, there exist two constants cp, Cp > 0
such that for any local martingale (Mt)t≥0, the supremum M?

t := sup0≤s≤t |Ms| can be
controlled by the quadratic variation in Lp-norm:

cpE[M ]
p/2
t ≤ E(M?

t )p ≤ CpE[M ]
p/2
t .

Definition A.15 (Predictable quadratic and cross-variation). The predictable quadratic
variation 〈M〉 = (〈M〉t)t≥0 of a (local) square integrable martingale (Mt)t≥0 is the unique
predictable càdlàg increasing process (with finite variation paths) such that(

M2
t − 〈M〉t

)
t≥0

is a (local) martingale. The existence of the predictable quadratic variation stems from
the Doob-Meyer decomposition theorem for DL-supermartingales (see [74, Chapter 2,
Proposition 5] for more details). The predictable cross-variation of two (local) square
integrable martingales M,N is defined the same way, setting

〈M,N〉t :=
1

2

(
〈M +N〉t − 〈M〉t − 〈N〉t

)
.

Note that by substracting the martingale characterizations of the quadratic variation
and of the predictable quadratic variation, we get that ([M ]t−〈M〉t)t≥0 is a (local) square
integrable martingale. The predictable quadratic variation is said to be the compensator
of the quadratic variation. Moreover, the equality [M ] = 〈M〉 holds as soon as (Mt)t≥0 is
a continuous process.
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A.3.3 Semimartingales

The notion of local martingales is then extended to the notion of semimartingale, which
forms a large class of processes against which a stochastic integral can be defined (a notion
that will not be detailed here).

Definition A.16 (Semimartingale). A real-valued process (Xt)t≥0 is a semimartingale
when it can be decomposed as

Xt = Mt + At,

where (Mt)t≥0 is a local martingale and (At)t≥0 is an adapted process with finite variation
paths. This definition is extended component-wise to RN -valued processes.

The cross-variation [X, Y ] and predictable cross-variation 〈X, Y 〉 can be extended to
semimartingales (Xt)t≥0 and (Yt)t≥0 as the limit in probability

[X, Y ]t = lim
δ(π)→0

∑
tn∈π

(Xtn+1∧t −Xtn∧t)(Ytn+1∧t − Ytn∧t).

Writing Xt = Mt+At, note that [X] = [M ] and 〈X〉 = 〈M〉 because A has finite variation
paths.

For vector-valued semimartingales, the cross-variation is defined componentwise as
follows.

Definition A.17 (Vectorial cross-variation). Let (Xt)t≥0 be a Rd-valued semimartingale
with the notation Xt =

(
X1
t , . . . , X

d
t

)
, the matrix-valued cross-variations are defined by

JXK =
(
[X i, Xj]

)
1≤i,j≤d, 〈〈X〉〉 =

(
〈X i, Xj〉

)
1≤i,j≤d,

and the related scalar quantities are the traces of theses matrices (defined as the sum of
diagonal elements)

[X] = Tr
(
JXK

)
, 〈X〉 = Tr

(
〈〈X〉〉

)
.

The integration of locally bounded predictable processes (Ht)t≥0 against finite variation
processes is well-defined using Stieltjes formalism. The theory of stochastic integration
extends this to integrate (Ht)t≥0 against any square integrable semimartingale (Xt)t≥0.
Notable identities are the Itō isometry

E

[(∫ t

0

Hs−dXs

)2
]

= E
[∫ t

0

H2
s−d[X]s

]
= E

[∫ t

0

H2
s−d〈X〉s

]
,

(the last equality holds because [X] − 〈X〉 is a local martingale) and the integration by
parts formula

XtYt = X0Y0 +

∫ t

0

Xs−dYs +

∫ t

0

Ys−dXs + [X, Y ]t,

for general semimartingales (Xt)t≥0 and (Yt)t≥0. Given a (local) square integrable mar-
tingale (Mt)t≥0, the process (∫ t

0

Hs−dMs

)
t≥0

is built in such a way that it is a (local) square integrable martingale.
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Example 24 (Dynkin’s representation formula). Anticipating on the next section, a
Markov process (Xt)t≥0 with generator L is such that for any ϕ in D(L) (see Theorem
A.29)

Mϕ
t := ϕ(Xt)− ϕ(X0)−

∫ t

0

Lϕ(Xs)ds,

is a martingale. In this case, the predictable quadratic variation 〈Mϕ〉 can be computed
as

〈Mϕ〉t =

∫ t

0

ΓL(ϕ, ϕ)(Xs)ds,

involving the carré du champ operator

ΓL(ϕ, ψ) := L[ϕψ]− ϕLψ − ψLϕ,

for any ϕ, ψ ∈ D(L). These properties can be generalized to obtain a wider class of
semimartingales, which are non-necessarily Markov processes.

A.3.4 D-semimartingales

Dynkin’s formula can be turned into a definition to obtain a wider class of (non-necessarily
Markov) Rd-valued semimartingales, named class D (in the honour of Dynkin). The
following definition can be found in [100]. The notation πi denotes the coordinate function
xd 7→ xi.

Definition A.18 (Semimartingale of class D). A Rd-valued semimartingale Xt belongs
to the class D when there exist an increasing càdlàg function t 7→ A(t), a vector space C
of R-valued continuous functions on Rd and a mapping L : C × Rd × R+ × Ω → R such
that the following properties hold.

(1) For every 1 ≤ i, j ≤ d, πi and πiπj belong to C.

(2) For every (xd, t, ω) ∈ Rd × R+ × Ω, the map ϕ 7→ L(ϕ,xd, t, ω) is linear and maps C
to itself. Moreover for every ϕ ∈ C, the map (xd, t, ω) 7→ L(ϕ,xd, t, ω) is measurable
for the σ-algebra on Rd of Borel sets, and the one of predictable events on Ω.

(3) For every ϕ ∈ C,

Mϕ
t := ϕ(Xt)− ϕ(X0)−

∫ t

0

L(ϕ,Xs− , s, ·)dA(s),

is a local square integrable martingale.

To this process are associated the local coefficients

bi(x
d, t, ω) = L(πi,x

d, t, ω), aij(x
d, t, ω) = ΓL(·,xdt,ω)(πi, πj)(x

d),

and the drift vector b = (bi)1≤i≤d and the diffusion matrix a = (aij)1≤i,j≤d. In the
following we often omit to write the dependency in ω.
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The following lemma is proved in [100, Lemma 3.1.3].

Lemma A.19 (Predictable variation). Given a D-semimartingale X, define

Mt := Xt −X0 −
∫ t

0

b(Xs− , s)dA(s).

Then (Mt)t≥0 is a Rd-valued local square integrable martingale, whose (scalar) predictable
quadratic variation reads

〈X〉t =

∫ t

0

Tr
(
a(Xs− , s)

)
dA(s)−

∑
s≤t

‖b(Xs− , s)‖2|∆A(s)|2.

Remark 25 (Generalized SDE and intrinsic randomness). The previous notions naturally
extend the notion of diffusion SDE, since at least formally

dXt = b(Xt− , t)dA(t) + a(Xt− , t)dMt.

This parallel could be used to extend coupling and completeness methods to irregular
processes or even non-Markov ones. However, remember that in this case, the generator
L depends on ω and has therefore its own source of randomness, together with the local
coefficients b and a.

Similarly to Markov processes, a convenient way to build a D-semimartingale on Ω =
D([0, T ],Rd) (for T ∈ (0,+∞]) is to solve a martingale problem.

Definition A.20 (Martingale problem). A probability distribution on the path space
fI ∈ P(D([0, T ],Rd)) is a solution to the martingale problem issued from f0 ∈ P(Rd)
whenever for all all ϕ ∈ C,

Mϕ
t := ϕ(Xt)− ϕ(X0)−

∫ t

0

L(ϕ,Xs− , s, ·)dA(s),

is a fI-martingale, where Xt is the canonical process D([0, T ],Rd)→ Rd.

A.4 Markov processes and Markov representation for PDEs

The purpose of this section is to briefly review the probabilistic framework for linear
and nonlinear Markov processes. Classical references and review articles on the subject
include [74, 138, 27, 25]. The prototypical nonlinear Markov process is the solution of the
McKean-Vlasov SDE:

dXt = b(Xt, ft)dt+ σ(Xt, ft)dBt, Xt ∼ ft,

where (Bt)t≥0 is a standard Brownian motion and ft the law of the random variable Xt at
time t. Such a process is said to be nonlinear (in the sense of McKean) since its definition
depends on its own law. This type of nonlinearity has been introduced in the seminal
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[122]. Unlike, classical (linear) Markov process, the law ft of the nonlinear Markov process
satisfies the nonlinear the Fokker-Planck equation

∂tft(x) = −∇x · {b(x, ft)ft}+
1

2

d∑
i,j=1

∂xi∂xj{aij(x, ft)ft},

where the matrix a = (aij) is defined by a = σσT. This kind of equations is derived in
the limit N → +∞ in the Kolmogorov equations associated to large interacting particle
systems defined by N linear Markov processes. While the theory of linear Markov pro-
cesses is well-established, nonlinear Markov processes are not so classical in the literature
and require specific tools to be built (for instance, the well-posedness result proved in
Proposition 1 for the McKean-Vlasov SDE).

The classical theory of time homogeneous linear Markov processes is presented in
Section A.4.1. Elements of the theory of time-inhomogeneous Markov processes can be
found in Section A.4.2. Using these concepts and following [101] and [120], a theoretical
framework is presented in Section A.4.3 for nonlinear Markov processes (in the sense of
McKean). Before that, we first recall the basic notions about Markov process (linear or
not). Following [74, Chapter 4], the very general definition of Markov processes is the
following.

Definition A.21 (Markov process). A stochastic process (Xt)t≥0 is a Markov process on
(Ω,F ,P) when for every s, t ≥ 0

∀A ∈ B(E), P(Xs+t ∈ A |(Xr)0≤r≤t) = P(Xs+t ∈ A |Xt). (114)

On the left-hand side the probability is conditioned by the filtration generated by the
process, but stronger definitions could involve wider filtrations. The relation (114) will
be referred as the Markov property. When the time t is replaced by a random stopping
time, this relation is called the strong Markov property.

This means the law of Xs+t at time s+t conditionally on the past history up to time t,
is the same as the law at time s+t conditionally on the state at time t only. The definition
can be equivalently written in terms of bounded measurable test functions ϕ ∈ Bb(E) as

E[ϕ(Xs+t)|(Xr)0≤r≤t] = E[ϕ(Xt+s)|Xt]. (115)

This definition remains abstract and does not tell how to build a Markov process. If
the law fI is known (built from given processes or e.g. by solving a martingale process),
a Markov process with law fI is given by the canonical process XE = (XEt )t≥0 on the
probability space Ω = D(I, E) endowed with fI and an adequate filtration (see Example
22). Further constructions which are closer to the PDE point of view are presented in the
next subsections.

A.4.1 Time-homogeneous Markov processes and linear PDEs

The content of this section is quite classical and can be found in the classical reference
[74].
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Transition functions.

A usual way to present Markov processes is to first think about time discrete Markov
chains with jumps which are given by a transition kernel (or transition matrix when E is
discrete). This definition can be generalized to the time continuous framework using the
notion of transition function.

Definition A.22 (Transition functions, homogeneous case). A family of maps (Pt)t≥0

where Pt : E → P(E) is a family of transition functions when the following properties
hold.

• The map (t, x) 7→ Pt (x, ·) is a measurable map [0,∞)× E → P (E).

• For all x ∈ E, P0(x, ·) = δx.

• For all s, t ≥ 0 and all A ⊂ B(E), Ps+t(x,A ) =
∫
E
Ps(y,A )Pt(x, dy).

This last relation is called the Chapman-Kolmogorov property.

A family of transition functions (Pt)t≥0 is said to be adapted to the Markov process
(Xt)t≥0 when for all s, t ≥ 0, and all A ⊂ B(E),

P(Xs+t ∈ A |(Xr)0≤r≤t) = Ps(Xt,A ),

which is equivalent to

E[ϕ(Xt+s)|(Xr)0≤r≤t] =

∫
E

ϕ(y)Ps(Xt, dy),

for any bounded Borel measurable test function ϕ ∈ Bp(E). Note that this relation and
the Markov property (114) imply the Chapman-Kolmogorov property with x = Xr for
r ≥ 0. Moreover given the initial distribution X0 ∼ f0, the finite dimensional distributions
of (Xt)t can be computed by

P(X0 ∈ A0, Xt1 ∈ A1, . . . , Xtn ∈ An)

=

∫
A0

. . .

∫
An−1

Ptn−tn−1(yn−1,An)Ptn−1−tn−2(yn−2, dyn−1)

. . . Pt1(y0, dy1)f0(dy0), (116)

for any A0, . . . ,An ∈ B(E) and 0 ≤ t1 ≤ . . . ≤ tn. In fact transition functions are
sufficient to build a Markov process; this is a consequence of the Kolmogorov extension
theorem (or more generally of the Ionescu-Tulcea theorem), see for instance [74, Chapter
4, Theorem 1.1] or [138, Chapter 3, Theorem 1.5].

Theorem A.23 (Markov process built from transition functions). Let E be a Polish
space and f0 ∈ P(E). Given the transition functions (Pt)t≥0, there exists a Markov
process whose finite dimensional distributions are uniquely determined by (116). Its law
on the path space is a probability measure fI ∈ P(D(I, E)).
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If f0 = δx, then fI is denoted by fxI and [74, Chapter 4,Propositon 1.2] proves that
the map x 7→ fxI (B) is measurable for any Borel set B ⊂ D(I, E).

Example 25 (Brownian motion). Transition functions are not explicit in general. A
notable exception is the d-dimensional Brownian motion for which

Pt(x,A ) = (2πt)−d/2
∫

A

exp

(
−|x− y|

2

2t

)
dy.

Note that the map t 7→ Pt(x, dy) is the measure solution of the 1D heat equation ∂tu =
∂2
xxu with initial condition u(t = 0, ·) = δx.

Semigroup representation.

The connection between Markov processes and linear PDEs is given by the semigroup
representation as explained below. For t ≥ 0, let the linear operator Tt acting on be
defined by:

Ttϕ(x) :=

∫
E

ϕ(y)Pt(x, dy), (117)

for any test functions ϕ ∈ Bb(E). Thanks to the Chapman-Kolmogorov property, this
defines a positive measurable semigroup of contractions on Bb(E), where we recall that
a family of bounded operators (Tt)t≥0 on a closed subspace D ⊂ Bb(E) is a semigroup
when T0 = Id and Tt+s = TtTs for all s, t ≥ 0. It is said to be a contraction semigroup
when the operators are bounded with norm smaller or equal to 1. The semi-group (Tt)t
is said to correspond to a Markov process (Xt)t≥0 when

∀s, t ≥ 0, ∀ϕ ∈ D, Ttϕ(Xt+s) = E[ϕ(Xs+t)|(Xr)0≤r≤t]

The semi-group representation characterises a Markov process, as stated in [74, Chapter
4, Proposition 1.6].

Theorem A.24. Let E be a Polish space and let D ⊂ Bb(E) be a closed subspace assumed
to be separating. Let f0 in P(E) and let (Tt)t≥0 be a semigroup on D corresponding to a
Markov process (Xt)t. Then the finite dimensional distributions of (Xt)t are determined
by (Tt)t≥0 and f0.

In the following, starting from a a semigroup (Tt)t, the goal is to construct a cor-
responding Markov process. With the notable exception of jump processes, stronger
assumptions on E and (Tt)t are often needed, as the ones given in the following definition.

Definition A.25 (Feller semigroup). Let E be a locally compact Polish space. A semi-
group (Tt)t≥0 is a Feller semigroup when its elements satisfy the following properties.

(1) (Feller). For all t ≥ 0, Tt maps C0(E) to C0(E), where C0(E) is the space of
continuous functions vanishing at infinity. It means that

∀ϕ ∈ C0(E), Ttϕ ∈ C0(E).
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(2) (Contraction). For all t ≥ 0 and all ϕ ∈ C0(E), ‖Ttϕ‖∞ ≤ ‖ϕ‖∞.

(3) (Mass preserving). For all t ≥ 0, Tt1 = 1.

(4) (Positivity). For all t ≥ 0 and all ϕ ∈ C0(E) such that ϕ ≥ 0, then Ttϕ ≥ 0.

(5) (Strongly continuous). For all ϕ ∈ C0(E), ‖Ttϕ− ϕ‖∞ → 0 when t→ 0.

The properties (2) to (4) hold when Tt is defined from 117. Also note that every
semigroup defined on C0(E) can be uniquely extended to the whole space Bp(E) (see
[27, Theoem 1.5]). A Markov process corresponding to a Feller semigroup is called a
Feller process. There is a one-to-one correspondence between Feller semigroups and Feller
processes; this is a consequence of the Riesz representation theorem, see for instance [27,
Section 1.2], [138, Chapter 3, Proposition 2.2] or [74, Chapter 4, Theorem 2.7].

Theorem A.26 (Càdlàg Markov process from a Feller semigroup). Let E be a locally
compact Polish space and let f0 ∈ P(E). Let (Tt)t be a Feller semigroup on E. Then there
exists a unique transition function (Pt)t on E such that 117 holds. As a consequence,
there exists a Markov process corresponding to (Tt)t with initial distribution f0, whose
finite dimensional distributions are uniquely determined by (Tt)t. Moreover this process
has a càdlàg modification and satisfies the strong Markov property with respect to the
right-continuous filtration Gt = ∩ε>0σ((Xs)s≤t+ε).

Example 26 (Brownian motion). The d-dimensional Brownian motion is a Feller process.
More generally diffusion processes are Feller processes under mild assumptions on the
diffusion coefficients.

Example 27 (Markov jump processes and Cb-Feller processes). The definition of Feller
process is not universal in the literature. An important variant is the notion of Cb-Feller
process for which the space C0(E) is replaced by Cb(E) in Definition A.25. In this case,
the local compactness assumption on E can be dropped. Diffusion processes are not Cb-
Feller processes because the diffusion semigroup is not strongly continuous on Cb(E) (see
[27, Example 1.7d]). The main class of Cb-Feller process that are considered in this review
is the class of Markov jump processes, defined by the transition function:

∀x ∈ E, Pt(x, dy) =
+∞∑
k=0

e−ttk

k!
P k(x, dy),

where P : E × B(E) → P(E) is a transition probability and for k ∈ N, x ∈ E and
A ∈ B(E),

P k(x,A ) =

∫
E

P (x, dy)P k−1(y,A ).

An explicit construction of a Markov jump process can be found in [74, Chapter 4, Sec-
tion 2], see also [138, Chapter 3, Exercise 1.8]. Markov jump processes are more easily
understood through their generator as defined below. More generally, the strong conti-
nuity property holds on Cb(E) for semigroups which have a bounded generator (for the
‖ · ‖∞ topology). Further links between Feller semigroups, Cb-Feller semigroups and other
notions of Feller semigroups can be found in [27, Section 1.1] and the references therein.
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Infinitesimal generator and PDE.

Strongly continuous contraction semigroups are determined by their infinitesimal genera-
tor.

Definition A.27 (Infinitesimal generator). The infinitesimal generator L of a strongly
continuous contraction semigroup (Tt)t≥0 on a closed subspace D ⊂ Bp(E) is the linear
operator defined by

Lϕ = lim
t→0
t>0

Ttϕ− ϕ
t

on the domain D(L) ⊂ D of functions ϕ such that the limit exists (for the topology on
D).

The first connection between Markov processes and PDE comes from the observation
that for all ϕ ∈ D(L),

d

dt
Ttϕ = TtLϕ,

d

dt
Ttϕ = LTtϕ, (118)

which are called the Kolmogorov equations. The first equation is called the forward Kol-
mogorov equation and the second, the backward Kolmogorov equation. The terminol-
ogy will appear more clearly in the time-inhomogeneous setting below. Since Tt and L
commute, the two equations are of course equivalent but each one has its own physi-
cal interpretation. The backward equation gives a Markov representation of the solu-
tion of the linear PDE ∂tu = Lu with initial condition ϕ as the conditional expectation
u(t, x) = Ttϕ(x) = E[ϕ(Xt)|X0 = x]. The backward equation thus describes the evolution
of an observable of the Markov process. A more general version when source terms or
boundary conditions are added is the Feynman-Kac formula. More on the forward equa-
tion is given in the next paragraph. Note that the generator L can include differential and
jump terms in which case the (backward) Kolmogorov equation is an integro-differential
PDE.

Example 28. The generator of the d-dimensional Brownian motion is Lϕ = 1
2
∆ϕ and

D(L) ⊂ C2
0(Rd). The generator of a Markov jump process on a space E is

Lϕ(x) =

∫
E

{ϕ(y)− ϕ(x)}P (x, dy),

and L is bounded on (Cb(E), ‖ · ‖∞).

In stochastic analysis, we often use the notion of full generator which turns the (for-
ward) Kolmogorov equation into a definition.

Definition A.28 (Full generator). The full generator of a strongly continuous contraction
semigroup (Tt)t on D is the subset

L̂ :=

{
(ϕ, ψ) ∈ D ×D, Ttϕ− ϕ =

∫ t

0

Tsψ ds

}
.
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The (forward) Kolmogorov equation says that {(ϕ,Lϕ), ϕ ∈ D(L)} ⊂ L̂. The full
generator is often used in connection with the martingale characterisation of a Markov
process due to Stroock and Varhadan, see [27, Corollary 1.37] and [74, Chapter 4, Section
3].

Theorem A.29. Let (Xt)t be a strong Markov process with full generator L̂. For ϕ, ψ ∈
Bp(E), let us define for t ≥ 0,

Mϕ,ψ
t := ϕ(Xt)− ϕ(X0)−

∫ t

0

ψ(Xs)ds.

Then the full generator is characterised by

L̂ =
{

(ϕ, ψ) ∈ Bp(E)×Bp(E), (Mϕ,ψ
t )t is a σ(X)-martingale

}
.

Taking ψ = Lϕ shows that

Mϕ
t = ϕ(Xt)− ϕ(X0)−

∫ t

0

Lϕ (Xs) ds

is a martingale. The (forward) Kolmogorov equation is retrieved by simply taking the
expectation.

Conversely, a linear operator (bounded or unbounded) L with domain D ⊂ Bp(E) is
the generator of a strongly continuous contraction semigroup (and thus is the generator
of a Markov process) if and only if it satisfies the Hille-Yosida theorem. In the context of
Feller processes, the result is stated in [27, Theorem 3.1] or [74, Chapter 4, Theorem 2.2].
The following example is a classical and important application. Further examples using
various points of view (SDE, martingale problem. . . ) can be found in [27, Chapter 3].

Example 29. The second order differential operator on Rd,

Lϕ(x) = c(x)ϕ(x) +
d∑
i=1

bi(x)
∂ϕ

∂xi
+

1

2

d∑
i,j=1

aij(x)
∂2ϕ

∂xi∂xj
,

is the generator of a Feller semigroup when aij, bi and c are respectively C3
b (Rd), C2

b (Rd)
and C1

b (Rd) with c(x) ≤ 0 and the matrix a = (aij) is uniformly elliptic in the sense that
there exists λ > 0 such that

∀x, ξ ∈ Rd, 〈a(x)ξ, ξ〉 ≥ λ|x|2.

The corresponding Feller process is said to be a diffusion process.

The dual semi-group.

Let E be locally compact and let (Tt)t be a Feller semigroup. To obtain a forward (or
strong) version of the PDE representation (118), let the dual version of 117 be given by:

∀ν ∈ P(E), ϕ ∈ C0(E) 7→ 〈Stν, ϕ〉 := 〈ν, Ttϕ〉 ∈ R.
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By the Riesz representation theorem, this defines a family of operator (St)t on P(E).
For all ν ∈ P(E), Stν ∈ P(E) and by the Chapman-Kolmogorov property, the family of
operators (St)t also forms a semigroup. When transition functions (Pt)t≥0 are available,
this duality relation implies

Stν(dy) =

∫
E

Pt(x, dy)ν(dx).

Given the generator L of the semigroup (Tt)t, the dual semigroup (St)t satisfies the dual
Kolmogorov equations:

∂tSt = L?St, ∂tSt = StL
?,

where L? is the dual operator of L. This time, the forward Kolmogorov equation (the first
one) can be interpreted as the initial value problem ∂tft = L?ft. According to (116), the
solution of the forward equation ft = Stf0 is the law at time t ≥ 0 of the Feller process
with initial distribution f0.

Example 30. The law ft of a diffusion process (see Example 29) satisfies the forward
Kolmogorov equation, also called the Fokker-Planck equation in this context:

∂ft(x) = c(x)ft(x)−
d∑
i=1

∂xi{bi(x)ft(x)}+
1

2

d∑
i,j=1

∂xi∂xj{aij(x)ft(x)}.

A.4.2 Time-inhomogeneous Markov processes

One of the goal of this subsection is to extend this formalism to cases where the generator
Lt has a time-dependence. The analog of transition functions is the following time-
inhomogeneous version.

Definition A.30 (Transition functions, inhomogeneous case). A family of maps (Ps,t)0≤s≤t
where Ps,t : E → P(E) is a family of time-inhomogeneous transition functions when the
following properties hold.

• The map (s, t, x) 7→ Ps,t(x, ·) is a measurable map [0,∞)× [0,∞)× E → P(E).

• For all t ∈ R+ and for all x ∈ E, Pt,t(x, ·) = δx.

• For all 0 ≤ r ≤ s ≤ t, for all x ∈ E and for all A ∈ B(E),

Pr,t(x,A) =

∫
E

Ps,t(y,A )Pr,s(x, dy).

This last relation is the equivalent of the Chapman-Kolmogorov property.

Similarly to the time-homogeneous case, the transition functions (Ps,t)0≤s≤t are said
to be adapted to the time-inhomogeneous Markov process (Xt)t≥0 when

P(Xt ∈ A |(Xr)0≤r≤s) = Ps,t(Xs ∈ A ),
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or equivalently,

E[ϕ(Xt)|(Xr)0≤r≤s] =

∫
E

ϕ(y)Ps,t(Xs, dy),

for every 0 ≤ s ≤ t and any ϕ ∈ Bp(E). The time-homogeneous setting is recovered when
Ps,t ≡ Pt−s depends on t− s only. Moreover given the initial distribution f0 ∈ P(E), the
finite dimensional distributions can be computed as

P(X0 ∈ A0, Xt1 ∈ A1, Xt1 , . . . , Xtn ∈ An)

=

∫
A0

. . .

∫
An−1

Ptn−1,tn(yn−1,An)Ptn−2,tn−1(yn−2, dyn−1)

. . . P0,t1(y0, dy1)f0(dy0),

so that given f0, a time inhomogeneous Markov process is fully characterised by the
time-inhomogeneous transition functions. The link with PDEs is retrieved similarly by
introducing the operators

∀ϕ ∈ Bp(E), Ts,tϕ(x) :=

∫
E

ϕ(y)Ps,t(x, dy).

The family (Ts,t)s≤t is an evolution system in the following sense, see [26], [141] and the
references therein.

Definition A.31 (Evolution system). An evolution system (Ts,t)0≤s≤t is a family of
bounded linear operators on a closed subspace D ⊂ Bp(E) such that

• for all t ≥ 0, Tt,t = Id;

• for all 0 ≤ s ≤ t, Ts,t1 = 1;

• for all 0 ≤ r ≤ s ≤ t, Tr,t = Tr,sTs,t.

These properties can be directly checked in the case of a system defined by time
inhomogeneous transition functions.

An evolution system is said to correspond to a Markov process (Xt)t≥0 when

∀0 ≤ s ≤ t, ∀ϕ ∈ D, Ts,tϕ(Xs) = E[ϕ(Xt)|(Xr)0≤r≤s].

The previous notion of Feller semigroup readily extends to evolution systems in a time-
inhomogeneous setting with the strong continuity property being replaced by

∀ϕ ∈ C0(E), ‖Ts,tϕ− ϕ‖∞ −→
(s,t)→(0,0)

0.

In the time inhomogeneous case, there are two notions of infinitesimal generators,
depending on if the derivative is taken from the left of from the right. The left and right
generators are defined respectively by

L−t ϕ := lim
ε→0+

Tt−ε,tϕ− ϕ
ε

, L+
t ϕ = lim

ε→0+

Tt,t+εϕ− ϕ
ε

.
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They are respectively defined on the domains denoted by D(L−t ) and D(L+
t ). Note that

in both cases, the generators depend on a time variable. In general, the left and right
generators do not coincide but they do under stronger uniform continuity assumptions
with respect to the time variable, see [26, Lemma 2.2]. They also coincide for time
homogeneous systems.

If (Ts,t)s≤t is strongly continuous then the forward and backward Kolmogorov equations
reads, respectively:

d±

dt
Ts,t = Ts,tL

±
t ,

d±

ds
Ts,t = −L±s Ts,t,

where d+

dt
(resp. d−

dt
) denotes the right (resp.) left derivative. Given ϕ ∈ D(L−s ) and a

fixed t > 0, the solution of the backward Kolmogorov equation is

u(s, x) = Ts,tϕ(x) = E[ϕ(Xt)|Xs = x].

The terminology backward refers to the fact that u satisfies a final value problem with
terminal condition ϕ at s = t. In the time homogeneous setting,

Ts,t = T0,t−s ≡ Tt−s,

and consequently for τ ≤ t, the quantity

U(τ, x) := u(t− τ, x) = Tτϕ(x),

satisfies
∂τU = LU, U(τ = 0) = ϕ,

which is the backward Kolmogorov equation previously obtained (since in this case L+
s =

L−s = L does not depend on s).
As before, the forward equation is better understood with the dual formulation. Given

s ≤ t, the operator Ss,t acting on P(E) is defined by

∀ν ∈ P(E), ∀ϕ ∈ Bp(E), 〈Ss,tν, ϕ〉 = 〈ν, Ts,tϕ〉.

This duality relation implies

Ss,tν(dy) =

∫
E

Ps,t(x, dy)ν(dx)

Let f0(xdx) be the initial distribution. Then

ft(dx) := S0,sf0(dx) =

∫
E

P0,t(y, dx)f0(dy),

is the law of the associated Markov process at time t. In this last equality, note the
change of variables which exchanges the roles of the y and x variables. Since the family
of operators (Ss,t)s≤t satisfies the dual Chapman-Kolmogorov property Ss,tSr,s = Sr,t for
r ≤ s ≤ t, then Ss,tfs = ft for all 0 ≤ s ≤ t. Let us assume that the left and right
generators coincide and let L?t be the formal adjoint of Lt = L+

t . Then, the forward
Kolmogorov equation becomes:

∂tSs,t = L?tSs,t,

which is an initial value problem for the density ft with initial condition fs at s.
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Example 31. The time inhomogeneous setting allows to consider diffusion processes with
time variable coefficients (see Example 29). The backward Kolmogorov equation reads:

−∂su(s, x) =
d∑
i=1

bi(s, x)∂xiu(s, x) +
1

2

d∑
i,j=1

aij(s, x)∂xi∂xju(s, x), u(t, x) = ϕ(x),

and the forward Kolmogorov equation (or Fokker-Planck equation) is:

∂tft(x) = −
d∑
i=1

∂xi{bi(t, x)ft(x)}+
1

2

d∑
i,j=1

∂xi∂xj{aij(t, x)ft(x)}, ft=0(x) = f0(x).

A.4.3 Non-linear Markov processes

The previous steps have given Markov representations for linear PDEs (with and without
time varying coefficients). The class of nonlinear PDEs studied in this review can also
be seen as the forward Kolmogorov equation associated to a particular class of time-
inhomogeneous Markov processes. This point of view was introduced by the seminal
work of McKean [120, 122] and Johnson [101].

Let us first introduce an extension of the notion of transition functions.

Definition A.32 (Transition functions, nonlinear case). A family of maps (P ν
t )t≥0 from

E → P(E) defined for any ν ∈ P(E) is a family of non-linear transition functions when
it satisfies the following properties.

• The map (t, x, ν) 7→ P ν
t (x, ·) is a measurable map [0,∞)× E × P(E)→ P(E).

• For all x ∈ E and for all ν ∈ P(E), P ν
0 (x, ·) = δx.

• For all s, t ≥ 0, for all x ∈ E, for all ν ∈ P (E) and for all A ∈ B(E), it holds that

P ν
s+t(x,A ) =

∫
E

P
∫
E P

ν
t (x,dy)ν(dx)

s (y,A )P ν
t (x, dy).

This last relation is a nonlinear version of the Chapman-Kolmogorov property; the linear
case is recovered when P ν

t does not depend on ν.

At this point, it is natural to introduce the nonlinear operator St : P(E) → P(E)
defined for ν ∈ P(E) by

St(ν)(dy) =

∫
E

P ν
t (x, dy)ν(dx),

so that the non-linear Chapman-Kolmogorov relation reads

P ν
s+t(x, ·) =

∫
E

P St(ν)
s (y, ·)P ν

t (x, dy). (119)
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Integrating against ν, this gives

St+s(ν) =

∫
E

P St(ν)
s (y, ·)

(∫
E

P ν
t (x, dy)ν(dx)

)
= Ss(St(ν)). (120)

In particular S0 = Id, and (St)t≥0 appears to be a non-linear semi-group: the bar notation
reminds of the non-linearity when writing St alone. The semigroup (St)t≥0 is the analog
of the previous dual semi-group.

Finally a nonlinear Markov process in the sense of McKean with initial distribution
f0 ∈ P(E) is a time-inhomogeneous Markov process with transition functions of the form

P s,t = P
Ss(f0)
t−s ,

for s ≤ t. This corresponds to the construction of Johnson [101] established when the
state space E is the 2-state space E = {−1,+1}.

The nonlinear evolution system is defined for any s ≤ t by

∀ϕ ∈ Bp(E), T s,tϕ(x) =

∫
E

ϕ(y)P s,t(x, dy) =

∫
E

ϕ(y)P fs
t−s(x, dy).

In the above expression, fs := Ss(f0) is the law at time s of the associated nonlinear
Markov process in the sense of Mckean. Its right generator is given by:

Lftϕ(x) := lim
ε→0

T t,t+εϕ(x)− ϕ(x)

ε
= lim

ε→0

∫
E
ϕ(y)P ft

ε (x, dy)− ϕ(x)

ε
,

from which it can be seen that it depends on ft only. With this particular form for the
dependence in time, the forward Kolmogorov equation given in Example 31 thus appears
to be the nonlinear Fokker-Planck equation satisfied by the law of the solution of the
McKean-Vlasov diffusion SDE

dX t = b(X t, ft)dt+ σ(X t, ft)dBt, X t ∼ ft,

the wellposedness of which has been studied in Proposition 1.

A.5 Large Deviation Principles and Sanov theorem

Definition A.33 (Large Deviation Principle). Given a sequence sequence (aN)N of pos-
itive numbers aN → 0 and a non-negative lower-semicontinuous function I on E, a se-
quence (µN)N in P(E) satisfies a Large Deviation Principle (LDP) with speed aN and
rate function I when for any Borel set A ⊂ E, it holds that

− inf
Å
I ≤ lim inf

N→∞
aN log µN(A) ≤ lim sup

N→∞
aN log µN(A) ≤ − inf

A
I,

where Å and A denote respectively the interior and closure of A.
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Given a sequence (X i)i∈N of i.i.d. real-valued random variables, Cramér’s theorem
states that the sequence of the laws Law( 1

N

∑N
i=1 X

i), N ∈ N, satisfies a LDP with rate
function Λ∗(x) = supt∈R(tx− logE[exp(tX1)]) and speed aN = 1/N . By taking the image
random variables ϕ(X1), ϕ(X2), . . . for a fixed test function ϕ, a LDP can be obtained for
the sequence of laws Law(〈µXN , ϕ〉), where XN = (X1, . . . , XN). However, in this case,
the rate function depends on the choice of the test function ϕ. A more precise theorem
which gives a LDP for the laws of the sequence of empirical measures is Sanov theorem.

Theorem A.34 (Sanov). Let µ be a probability measure on a Polish space E, and let
(X i)i∈N be a sequence of independent µ-distributed random variables. For N ∈ N, we
recall the notation XN = (X1, . . . , XN) ∈ EN . Then the laws in P(P(E)) of the measure-
valued random variables µXN satisfies a large deviation principle with speed N−1 and rate
function the relative entropy ν 7→ H(ν|µ).

A.6 Girsanov transform

There are many versions of Girsanov theorem. We do not give the most general result
(which can be found for instance in [109, Theorem 5.22]) but only the one which will is
used in this review and which can be found in [105, Chapter 3, Theorem 5.1].

Theorem A.35 (Girsanov). Let (Ω,F , (Ft)t,P) be a filtered probability space and let
(Bt)t be a d-dimensional Brownian motion on this space with P(B0 = 0) = 1. Let (Xt)t be
a Rd-valued adapted measurable process and let the process be defined (whenever it exists)
for t < +∞ by:

Ht :=

∫ t

0

Xs · dBs −
1

2

∫ t

0

|Xs|2ds.

Let Q the probability measure on (Ω,F ) defined by its Radon-Nikodym derivative on each
FT , T < +∞ :

dQ
dP

∣∣∣
FT

= exp(HT ).

Assume that exp(H) is a martingale and let us define the process

B̃t = Bt −
∫ t

0

Xsds.

Then for each fixed T ∈ [0,+∞), (B̃t)t≤T is a Brownian motion on (Ω,FT ,Q|FT
).

A.7 Poisson random measures

This section briefly explains how to model jump processes using Poisson random measures.
The theory of random measures is explained in great details in [99]. Another classical
reference on stochastic integration with respect to random measures is [95]. The following
presentation is also inspired by [7, Appendix A] and [130, Section 3].

Let us fix a filtered probability space (Ω,F , (Ft)t,P).
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Definition A.36 (Poisson random measure). Let (E , µ) be a measurable Polish space

endowed with a σ-finite measure µ. Let M̂(E ) be the set of all measures λ on E which are
expressed as a countable sum of Dirac measures on E and such that λ(A ) < +∞ for any

µ-finite set A . A Poisson random measure with intensity µ is a mapping N : Ω→ M̂(E )
with the following properties.

(i) The mapping ω ∈ Ω 7→ N (ω,A ) is measurable for any µ-finite set A .

(ii) For every disjoints µ-finite sets A1, . . . ,Ak, the random variablesN (Aj), j ∈ {1, . . . , k},
are independent and N (Aj) follows a Poisson distribution on N with parameter
µ(Aj).

We will only consider the case E = R+ ×Θ where Θ is a Polish space and µ is of the
form µ(dt, dx) = dt⊗ν(dθ). The results below also extend to the case where ν is replaced
by a family of σ-finite measures (νt)t on Θ which depend on the time parameter. The
Poisson random measure N is assumed to be adapted which means that it satisfies the
following properties.

(i) N (A ) is Ft-measurable for each Borel measurable set A ∈ B([0, t]×Θ) with t > 0

(ii) The σ-field generated by {N (A ), A ∈ B((t,+∞)×Θ)} is independent of Ft.

Some ideas on the construction of the stochastic integral againstN are gathered below.
To better understand what a Poisson random measure does, it is useful to consider

first the case ν(Θ) < +∞. In this case, on every finite time interval [0, T ], Nt(Θ) :=
N ((0, t]×Θ) defines a classical Poisson process. The Poisson random measure N can be
shown to admit the representation:

N (dt, dθ) =

γ∑
n=1

δ(Tn,θn)(dt, dθ),

where T1, . . . , Tγ are the jump times of Nt(Θ) and θn are i.i.d. random variables with
distribution ν(dθ)/ν(Θ). For any measurable function a ≡ a(ω, t, θ) on Ω×R+ ×Θ with
values in R, the integral with respect to N is defined by:∫ T

0

∫
Θ

a(ω, s, θ)N (ds, dθ) :=

γ∑
n=1

a(ω, Tn, θn).

That is to say, it is the sum of the random amplitudes a(ω, Tn, θn) added at each jumping
time Tn.

To extend the previous construction to the case ν(Θ) = +∞, let us consider a pre-
dictable real-valued function a ≡ a(ω, t, θ) on Ω×R+×Θ. We do not write the dependence
in ω in the following. We recall that (Θ, ν(dθ)) is σ-finite, so there exists an increasing
sequence of subsets (Θp)p such that ν(Θp) < +∞ and Θ = ∪pΘp. By the previous con-
struction, the integral of a against N is well-defined on each subset [0, T ]×Θp. There are
two cases to distinguish.
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1. When a satisfies the L1 condition

E
[∫ t

0

∫
Θ

|a(s, θ)|ν(dθ)ds

]
< +∞,

it is possible to show that the sequence
(∫ T

0

∫
Θp
a(s, θ)N (ds, dθ)

)
p

is Cauchy in L1.

Its limit is denoted by
∫ T

0

∫
Θ
a(s, θ)N (ds, dθ). In this case, the process

Mt =

∫ t

0

∫
Θ

a(s, θ)N (ds, dθ)−
∫ t

0

∫
Θ

a(s, θ)ν(dθ)ds, (121)

is a Ft-martingale (in fact, Mt characterises N ).

2. When a satisfies the L2 condition

E
[∫ T

0

∫
Θ

|a(s, θ)|2ν(dθ)ds

]
< +∞,

then it is possible to prove that (121) still defines a square integrable martingale
with quadratic variation

〈M〉t =

∫ t

0

∫
Θ

|a(s, θ)|2Ñ (ds, dθ),

where
Ñ (dt, dθ) := N (dt, dθ)− ν(dθ)dt,

is called the compensated measure ofN . Note however that the quantity
∫ T

0

∫
Θ
a(s, θ)N (ds, dθ)

may not be defined.

The next step is to make sense of the jump-diffusion SDE:

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs +

∫ t

0

∫
Θ

α(Xs− , θ)N (ds, dθ)

+

∫ t

0

∫
Θ

α̃(Xs− , θ)Ñ (ds, dθ), (122)

where this time α, α̃ : E ×Θ→ E for E = Rd. We always assume the following Lipschitz
integrability conditions:

(i) For all x ∈ E and T > 0, it holds that
∫ T

0

∫
Θ
|α(x, θ)|ν(dθ) < +∞ and

∫ T
0

∫
Θ
|α̃(x, θ)|2ν(dθ) <

+∞.

(ii) There exists C > 0 such that for any x, y ∈ E,

|σ(x)− σ(y)|2 + |b(x)− b(y)|2 +

∫
Θ

|α̃(x, θ)− α̃(y, θ)|2ν(dθ) ≤ C|x− y|2.
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In the classical theory of SDE (see [95, Chapter IV, Section 9]) the Lipschitz integrability
condition ∫

Θ

|α(x, θ)− α(y, θ)|pν(dθ) ≤ C|x− y|p

with p = 2 is also assumed. However, from a modelling point of view, it makes more sense
in the context of this review to assume this condition with p = 1 (see [4, Remark 2.1] or
the introduction of [86]). In this L1 setting, strong existence and uniqueness for the SDE
(122) is proved in [86, Theorem 1.2]. Moreover, the generator of the process is the sum
of the three generators

Lϕ(x) =
d∑
i=1

b(x) · ∇ϕ(x) +
1

2

d∑
i,j=1

(σσT)ij(x)∂xi∂xjϕ(x),

Jϕ(x) =

∫
Θ

{
ϕ
(
x+ α(x, θ)

)
− ϕ(x)

}
ν(dθ),

J̃ϕ(x) =

∫
Θ

{
ϕ
(
x+ α̃(x, θ)

)
− ϕ(x)− α̃(x, θ) · ∇ϕ(x)

}
ν(dθ).

B A strengthened version of Hewitt-Savage theorem

and its partial system version

The following computation gives the Cauchy-estimate of Theorem 3.17 using stronger
metrics.

Corollary 5 (Extending Cauchy-estimates to other metrics). The Cauchy-estimate of
Theorem 3.17 can be obtained in Wδ,p-distance for M ≤ N with rate ε(M), where δ is any
metric on P(E) such that a uniform δp-law of large numbers holds, i.e. for every N ≥ 1,
there exists ε(N) > 0 with ε(N) → 0 as N → ∞, such that for every f in Pp(E) and

every f⊗N -distributed vector XN
,

E[δp(µXN , f)]1/p ≤ ε(N).

Thanks to [77], this includes all the Wassertein-p metrics on a compact space E or on
any E endowed with a bounded distance.

Proof. In order to couple XM to the sub-vector XM,N of XN , we choose the transference
plane (µM,N ,µN)#π

N ⊗ πN : this is well defined thanks to the compatibility property for
πM,N and πN . Thus

W p
δ,p

(
Law(µXM ),Law(µXN )

)
≤ EXN∼πN

[
δp(µXN,M , µXN )

]
=
〈
πN , δp

(
µM,N ,µN

)〉
.

Theorem 3.17 showed that πN is the N -th moment measure of the limit π in WH−s-
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distance, allowing to take advantage of superposing i.i.d. states:〈
πN , δp

(
µM,N ,µN

)〉
=

∫
P(E)

〈ν⊗N , δp(µM,N ,µN)〉Law(µXN )(dν)

≤ C(p)

∫
P(E)

〈ν⊗N , δp(µM,N , ν)〉Law(µXN )(dν)

+ C(p)

∫
P(E)

〈ν⊗N , δp(ν,µN)〉Law(µXN )(dν),

for a constant C(p) which only depends on p. Since ν⊗N is the law of a vector of i.i.d.
particles

〈ν⊗N , δp(µM,N , ν)〉 = 〈ν⊗M , δp(µM , ν)〉 = EXM∼ν⊗M
[
δp
(
µXM , ν

)]
,

and the quantitative assumption on the δp-law of large numbers concludes.

The following proposition gives a useful Cauchy-estimate for the empirical measure of
a sub-system of a finite exchangeable particle system. More precisely, let M < N and let
XN ∼ fN be a finite exchangeable particle system. One wish to compare µXN and µXM,N .
This is not possible by a direct coupling argument since the two empirical measures do not
have the same size. We thus use an alternative argument based on the special polynomial
structure of the H−s norm (see Lemma 3.4). This argument is also used in the proof of
the Hewitt-Savage Theorem 3.17.

Proposition 17 (Block empirical measures approximation). Let s > d/2. Let M < N
and let XN ∼ fN be a finite exchangeable particle system. It holds that

WH−s
(
Law(µXM,N ),Law(µXM )

)
≤ 2‖Φs‖∞

(
1

M
− 1

N

)
,

where Φs(z) :=
∫
Rd e−iz·ξ(1 + |ξ|2)−sdξ.
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Proof. Thanks to the identity (46), we get:

E
[
‖µXM,N − µXN‖2

H−s

]
=

∫
(Rd)N

(∫
Rd×Rd

Φs(x− y)
[
µ⊗2
xM,N

− µxM,N ⊗ µxN
]
(dx, dy)

)
fN
(
dxN

)
+

∫
(Rd)N

(∫
Rd×Rd

Φs(x− y)
[
µ⊗2
xN
− µxN ⊗ µxM,N

]
(dx, dy)

)
fN
(
dxN

)
=

∫
(Rd)N

(
1

M2

M∑
k,`=1

Φs(x
k − x`)− 1

NM

M∑
k=1

N∑
j=1

Φs(x
k − xj)

)
fN
(
dxN

)
+

∫
(Rd)N

(
1

N2

N∑
i,j=1

Φs(x
i − xj)− 1

NM

N∑
i=1

M∑
`=1

Φs(x
i − x`)

)
fN
(
dxN

)
=

(
M

M2
− M

NM

)
Φs(0)

+

(
M2 −M
M2

− NM −M
NM

)∫
Rd×Rd

Φs(x− y)f 2,N(dx, dy)

+

(
N

N2
− M

NM

)
Φs(0)

+

(
N2 −N
N2

− NM −M
NM

)∫
Rd×Rd

Φs(x− y)f 2,N(dx, dy)

=

(
1

M
− 1

N

)(
Φs(0)−

∫
Rd×Rd

Φs(x− y)f 2,N(dx, dy)

)
.

Since Φs is bounded, this gives the desired estimate.

In order to compare the empirical measures of two sub-systems with different sizes
but which come from the same exchangeable finite particle system, one can use the same
method as in Corollary 5. However, we need to replace the marginals fk,N by their
moment measures approximation. Thanks to Lemma 3.11, this error term is quantitative
which gives an explicit maximal size for the subsystems.

Proposition 18 (Strong Cauchy-estimates for block empirical measures). Under the as-
sumptions of Corollary 5, let M < N and let k < ` such that ε(`) ≥ `2N−1. Then it holds
that

W p
δ,p

(
Law(µXk,N ),Law(µX `,N )

)
≤ ε(k).

Proof. The transference plane is the same as in Corollary 5. Let us consider for simplicity
the Wassertein-2 distance (other adaptations are straightforward). Assuming the distance
on E = Rd to be bounded, the condition on ` allows to write

E
[
W 2

2 (µXk,N , µX `,N )
]

=
〈
f `,N ,W 2

2

(
µk,`,µ`

)〉
=
〈
EXNµ⊗`XN ,W

2
2

(
µk,`,µ`

)〉
+O

(
`2N−1

)
,
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where µ⊗`XN is the `-th moment measure of Law(µXN ). This leads to〈
EXNµ⊗`XN ,W

2
2

(
µk,`,µ`

)〉
=

∫
P(E)

〈
ν⊗`,W 2

2

(
µk,`,µ`

)〉
Law(µXNt )(dν)

≤
∫
P(E)

〈
ν⊗`,W 2

2

(
µk,`, ν

)〉
Law(µXN )(dν)

+

∫
P(E)

〈
ν⊗N ,W 2

2 (ν,µ`)
〉
Law(µXN )(dν).

Since ν⊗` is the law of a vector of i.i.d. particles〈
ν⊗`,W 2

2

(
µk,`, ν

)〉
=
〈
ν⊗k,W 2

2

(
µk, ν

)〉
= EXk∼ν⊗kW

2
2

(
µXk , ν

)
,

and the quantitative law of large numbers for the Wassertein-2 distance in [77] concludes.

Remark 26 (Recovering Cauchy-estimates on finite marginals). If the Wassertein-1 dis-
tance is considered instead, this leads to Cauchy estimates on f `,N thanks to Proposition 9

W1(fk,M , f `,N) =W1

(
Law(µXk,M ),Law(µX `,N )

)
≤ E

[
W1(µXk,M , µX `,N )

]
.
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construction, approximation and sample path properties, no. 3 in Lévy Matters,
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[76] J. Fontbona, H. Guérin and S. Méléard, Measurability of optimal transportation
and convergence rate for Landau type interacting particle systems, Probab. The-
ory Related Fields, 143 (2009), 329–351, http://link.springer.com/10.1007/

s00440-007-0128-4.

[77] N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance
of the empirical measure, Probab. Theory Related Fields, 162 (2015), 707–738,
Publisher: Springer.
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