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A LOCAL LIMIT THEOREM FOR CONVERGENT RANDOM

WALKS ON RELATIVELY HYPERBOLIC GROUPS

MATTHIEU DUSSAULE, MARC PEIGNÉ, AND SAMUEL TAPIE

Abstract. We study random walks on relatively hyperbolic groups whose
law is convergent, in the sense that the derivative of its Green function is �nite
at the spectral radius. When parabolic subgroups are virtually abelian, we
prove that for such a random walk satis�es a local limit theorem of the form
pn(e, e) ∼ CR−nn−d/2, where pn(e, e) is the probability of returning to the
origin at time n, R is the inverse of the spectral radius of the random walk and
d is the minimal rank of a parabolic subgroup along which the random walk is
spectrally degenerate. This concludes the classi�cation all possible behaviour
for pn(e, e) on such groups.

1. Introduction

1.1. General setting. Consider a �nitely generated group Γ and a probability
measure µ on Γ. The µ-random walk on Γ starting at γ ∈ Γ is de�ned as

Xγ
n = γg1...gn,

where (gk) are independent random variables of law µ in Γ. The law of Xγ
n is

denoted by pn(γ, ·). For γ = e, it is given by the convolution powers µ∗n of the
measure µ. The Local Limit problem consists in �nding the asymptotic behaviour
of pn(e, e) when n goes to in�nity.

The action by isometries of a discrete group on a Gromov-hyperbolic space (X, d)
is said to be geometrically �nite if for any o ∈ X, the accumulation points of Γo on
the Gromov boundary ∂X are either conical limit points or bounded parabolic limit
points. We refer to Section 2.1 below for a de�nition of these notions. A �nitely
generated group Γ is relatively hyperbolic with respect to a collection of subgroups
Ω = {H1, ...,Hp} if it acts via a geometrically �nite action on a proper geodesic
Gromov hyperbolic space X, such that, up to conjugacy, Ω is exactly the set of
stabilizers of parabolic limit points for this action. The elements of Ω are called
(maximal) parabolic subgroups. We will often assume that parabolic subgroups are
virtually abelian.

In this paper, we prove a local limit theorem for a special class of random walks
on relatively hyperbolic groups. We will always assume in the sequel that µ is
admissible, i.e. its support generates Γ as a semigroup, symmetric, i.e. for every g,
µ(g) = µ(g−1), and aperiodic i.e. pn(e, e) > 0 for large enough n.

On the one hand, it is known that aperiodic random walks with exponential mo-
ments on virtually abelian groups of rank d satisfy the following local limit theorem,
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see [38, Theorem 13.12] and references therein :

(1) pn(e, e) ∼ CR−nn−d/2,

where C is a positive constant and R ≥ 1 is the inverse of the spectral radius of
the random walk.

On the other hand, Gouëzel [17] proved that for �nitely supported, aperiodic
and symmetric random walks on non-elementary hyperbolic groups, the local limit
theorem has always the following form:

(2) pn(e, e) ∼ CR−nn−3/2,

where, again, C is a positive constant and R the inverse of the spectral radius of
the random walk. Notice that R > 1 since non-elementary hyperbolic groups are
non-amenable, see [21].

On relatively hyperbolic groups, the �rst author proved in [11] that the local limit
theorem (2) still holds provided the random walk is spectrally non degenerate. This
will be precisely de�ned in De�nition 3.1 below, see also [13, De�nition 2.3]; roughly
speaking, the random walk is spectrally degenerate along a parabolic subgroup H if it
gives enough weight toH ; when it is not spectrally along all the parabolic subgroup
in Ω, its is called spectrally non-degenerate. The spirit of the result in [11] is that
a spectrally non degenerate random walk mainly sees the underlying hyperbolic
structure of the group.

In contrast, for spectrally degenerate random walks, one would expect to see in
the local limit theorem the appearance of a competition between the exponents d/2
and 3/2, related to the competition between parabolic subgroups and the underlying
hyperbolic structure.

The simplest examples of relatively hyperbolic groups are free products. Can-
dellero and Gilch [6] gave a complete classi�cation of local limit theorems that can
occur for nearest neighbour random walks on free products of �nitely many abelian
groups; in this context, these free factors play the role of parabolic subgroups. They
indeed proved that whenever the random walk gives enough weight to the free fac-
tors, the local limit theorem is given by (1) as in the abelian case, whereas it is of
the form (2) in the remaining cases, see in particular the many examples given in
[6, Section 7].

Our paper is devoted to the general study of local limit theorems for the so
called convergent random walks on a relatively hyperbolic group. In this case, the
parabolic subgroups have the maximal possible in�uence on the random walk: we
make a precise presentation in the next subsection. The main results of these paper
are valid when parabolic subgroups are abelian; nevertheless, let us emphasize that
a large part of the following study remains valid for any convergent random walk,
see Remark 1.1 below.

1.2. Main results. Let µ be a probability measure on a relatively hyperbolic group
Γ. Denote by Rµ the inverse of its spectral radius, that is the radius of convergence
of the Green function G(x, y|r), de�ned as

G(x, y|r) =
∑
n≥0

pn(x, y)rn.

This radius of convergence is independent of x and y.
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De�nition 1.1. Let Γ be a relatively hyperbolic group and let µ be a probability
measure on Γ. We say that µ, or equivalently the random walk driven by µ, is
convergent if

d

dr |r=Rµ
G(e, e|r) < +∞.

Otherwise, µ is said to be divergent.

This terminology was introduced in [10]. It comes from the strong analogy be-
tween randow walks on relatively hyperbolic groups on the one hand and geodesic
�ow on geometrically �nite negatively curved manifolds on the other hand. We
will describe this analogy in Section 1.3 below. Spectrally non degenerate random
walk on relatively hyperbolic groups are always divergent as shown in [10, Propo-
sition 5.8]. All non-elementary cases presented above which show a local limit
theorem of abelian type (1) come from a convergent random walk.

Hence, if µ is convergent, then it is necessarily spectrally degenerate along some
parabolic subgroup. Moreover, whenever parabolic subgroups are virtually abelian,
each of them has a well-de�ned rank.

De�nition 1.2. Let Γ be a relatively hyperbolic group with respect to virtually
abelian subgroups and let µ be a convergent probability measure on Γ. The rank of
spectral degeneracy of µ is the minimal rank of a parabolic subgroup along which µ
is spectrally degenerate.

The central result of this paper is the following local limit theorem.

Theorem 1.3. Let Γ be a �nitely generated relatively hyperbolic group with respect
to virtually abelian subgroups. Let µ be a �nitely supported, admissible, symmetric
and convergent probability measure on Γ. Assume that the corresponding random
walk is aperiodic. Let d be the rank of spectral degeneracy of µ. Then for every
x, y ∈ Γ there exists Cx,y > 0 such that

pn(x, y) ∼ Cx,yR−nµ n−d/2.

If the µ-random walk is not aperiodic, similar asymptotics hold for p2n(x, y) if the
distance between x and x′ is even and for p2n+1(x, y) if this distance is odd.

Note that by [10, Proposition 6.1], the rank of any virtually abelian parabolic
subgroup along which µ is spectrally degenerate is at least 5. Therefore this local
limit theorem cannot coincide with the one given by (2) when µ is spectrally non
degenerate.

We get the following corollary.

Corollary 1.4. Let Γ be a �nitely generated relatively hyperbolic group with respect
to virtually abelian subgroups. Let µ be a �nitely supported, admissible, symmetric
and convergent probability measure on Γ such that the corresponding random walk
is aperiodic. Let d be the rank of spectral degeneracy of µ. Denote by qn(x, y) the
probability that the �rst visit in positive time of y starting at x is at time n. Then
for every x, y ∈ Γ there exists C ′x,y > 0 such that

qn(x, y) ∼ Cx,yR−nµ n−d/2.

By the results of Candellero and Gilch [6, Section 7], convergent measures do
exist. We do not attempt in this paper to systematically construct such measure
on any relatively hyperbolic group with virtually abelian parabolics.
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It follows from the proof that a local limit theorem analogous to our Theorem 1.3
can be shown as soon as (Γ, µ) satisfy two conditions:

• The Martin boundary of (Γ, µ) is stable in the sense of De�nition 2.6;
• The Martin boundary of the �rst return kernel to any dominant parabolic
subgroup is reduced to a point at the spectral radius.

We refer to Theorem 5.4 for a precise general statement. An important step in our
study, which is of independent interest, is hence the following fact.

Theorem 1.5 (Theorem 4.1). Let Γ be a �nitely generated relatively hyperbolic
group with respect to virtually abelian subgroups. Let µ be a �nitely supported,
admissible and symmetric probability measure on Γ. Then the Martin boundary of
(Γ, µ) is stable.

This completes the results of [13]. Along Section 3, we prove precise results on
the asymptotics of the Green function in a virtually abelian �nitely generated group
at the spectral radius which will show this stability.

Remark 1.1. Our proof relies on some important properties satis�ed by the virtually
abelian parabolic subgroups H1, . . . ,Hp, presented in Sections 3 and 4. Once these
properties can be extended to the case where the H1, . . . ,Hp are virtually nilpotent
parabolic subgroups, our main result Theorem 1.3 and its consequences may be
extended to this more general setting, by using Theorem 5.4 and following the
proofs of Section 5.

For all k ∈ N, we write

I(k)(r) =
∑

x1,...,xk∈Γ

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, e|r).

It follows from Lemma 5.1 that (Γ, µ) is convergent if and only if I(1)(Rµ) < +∞.
For all parabolic subgroup H < Γ, we write

I
(k)
H (r) =

∑
x1,...,xk∈H

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, e|r).

The following terminology was introduced in [10].

De�nition 1.6. A symmetric admissible and �nitely supported random walk µ on
a relatively hyperbolic group Γ is said to be spectrally positive recurrent if:

(1) µ is divergent, i.e. I(1)(Rµ) = +∞;
(2) for all parabolic subgroup H < Γ,

I
(2)
H (Rµ) < +∞.

Any random walk which is spectrally non degenerate is spectrally positive re-
current, see [10, Proposition 3.7]. The terminology positive recurrent is classical
for the study of countable Markov shift, see for instance to [36], [20] and [30]. The
analogous of spectral non degeneracy is given for countable Markov shifts by the
notion of strong positive recurrence, also called stable positive recurrence, see [20]
or [31]. In our setting, this terminology has been inspired by the close analogy with
the study of the geodesic �ow on negatively curved manifolds (see Section 1.3 below
and [10, Section 3.3] for more details).

We also prove in Section 7 the following result.



LOCAL LIMIT THEOREM FOR CONVERGENT REL. HYPERBOLIC GROUPS 5

Theorem 1.7. Let Γ be a �nitely generated relatively hyperbolic group with re-
spect to virtually abelian subgroups and let µ be a �nitely supported admissible and
symmetric probability measure on Γ. Then, the random walk is spectrally positive
recurrent if and only if it is divergent.

This allows us to classify all possible behaviors for pn(e, e) on a relatively hyper-
bolic group whose parabolics are virtually abelian, as illustrated by the following
corollary.
Notation. For two functions f and g, we write f . g if there exists a constant C
such that f ≤ Cg. Also write f � g if both f . g and g . f . If the implicit
constants depend on a parameter, we will avoid this notation.

Corollary 1.8. Let Γ be a relatively hyperbolic group and µ be a �nitely supported
admissible symmetric probability on Γ.

[10], Theorem 1.4: If µ is spectrally positive recurrent, then as n→ +∞,

pn(e, e) � CR−nn−3/2.

[11], Theorem 1.1: If µ is spectrally non degenerate, then as n→ +∞,

pn(e, e) ∼ CR−nn−3/2.

Theorem 1.3: If µ is convergent, then as n→ +∞,

pn(e, e) ∼ CR−nn−d/2,
where d is the spectral degeneracy rank of µ.

1.3. Geodesic �ow on negatively curved manifolds and random walks. For
convenience of the reader, we present now some results on the ergodic properties of
the geodesic �ow on geometrically �nite manifolds with negative curvature, which
has in�uenced this work.

Let (M, g) = (M̃, g)/Γ be a complete Riemannian manifold, where Γ = π1(M)

acts discretely by isometries on the universal cover (M̃, g). Assume that M has
pinched negative curvature, i.e. its sectional curvatures κg satisfy the inequalities
−b2 ≤ κg ≤ −a2 < 0 for some constants b > a > 0. Also assume that the action of

Γ on (M̃, dg) is geometrically �nite (see above or Section 2.1 below). By de�nition Γ
is hence relatively hyperbolic with respect to a �nite family of parabolic subgroups
H1, ...,Hp, and the pinched curvature hypothesis implies that the Hk are virtually
nilpotent. The interested reader will �nd in [4] several other equivalent de�nitions
of geometrical �niteness in the context of smooth negatively curved manifolds.

For each discrete group H acting by isometries on (M̃, g), and for all s > 0, the
Poincaré series of H at s is

PH(x, y|s) =
∑
γ∈H

e−sdg(x,γy) ∈ (0,+∞].

There is a δH ≥ 0 independent of x, y such that this series converges if s > δH and
diverges if s < δH . This quantity is called the critical exponent of H. The action
of H on (M̃, g) is called convergent if PH(x, y|δH) < +∞, and divergent otherwise.

Let µ be a random walk on Γ. We de�ne for x, y ∈ Γ the symmetrized r-Green
distance by

(3) dr(x, y) = log

(
Gµ(x, y|r)
Gµ(e, e|r)

)
+ log

(
Gµ(y, x|r)
Gµ(e, e|r)

)
.
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This distance was introduced in [10] and is an elaborated version of the classical
Green distance de�ned by Blachère and Bro�erio [3].

By Lemma 2.7, for all x ∈ Γ,

Pµ(x, y|r) =
∑
γ∈Γ

edr(x,γy) =
1

G(e, e|r)2

∑
z∈Γ

G(x, z|r)G(z, x|r) � d

dr |r=Rµ
G(x, x′|r).

As emphasized by our notation, the Poincaré series PΓ(x, y|s) of Γ is the analo-
gous in this context of group action on a metric space to Pµ(x, y|r) for the random
walk on Γ, which is of same order as the r-derivative of the Green function. The
Riemannian metric g has the role of the law µ. The (logarithm of the) critical
exponent δH of the Poincaré series has the same role as the radius of convergence
of the Green function. The local limit theorem describes the asymptotic behavior
as n → +∞ of the quantity p(n)(x, y) for any x, y ∈ Γ; in the geometrical setting,
it is replaced by the orbital counting asymptotic, that is the asymptotic behavior
as R→ +∞ of the orbital function NΓ(x, y,R) de�ned by : for all x, y ∈ M̃ ,

NΓ(x, y,R) := # {γ ∈ Γ ; d(x, γy) ≤ R} .

The following de�nition, which is the analogous in this context to our previ-
ous De�nition 1.6, comes from the results of [7] even though the terminology has
been �xed in [27] (in the full general setting of negatively curved manifolds, not
necessarily geometrically �nite).

De�nition 1.9. Let (M, g) = (M̃, g)/Γ be a geometrically �nite Riemannian man-

ifold with pinched negative curvature, where Γ = π1(M). Let o ∈ M̃ be �xed. The

action of Γ on (M̃, g) is said to be positive recurrent if

(1) the action of Γ on (M̃, g) is divergent;
(2) for all parabolic subgroup H ⊂ Γ,∑

h∈H

d(o, h.o)e−sd(o,po) < +∞.

We refer to [27, De�nition 1.3] for a de�nition of positive recurrence beyond
geometrically �nite manifolds. The action of Γ is said to be strongly positive recur-
rent - in the literature, one also says that γ has a critical gap - if for all parabolic
subgroup H ⊂ Γ, we have δH < δΓ. This is the analogue of the notion of spectrally
non degeneracy for random walks on relatively hyperbolic groups. Theorem A of
[7] shows that strongly positive recurrent actions are positive recurrent (only the
divergence is non-trivial). This has later been shown for more general negatively
curved manifolds in [33, Theorem 1.7] and the analogous result for random walks is
given by Proposition 3.7 of [10]. Moreover, Theorem B of [7] shows that the action
is positive recurrent if and only if the geodesic �ow admits an invariant probability
measure of maximal entropy. This has been shown for general negatively curved
manifolds in [27, Theorem 1.4]. Combined with Theorem 4.1.1 of [29], it gives the
following aymptotic counting.

Theorem 1.10. Let (M, g) = (M̃, g)/Γ be a negatively curved manifold.

• If the action of Γ is positive recurrent, then for all x, y ∈ M̃ , there is
Cxy > 0 such that, as R→ +∞,

NΓ(x, y,R) ∼ CxyeδΓR.
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• If the action of Γ is not positive recurrent, then for all x, y ∈ M̃ ,

NΓ(x, y) = o
(
eδΓR

)
.

Precising the asymptotics of NΓ(x, y,R) when the action of Γ is not positive re-
current is in general di�cult. To the authors' knowledge, the only known examples
are abelian coverings (cf [28]), which are not geometrically �nite, and geometrically
�nite Schottky groups whose parabolic factors have counting functions satisfying
some particular tail condition and for which asymptotics have been obtained in [8],
[37] and [25]. Recall that Schottky groups are free products of elementary groups
whose limit sets are at a positive distance from each other, see for instance Sec-
tion 2.4 of [25] for a de�nition. In our analogy with random walks on relatively
hyperbolic groups, we emphasize hence the following result from [24], which gathers
in some particular case results of [37] and [25]. It is a Riemannian analogous to the
work of Candellero and Gilch [6] already quoted.

Theorem 1.11. Let (M, gH) = H2/Γ be a hyperbolic surface where Γ is a Schottky
group with at least one parabolic free factor H = 〈h〉. We �x a parameter b ∈ (1, 2).
Then, there exists a family (ga,b)a∈(0,+∞) of negatively curved Riemannian metrics
on M obtained by perturbation of the hyperbolic metric gH in such a way:

- the metrics ga,b coincides with gH outside a small neighbourhood (controlled by
the value a) of the cuspidal end associated with H;

- the distance da,b induced by ga,b satis�es the following condition: for any �xed
point x ∈ H2,

da,b(x, p
nx) = 2

(
ln |n|+ b ln | ln |n||

)
+O(1)

.
Then, there exists a �critical value� a∗ > 0 such that :

• if a > a∗ then the action of Γ on (H2, ga) is strongly positive recurrent. In
particular for all x, y ∈ H2,

NΓ(x, y,R) ∼ CxyeδΓR;

• if a = a∗, then the action of Γ on (H2, ga) is divergent but non positive
recurrent. Moreover, for all x, y ∈ H2,

NΓ(x, y,R) ∼ Cxy
eδΓR

R2−b ;

• if a ∈ (0, a∗), then the action of Γ on (H2, ga) is convergent and for all
x, y ∈ H2,

NΓ(x, y,R) ∼ Cxy
eδΓR

Rb
.

It follows from Theorem 1.7 that the above critical situation (for a = a∗) with
a divergent but not positive recurrent action cannot occur in the context of ran-
dom walks on relatively hyperbolic groups, as soon as the parabolic subgroups are
virtually abelian.

We end this paragraph with a table that summarizes the di�erent cases that
arise in the study of local limit theorems of relatively hyperbolic groups. We also
indicate the corresponding results obtained in the framework of geometrically �nite
non-compact surfaces endowed with the metric ga de�ned in Theorem 1.11.
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Left column

Γ is a relatively hyperbolic group with respect to virtually abelian parabolic sub-
groups H1, . . . , Hp (up to conjugacy). We consider an aperiodic µ-random walk on
Γ where µ is a �nitely supported, admissible and symmetric probability measure
on Γ with rank dµ.
Right column

Γ is a geometrically �nite Fuchsian group with parabolic subgroups H1, . . . ,Hp
(up to conjugacy). We assume that H2/Γ is endowed with the metric ga,b and set
δH = max(δH1

, . . . , δHp).

Local Limit Theorem Counting problem

Γ non spectrally degenerate critical gap property δΓ > δH
(µ is spectrally positive recurrent) (Γ is positively recurrent)

pn(x, y) ∼ Cx,yR−nµ n−3/2 NΓ(x, y,R) ∼ CxyeδΓR

see [11] see [29] [24]
µ spectrally degenerate Γ exotic i.e δΓ = δH

+ +
spectrally positively recurrent positively recurrent

Rough estimate: pn(x, y) � R−nµ n−3/2 NΓ(x, y,R) ∼ CxyeδΓR

see [10] see [29] [24]

Conjecture: pn(x, y) ∼ Cx,yR−nµ n−3/2

µ spectrally degenerate Γ exotic i.e δΓ = δH
+ divergent + + divergent +

non spectrally positively recurrent non positive recurrent

IMPOSSIBLE NΓ(x, y,R) ∼ Cxy e
δΓR

R2−b

see Theorem 1.7 see [37] [24]
µ convergent Γ convergent

(thus µ spectrally degenerate) (thus Γ exotic)

pn(x, y) ∼ Cx,yR−nµ n−dµ/2 NΓ(x, y,R) ∼ Cxy e
δΓR

Rb

see Theorem 1.3 see [25]

1.4. Organization of the paper. In Section 2, we present our setting: relatively
hyperbolic groups, transition kernels with their Green function and their Martin
boundary, and Ancona inequalities which are the analogue for random walk of rough
negative curvature for metric spaces.

In Section 3, we introduce the �rst return kernel pH(., .|r) to a parabolic sub-
group H of rank d. Assuming that the random walk is spectrally degenerate along
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H we give asymptotics for the j-th derivative of the Green function associated to
pH where j = dd/2e − 1 (see Proposition 3.13).

In Section 4, we assume that parabolic subgroups are virtually abelian and show
that the Martin boundary is stable in the sense of De�nition 2.6 below (see Theo-
rem 4.1). This had already been shown in [13] when the random walk is spectrally
non degenerate; it still holds for convergent (hence spectrally degenerate) random
walks.

In Section 5, we assume that the Martin boundary of the full random walk is
stable and the Martin boundary of the walk restricted to parabolic subgroups is
reduced to a point. Under these conditions, we prove that asymptotics for the j-ith
derivative of the Green function of the full random walk are given by the analogous
asymptotics for the transition kernels of the �rst return to the parabolic subgroups
along which the walk is spectrally degenerate (see Theorem 5.4).

In Section 6, we gather the ingredients of the three previous section which give
asymptotics for the j-th derivative of the full Green function, where j = dd/2e − 1
and d is the rank of spectral degeneracy of the walk. Theorem 1.3 follows, applying
a Tauberian type theorem shown in [18].

Eventually, in Section 7, we show that, if the parabolic subgroups are virtually
abelian and the random walk is divergent, then the random walk is automatically
spectrally positive recurrent.

2. Random walks on relatively hyperbolic groups

2.1. Relatively hyperbolic groups and relative automaticity.

2.1.1. Limit set. Consider a discrete group Γ acting by isometries on a Gromov-
hyperbolic space X. Let o ∈ X be �xed. De�ne the limit set ΛΓ as the adherence
of Γo in the Gromov boundary ∂X of X. This set does not depend on o.

A point ξ ∈ ΛΓ is called conical if there is a sequence (γn)n in Γ and distinct
points ξ1, ξ2 in ΛΓ such that, for all ξ 6= ζ in ΛΓ, the sequences (γnξ)n and (γnζ)n
converge to ξ1 and ξ2 respectively. A point ξ ∈ ΛΓ is called parabolic if its stabilizer
Γξ in Γ is in�nite and the elements of Γξ �x only ξ in ΛΓ. A parabolic limit point ξ
in ΛΓ is said bounded if Γξ acts cocompactly on ΛΓ \ {ξ}. The action of Γ on X is
said to be geometrically �nite if ΛΓ only contains conical limit points and bounded
parabolic limit points.

2.1.2. Relatively hyperbolic groups. There are in the literature several equivalent
de�nitions of relatively hyperbolic groups. Let us present the two characterizations
which we will use in this paper. We refer to [5], [15] and [23] for more details.

Let Γ be a �nitely generated groups and S be a �xed generating set. Let Ω0 be
a �nite collection of subgroups, none of them being conjugate. Let Ω be the closure
of Ω0 under conjugacy.

The relative graph Γ̂ = Γ̂(S,Ω0) is the Cayley graph of Γ with respect to S and
the union of all H ∈ Ω0 [23]. It is quasi-isometric to the coned-o� graph introduced

by Farb in [15]. The distance d̂ in Γ̂ is called the relative distance. We also denote

by Ŝn the sphere of radius n centered at e in Γ̂. Eventually, we will call relative
geodesic a geodesic in Γ̂.

Theorem 2.1 ([5]). Using the previous notations, the following conditions are
equivalent.
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(1) The group Γ has a geometrically �nite action on a Gromov hyperbolic space
X such that the parabolic limit points are exactly the �xed points of elements
in Ω.

(2) The relative graph Γ̂(S,Ω0) is Gromov hyperbolic for the relative distance

d̂, and for all L > 0 and all x ∈ Γ̂, there exists �nitely many closed loop of
length L > 0 which contains x.

When these conditions are satis�ed, the group Γ is said to be relatively hyperbolic
with respect to Ω0.

Assume now that Γ is relatively hyperbolic with respect to Ω, and let X be
a Gromov hyperbolic space on which Γ has a geometrically �nite action whose
parabolics are the element of Ω. The limit set ΛΓ ⊂ ∂X is called the Bowditch
boundary of Γ. It is unique up to equivariant homeomorphism.

Archetypal examples of relatively hyperbolic groups with respect to virtually
abelian subgroups are given by �nite co-volume Kleinian groups. In this case, the
group acts via a geometrically �nite action on the hyperbolic space Hn and the
Bowditch boundary is the full sphere at in�nity Sn−1.

2.1.3. Automatic structure. The notion of relative automaticity was introduced by
the �rst author in [10].

De�nition 2.2. A relative automatic structure - or shortly an automaton - for
Γ with respect to the collection of subgroups Ω0 and with respect to some �nite
generating set S is a directed graph G = (V,E, v∗) with a distinguished vertex v∗
called the starting vertex, where the set of vertices V is �nite and with a labelling
map φ : E → S ∪

⋃
H∈Ω0

H such that the following holds. If ω = e1, . . . , en is a

path of adjacent edges in G, de�ne φ(e1, ..., en) = φ(e1)...φ(en) ∈ Γ. Then,

• no edge ends at v∗, except the trivial edge starting and ending at v∗,
• every vertex v ∈ V can be reached from v∗ in G,
• for every path ω = e1, ..., en, the path e, φ(e1), φ(e1e2), ..., φ(γ) in Γ is a
relative geodesic from e to φ(γ), i.e. the image of e, φ(e1), φ(e1e2), ..., φ(γ)

in Γ̂ is a geodesic for the metric d̂,
• the extended map φ is a bijection between paths in G starting at v∗ and
elements of Γ.

Theorem 2.3. [10, Theorem 4.2] If Γ is relatively hyperbolic with respect to Ω,
then for any �nite generating set S and for any choice of a full family Ω0 of rep-
resentatives of conjugacy classes of elements of Ω, Γ is relatively automatic with
respect to S and Ω0.

This statement is proved by �rst constructing an automaton that encodes relative
geodesics, then showing that there exist �nitely many relative cone-types, see [10,
De�nition 4.7, Proposition 4.9] for more details. To obtain a bijection between
paths in the automaton and elements of Γ, one �xes an order on the union of S
and all the H ∈ Ω0, which allows to choose the smallest possible relative geodesics
for the associated lexicographical order.

Relative automaticity is a key point in [11] to prove a local limit theorem in the
spectrally non degenerate case. It is again of crucial use in this paper, see Section 5.
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2.2. Transition kernels and Martin boundaries. Let us make a general pre-
sentation of the notion of Martin boundaries. In what follows, E is a countable
space endowed with the discrete topology and o is a �xed base point in E

De�nition 2.4. A transition kernel p on E is a positive map p : E×E → R+ with
�nite total mass, i.e. such that

∀x ∈ E,
∑
y∈E

p(x, y) < +∞.

When the total mass is 1 (which we will not require), we call it a probability
transition kernel. It then de�nes a Markov chain on E, i.e. a random process
(Xn)n≥0 such that P (Xn+1 = b|Xn = a) = p(a, b). In general, we will say that p
de�nes a chain on E.

If µ is a probability measure on a �nitely generated group Γ, then the kernel
pµ(g, h) = µ(g−1h) is a probability transition kernel and the corresponding Markov
chain is the µ-random walk.

De�nition 2.5. Let p : E × E → R+ be a transition kernel on E.

• The Green function associated to p is de�ned by

Gp(x, y) =
∑
n≥0

p(n)(x, y) ∈ [0,+∞],

where p(n) is the nth convolution power of p, i.e.

p(n)(x, y) =
∑

x1,...,xn−1∈E
p(x, x′1)p(x1, v2) · · · p(xn−1, y).

• The chain de�ned by p is �nitely supported if for every x ∈ E, the set of
y ∈ E such that p(x, y) > 0 is �nite.

• The chain is admissible (or irreducible) if for every x, y ∈ E, there exists

n such that p(n)(x, y) > 0.
• The chain is aperiodic (or strongly irreducible) if for every x, y ∈ E, there
exists n0 such that ∀n ≥ n0, p

(n)(x, y) > 0.
• The chain is transient if the Green function is everywhere �nite.

Consider a transition kernel p de�ning an irreducible transient chain. For y ∈ E,
de�ne the Martin kernel based at y as

Kp(x, y) =
Gp(x, y)

Gp(o, y)
.

The Martin compacti�cation of E with respect to p and o is a compact space
containing E as an open and dense space, whose topology is described as follows.
A sequence (yn)n in E converges to a point ξ in the Martin compacti�cation if and
only if the sequence (K(·, yn))n converges pointwise to a function which we write
K(·, ξ). Up to isomorphism, it does not depend on the base point o and we denote
it by Ep. We also de�ne the p-Martin boundary (or Martin boundary, when there

is no ambiguity) as ∂pE = Ep \ E. We refer for instance to [32] for a complete
construction of the Martin compacti�cation.

The Martin boundary contains a lot of information. It was �rst introduced to
study non-negative harmonic functions. We will use it here to prove our local limit
theorem.
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Let us now de�ne the notion of stability for the Martin boundary, following
Picardello and Woess [26]. Assuming that p is irreducible, the radius of convergence
of the Green function Gp(x, y) is independent of x and y. Denote it by Rp and for
all 0 ≤ r ≤ Rµ let us set Gp(x, y|r) = Grp(x, y), i.e.

Gp(x, y|r) =
∑
n≥0

rnp(n)(x, y).

Also set K(x, y|r) = Krp(x, y). The Martin compacti�cation, respectively the
boundary associated with K(·, ·|r), is called the r-Martin compacti�cation, respec-
tively the r-Martin boundary, and is denoted by Erp, respectively by ∂rpE.

De�nition 2.6. The Martin boundary of E with respect to p is stable if the fol-
lowing conditions hold.

(1) For every x, y ∈ E, we have Gp(x, y|Rp) < +∞ where Rp is the radius of
convergence of the Green function.

(2) For every 0 < r1, r2 < Rp, the sequence (K(·, yn|r1))n converges pointwise
if and only if (K(·, yn|r2))n converges pointwise, i.e. the r1 and r2-Martin
compacti�cations are homeomorphic. For simplicity we then write ∂pΓ for
the r-Martin boundary whenever 0 < r < Rp.

(3) The identity on Γ extends to a continuous and equivariant surjective map
φp from E∪∂pE to E∪∂RppE. We then write K(x, ξ|Rp) = K(x, φp(ξ)|Rp)
for ξ ∈ ∂pE.

(4) The map (x, ξ, r) ∈ E×∂pE×(0, Rp] 7→ K(x, ξ|r) is continuous with respect
to (x, ξ, r).

We say that the Martin boundary is strongly stable if it is stable and the second
condition holds for every 0 < r1, r2 ≤ Rp; in this case, the map φp induces a
homeomorphism from the r-Martin boundary to the Rp-Martin boundary.

If p is the transition kernel of an admissible random walk on a �nitely gener-
ated group which is non-amenable, it has been shown by Guivarc'h in [19, p. 20,
remark b] that the condition (1) is always satis�ed. Note that non-elementary
relatively hyperbolic groups are always non-amenable.

The Martin boundary of any �nitely supported symmetric admissible random
walk on a hyperbolic group is strongly stable. More generally, the Martin boundary
of a �nitely supported symmetric and admissible random walk on a relatively hy-
perbolic group is studied in [16], [14] and [13]. In particular, whenever the parabolic
subgroups are virtually abelian, the homeomorphism type of the r-Martin bound-
ary is described in [13]. It is proved there that the Martin boundary is strongly
stable if and only if the random walk is not spectrally degenerate. We will prove
in Section 4 that stability (but not strong stability) still holds in the spectrally
degenerate case.

Let us eventually mention a central computation which we use many times.

Lemma 2.7. Let p : E × E → R+ be a transition kernel and for all r ∈ [0, Rp],

write again Gp(x, y|r) =
∑
n≥0 r

np(n)(x, y). Then

d

dr
(rGp(x, y|r)) =

∑
z∈E

G(x, z|r)G(z, y|r).
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We refer to [10, Lemma 3.1] for a proof, which is a standard manipulation of
power series. The generalization to higher derivatives is given by Lemma 5.1.

Standing assumptions. From now, and until the end of this paper, we �x a
�nitely generated group Γ relatively hyperbolic with respect to a �nite collection
of parabolic subgroups Ω0 = {H1, ...,HN}. We �x a �nitely supported symmetric
probability measure µ on Γ whose associated random walk is admissible and irre-
ducible. Eventually, we assume that the support S of µ is a generating set, which
is �xed from now on; the distance on Γ is the word distance induced by S. This
implies in particular that for all x, y ∈ Γ, if x and y are on the same geodesic in Γ,
then there exists n > 0 such that p(n)(x, y) > 0.

In the sequel, we denote by Γ̂ the relative graph Γ̂(S,Ω0), by Rµ the inverse of
the spectral radius of µ and by G(x, y|r) the Green function, where 0 ≤ r ≤ Rµ
and x, y ∈ Γ. As already mentioned, since Γ is not amenable and µ is admissible,
it follows from [19] that G(x, y|Rµ) < +∞ for all x, y ∈ Γ.

2.3. Relative Ancona inequalities. For any set A ⊂ Γ, we set

(4) G(x, y;A|r) :=
∑
n≥1

∑
g1,...,gn−1∈A

rnµ(h−1g1)µ(g−1
1 g2)...µ(g−1

n−2gn−1)µ(g−1
n−1h

′);

this quantity is called the relative Green function of paths staying in A except
maybe at their beginning and end. Writing Ac = Γ\A, the relative Green function
pA,r(., .) := G(., .;Ac|r) is called the �rst return kernel to A.

For all y ∈ Γ and η > 0, we write

Bη(y) = {z ∈ Γ | d̂(y, z) ≤ η}.

We will use repeatedly the following results.

Proposition 2.8. [13, Corollary 3.7] For every ε > 0 and every R ≥ 0, there exists
η such that the following holds. For every x, y, z such that y is within R of a point
on a relative geodesic from x to z and for every r ≤ Rµ,

G(x, z;Bη(y)c|r) ≤ εG(x, z|r).

This proposition can be interpreted as follows : with high probability, a random
path from x to z has to pass through a neighborhood of y, whenever y is on a
relative geodesic from x to z. As a consequence, we have the following.

Proposition 2.9. (Weak relative Ancona inequalities) For every R ≥ 0, there
exists C such that the following holds. For every x, y, z such that y is within R of
a point on a relative geodesic from x to z and for every r ≤ Rµ,

1

C
G(x, y|r)G(y, z|r) ≤ G(x, z|r) ≤ CG(x, y|r)G(y, z|r).

This is proved by decomposing a trajectory from x to z according to its potential
�rst visit to Bη(y), where η is chosen such that G(x, z;Bη(y)c|r) ≤ 1/2G(x, z|r)
from Proposition 2.8, see precisely [16, Theorem 5.1, Theorem 5.2].

These inequalities were �rst proved by Ancona [1] in the context of hyperbolic
groups for r = 1. The uniform inequalities up to the spectral radius were proved by
Gouezel and Lalley [18] for co-compact Fuchsian groups and then by Gouezel [17]
in general. For relatively hyperbolic groups, Gekhtman, Gerasimov, Potyagailo and
Yang [16] proved them for r = 1. The uniform inequalities up to the spectral radius
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were then proved by the �rst author and Gekhtman [13]. They play a key role in
the identi�cation of the Martin boundary, see [16] for several other applications.

Let us mention that there exist strong relative Ancona inequalities (cf [11, Def-
inition 2.14]), that are a key ingredients in [11] to prove a local limit theorem in
the spectrally non degenerate case. However, we do not need them in the present
paper.

3. Asymptotics of the first return to parabolic Green functions

Throughout this section, we �x a parabolic subgroup H ∈ Ω0. For η ≥ 0, the
η-neighbourhood of H is noted Nη(H) .

We introduce below the �rst return transition kernel to Nη(H). The main goal
of this section is showing asymptotics for the derivatives of the Green function
associated to this �rst return kernel.

3.1. First return transition kernel and spectral degeneracy. For r ≤ Rµ,
let pH,η,r(h, h

′) = G(h, h′;Nη(H)c|r) be the �rst return kernel to Nη(H), i.e.

pH,η,r(h, h
′) =

∑
n≥1

∑
g1,...,gn−1
/∈Nη(H)

rnµ(h−1g1)µ(g−1
1 g2)...µ(g−1

n−2gn−1)µ(g−1
n−1h

′).

For simplicity, when η = 0, we write pH,r = pH,0,r.

The nth-convolution power of pH,η,r is noted p
(n)
H,η,r and the associated Green

function, evaluated at t, is

GH,η,r(h, h
′|t) :=

∑
n≥1

p
(n)
H,η,r(h, h

′)tn.

The radius of convergence RH,η(r) of this power series is the inverse of the spectral
radius of the associated chain.

For simplicity, we write RH,η = RH,η(Rµ) and RH = RH,0(Rµ). Recall the
following de�nition from [13].

De�nition 3.1. The measure µ, or equivalently the random walk, is said to be
spectrally degenerate along H if RH = 1.

Since H is �xed for the remainder of the section, we drop the index H in the
notations. We now enumerate a list of properties satis�ed by pη,r and Gη,r.

• Since the µ-random walk on Γ is invariant under the action of Γ, the kernel
pη,r is H-invariant: in other words, pη,r(hx, hy) = pη,r(x, y) for any h ∈ H
and any x, y ∈ Nη(H).
• By de�nition, the �rst return transition kernel satis�es pη,r(x, y) > 0 if and
only if there is a �rst return path in Nη(H) from x to y, i.e. if there exists
n ≥ 0 and a path x, g1, ..., gn, y in Γ with positive probability such that
gi /∈ Nη(H) for i = 1, ..., n.
• The chain with kernel pη,r is admissible, i.e. for every x, y ∈ Γ, there exists

n such that p
(n)
η,r (x, y) > 0, see [14, Lemma 5.9] for a complete proof.

The following lemma shows that when x and y are in Nη(H), the relative Green
function equals the full Green fucntion. The proof is straightforward (see [13,
Lemma 4.4]). It will be frequently used.
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Lemma 3.2. Under the previous notations, for all x, y ∈ Nη(H), any r ≤ Rµ and
any η ≥ 0,

Gη,r(x, y|1) = G(x, y|r),

For x, y ∈ Γ, we write dH(x, y) the distance between the projections πH(x) and
πH(y) of x and y respectively onto H. Since projections on parabolic subgroups are
well-de�ned up to a uniformly bounded error term, see [35, Lemma 1.15], dH(x, y)
is also de�ned up to a uniformly bounded error term. Letting M ≥ 0, we say that
pη,r has exponential moments up to M if for any x ∈ Nη(H), we have∑

y∈Nη(H)

pη,r(x, y)eMdH(x,y) < +∞.

We then have the following.

Lemma 3.3. [13, Lemma 4.6] For every M ≥ 0, then exists ηM such that for every
η ≥ ηM and for every r ≤ Rµ, the kernel pη,r has exponential moments up to M .

Note that ηM does not depend on r; hence, choosing the neighborhood of H
large enough, the kernels pη,r have exponential moments up to M , uniformly in r.

3.2. Vertical displacement transition matrix. Until the end of Section 3, we
assume that H is virtually abelian of rank d and that µ is spectrally degenerate
along H. According to [13, Lemma 4.16], it implies that Rη = 1 for any η ≥ 0, i.e.
µ is spectrally degenerate along Nη(H).

Our �rst goal is to obtain asymptotics of the
(
dd/2e − 1

)
th derivative of the

Green function Gη,r at 1; see Proposition 3.13 below.

We �x α ∈ (0, 1) and consider the transition kernel p̃η,r de�ned by

p̃η,r(x, y) = αδx,y + (1− α)pη,r(x, y).

Let G̃η,r be the corresponding Green function. Then, by [38, Lemma 9.2],

G̃η,r(e, e|t) =
1

1− αt
Gη,r

(
e, e

∣∣∣∣ (1− α)t

1− αt

)
.

Hence, up to a constant that only depends on α and j, the jth derivative of G̃η,r
and Gη,r coincide at 1. Therefore, up to replacing pη,r by p̃η,r we can assume that,
pη,r(x, x) > 0 for every x so that the transition kernel pη,r is aperiodic. We keep

this assumption for all this section.

By de�nition, there exists a subgroup of H of �nite index which is isomorphic to
Zd. Any section H/Zd → H allows us to identify H with Zd×F for some �nite set
F . As in [13] and [14], the group Γ can be H-equivariantly identi�ed with H× N.
Indeed, the parabolic subgroup H acts by left multiplication on Γ and the quotient
is countable. We order elements in the quotient according to their distance to H.
It follows that

(1) Nη(H) can be Zd-equivariantly identi�ed with Zd × {1, ..., Nη},
(2) if η ≤ η′, then Nη ≤ Nη′ . In other words, the set Zd×{1, ..., Nη}, identi�ed

with Nη(H), is a subset of Zd × {1, ..., Nη′}, identi�ed with Nη′(H).

Each element of Nη(H) can be written as (x, j), where x ∈ Zd, j ∈ {1, ..., Nη}. We
also write pj,j′;r(x, x

′) = pη,r((x, j), (x
′, j′)) for simplicity.
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De�nition 3.4. Letting u ∈ Rd.. The vertical displacement transition matrix
Fr(u) is de�ned by: for all j, j′ ∈ {1, ..., Nη}, its (j, j′) entry equals

Fj,j′;r(u) :=
∑
x∈Zd

pj,j′;r(0, x)eu·x.

This transition matrix was introduced in [12] for r = 1. Many properties are
derived there from the fact that it is strongly irreducible, i.e. there exists n such
that every entry of Fr(u)n is positive. Since by [12, Lemma 3.2],

Fj,j′;r(u)n =
∑
x∈Zd

p
(n)
j,j′;r(0, x)eu·x,

where p
(n)
j,j′;r(0, x) = p

(n)
η,r ((0, j), (x, j′)), strong irreducibility is deduced from the

fact that pη,r is aperiodic. Denote by Fr ⊂ Rd the interior of the set of u ∈ Rd
where Fr(u) has �nite entries. By the Perron-Frobenius Theorem [34, Theorem 1.1],
the matrix Fr(u) has a positive dominant eigenvalue λr(u) on Fr. Also, by [12,
Proposition 3.5], the function λr is continuous and strictly convex on Fr and reaches
its minimum at some value ur. Moreover, by Lemma 3.3, uniformly in r, the
transition kernel pη,r has arbitrary large exponential moments, up to taking η large
enough.

Denote by B(0,M) the closed ball of radiusM and center 0 in Rd. It then follows
from [14, (5), Proposition 4.6] that for large enough η, there exists a constant M
such that, for every u ∈ B(0,M), the matrix Fr(u) has �nite entries and the
minimum of the function λr is reached at some u ∈ B(0,M). In other words,
ur ∈ B(0,M) ⊂ Fr; note that M is independent of r.

We now �x such η large enough so that the size of the matrices Fr(u) is a �xed
number, say K. We endow MK(Rd) with a matrix norm. For �xed r, the function
Fr is continuous in u. We then endow the space of continuous functions from
B(0,M) to MK(Rd) with the norm ‖ · ‖∞. We also choose an arbitrary norm on
R and endow the space of continuous functions from B(0,M) to R with the norm
‖·‖∞. According to [13, Lemma 5.4, Lemma 5.5], the functions r 7→ Fr and r 7→ λr
are continuous for these norms.

3.3. Di�erentiability of the parabolic spectral radius. By [38, Theorem 8.23],
the spectral radius ρη(r) = Rη(r)−1 satis�es

(5) ρη(r) = inf λr(u) = λr(ur).

Actually, [38, Theorem 8.23] only deals with �nitely supported transition kernels on
Zd ×{1, ..., N}, but the statement remains valid for the transition kernel pη,r since
this condition of �nite support can be dropped, see [38, (8.24)]. In what follows,
we need to take the derivative of the fonction r 7→ ρη(r), hence we �rst prove that
this function is di�erentiable.

Lemma 3.5. For every v ∈ Nη(H), the function r 7→ pη,r(e, v) is continuously
di�erentiable on [0, Rµ].

Proof. Recall that pη,r(e, v) = G(e, v;Nη(H)c|r), so it can be expressed as a power
series in r with positive coe�cients an. These coe�cients are at most equal to
µ∗n(v). Since the random walk on Γ is convergent, it follows that∑

n≥0

nanr
n−1 ≤

∑
n≥0

nµ∗n(x)Rnµ < +∞.
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By monotonous convergence, the fonction r 7→ pη,r(e, v) is continuously di�eren-
tiable. �

For simplicity, we write pr = pη,r and denote by p′r the derivative of pr at r; the
kernels pr and p

′
r are both Zd-invariant transition kernels on Zd × {1, ..., Nη}. By

Lemma 2.7, it holds :

d

dr
rpr(x, y) = pr(x, y) + rp′r(x, y)

=
∑

z/∈Nη(H)

G(x, z;Nη(H)c|r)G(z, y;Nη(H)c|r).
(6)

The following statement can be thought of an enhanced version of relative Ancona
inequalities. This is the �rst time we use the fact that parabolic subgroups are
virtually abelian.

Proposition 3.6. Let η ≥ 0 be �xed. There exists C = Cη such that the following
holds. Let x ∈ Nη(H) and let y /∈ Nη(H). Consider a geodesic in Γ from y to H
and denote by ỹ the point in Γ at distance η from H on this geodesic. Then,

G(x, y;Nη(H)c|r) ≤ CG(x, ỹ;Nη(H)c|r)G(ỹ, y;Nη(H)c|r).

Proof. For simplicity, we have assumed that the generating set S of Γ equals the
support of µ. Let us �x x, y in Γ, a geodesic from y to H and ỹ satisfying the
previous hypotheses.

If G(x, y;Nη(H)c|r) = 0, i.e. if there is no trajectory of the random walk from x
to y staying outside Nη(H), then there is nothing to prove.

Otherwise there exists such a trajectory from x to y and we denote by x̃ the �rst
point on this trajectory outside Nη(H).

Denote by H(x̃) the set of h ∈ H such that there is a trajectory outside Nη(H)
from x̃ to hx̃. Since the random walk is symmetric, the set H(x̃) is a subgroup of H.
Note that there exists �nitely many connected components c1, ..., cm of trajectories
of the random walk lying in the the set of points z /∈ Nη(H) that project on H at
e. For any index j such that there exists trajectories from x̃ to some hcj , h ∈ H,
we choose such a particular trajectory and denote by zj its endpoint and by hj the
corresponding point in H. Consider now a trajectory γ starting at x̃ and staying
outsideNη(H); let z be its endpoint. This point z lies in some connected component

hcj , hence we can �nd a trajectory from z to hh−1
j zj staying outside Nη(H). We

now concatenate the translated trajectory from hh−1
j zj to hh

−1
j x̃. In other words,

we can add a trajectory of �xed length to γ to reach some h′x̃. In particular, the
endpoint of γ projects on H within a bounded distance of H(x̃).

The following notion was introduced in [13, De�nition 3.11].

De�nition 3.7. Let k, c > 0, A ⊂ Γ and y ∈ Γ. The set A is (k, c)-starlike around
y if for all z ∈ A, there exists a path of length at most kd(y, z) + c staying in A.

Denote by ỹ′ the point on the chosen geodesic from y to H which is at distance
η + 1 from H. We now prove the following.

Lemma 3.8. There exist positive constants k, c only depending on η such that the
connected component of x̃ in Γ\Nη(H) is (k, c)-starlike around ỹ′.
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Proof. We have to prove that, for every z /∈ Nη(H) that can be reached by a
trajectory starting at x̃, there exists a path of length at most kd(z, ỹ′) + c which
stays outside Nη(H) and joins ỹ′.

Let z be such a point and z̃ be a point on a geodesic from z to H at distance
η + 1 from H. Denote by z0 and y0, the respective projection of z and y on H. By
the above, we can �nd a trajectory of �xed length starting at some point hx̃ and
ending at z̃. Similarly, we can �nd a trajectory of �xed length starting at ỹ′ and
ending at some h′x̃.

Since H is virtually abelian, the subgroup H(x̃) is quasi-isometrically embedded
in Γ. Therefore, we can �nd a path (hj)j from h to h′ staying inside H(x̃) with
length at most k0d(h, h′) + c0 for some �xed constants k0, c0. By concatenating
successive trajectories from hj x̃ to hj+1x̃, we can thus �nd a trajectory from hx̃
to h′x̃ of length at most k1d(z0, y0) + c1 staying outside Nη(H), where k1, c1 > 0
only depend on η. Hence, there exist c2, k2 > 0 and a trajectory γ from z to ỹ′ of
length at most k2(d(z, z̃) +d(z0, y0)) + c2 and staying outside Nη(H). The distance
formula [35, Theorem 3.1] shows that there exist positive constants c3 and k3 such
that

d(z, ỹ′) ≥ k−1
3 (d(z, z0) + d(ỹ′, y0) + d(z0, y0))− c3.

Hence, the length of γ is at most kd(z, ỹ′) + c, where k and c only depend on η. �

Note that ỹ′ is within a uniform bounded distance, depending only on η, of a
point on a relative geodesic from x̃ to y. From [13, Proposition 3.12], it follows that

(7) G(x̃, y;Nη(H)c|r) ≤ CG(x̃, ỹ′;Nη(H)c|r)G(ỹ′, y;Nη(H)c|r).

Finally, the existence of one-step paths from ỹ′ to ỹ and x to x̃ yields

G(x, y;Nη(H)c|r) . G(x̃, y;Nη(H)c|r),

G(x̃, ỹ′;Nη(H)c|r) . G(x, ỹ;Nη(H)c|r)

and

G(ỹ′, y;Nη(H)c|r) . G(ỹ, y;Nη(H)c|r).

Therefore, one can replace x̃ by x and ỹ′ by ỹ in (7). The proof of Proposition 3.6
is complete. �

Proposition 3.9. Let M ≥ 0. There exists ηM such that for every η ≥ ηM and
for every r ≤ Rµ, the transition kernel p′r has exponential moments up to M .

Proof. In view of (6), it is enough to prove that for large enough η,∑
y/∈Nη(H)

G(e, y;Nη(H)c|r)G(y, v;Nη(H)c|r) ≤ Ce−2M‖x0‖,

where x0 is the projection of x on Zdk . For every y /∈ Nη(H), denote by y0 its
projection on Zd and let ỹ be the point at distance η from H on a geodesic from
y to H. Also, let Py0

be the set of points in Γ whose project onto Zd at y0.
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Proposition 3.6 shows that∑
y/∈Nη(H)

G(e, y;Nη(H)c|r)G(y, v;Nη(H)c|r)

.
∑
y0∈Zd

∑
y∈Py0

G(e, ỹ;Nη(H)c|r)G(ỹ, v;Nη(H)c|r)

G(ỹ, y;Nη(H)c|r)G(y, ỹ;Nη(H)c|r).
Since the µ-random walk is convergent, equality (6) yields∑

y∈Py0

G(ỹ, y;Nη(H)c|r)G(y, ỹ;Nη(H)c|r) . G′(e, e|r) < +∞.

Consequently, ∑
y/∈Nη(H)

G(e, y;Nη(H)c|r)G(y, v;Nη(H)c|r)

.
∑
y0∈Zd

G(e, ỹ;Nη(H)c|r)G(ỹ, v;Nη(H)c|r).

By Lemma 3.3, for η large enough, it holds G(e, ỹ;Nη(H)c|r) . e−4M‖y0‖ and

Gỹ, v;Nη(H)c|r) . e−2M‖y0−x0‖ . e2M‖y0‖−2M‖x0‖ ; therefore,

∑
y/∈Nη(H)

G(e, y;Nη(H)c|r)G(y, v;Nη(H)c|r) .

 ∑
y0∈Zd

e−2M‖y0‖

 e−2M‖x0‖

This concludes the proof, since
∑
y0∈Zd e−2M‖y0‖ < +∞. �

Proposition 3.9 now allows us to describe the regularity of the map (r, u) 7→ Fr(u)

on (0, Rµ) × B̊(0,M) where M is the constant which appears at the end of the

previous subsection and B̊(0,M) is the open ball with center 0 and radius M . We
�x η such that both pr and p

′
r have exponential moments up to M .

Lemma 3.10. The function (r, u) 7→ Fr(u) is continuously di�erentiable on the

open set (0, Rµ)× B̊(0,M).

Proof. It su�ces to prove that for every j, j′, Fj,j′;r(u) is continuously di�erentiable.
By de�nition,

Fj,j′;r(u) =
∑
x∈Zd

pj,j′;r(0, x)eu·x.

For all x ∈ Zd, the function f : (r, u) 7→ pj,j′;r(0, x)eu·x is continuously di�erentiable
and its derivative is given by

∇r,uf(r, u) = p′j,j′;r(0, x)eu·xvr + pj,j′;r(0, x)eu·xvu(x),

where vr = (1, 0, ...0) and vu(x) = (0, x). Then,

‖∇r,uf‖∞ ≤ sup
r
p′j,j′;r(0, x)eM

′‖x‖ + ‖x‖ sup
r
p′j,j′;r(0, x)eM

′‖x‖.

Lemma 3.3 and Proposition 3.9 show that this quantity is summable. Hence, by
dominated convergence, the function (r, u) 7→ Fj,j′;r(u) is continuously di�eren-
tiable and its derivative equals

∇r,uFj,j′;r(r, u) =
∑
x∈Zd

p′j,j′;r(0, x)eu·xvr + pj,j′;r(0, x)eu·xvu(x),
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which concludes the proof. �

We can now prove that the function r 7→ ρη(r) is di�erentiable on (0, Rµ) and
compute the value of its derivate.

Proposition 3.11. The function r 7→ ρη(r) is continuously di�erentiable and its
derivative is given by ρ′η(r) = λ′r(ur).

Proof. The function F 7→ λ is analytic on the set where F has a unique dominant
eigenvalue. Thus, (r, u) 7→ λr(u) is continuously di�erentiable on (0, Rµ)×B̊(0,M).
Moreover, it follows from [12, Proposition 3.5] that for all r, the Hessian of the map
u 7→ λr(u) is positive de�nite. Therefore, the implicit function theorem shows that
the function r 7→ ur is continuously di�erentiable on (0, Rµ), and so is the function
r 7→ λr(ur). Moreover,

ρ′η(r) = ∇uλr(ur) · u′r + λ′r(ur).

Since λr is stricly convex and reaches its minimum at ur, we have ∇uλr(ur) = 0,
hence the desired formula. �

We can now extend by continuity the function ρ′η(r) on [0, Rµ], so that r 7→ ρη(r)
is di�erentiable on the closed set [0, Rµ] and its derivative is given by λ′r(ur).

Lemma 3.12. For any r ≤ Rµ, we have ρ′η(r) 6= 0.

Proof. We just need to show that λ′r(u) 6= 0 for any u ∈ B̊(0,M). For a strongly
irreducible matrix F , denote by C and by ν right and left eigenvectors associated to
the dominant eigenvalue λ. By the Perron-Frobenius Theorem [34, Theorem 1.1],
they both have positive coe�cients. Moreover, one can normalize them such that
we have ν ·C = 1 and such that F 7→ C and F 7→ ν are analytic functions, see [12,
Lemma 3.3]. In particular, denoting by Cr(u) and νr(u) right and left eigenvectors
of Fr(u) associated with the eigenvalue λr(u), we get that the maps (r, u) 7→ Cr(u)
and (r, u) 7→ νr(u) are continuously di�erentiable and satisfy νr(u) · Cr(u) = 1.
Therefore,

λr(u) = νr(u) · Fr(u) · Cr(u)

and so

λ′r(u) = λr(u)

(
ν′r(u) · Cr(u) + νr(u) · C ′r(u)

)
+ νr(u) · F ′r(u) · Cr(u).

Di�erentiating in r the expression νr(u) · Cr(u) = 1, we get

ν′r(u) · Cr(u) + νr(u) · C ′r(u) = 0

and so

λ′r(u) = νr(u) · F ′r(u) · Cr(u).

Since p′r(e, v) is non-negative for every v ∈ Γ, the matrix F ′r has non-negative
entries. Also, it cannot be equal to the null matrix since p′r(e, v) is positive for at
least some v. Moreover, Cr(u) and νr(u) both have positive entries. Hence, λ′r(u)
is positive. �
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3.4. Asymptotics of G
(j)
r . We set j = dd/2e − 1. Applying the previous results,

we show the following statement; this is a crucial step in the proof of our main
theorem.

Proposition 3.13. Assume that µ is spectrally degenerate along H. If η is large
enough, then the following holds. As r ↗ Rµ,
• if d is even then

G(j)
η,r(e, e|1) ∼ C Log

(
1

Rµ − r

)
.

• if d is odd then

G(j)
η,r(e, e|1) ∼ C√

Rµ − r
.

Proof. By [12, Proposition 3.14] applied to the kernel Rη(r)pη,r, there exists a con-

stant Cr such that C−1
r Rη(r)np

(n)
η,rnd/2 − 1 converges to 0 as n → +∞. Moreover,

the convergence is uniform on r and the function r 7→ Cr is continuous; conse-
quently, the quantity Cr remains bounded away from 0 and in�nity. Fix ε > 0.
Assume �rst that d is even, so that j = d/2 − 1. Then, for large enough n, say
n ≥ n0, independently of r, we have∣∣∣C−1

r njp(n)
η,r − n−1ρη(r)n

∣∣∣ ≤ εn−1ρη(r)n.

Consequently, ∣∣∣∣∣∣
∑
n≥n0

(
njp(n)

η,r − Crn−1ρη(r)n
)∣∣∣∣∣∣ ≤ Crε

∑
n≥0

n−1ρη(r)n.

Hence,∣∣∣∣∣∣
∑
n≥0

njp(n)
η,r − Cr

∑
n≥0

n−1ρη(r)n

∣∣∣∣∣∣ ≤
∑

n≤n0−1

njp(n)
η,r + Cr

∑
n≤n0−1

n−1ρη(r)n

+ εCr
∑
n≥0

n−1ρη(r)n.

Note that

Cr
∑
n≥0

n−1ρη(r)n = Cr Log

(
1

1− ρη(r)

)
.

Since ρη(r) converges to 1 as r ↗ Rµ, this last quantity tends to in�nity as r
converges to Rµ. In particular, this proves that∑

n≥0

njp(n)
η,r ∼

r↗Rµ
Cr Log

(
1

1− ρη(r)

)
,

and so

(8) G(j)
η,r(e, e|1) ∼

r↗Rµ
C ′r Log

(
1

1− ρη(r)

)
.

By Proposition 3.11, there exists α ∈ R such that ρη(r) = 1+α(r−Rµ)+o (r −Rµ);
Lemma 3.12 yields α 6= 0. Hence 1− ρη(r) ∼ α(Rµ − r). Combined with (8), this
concludes the proof. The case where d is odd is treated in the same way. �
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4. Stability of the Martin boundary

This section is dedicated to the proof of the stability of the Martin boundary
(see De�nition 2.6) in the case where the µ-random walk is convergent; this had
not been dealt with before. We adapt here the arguments [12], [13] and [14] in this
context. The central result of this section is the following one.

Theorem 4.1. Let Γ be a relatively hyperbolic group with respect to virtually abelian
subgroups. Let µ be an admissible, symmetric and �nitely supported probability
measure on Γ. Then, the Martin boundary of (Γ, µ) is stable.

Proof. Recall that the Martin boundary is stable if it satis�es four conditions given
by De�nition 2.6. Let us �rst explain why the three �rst conditions are already
known to be satis�ed.

• As already mentioned, for all x, y ∈ Γ, since µ is admissible and Γ is non
amenable it follows from Guivarc'h [19] that G(x, y|Rµ) < +∞, i.e. condi-
ton (1) of stability is satis�ed.

• From [13, Theorem 1.2], conditions (2) and (3) of stability are satis�ed for
any admissible random walk on a relatively hyperbolic group with virtually
abelian parabolic subgroups: the homeomorphism type of ∂rµΓ does not
depend on r ∈ (0, Rµ) (we denote it by ∂µΓ) and there exists an equivariant
surjective and continuous map φµ : ∂µΓ→ ∂RµµΓ.

• Again from [13, Theorem 1.2] the r-Martin boundary of the µ−random
walk is identi�ed with the r-geometric boundaries of Γ, de�ned as follows.
When r < Rµ, the r-geometric boundary is constructed from the Bowditch
boundary of Γ where each parabolic limit point ξ is replaced with the visual
boundary of the corresponding parabolic subgroup. Equivalently, it is the
Gromov boundary ∂Γ̂ to which has been attached at each parabolic �xed
point ξP �xed by P the visual boundary of P. At r = Rµ, the r-geometric
boundary is given by the same construction, with the following change:
the parabolic limit points are replaced with the visual boundary of the
corresponding parabolic subgroup only when the random walk is spectrally
non degenerate along the underlying parabolic subgroup.

We are hence left with showing that the map

(x, y, r) ∈ Γ× Γ ∪ ∂µΓ× (0, Rµ] 7→ K(x, y|r)

is continuous, where for ξ ∈ ∂µ(Γ), we write K(x, ξ|Rµ) = K(x, φµ(ξ)|Rµ). Notice
that this property is proved in [13, Theorem 1.3] in the case where the random
walk is spectrally non degenerate. By using the geometric interpretation of the
r-Martin boundaries mentioned before, we need to check that, for any x ∈ Γ, any
sequence (yn)n in Γ∪ ∂µΓ which converges to a point ξ in the geometric boundary
of a parabolic subgroup H along which the random walk is spectrally degenerate
and any (rn)n which converges to Rµ, the sequence (K(x, yn|rn))n converges to
K(x, ξ|Rµ).

As in [14, Section 5], we can assume without loss of generality that (yn)n stays
in Nη(H) for some η > 0. This neighborhood can be identi�ed with Zd×{1, ..., N}
as in Section 3.2 above. Theorem 4.1 hence appears as a direct consequence of
Proposition 4.2 below which yields the convergence of (K(x, yn|rn))n. �
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Proposition 4.2. Let p be a Zd-invariant transient kernel on E = Zd×{1, ..., N}.
Assume that p is irreducible and aperiodic and has exponential moments. Then,
the Martin boundary is stable and the function

(x, y, r) ∈ E × E ∪ ∂pE × (0, Rp] 7→ K(x, y|r)

is continuous.

The proof of this theorem will rely on two lemmas. For any v ∈ Rd, we write
〈v〉 ∈ Zd the vector with integer entries which is closest (for the Euclidean distance)
to v, chosing the �rst in lexicographical order in case of ambiguity.

The next lemma is technical and is inspired by [12, Lemma 3.28]. It will be used
in a particular case, where pn will be the convolution power of the transition kernel
of �rst return to Nη(H), βv will be the derivative of the eigenvalue λv, αv will be
some suited factor and Σv will be the Hessian matrix associated with pn. The fact
that the quantity an de�ned in the lemma uniformly converges to 0 will then be a
consequence of [12, Proposition 3.14].

Lemma 4.3. Let pn(x) be a sequence of real numbers, depending on x ∈ Zd. Let
K ⊂ RN be a compact set and v 7→ αv and v 7→ βv two continuous functions on K,
with αv ∈ R and βv ∈ Rd. Let Σv be a positive de�nite quadratic form on Rd, that
depends continuously on v ∈ K. De�ne

an(x, v, γ) =

(
‖x− nβv‖√

n

)γ (
(2πn)

d
2 pn(x)ev·x − αve−

1
2nΣv(x−nβv)

)
.

Denote by g(x) the sum over n of the pn(x). If (an)n converges to 0 uniformly in
x ∈ Zd, v ∈ K and γ ∈ [0, 2d], then, for x ∈ Zd and for v ∈ K such that βv 6= 0, it
holds as t tends to in�nity,

(2πt)
d−1

2 Σv(βv) g(〈tβv〉 − x)ev·(〈tβ(v)〉−x) = αv + o(1)

where the term o(1) is bounded by an asymptotically vanishing sequence which does
not depend on v.

Proof. It is proved in [12, Lemma 3.28] that with the same assumptions, assuming
moreover that βv 6= 0 for every v ∈ K,

(2πt)
d−1

2 g(〈tβv〉 − x)ev·(〈tβ(v)〉−x) −→
t→∞

αv
Σv(βv)

,

the convergence being uniform in v. The proof is the same as in [22, Theorem 2.2]. ;
the key ingredient is that Σv(βv) is uniformly bounded from below by some constant
β, so that

(9) e−y
2Σv(βv) ≤ e−y

2β .

The function on the right-hand side is integrable on [0,+∞), and this estimate in
turn allows one to prove uniform convergence in v, using the dominated convergence
theorem.

We will use this lemma in a setting where we cannot assume anymore that

βv > 0. We need therefore to prove that Σv(βv)(2πt)
d−1

2 g(〈tβv〉 − x)e〈tβ(v)〉−x

converges uniformly in v. We replace (9) by

Σv(βv)e
−y2Σv(βv) ≤ C 1

1 + y2
.
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The right-hand side is again an integrable function and so we can conclude exactly
like in the proof of [22, Theorem 2.2]. �

This result yields the necessary asymptotics of the Green function for every r, u
such that ∇λr(u) 6= 0. When ∇λr(u) = 0, we need the following lemma.

Lemma 4.4. With the same notations as in Proposition 4.3, assume that for every
γ ∈ [0, d− 1], an converges to 0, uniformly in x ∈ Zd and v ∈ K. Then, for x ∈ Zd
and for v ∈ K such that βv = 0, as y tends to in�nity, we have

g(y − x)ev·(y−x) ∼ αvCd
1

‖Σ(y)‖ d−2
2

,

where Cd only depends on the rank d.

Proof. De�ne

g̃(y) =
∑
n≥1

1

(2πn)d/2
αve
− 1

2nΣv(y).

Setting tn = n
Σv(y−x) , we have ∆n := tn − tn−1 = 1

Σv(y−x) which tends to 0 as y

tends to in�nity. Hence,

1

αv
(2π)d/2Σv(y − x)

d−2
2 g̃(y − x) =

∑
n≥1

t−d/2n e−
1

2tn ∆n

is a Riemannian sum of
∫ +∞

0
t−d/2e−

1
2t dt = C ′d. Consequently, we just need to

show that
g(y − x)ev·(y−x)

g̃(y − x)
−→
y→∞

1.

Equivalently, we prove that

g(y − x)ev·(y−x) − g̃(y − x) = o
(
‖y‖−(d−2)

)
.

We set

αn = sup
y∈Zd

sup
γ∈[0,d−1]

(
‖y − x‖√

n

)γ ∣∣∣(2nπ)d/2pn(y − x)ev·(y−x) − αve−
1

2nΣv(y−x)
∣∣∣ .

By assumption, (αn)n converges to 0 as n tends to in�nity. Let ε > 0. Then for
n ≥ n0, αn ≤ ε. We have

‖y − x‖d−2
∣∣∣g(y − x)ev·(y−x) − g̃(y − x)

∣∣∣ ≤ 1

‖y − x‖(2π)d/2

n0−1∑
n=1

αn
n1/2

+
1

‖y − x‖(2π)d/2

‖y−x‖2∑
n=n0

αn
n1/2

+
‖y − x‖d−2

(2π)d/2

∑
n>‖y−x‖2

αn
nd/2

.

The �rst term in the right-hand side converges to 0 as ‖y‖ tends to in�nity. The
second term is bounded by

ε

‖y − x‖(2π)d/2

∫ ‖y−x‖2
0

t−1/2dt . ε.

The last term is bounded by

ε‖y − x‖d−2

(2π)d/2

∫ +∞

‖y−x‖2
t−d/2dt . ε.
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This concludes the proof. �

All the ingredients are gathered to achieve the demonstration of Proposition 4.2.
Lemma 4.3 yields the convergence of the Martin kernels, as r tends to Rµ, r < Rµ,
and y tends to a point ξ in the Martin boundary. Lemma 4.4 gives in turn the
convergence of the Martin kernels for r = Rµ and y converging to ξ. Since these
two limits coincide, this yield s the continuity of the map (x, y, r) 7→ K(x, y|r).

Proof of Proposition 4.2. For all u ∈ Rd and r ∈ [0, Rµ], let Fr(u) be the vertical
displacement transition matrix de�ned in Section 3.2 and let λ(r, u) be its dominant
eigenvalue. Let K be the set of pairs (r, u) such that r ∈ [0, Rµ] and u satis�es
that λ(u) = 1. Since r 7→ λr is a continuous function from [0, Rµ] to the set of
continuous functions of u, the set K is compact.

Recall that for �x k, j ∈ {1, ..., N}, we write pk,j(x, y) = p((x, k), (y, j)), for every
x, y ∈ Zd. According to [12, Proposition 3.14, Proposition 3.16], for every k, j in
{1, ..., N}, the kernel pk,j satis�es the assumptions of Lemma 4.3 and Lemma 4.4
if we de�ne

α(r,u) :=
1

det(Σu)
Cr(u)kνr(u)j ,

βu,r = ∇λr(u) and Σ(r,u) to be the inverse of the quadratic form associated to
the Hessian of the eigenvalue λ(u) and where Cr(u) and νr(u) are right and left
eigenvectors associated to λr(u).

Consider ξ in the boundary ∂H of H and let ((yn, jn))n a sequence in E which
converges to ξ, i.e. (yn)n tends to in�nity and (yn/‖yn‖)n converges to ξ. Also
write e = (0, k0) for the basepoint of E.

Assuming that r < Rµ, [12, Lemma 3.24] shows that the map

u ∈ {u, λr(u) = 1} 7→ ∇λr(u)

‖∇λr(u)‖

is a homeomorphism between {u, λr(u) = 1} and Sd−1. Thus, there exists ur,n such
that

yn
‖yn‖

=
∇λr(ur,n)

‖∇λr(ur,n)‖
.

As explained in the previous section, [14, (5), Proposition 4.6] shows that the set
{u, λr(u) = 1} is contained in a �xed ball B(0,M). Therefore, ur,n is bounded
and so is ‖∇λr(ur,n)‖. Setting tn = ‖yn‖/‖∇λr(ur,n)‖, we see that (tn)n tends to
in�nity and that

yn = tn∇λr(ur,n).

Consider now a sequence (rn)n converging to Rµ, rn < Rµ. By Lemma 4.3,

(2πtn)
d−1

2 G((x, k), (yn, jn)|rn)eurn,n·(y−x)

=
1

Σrn,ur,n(∇λr(ur,n))

(
Crn(urn,n)kνrn(urn,n)jn

det(Σrn,urn,n)
+ o(1)

)
and

(2πtn)
d−1

2 G(e, (yn, jn)|rn)eurn,n·y

=
1

Σrn,ur,n(∇λr(ur,n))

(
Crn(urn,n)k0

νrn(urn,n)jn
det(Σrn,urn,n)

+ o(1)

)



26 MATTHIEU DUSSAULE, MARC PEIGNÉ, AND SAMUEL TAPIE

Consequently,

K((x, k), (yn, jn)|rn) = eur,n·x
Crn (urn,n)kνrn (urn,n)jn

det(Σrn,urn,n ) + o(1)

Crn (urn,n)k0
νrn (urn,n)jn

det(Σrn,urn,n ) + o(1)
.

By [13, Lemma 5.6], the sequence (urn,n)n converges to uRµ as (yn/‖yn‖)n tends
to ξ and (rn)n tends to Rµ. Note that the limit does not depend on ξ. Indeed, uRµ
is a point such that λRµ(uRµ) = 1 and by (5), the minimum of λRµ is 1. Since λRµ
is strictly convex, the point uRµ is unique. The o(1) term above is uniform in r,

hence (K((x, k), (yn, jn)|rn))n converges to euRµ,ξ·x
CRµ (uRµ,ξ)k
CRµ (uRµ,ξ)k0

.

Assume now that r = Rµ is �xed and (yn)n converges to ξ. We apply Lemma 4.4
to the same parameters αv, βv, Σv to deduce that

K((x, k), (yn, jn)|Rµ) ∼ euRµ,ξ·x
CRµ(uRµ,ξ)k

CRµ(uRµ,ξ)k0

.

Thus, as (yn, jn) → ξ and rn → Rµ with rn < Rµ, the limit of the two sequences
(K((x, k), (yn, jn)|rn))n and (K((x, k), (yn, jn)|Rµ))n coincide. �

5. Asymptotics of the full Green function

The purpose in this section is to show that, for a convergent random walk on
a relatively hyperbolic group whose Martin boundary is stable, the asymptotics
of the (derivatives of) the full Green function are given by the asymptotics of
the (derivatives of the) Green functions associated to the �rst return kernels to
dominant parabolic subgroups. The precise statement is given in Theorem 5.4
below. This is the last crucial step before the proof of the local limit theorem. Note
that throughout this section, we do not need to assume that parabolic subgroups
are virtually abelian.

If x ∈ Γ, we de�ne I
(k)
x (r) by

I(k)
x (r) =

∑
x1,...,xk∈Γ

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, x|r).

For x = e, we write I(k)(r) = I
(k)
e (r). These quantities are related to the derivatives

of the Green function by the following result. We inductively de�ne

F1,x(r) =
d

dr
(rGr(e, x))

and

Fk,x(r) =
d

dr
(r2Fk−1,x(r)), k ≥ 2.

The following Lemma generalizes Lemma 2.7 and is valid for any kernel.

Lemma 5.1. [10, Lemma 3.2] For every x ∈ Γ and r ∈ [0, Rµ],

Fk,x(r) = k!rk−1I(k)
x (r).

As a direct consequence, it holds.

Proposition 5.2. For every k ≥ 1, x ∈ Γ and r ≤ Rµ,

I(k)
x (r) � G(e, x|r) +G′(e, x|r) + ...+G(k)(e, x|r).



LOCAL LIMIT THEOREM FOR CONVERGENT REL. HYPERBOLIC GROUPS 27

Moreover, if k is the smallest integer such that I(k)(Rµ) = +∞ � or equivalently

such that G(k)(e, e|Rµ) = +∞ � then, as r ↗ Rµ,

I(k)
x (r) ∼ CG(k)(e, x|r).

For any parabolic subgroup H of Γ and any η ≥ 0, we also set: for every
x ∈ Nη(H) and r ∈ [0, Rµ],

I
(k)
H,η,x(r) =

∑
x1,...,xk∈Nη(H)

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, x|r).

Again, if x = e, we write I
(k)
H,η(r) = I

(k)
H,η,e(r). Since G(x, x′|r) = GH,η,r(x, x

′|1) for

any x, x′ ∈ Nη(H), the quantities I
(k)
H,η,x(r) are related to the derivatives of GH,η,r

at 1 by the same formulae as in Lemma 5.1.

We now �x a �nite set {H1, ...,HN} of representatives of conjugacy classes of
the parabolic subgroups. For η ≥ 0, we set

(10) J (k)
η (r) =

N∑
p=1

I
(k)
Hp,η(r)

and J (k)(r) = J
(k)
0 (r), k ≥ 1.

Proposition 5.3. Consider a �nitely generated relatively hyperbolic group Γ and
a �nitely supported symmetric and admissible probability measure µ on Γ. Assume
that the µ-random walk is convergent, i.e. I(1)(Rµ) is �nite. Let k be the smallest

integer such that J (k)(Rµ) is in�nite. Then, the quantity I(j)(Rµ) is �nite for every
j < k and for every η ≥ 0,

I(k)(r) � J (k)
η (r)

where the implicit constant only depends on η.

Proof. Clearly, we have J (j)(r) . I(j)(r) for every j. Also, by [10, Lemma 5.7], the
sum I(j) is bounded by some quantity that only depends on all the I(l)(r), l < j
and on all the J (l)(r), l ≤ j. Thus, by induction, I(j)(Rµ) is �nite for every j < k

and I(k)(r) . J (k)(r). Finally, J (j)(r) � J
(j)
η (r), where the implicit constant only

depends on η. �

The purpose of this section is to prove the following theorem. Its assumptions
are satis�ed as soon as the parabolic subgroups are virtually abelian, according to
Theorem 4.1 and [13, Proposition 4.3].

Theorem 5.4. Consider a �nitely generated relatively hyperbolic group Γ and a
�nitely supported symmetric and admissible probability measure µ on Γ. Assume
that the random walk is convergent, i.e. I(1)(Rµ) is �nite. For any parabolic sub-
group H of Γ such that the random walk is spectrally degenerated along H and any
r ≤ Rµ, let pH,r be the �rst return kernel to H associated with rµ.

Assume that the following holds.

• The Martin boundary is stable and the function

(x, y, r) ∈ Γ× Γ ∪ ∂µΓ× (0, Rµ] 7→ K(x, y|r)
is continuous.
• The 1-Martin boundary of (H, pH,Rµ) is reduced to a point.



28 MATTHIEU DUSSAULE, MARC PEIGNÉ, AND SAMUEL TAPIE

Let k be the smallest integer such that J (k)(Rµ) is in�nite. Then, for every η ≥ 0,
there exists a constant Cη such that as r ↗ Rµ,

I(k)
η (r) ∼ CηJ (k)(r).

The next two subsections are dedicated to the proof of this theorem.

5.1. Asymptotics of the second derivative. We start with showing Theo-
rem 5.4 when k = 2, i.e. J (1)(Rµ) is �nite and J (2)(Rµ) is in�nite. We �rst consider
the case η = 0.

Claim. Under the assumptions of Theorem 5.4, if k = 2, then there exists a positive
constant C such that

I(2)(r) ∼ CJ (2)(r).

5.1.1. Step 1. I(2)(r) from a transfer operator. The purpose of this paragraph is
to prove Proposition 5.6, which shows that I(2)(r) can be written as the image of
a suitable transfer operator and a remainding term which is bounded as r → Rµ.
Many computations are analogous to [11, Section 4]; nevertheless we apply this
operator to functions which may not be continuous and we cannot use thermo-
dynamical formalism as in [11] to control the convergence of our estimates. We
present detailed computations.

We writeH(x, y|r) = G(x, y|r)G(y, x|r). By de�nition I(1)(r) =
∑
x∈ΓH(e, x|r).

We introduce the function Φr de�ned by

Φr(x) =
∑
y∈Γ

G(e, y|r)G(y, x|r)
G(e, x|r)

.

By de�nition,

I(2)(r) =
∑
x∈Γ

H(e, x|r)Φr(x).

We �x a �nite generating set S. Using the automaton G encoding relative
geodesics given by Theorem 2.3, for any x ∈ Γ, we choose a relative geodesic
[e, x] from e to x. Also, we will write Ω0 = {H1, ...,HN} and H0 = S so that each
increment of a relative geodesic is in one of the Hj .

Let α : Z → Γ be a relative geodesic such that α(0) = e and Γα be the set of
elements x ∈ Γ such that x1 and α1 lie in the same Hj . We de�ne Ψr(α) by

Ψr(α) =
∑
y∈Γα

G(α−, y|r)G(y, α+|r)
G(α−, α+|r)

,

where α− and α+ are the left and right extremities of α. We prove the following.
Let T be the left shift on relative geodesics, so that T kα, k ∈ Z, is the relative
geodesic α(k)−1α.

Proposition 5.5. Let x ∈ Ŝn. Then

Φr(x) =

n−1∑
k=0

Ψr

(
T k[e, x]

)
+O(n).

Proof. Write [e, x] = (e, x1, x2, ..., xn).
Fix k ≤ n− 1. Let Γk be the set of elements y such that the projection of y on

[e, x] in the relative graph Γ̂ is at xk. If there are several projections, we choose the
one which is the closest to e. Let jk be such that x−1

k xk+1 ∈ Hjk .
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Consider some y ∈ Γk, so that x−1
k y projects on T k[e, x] = x−1

k [e, x] at e. Con-

sider the sub-relative geodesic [e, x−1
k y] and write [e, x−1

k y] = (e, z1, ..., zm) and

assume that z1 /∈ Hjk . By [10, Lemma 4.16], any relative geodesic from x−1
k to

zm = x−1
k y passes through a point z within a bounded distance of e. Also, by [35,

Lemma 1.15], there exists L ≥ 0 such that if the projection in the Cayley graph of
Γ of zm on Hjk is at distance at least L from e, then the relative geodesic [e, x−1

k y]

contains an edge inHjk . If this edge is not z1, this contradicts the fact that [e, x−1
k y]

is a relative geodesic. Hence, the projection of zm on Hjk is within a bounded dis-
tance of e. By [10, Lemma 4.16], we also know that any relative geodesic from zm
to x−1

k x passes within a bounded distance of x−1
k xk+1. Again, if d(e, x−1

k xk+1) is
large enough, then such a geodesic has an edge in Hjk . By [35, Lemma 1.13], the
entrance point in Hjk is within a bounded distance of the projection of zm on Hjk .
In any case, a relative geodesic from zm to x−1

k x passes within a bounded distance
of e. Consequently, weak relative Ancona inequalities (Proposition 2.9) yield

(11)
G(e, y|r)G(y, x|r)

G(e, x|r)
. H(xk, y|r).

Now, if y ∈ Γn, i.e. y projects on [e, x] at x, then by [10, Lemma 4.16], any relative
geodesic from e to y passes within a bounded distance of x. Hence, weak relative
Ancona inequalities yield

(12)
G(e, y|r)G(y, x|r)

G(e, x|r)
. H(x, y|r).

Combining (11) and (12) yields∣∣∣∣∣Φr(x)−
n−1∑
k=0

Ψr

(
T k[e, v]

)∣∣∣∣∣ .
n∑
k=0

∑
y∈Γ

H(e, y|r) . n,

which is the desired bound. �

We deduce the following.

Proposition 5.6. We have

I(2)(r) =
∑
n≥0

n−1∑
k=0

∑
x∈Ŝn

H(e, x|r)Ψr

(
T k[e, x]

)
+O(1).

Proof. By Proposition 5.5,∣∣∣∣∣∣I(2)(r)−
∑
n≥0

n−1∑
k=0

∑
x∈Ŝn

H(e, x|r)Ψr

(
T k[e, x]

)∣∣∣∣∣∣ .
∑
n≥0

n
∑
x∈Ŝn

H(e, x|r).

Following [11], the sum
∑
x∈Ŝn H(e, x|r) can be written as the the value at the

empty sequence of the nth iterate of a suited transfer operator Lr de�ned on the
path-space of the automaton G encoding relative geodesics and applied to a func-
tion f , see [11, Section 6.1] for more details. Moreover, by [11, Lemma 4.3], the
Markov shift associated with G has �nitely many images and by [11, Lemma 4.5,
Lemma 4.7], the transfer operator Lr has �nite pressure and is semisimple. Thus,
by [11, Theorem 3.5], it holds

∑
x∈Ŝn H(e, x|r) ∼ CeP (r), where P (r) is the max-

imal pressure of Lr. Since the random walk is convergent, we necessarily have
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P (Rµ) < 0. Therefore, the sum
∑
n≥0 n

∑
x∈Ŝn H(e, x|Rµ) is �nite. This concludes

the proof, since H(e, x|r) ≤ H(e, x|Rµ). �

5.1.2. Step 2. J (2)(r) from the transfer operator. By Proposition 5.6, the Claim 5.1
is a direct consequence of the following statement.

Proposition 5.7. Under the previous notations,∑
n≥0

n−1∑
k=0

∑
x∈Ŝn

H(e, x|r)Ψr

(
T k[e, x]

)
∼ CJ (2)(r).

Proof. We decompose x ∈ Ŝn as x = x2hx1, where x1 ∈ Ŝn−k−1, h ∈ Hj for some

j and x2 ∈ Ŝk. If y is �xed, we write Xj
y (resp. Xy

j ) for the set of elements z of

relative length j that can precede (resp. follow) y in the automaton G. We also
write Xy, respectively X

y for the set of all elements z that precede, respectively
follow y. We thus need to study∑̃

:=
∑
k≥0

∑
n≥k+1

∑
x1∈Ŝn−k−1

∑
h∈X1

x1

∑
x2∈Xkh

H(e, x1|r)
H(e, x2hx1|r)
H(e, x1|r)∑

h′∈Γh

∑
x′∈Xh′

G(x−1
2 , h′x′|r)G(h′x′, hx1|r)

G(x−1
2 , hx1|r)

.

We reorganize the sum over h, x2, h
′, x′ as∑

h∈X1
x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)
∑

x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r)

χr(h, h
′, x1, x2, x

′),

where the function χr is de�ned by

χr(h, h
′, x1, x2, x

′) =
G(hx1, x

−1
2 |r)

G(e, x−1
2 |r)G(h, e|r)G(x1, e|r)

G(x−1
2 , h′x′|r)

G(x−1
2 , e|r)G(e, h′|r)G(e, x′|r)

G(h′x′, hx1|r)
G(x′, e|r)G(h′, h|r)G(e, x1|r)

(13)

so that∑̃
=
∑
k≥0

∑
n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)

∑
x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r) χr(h, h
′, x1, x2, x

′)

Proposition 5.8. The functions χr are bounded uniformly in r ∈ [0, Rµ]. More-
over, as r tends to Rµ, the family (χr)r uniformly converges to χRµ .

Proof. Let us note that every quotient in the de�nition of χr is uniformly bounded.
Hence, according to the weak relative Ancona inequalities (Proposition 2.9), we
just need to prove that each of them uniformly converges as r tends to Rµ.

We start with the �rst term. and �x ε > 0. By Proposition 2.8, there exists η,
independent of r, such that

G(hx1, x
−1
2 ;Bη(h)c|r) ≤ εG(hx1, x

−1
2 |r).
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Hence, for every r ≤ Rµ,∣∣∣∣∣∣ G(hx1, x
−1
2 |r)

G(e, x−1
2 |r)G(h, e|r)G(x1, e|r)

−
∑

u∈Bη(e)

G(x1, u;Bη(e)c|r)G(hu, x−1
2 |r)

G(e, x−1
2 |r)G(h, e|r)G(x1, e|r)

∣∣∣∣∣∣ . ε
and so we just need to prove that

∑
u∈Bη(e)

G(x1,u;Bη(e)c|r)
G(e,x−1

2 |r)
× G(hu,x−1

2 |r)
G(h,e|r)G(x1,e|r) con-

verges as r tends to Rµ, uniformly in x1, h, x2. We study separately the two ratios
which appear in this sum.

Lemma 5.9. For �xed η, the ratio
G(x1,u;Bη(e)c|r)

G(x1,e|r) converges to
G(x1,u;Bη(e)c|Rµ)

G(x1,e|Rµ) ,

uniformly in x1 and u ∈ Bη(e).

Proof. By �niteness of Bη(e) is �nite, it is su�cient to prove that the convergence
is uniform in x1. Since the function (x, y, r) 7→ K(x, y|r) is continuous, the ra-

tio G(x1,u|r)
G(x1,e|r) uniformly converges to

G(x1,u|Rµ)
G(x1,e|Rµ) . Conditioning on the last passage

through Bη(e) before u, we have

G(x1, u|r) = G(x1, u;Bη(e)c|r) +
∑

v∈Bη(e)

G(x1, v|r)G(v, u;Bη(e)c|r),

where, as r → Rµ,

(i) G(x1,v|r)
G(x1,e|r) uniformly converges to

G(x1,v|Rµ)
G(x1,e|Rµ) ;

(ii) G(v, u;Bη(e)c|r) uniformly converges to G(v, u;Bη(e)c|Rµ). �

Similarly, to study the behavior of the ratio
G(hu,v−1

2 |r)
G(e,v−1

2 |r)G(h,e|r) as r → Rµ, we use

Proposition 2.8 and replace G(hu, v−1
2 |r) by∑

v∈Bη′ (e)

G(hu, v;Bη′(v)c|r)G(v, v−1
2 |r),

where η′ only depends on ε and η. As above, we check that both
G(hu,v;Bη′ (e)

c|r)
G(h,e|r)

and
G(v,v−1

2 |r)
G(e,v−1

2 |r)
uniformly converge, as r → Rµ.

This shows uniform convergence of the �rst quotient in the de�nition of χr. We
deal similarly with the two other ones to conclude. �

Let ε > 0. Since
∑
xH(e, v|Rµ) is �nite, if |Rµ − r| is small enough, we have∑

k≥0

∑
n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′)G(h′, h)G(h, e)

∑
x2∈Xkh

H(e, x2|r)
∑

x′∈Xh′
H(e, x′|r)

∣∣χr(h, h′, x1, x2, x
′)− χRµ(h, h′, x1, x2, x

′)
∣∣

≤ εJ (2)(r).

We can thus replace χr by χRµ in the expression of
∑̃
.

Proposition 5.10. Consider a parabolic subgroup H along which the random walk
is spectrally degenerate. As h, h′ ∈ H tend to in�nity and d(h, h′) tends to in�nity,
the function ∑

k≥0

∑
x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r)χRµ(h, h′, x1, x2, x
′)
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converges to a function χ̃H(x1). Moreover, the convergence is uniform in x1 and
r ∈ [0, Rµ] and the function χ̃H is bounded.

We �rst prove the following lemma.

Lemma 5.11. If D is large enough and if d(e, h) > D, the set of x2 that can
precede h lying in a �xed parabolic subgroup H is independent of h.

Proof. Let h1 and h2 be in the same parabolic subgroup H, such that both have
length bigger than D. Assume that x can precede h1. By [10, Lemma 4.11], if D is
large enough, the concatenation of x and h2 is a relative geodesic. Now, consider
elements x̃ and h̃ in H such that x̃h̃ = xh2. Hence x̃h̃h

−1
2 h1 = xh1 so that x̃ ≥ x

in the lexicographical order. If x̃ > x, then the concatenation of x̃ and h̃ is bigger
than the concatenation of x and h2. Otherwise, x̃ = x and so h̃ = h2. Therefore x
can precede h2. �

The same proof does not apply to elements x′ that can follow h′. However,
decomposing elements of Γ as h′x′ and choosing the inverse lexicographical order
rather than the original lexicographical order, we get similarly the following result.

Lemma 5.12. If D is large enough and if d(e, h′) > D, the set of x′ that can follow
h′ lying in a �xed parabolic subgroup H is independent of h′.

We can now prove Proposition 5.10.

Proof. By Lemmas 5.11 and 5.12, it is enough to prove that χRµ(h, h′, x1, x2, x
′)

converges to a function, as h, h′ tend to in�nity and d(h, h′) tends to in�nity, uni-
formly in x1, x2, x

′. Uniformity is proved using Proposition 2.8, as in the proof of
Proposition 5.8. Hence, we just need to prove that for �xed u and v, the ratio
G(hu,v|Rµ)
G(h,e|Rµ) converges as h tends to in�nity. We write

G(hu, v|Rµ)

G(h, e|Rµ)
=
G(hu, v|Rµ)

G(hu, e|Rµ)

G(hu, e|Rµ)

G(h, e|Rµ)
=
G(hu, v|Rµ)

G(hu, e|Rµ)

G(u, h−1|Rµ)

G(e, h−1|Rµ)
.

Both hu and h−1 tend to in�nity. Since we assume that the Martin boundary of the

�rst return kernel to H is reduced to a point, both ratios
G(hu,v|Rµ)
G(hu,e|Rµ) and

G(u,h−1|Rµ)
G(e,h−1|Rµ)

converge, as h tends to in�nity. �

To simplify notations, we set

Ĩ(2)(r) =
∑
n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)

∑
k≥0

∑
x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r)χRµ(h, h′, x1, x2, x
′).

(14)

We also write Hh for the parabolic subgroup containing h. When h lies in several
parabolic subgroups, we arbitrarily choose one of them and, if possible, we choose
one along which the random walk is spectrally degenerate. Recall that the intersec-
tion of two parabolic subgroups is �nite, see [9, Lemme 4.7]; hence Hh is uniquely
de�ned if d(e, h) is large enough. Finally, if the random walk is not spectrally
degenerate along H, we set χ̃H(x1) = 1.
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Proposition 5.13. Let ε > 0. If |r −Rµ| is small enough, then∣∣∣∣∣∣Ĩ(2)(r)−
∑
n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)χ̃Hh(x1)

∣∣∣∣∣∣
. εJ (2)(r).

Proof. There exists Dε such that if the random walk is spectrally degenerate along
Hh, then if d(e, h), d(e, h′), d(h, h′) ≥ Dε.∣∣∣∣∣∣

∑
k≥0

∑
x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r)χRµ(h, h′, x1, x2, x
′)− χ̃Hh(x1)

∣∣∣∣∣∣ ≤ ε.
On the one hand, the sub-sum in (14) over the h and h′ such that, either d(e, h) < Dε

or d(e, h′) < Dε or d(h, h′) < Dε, is uniformly bounded. Hence, it can be bounded
by εJ (2)(r) if r is close enough to Rµ. On the other hand, the sub-sum over the h
and h′ such that d(e, h), d(e, h′), d(h, h′) ≥ Dε but the random walk is not spectrally
degenerate along Hh is also uniformly bounded and can thus be bounded as well
by εJ (2)(r) if r is close enough to Rµ. �

To conclude the proof, we only need to prove that∑
n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)χ̃Hh(x1) ∼ CJ (2)(r).

The double sum over x1 and h that can precede x1 is exactly the sum over every

element of relative length 1+d̂(e, x1), so we can replace this double sum by a double
sum over h and x1 that can follow h. We thus need to prove that∑

h

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)
∑
n≥0

∑
x1∈Xhn

H(e, x1|r)χ̃Hh(x1) ∼ CJ (2)(r).

By Lemma 5.12, if d(e, h) is large enough, then the set of x1 that can follow h is
independent of h. This concludes the proof, since for �xed D, the sub-sum over the
h such that d(e, h) ≤ D is uniformly bounded. �

This concludes the proof of the Claim 5.1. To complete the proof of Theorem 5.4
in the case k = 2, we need to show the following.

Proposition 5.14. Under the assumptions of Theorem 5.4, if k = 2, then for
every η ≥ 0, there exists a positive constant Cη such that

J (2)
η (r) ∼ CηJ (2)(r).

Denote by Eη the set of x ∈ Γ such that x is in Nη(H) for some H. Recall that
for a relative geodesic α such that α(0) = e, the set Γα contains all the elements
x ∈ Γ such that x1 and α1 lie in the same Hj . Setting

Ψη
r(α) =

∑
y∈Γα

G(α−, y|r)G(y, α+|r)
G(α−, α+|r)

1α−1
− α+∈Eη1y∈Eη

the proof of Proposition 5.14 is exactly the same as the one of Claim 5.1, replacing
Ψr by Ψη

r .
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5.2. Higher derivatives. We now consider the general case, i.e. J (j)(Rµ) is �nite

for every j < k and J (k) is in�nite. We introduce the function Φ
(k)
r and Ψ

(k)
r de�ned

by: for any x ∈ Γ,

Φ(k)
r (x) =

∑
y1,...,yk−1

G(e, y1|r)G(y1, y2|r)...G(yk−1, v|r)
G(e, v|r)

.

and, for any relative geodesic α such that α(0) = e,

Ψ(k)
r (α) =

∑
y1,...,yk−1∈Γα

G(α−, y1|r)G(y1, y2|r)...G(yk−1, α+|r)
G(α−, α+|r)

.

As above, it holds

I(k)(r) =
∑
x∈Γ

H(e, v|r)Φ(k)
r (x).

We have the following.

Proposition 5.15. There exists Dk such that, for any x ∈ Ŝn,

Φ(k)
r (x) =

n−1∑
j=0

Ψ(k)
r

(
T j [e, v]

)
+O(nDk).

Proof. Like in the proof of Proposition 5.5, we consider the set Γl of elements y
such that the projection of y on [e, x] is at xl. If all the yj do not lie in the same
Γl, then ∑

y1,...,yk−1

G(e, y1|r)G(y1, y2|r)...G(yk−1, x|r)
G(e, x|r)

is bounded by a quantity only involving the J (j)(r), j < k, which are uniformly

bounded. Hence we can restrict the sum in the de�nition of Φ
(k)
r to the yj lying in

the same Γl and the remainder of the proof of Proposition 5.5 can be reproduced
to conclude. �

As in Proposition 5.6, we get

I(k)(r) =
∑
n≥0

n−1∑
k=0

∑
x∈Ŝn

H(e, x|r)Ψ(k)
r

(
T k[e, x]

)
+O(1)

and conclude like in the case k = 2. This proves Theorem 5.4. �

6. Proof of the local limit theorem

In this section, we prove Theorem 1.3. Recall that for �xed x in Γ,

I(k)
x (r) =

∑
y1,...,yk

G(e, y1|r)...G(yk, x|r).

Proposition 6.1. Under the assumptions of Theorem 5.4, for every η ≥ 0 and
every x ∈ Γ, there exists Cη,x such that

I(k)
x (r) ∼ Cη,xJ (k)

η (r).
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Sketch of proof. We use the same arguments as in Theorem 5.4. Let us brie�y
outline the case k = 2.

We have

I(2)
x (r) =

∑
y,z∈Γ

G(e, y|r)G(y, z|r)G(z, e|r)G(z, x|r)
G(z, e|r)

.

We introduce the function Φr,x de�ned by

Φr,x(z) =
∑
y∈Γ

G(e, y|r)G(y, z|r)
G(e, z|r)

G(z, x|r)
G(z, e|r)

,

i.e. Φr,x(z) = Φr(z)
G(z,x|r)
G(z,e|r) . We then have

I(2)
x (r) =

∑
z∈Γ

H(e, z|r)Φr,x(z).

We can then reproduce the same proof, replacing the function χr de�ned in (13)
by the function χr,x de�ned by

χr,v(h, h
′, z1, z2, z

′) =
G(hz1, z

−1
2 |r)

G(e, z−1
2 |r)G(h, e|r)G(z1, e|r)

G(z−1
2 , h′z′|r)

G(z−1
2 , e|r)G(e, h′|r)G(e, z′|r)

G(h′z′, hz1|r)
G(z′, e|r)G(h′, h|r)G(e, z1|r)

G(z2hz1, x|r)
G(z2hz1, e|r)

.

Hence, χr,x = χr
G(z2hz1,x|r)
G(z2hz1,e|r) and is bounded by a constant that only depends on x.

Since we assume that the Martin boundary is stable and the function

(x, y, r) ∈ Γ× Γ ∪ ∂µΓ× (0, Rµ] 7→ K(x, y|r)

is continuous, the family (χr,x)r uniformly converges to χRµ,x, as r tends to Rµ. �

We now prove Theorem 1.3. By Theorem 4.1 and [13, Proposition 4.3], the
assumptions of Theorem 5.4 are satis�ed. Combining Proposition 3.13 and Theo-
rem 5.4, we get the following.

Corollary 6.2. For every x, there exists Cx > 0 such that, as r → Rµ

G(j)(e, x|r) ∼ Cx√
Rµ − r

if d is odd,

and G(j)(e, x|r) ∼ Cx Log

(
1

Rµ − r

)
if d is even.

In both cases, we deduce that p(n)(e, x) ∼ CxR
−n
µ n−d/2; let us explain this last

step. The odd case is proved exactly like [18, Theorem 9.1]. The method is based
on a Tauberian theorem of Karamata and also applies to the even case.

Let us give a complete proof of the even case for sake of completeness. A function
f is called slowly varying if for every λ > 0, the ratio f(λx)/f(x) converges to 1 as
x tends to in�nity. Combining Corollary 6.2 and [2, Corollary 1.7.3] (with to the
slowly varying function log) one gets

n∑
k=0

kjRkµµ
∗k(x) ∼ C ′x log(n).
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Moreover, by [18, Corollary 9.4],

(15) njRnµ(µ∗n(e) + µ∗n(x)) = qn(x) +O
(
e−cn

)
,

where c > 0 and the sequence (qn(x))n is non-increasing. We �rst deduce that

n∑
k=0

kjRkµqk(e) ∼ C0 log(n).

The same proof as in [18, Lemma 9.5] yields

njRnµqn(e) ∼ C1n
−1

and so, using again (15),

njRnµµ
∗n(e) ∼ C1n

−1.

Recall that j = d/2− 1, so that

µ∗n(e) ∼ C1R
−n
µ n−d/2.

Since G(j)(e, e|r) +G(j)(e, x|r) ∼ (Ce+Cx) log 1/(Rµ− r) as r → Rµ, we can again
apply [2, Corollary 1.7.3] to deduce that

n∑
k=0

kjRkµqk(x) ∼ C(0)
x log(n).

The fact that (qn(x))n is non-increasing readily implies

njRnµqn(x) ∼ C(1)
x n−1

as above; �nally, by (15),

µ∗n(x) ∼ C(2)
x R−nµ n−d/2.

Since C1 is positive and the random walk is admissible, the quantity C
(2)
x is also

positive. This concludes the proof of Theorem 1.3 and Corollary 1.4 thus follows
from [17, Proposition 4.1]. �

7. Divergence and spectral positive recurrence

This section is independent of the previous results. We prove that random walks
on relatively hyperbolic groups with virtually abelian parabolics are either conver-
gent or spectrally positive recurrent. This means that the a priori possible situation
of a divergent but non spectrally positive recurrent random walk (whose analogous
for the geodesic �ow on negatively curved manifolds does exists, cf Section 1.3)
cannot occur when parabolics are virtually abelian.

Consider a �nitely generated relatively hyperbolic group Γ with respect to vir-
tually abelian subgroups. Fix a �nite set Ω0 of representatives of conjugacy classes
of parabolic subgroups. Recall from that a random walk on Γ is called spectrally
positive recurrent if it is divergent and has �nite Green moments, i.e. using the
notations in the last section, if J (2)(Rµ) is �nite. We prove here that divergence
implies having �nite Green moments. We recall the following statement given in
the introduction.
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Theorem 1.7 Let Γ be a �nitely generated relatively hyperbolic group with respect to
virtually abelian subgroups and let µ be a �nitely supported admissible and symmet-
ric probability measure on Γ. Then, the random walk is spectrally positive recurrent
if and only if it is divergent.

We start with the following lemma, for which we do not need to assume that
parabolic subgroups are virtually abelian.

Lemma 7.1. Let Γ be a �nitely generated relatively hyperbolic group and let µ be
a probability measure on Γ. Then

I(1)(r)4J (3)(r) . I(3)(r).

Proof. We only give a sketch of the proof. The formal argument is exactly the
same as in the proof of [10, Proposition 5.6]. It is su�cient to show that for every
parabolic subgroup H ∈ Ω0,

I(1)(r)4I
(3)
H (r) . I(3)(r).

We thus �x a parabolic subgroup H. Recall that

I(3)(r) =
∑

x1,x2,x3

G(e, x1|r)G(x1, x2|r)G(x2, x3|r)G(x3, e|r).

Fix an element x0 ∈ Γ. Among all possible x1, x2, x3, for some of them, a relative
geodesic from e to xi �rst follows a relative geodesic from e to x0, then has an
increment inside H up to a point x0hi and then follows a relative geodesic from
x0hi to xi, as suggested by the picture below.

x0

e

x0h1

x0h2

x0h3

x1

x2

x3

By [17, (2.4)], we then obtain

G(e, x0|r)G(x0, x0h1|r)G(x0h1, x1|r) . G(e, x1|r),

G(x1, x0h1|r)G(x0h1, x0h2|r)G(x0h2, x2|r) . G(x1, x2|r),
G(x2, x0h2|r)G(x0h2, x0h3|r)G(x0h3, x3|r) . G(x2, x3|r),

G(x3, x0h3|r)G(x0h3, x0|r)G(x0, e|r) . G(x3, e|r).
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Summing over all possible x0, hi and then every possible yi = (x0hi)
−1xi, we get∑

x0

G(e, x0|r)G(x0, e|r)
∑

h1,h2,h3

G(e, h1|r)G(h1, h2|r)G(h2, h3|r)G(h3, e|r)∑
y1

G(e, y1|r)G(y1, e|r)
∑
y2

G(e, y2|r)G(y2, e|r)
∑
y3

G(e, y3|r)G(y3, e|r)

� I(1)(r)I
(3)
H (r)I(1)(r)3

. I(3)(r).

This concludes the proof, summing over all parabolic subgroups in Ω0. �

We now assume that parabolic subgroups are virtually abelian and that I(1)(Rµ)

and J (2)(Rµ) are in�nite. We will �nd a contradiction with Lemma 7.1.

If the random walk is not spectrally degenerate along a parabolic subgroup H,
then I

(2)
H (Rµ) = o

(
J (2)(Rµ)

)
. Hence, we can assume for simplicity that the random

walk is spectrally degenerate along every parabolic subgroups. According to the
asymptotics given by Proposition 3.13, we can also assume for simplicity that there
is only one parabolic subgroup H in Ω0 and that the following holds:

• either the rank of H is 5 and J (2)(r) � (Rµ − r)−1/2,

• or the rank of H is 6 and J (2)(r) � Log
(

1
Rµ−r

)
.

We have two cases to consider.

7.1. The odd case. We assume here that the rank ofH is 5 and that both I(1)(Rµ)

and J (2)(Rµ) are in�nite. We use the notations of Section 3. If η is large enough,

we have n3pη,r ∼ Crρnη,rn1/2. As in the proof of Proposition 3.13, this yields

J (3)
η (r) ∼ C(1− ρη,r)−3/2,

and since ρη,r = 1 + α(r −Rµ) + o
(
r −Rµ

)
, α 6= 0, we get

J (3)(r) � (Rµ − r)−3/2.

Lemma 7.2. Under these assumptions,

I(1)(r) � (Rµ − r)−1/4.

Proof. Recall that I(2)(r) � I(1)(r)3J (2)(r). Hence,

I(2)(r)

I(1)(r)3
� (Rµ − r)−1/2.

Integrating this inequality between r and Rµ, we get

1

I(1)(r)2
� (Rµ − r)1/2,

so that I(1)(r) � (Rµ − r)−1/4. �

Lemma 7.3. Under these assumptions,

µ∗n(e) � R−nµ n−7/4.
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To prove this lemma, we use the following result. We denote by OR the set of
positive functions f such that for every λ > 0,

lim sup
x→∞

f(λx)

f(x)
<∞.

If U is a function of bounded variation, we let Û be the Laplace transform of the
Stieltjes measure U(dx), i.e.

Û(t) =

∫ ∞
0

e−txU(dx).

Proposition 7.4. [2, Theorem 2.10.2] For every non-decreasing measurable func-
tion U with positive lim inf and vanishing on (−∞, 0), the following are equivalent

(1) U ∈ OR,
(2) t 7→ Û(1/t) ∈ OR,
(3) U(t) � Û(1/t), t > 0,

We now prove Lemma 7.3.

Proof. Let us write U(x) =
∑bxc
k=0 ak, where ak = kRkµµ

∗k(e). We then have

Û(t) =
∑
n≥0

ane−tn.

By Lemma 7.2, it yields

Û(t) � (1− e−t)−1/4.

In particular, Û(1/t) � t1/4, thus t 7→ Û(1/t) ∈ OR and U(t) � Û(1/t). Hence,
n∑
k=0

kRkµµ
∗k(e) � (1− e−1/n)−1/4 � n1/4.

By [10, Lemma 6.2], we get Rnµµ
∗n(e) � n−7/4 as desired. �

Lemma 7.5. Under these assumptions,

I(2)(r) � (Rµ − r)−5/4

and

I(3)(r) � (Rµ − r)−9/4.

Proof. Lemma 7.3 implies n2Rnµµ
∗n(e) � n1/4, so

∑n
k=0 k

2Rkµµ
∗k(e) � n5/4. Let-

ting U(x) =
∑bxc
k=0 bk, where bk = k2Rkµµ

∗k(e), we get U ∈ OR. Hence, we deduce
that U(t) � Û(1/t) and so∑

n≥0

n2Rnµµ
∗n(e)e−(1/t)n � t5/4.

We �nally get ∑
n≥0

n2Rnµµ
∗n(e)sn � 1

(1− s)5/4
.

Therefore,

I(2)(r) � 1

(Rµ − r)5/4
.

We deal with I(3)(r) similarly. �
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Combining all results of this subsection, I(1)(r)4J (3)(r)/I(3)(r) � (Rµ − r)−1/4,
contradicting Lemma 7.1. This proves Theorem 1.7 in the odd case. �

7.2. The even case. We assume here that the rank of H is 6 and that both
I(1)(Rµ) and J (2)(Rµ) are in�nite. This time, we have n3pη,r ∼ Crρ

n
η,r and we

deduce that

J (3)(r) � 1

Rµ − r
.

Lemma 7.6. Under these assumptions,

I(1)(r) �
(
− (Rµ − r)Log(Rµ − r)

)−1/2
.

Proof. Recall that I(2)(r) � I(1)(r)3J (2)(r). Hence,

I(2)(r)

I(1)(r)3
� −Log(Rµ − r).

Integrating this inequality between r and Rµ, we get

1

I(1)(r)2
� −(Rµ − r)Log(Rµ − r),

so that I(1)(r) �
(
− (Rµ − r)Log(Rµ − r)

)−1/2
. �

Lemma 7.7. Under these assumptions,

µ∗n(e) � R−nµ n−1/2Log(n)−1/2.

Proof. As above, we write U(x) =
∑bxc
k=0 ak, where ak = kRkµµ

∗k(e). By Lemma 7.6,

Û(t) �
(
− (1− e−t)Log(1− e−t)

)−1/2
.

Hence Û(1/t) � (t/Log(t))1/2 and so t 7→ Û(1/t) ∈ OR. Thus, U(t) � Û(1/t) so
that

n∑
k=0

kRkµµ
∗k(e) �

(
(1− e−1/n)Log(1− e−1/n)

)−1/2 � (n/Log(n))1/2.

The same proof as in [10, Lemma 6.2] yields Rkµµ
∗k(e) � n−1/2Log(n)−1/2 as de-

sired. �

Like Lemma 7.5, we deduce the following.

Lemma 7.8. Under these assumptions,

I(2)(r) � 1

(Rµ − r)
(
− (Rµ − r)Log(Rµ − r)

)1/2
and

I(3)(r) � 1

(Rµ − r)2
(
− (Rµ − r)Log(Rµ − r)

)1/2 .
Combining all the above results, we get

I(1)(r)4J (3)(r)/I(3)(r) � (Rµ − r)−1/2
(
− Log(Rµ − r)

)−3/2
,

which contradicts again Lemma 7.1. This proves Theorem 1.7 in the even case. �
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