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Abstract: 

A data-driven and application-oriented diagnosis tool is developed for Fuel Cell (FC) air supply 

subsystems. A bench emulating a FC air line is built to study normal and abnormal operations 

(clogged inlet, air leakage, error in compressor speed control) and data are collected using the 

air pressure transducer, which is usually implemented in FC generators. A pattern recognition 

approach is then applied to statistical features extracted from the pressure signal. The 

performance of the diagnosis strategy is evaluated from confusion matrices, associated to 

graphs and performance indicators. Two examples of compressors, air subsystem 

managements, and data records are considered to examine the method portability. Best 

classification rates (> 95%) are obtained on test profiles, when the pressure regulation is 

disabled; fault stamps can thus be found in the pressure signal morphology. Regarding the 

frequency of data logging, both 1 kHz and 100 Hz values are found effective for fault isolations. 

 

Keywords: Fuel cell; Air supply subsystem; Compressor; Diagnosis; Supervised machine-

learning. 
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Highlights: 

• A data-driven diagnostic tool is developed for the air supply subsystem of fuel cells. 

• The input to the algorithm is the signal from the pressure sensor (at 1000 or 100 Hz). 

• Fault scenarios are: air leak, compressor speed control fault, clogged air inlet. 

• The portability of the method is shown with 2 compressors and 2 air control modes. 

• Highest classification rate (97%) is reached with the pressure regulation disabled. 
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1. Introduction 

 

Fuel Cell (FC) generator components and subsystems are inevitably subject to slow or abrupt 

degradations during their life cycle. FCs face mechanical, chemical, and thermal factors 

contributing to ageing and / or early failure [1, 2]. Among the balance-of-plant components and 

sections used in PEMFC (Proton Exchange Membrane Fuel Cell) generators, the air supply and 

conditioning subsystem plays a key-role for the whole FC generator. Its major tasks can be 

summarized as follows [3-5]: 

- Air supply: the air supply system must provide sufficient reactant flows (i.e. to keep the 

desired oxygen excess ratios) over the full FC power range. A compressor machine is usually 

used to this end (blowers are adapted for low pressure FCs) and various technologies of 

compressors are available as centrifugal, screw, claw, lobe, scroll, rotary vane… By the way, it 

is important to highlight that the air compressor is identified as the most energy-consuming and 

most expensive ancillary in a FC system [5]. Pressure and flow rate have to be controlled 

properly in the cathode section. The control of the air supply system requires therefore well-

suited sensors. Firstly, pressure and temperature transducers, mass air flow sensors, and a shaft 

speed sensor shall be used to build compressor maps on dedicated testbenches [6-8]. Then, the 

air mass flow sensor is usually removed from commercialized FC generators since the air mass 

flow rate can be deduced from pressure, rotational speed of electric motor, and compressor 

maps. 

- Air cleaning: the air at the inlet of the FC air section must be filtered. Particles, dust, oil 

content, or chemical substance can be harmful for the FC stack and they need to be removed 

from the air feeding the generator. 

- Cathode pressurization: in any case, the air is supplied to the stack under pressure, ranging 

usually from low levels (i.e. values slightly above atmospheric pressure) to 1.5 - 2 bar rel. 

depending on the stack design. The pressure inherently depends on the air flow rate but it can 

also be adjusted using a back-pressure valve / throttle valve (and possibly with an expander / 

turbine), downstream of the FC stack. 

- Air humidification: the Nafion-based polymer membrane of the Low Temperature - PEMFC 

has to be maintained in a fully hydrated state. Therefore, the air supply system has to balance 

the water needed by the Membrane Electrode Assemblies (MEAs), the water produced by the 

chemical reaction in the cell, and possibly the amount of water injected upstream of the stack. 

Water can possibly be recovered from the cathode outlet by a drain or a condenser, and a 
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humidifier can be used between the compressor outlet and the stack air inlet. The humidification 

depends strongly on the FC operating pressure level, on the air mass flow rate but also on the 

temperatures of FC air inlet and stack. 

As we can see, complex dependencies between these tasks have to be taken into account to 

design and control the air supply system properly. Control plays therefore a key-role in the air 

supply management of FC generators [9-13]. Any pressure ripples or abrupt variations of the 

air flow may induce some loss of performances in FC stacks and generators, and possible 

mechanical degradations in PEMFC stacks (resulting in early failures due to cracks, pinholes, 

perforations, and tears in the membranes of the electrochemical assembly). Unequal pressures 

on both sides of the MEA would also damage the stack. Common faults occurring in the air line 

sections of FC systems can be related with any dysfunctions in the controls of the compressor 

machines (inducing wrong rotation speeds and thus air flow values that would be non-adapted 

to the FC operation), any possible air leakages in the air ducts, or any problems at the inlet of 

the air section (e.g. clogged filter at air line inlet). The causes of these faults have different 

possible origins; they may be related with ageing factors or with non-ordinary FC operating 

conditions. Overall, the effects of these faults on the FC stack operation are mainly related with 

oxygen starvation or air oversupply phenomena. 

The rapid effect of air starvation and air oversupply on the FC behavior can be detected on the 

evolution of the electrical stack performances [14]. To ensure steady conditions at the air inlet 

of a FC, it is therefore critical to monitor the State-of-Health (SoH) of the FC air supply and 

conditioning subsystem. There is currently a strong need for monitoring tools and solutions to 

keep the air line components healthy, to improve the stack durability and generator efficiency 

with optimized FC system operations. The SoH of the FC generator air section can be deduced 

from the monitoring of the FC voltage response. In this case, the FC itself acts as a sensor that 

can be used for diagnostic purposes. Air starvation or air over-supply conditions can be detected 

in such a way. 

PEMFC fault diagnosis has received much more attention over the past decade [15]. Due to the 

difficulty of developing accurate, knowledge-based PEMFC models incorporating various 

failure mode effects, data-driven approaches are widely used for diagnosis purposes. In such 

methods, features are extracted from the PEMFC measurements using signal processing 

techniques, and the PEMFC state can be determined by implementing pattern recognition 

methods to these features. Various pattern recognition algorithms have been applied to the 

extracted features, such as Gaussian mixture model, Support Vector Machines (SVM), K-

Nearest Neighbors (KNN), self-organizing maps, etc. Numerous articles deal with such data-
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driven FC diagnostic tools based upon stack voltage measurements [16-19]. Signal-based fault 

detections can be done for instance from EIS records [20] or by considering the natural 

oscillations of the FC voltage [21]. 

Many FC diagnostic tool and diagnosis strategies are based on voltage measurements at stack 

or cell terminals. But, as an air pressure transmitter is usually implemented in the cathode 

section of FC generators, it is also possible to use this sensor and its signal in order to assess 

the SoH of the FC air supply and conditioning subsystem. Moreover, the data provided by the 

pressure transmitter can possibly be used in redundant mode with the FC voltage data and/or as 

an additional input to propose a full diagnosis strategy. One may foresee that the pressure data 

can be used for the detection of specific air line faults and in order to decorrelate such faults 

from FC failures that may be more or less independent from the air line. 

Numerous recent references dealing with FC diagnosis based on pressure drop measurement 

can also be found in the literature. Indeed, an increase in the pressure drop, particularly at the 

cathode side of a PEMFC, is a reliable indicator of cell flooding. This parameter can be used to 

make decisions and propose corrective actions [22]. As an example, in order to propose a non-

intrusive flooding diagnosis procedure, Steiner et al. [23] used the comparison between the 

information given by a differential pressure sensor (measuring the inlet / outlet cathode pressure 

drop) and the output of a black-box model (estimating the pressure drop using an artificial 

Neural Network trained with flooding-free data). Of course, various works recommend FC 

diagnostic tools based on the measurement of the gas pressure and especially on the pressure-

induced voltage oscillations [24, 25]. Different FC diagnosis strategies are also based on the 

measurements of various physical operating parameters, including the air pressure at cathode 

as input (model-based as in [26] and non-model-based strategies as well). 

Although many studies have been conducted on stack failures and performance degradation, 

relatively few studies have examined Balance-of-Plant components and subsystems [19, 27]. In 

a recent article, Jinyeon Won et al. propose a hybrid diagnostic method to diagnose faults in the 

air supply section of a PEMFC system [28]. In this work, an artificial neural network classifier, 

used as a data-driven diagnostic tool, is combined with a model-based diagnosis method. The 

goal is to provide faster and more accurate diagnostics compared to the previously developed 

and solely model-based tool. The results obtained should help to develop an effective FC SoH 

management system. 

In the academic literature dealing with FCs, only few information is available on diagnostic 

tools, diagnosis strategies focusing on the FC air supply subsystem (i.e. considering its own 

fault modes), and based on a coupling between cathode pressure measurements and pattern-
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recognition algorithms. So, the monitoring tool that we propose for the FC air supply and 

conditioning subsystem relies on the measurement and record of the air pressure signal at the 

FC cathode side. It uses signal processing techniques to generate relevant statistical features 

related with the various explored operating conditions. It relies on a data-driven, pattern-

recognition based approach implementing the KNN algorithm (selected as an example of 

classifier). 

In order to develop and assess such a diagnosis method, an experimental testbench emulating a 

FC air supply and conditioning subsystem was designed and some tests were performed in 

different operating conditions to build an experimental dataset. More details on this step are 

given in Section 2. The diagnosis method that we propose to identify different operating modes 

and faults of the FC air subsystem is described in Section 3. Two examples of possible 

application are presented in Sections 4 and 5, related with two different technologies of 

compressor, two air line control modes, and two frequencies of data pressure records. The 

objective is to examine and discuss the portability of the method. Finally, major conclusions 

and perspectives are reported in Section 5. 

 

 

2. Experimental 

 

2.1 Testbench 

 

In order to propose a diagnostic tool based on the measurement of the air pressure signal, a 

testbench has been developed to emulate a FC air supply and conditioning subsystem. With this 

experimental mean, different technologies and designs of components to be used in FC 

generator cathode section (e.g. compressor, back-pressure valve, flow and pressure sensors, 

pipes) can be implemented and evaluated according to specific FC systems requirements, 

expressed primarily in terms of air flow and pressure at stack inlet. Moreover, various air flow 

and pressure control modes can be investigated. Further components can possibly be included 

into the air line, as external humidifiers if a self-humidifying FC stack is not considered in the 

design of the studied FC generator. Also, the testbench allows studying any possible fault 

scenarios related with FC air supply subsystems. A picture and a scheme of the developed 

testbench are shown in Fig. 1. he testbench includes mainly (in air flow direction): 

- An air filter at inlet. 

- A compressor (claw compressor or regenerative blower in this study). 
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- A pressure sensor (piezoresistive pressure transmitter Keller PR 23S). The pressure range of 

the sensor is 0 - 3 bar abs (with 0 - 10 V full scale measurement). Its output resolution 

(including analog / digital converter) is about 0.2 mV (16 bits), which leads to a pressure 

measurement resolution of 0.06 mbar. The limiting frequency is 1 kHz. Such a pressure 

measurement is typical of FC system applications. 

- A temperature sensor (thermocouple type K), which will not be used in this study. 

- A pneumatic back-pressure valve (Kämmer series 030). 

- An air mass flowmeter (Brooks 5863S). 

The testbench is dedicated to investigate compressors with air pressure levels up to 3 bar abs 

and air flows up to 300 Nl/min. This last value can be related with a 6 kW class PEMFC stack 

(e.g. 42 cell stack having individual cells of 220 cm² electrochemical surface area, showing 

voltages of 0.7 V @ 1 A.cm-2 current density, and fed with an air stoichiometry rate close to 

two). 

The monitoring and the control of the testbench parameters are done through a National 

Instruments embedded controller with analog or numeric exchanges and a dedicated control 

software developed with Labview. The different data measured by the sensors are acquired at a 

1 kHz sampling rate. The control-command has an action on the speed of the compressor and 

on the position of the back-pressure valve. The action on the compressor speed is linked to a 

control loop of the air flow. The action on the valve position is related to a regulation loop of 

the pressure in the air line. A Proportional-Integral (PI) regulation process is used in both cases. 

The power demand from the compressor is carried out from current and voltage measurements 

on the electrical section of the ancillary. Generally, the knowledge of the compressor power 

magnitude in its various operating cases (flow / pressure) helps greatly to compare different 

compressor technologies and to find the best suited ones for the applications to be developed. 

The test bench functionalities can contribute to this objective. Moreover, even if this is not the 

topic of this study, electrical measurements on the motor compressor can also be used to identify 

dysfunctions on the air line. 
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Fig. 1. Picture and scheme of the testbench dedicated to the study of a FC air supply and 

conditioning subsystem, including possible fault scenarios. 

 

2.2. Operating modes and faults 

 

In this study, four operating scenarios of air supply subsystem are investigated using the 

testbench shown in Fig. 1. The introduced fault scenarios are related with common faults 

occurring in the air line section of a FC system. These malfunctions have been identified during 

various tests and projects that have been carried out on the FC platform of Belfort in recent 

years; FC generator manufacturers also face these problems. Their occurrence and relative 

severity have been reported in the literature [28]. 

In the case of the Normal Operation (NO) scenario, the air line ancillaries operate without any 

failure (no fault is introduced). In the case of the three other operating scenarios, faults are 

introduced by intention (Fig. 1.b)). They are related to the following dysfunctions of the FC air 

supply and conditioning subsystem: 

- Compressor Speed Control Fault (CSCF): a drop in the set point of the compressor speed is 

voluntary caused. 
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- Air Leakage Fault (ALF): an air leakage is deliberately caused by opening partially a 

dedicated valve in the air duct. 

- Inlet Air Fault (IAF): in this test, the air inlet of the compressor is partially clogged. 

The causes of the studied faults may come from different sources and the effect on the FC 

behavior is mainly related with oxygen starvation. The causes and effects of the studied faults 

are listed in Table 1. 

 

Table 1. The causes and effects of the studied faults. 

Operating faults Causes Effects on PEMFC 

Compressor Speed 

Control Fault 

(CSCF) 

Mechanical damage in the air 

compressor. 

Control system dysfunction. 

Oxygen starvation. 

Pressure variations at cathode and 

pressure differences between anode and 

cathode. 

Mechanical degradation of the MEA. 

Air temperature effect on the FC 

humidity. 

Air Leakage Fault 

(ALF) 

Degradation of a sealing gasket in 

the air line. 

Leaks in the compressor due to 

sealing defect in the compression 

head. 

Mechanical fatigue of the 

compression head. 

Oxygen starvation. 

Pressure differences. 

Air temperature effect on the FC 

humidity. 

Inlet Air Fault 

(IAF) 

Clogged air filter at the 

compressor inlet. 

Oxygen starvation. 

Pressure differences. 

Air temperature effect on the FC 

humidity. 

 

In addition, the Compressor Speed Control Fault and Inlet Air Fault operating scenarios may 

cause any oscillations due to the rotor imbalance, and resonances in worst-case. This will cause 

increased wear of bearings and fatigue in structural components of the compressor as well as 

higher energy consumption. The pressure differences due to the three studied operating 

scenarios can accelerate the stress of FC system components and therefore induce ageing 

phenomena. The humidifier section of the FC generator can also be impacted: pressure 
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differences will put stress on its membranes. Over time, this could cause internal leakage as 

well as a decline of performance. 

As it will be presented in Section 2.3., each operating mode will be associated to a class label 

for the diagnosis task. 

 

2.3 Experimental database constitution 

 

The database used in this work is built from experimentations conducted with two different air 

compressor technologies, namely a claw compressor and a regenerative blower. As already 

mentioned, the air flow and pressure are either regulated (closed loops) or not controlled (open 

loops). Besides, the pressure can be controlled while the air flow varies in open loop. The data 

monitored and used for the diagnosis are collected using a pressure transducer, the kind of 

sensor which is usually implemented in real FC generators (unlike mass flow controllers for 

example as they are dedicated to in-lab FC testbenches). The acquisition of the air pressure 

signal is done at two frequencies: 1 kHz and 100 Hz. This frequency range is selected as a trade-

off between several constraints. On the one hand, the frequency level must be high enough to 

be able to capitalize on the possible fault stamps present in the morphology of the pressure 

transmitter signals. The compressor velocity, the pressure level, any parameters linked with its 

mechanical design (e.g. number of vanes) impact the frequential signature of the pressure signal 

(fundamental and harmonics). In this regard, preliminary experiments have shown that a 

hundred Hertz can be considered as a minimal frequency value for the expected air flows and 

pressures. On the other hand, a sampling frequency of 1 kHz (and even 100 Hz) can be 

considered as quite high for FC generators dedicated to on-board applications. Indeed, such FC 

systems may be equipped with less performing sensors (usually for economic reasons) and high 

frequency records also mean high computational effort required by the diagnosis algorithm, 

which may hinder its on-board applications as well. 

Two examples of data collected on the FC air line testbench are shown in Fig. 2 and 3. Both 

figures are related with air flow and pressure data recorded under normal and abnormal 

operating conditions intentionally introduced during the experimentations. However, Fig. 2 and 

3 correspond to distinct types of data. The signals of Fig. 2 come from measurements recorded 

at 1 kHz, with a claw compressor operated in air pressure and flow open loops whereas Fig. 3 

is based on a regenerative blower technology with regulated pressure and flow, and a recording 

frequency of 100 Hz. In both cases, pressure and air flow reference values are applied, 

respectively to 200 mbar rel. and 150 Nl/min. In Fig. 2, the faults lead to obvious deviations 
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from the pressure and flow references while in Fig. 3, the same faults do not lead to strong shifts 

from the setpoints. Due to the pressure and flow controls, the pressure and the flow signals are 

much steadier in Fig. 3. (except for the CSCF fault which dynamical effects cannot be mitigated 

by the control loops; the disturbances remain visible on the signals). 

Besides, in Fig. 2 and 3, the time and pressure intervals linked with the different operating 

conditions are identically reported in colors on the pressure signal plots. These intervals will be 

used to provide some initial / preliminary labels to the data that will be used in our diagnosis 

tool, based on the supervised machine learning approach described in the next section. 

According to the experimenter knowledge, these data labels cannot be associated to every point 

with the same accuracy. Some uncertainty on the labeling remains during the transient’s phases 

between two different operating conditions. 

A last remark on Fig. 2 and 3: the difference between the total durations of the two experiments 

is due to the fact that, for the two record frequencies considered, we aimed at having 

approximately the same sizes of data for the diagnosis procedure. 

 

 

Fig. 2. Example of air pressure and flow signals recorded at 1 kHz with a claw compressor in 

the air line, operated in open loops on pressure and flow, under normal and abnormal 

operating conditions. The top figure shows the intervals related with the four operating 

conditions and the initial / preliminary labels. 
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Fig. 3. Second example of air pressure and flow signals. These records are done at 100 Hz and 

obtained with a regenerative blower in the air line, operated in closed control loops on 

pressure and flow. The intervals and the initial / preliminary labels linked with the four 

operating conditions are reported on the top figure. 

 

 

3. Diagnosis method 

 

3.1 General principle 

 

The diagnosis method that we propose to identify different operating modes and faults in a FC 

air supply and conditioning subsystem corresponds to a data-driven, pattern-recognition based 

approach [29]. It includes machine learning [30], instance-based learning algorithms that, 

instead of performing explicit generalization, compares new problem instances with instances 

seen in training, which have been stored in memory. In general, the first step of such an 

approach consists in extracting some features from available measurements done on the 

investigated system to build a training set of data (in our study: the air pressure signal). At this 

stage, a feature selection step may sometimes be useful to remove non-relevant or redundant 

feature(s), in order to increase the quality of the results. In a second step, a learning / training 

process is applied. Different features extracted from the training data set are associated to a 

given number of classes (four in our case: NO, ALF, IAF, CSCF classes). A testing step is used 

to verify that the classification algorithm leads to good results (i.e. high classification rates). 

Possibly, these tests can be done with features extracted from available measurements that were 
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not already used in the training phase. In the last phase of the pattern recognition approach, the 

algorithm is applied to new measurements data and their related features, which are then 

classified. The algorithm indicates if the new measurements (here, the new pressure values) can 

be associated to one of the (four) operating conditions. 

 

Our diagnosis method combines a statistical analysis of the gas pressure signal measured in the 

air line with a learning and classification algorithm. In our study, the K-Nearest Neighbors 

(KNN) rule is adopted for the learning and classification task. KNN is one of the topmost 

instance-based (or memory-based machine) learning algorithms. It is a conceptually simple yet 

very powerful algorithm. KNN is highly accurate and simple to use. It is easy to interpret, 

understand, and implement. KNN is a non-parametric method used for regression and 

classification as well, unlike some other supervised learning algorithms [31]. KNN does not 

make any assumptions about the data, meaning that it can be used for a wide variety of problems 

and applications such as finance, healthcare, image and video recognition. For those reasons, 

KNN is one of the most popular machine learning algorithms. Main KNN cons can be presented 

as follows [32]: since KNN stores most or all of the data, a lot of memory might be required, 

which makes KNN computationally expensive. Large datasets can also induce long 

computation durations for the predictions. 

 

3.2 KNN basics 

 

In KNN classification, the output is a class membership. The KNN classifier is a distance-based 

supervised classifier which only considers the neighborhood around the data point (in the 

feature space) that we want to classify. In KNN, K is the number of nearest neighbors and the 

core deciding factor in the classification process. K is a positive integer, typically small. The 

best choice of K depends upon the data and a good K can be selected by various heuristic 

techniques. Generally, larger values of K reduce the effect of the noise on the classification but 

make boundaries between classes less distinct [33]. 

K=1 is the simplest case. Let suppose that P1 is the point, for which a label needs to predict. 

First, the closest point to P1 has to be found, with regard to a selected distance measure (e.g. 

Euclidean distance, Hamming distance, Manhattan distance …), and then the label of the 

nearest point is assigned to P1. In other words, P1 is simply assigned to the class of its single 

nearest neighbor. 
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When K>1, the K closest points to P1 have to be found. Then, the point is classified by a 

majority vote of its K neighbors. Each object votes for its class and the class with the most votes 

is selected as the prediction (i.e. the label of the class with the most neighbors is associated to 

P1). Otherwise stated, P1 is assigned to the class most common among its K nearest neighbors. 

To find closest similar points, the distance between points is determined using a chosen metric. 

 

A confusion matrix, or error matrix, is a common tool applied in machine learning to gauge the 

quality of a classifier. With its associated statistics, this matrix can be used to validate the 

accuracy of the KNN classification. It is represented under the form of a table where each row 

represents the instances in a predicted class while each column represents the instances in an 

actual (or true) class (or vice versa) [34]. True and predicted values are then cross–tabulated in 

the table. The matrix name stems from the fact that the layout allows to observe if the system 

is confusing two classes (i.e. commonly mislabeling one as another). All correct predictions are 

located in the diagonal of the confusion matrix. So, it is easy to visually inspect the table to 

identify the prediction errors as they will be represented by values outside the diagonal. 

The simplest confusion matrix is a type 2×2 matrix for a binary classification task (Table 2). In 

this case, there are two decision classes, Positives and Negatives, with actual (i.e. true) values 

or classes (P and N) and predicted values (𝑃̂ and 𝑁̂). The entries in the table are called True 

Positives (TP, i.e. correct positive predictions), False Positives (FP, i.e. instances that are 

actually negative but tagged as positive by the classifier. Said otherwise: irrelevant items that 

are incorrectly identified as relevant), True Negatives (TN, i.e. genuinely false instances. In 

other words: irrelevant items that are correctly identified as irrelevant), and False Negatives 

(FN, i.e. instances tagged as negative by the classifier, but genuinely positive. Said differently: 

relevant items that are incorrectly identified as irrelevant) [35, 36]. 

The reason that the confusion matrix is particularly useful is that, unlike other types of 

classification metrics such as simple accuracy, the confusion matrix generates a more complete 

picture of how a classifier performs. As a matter of fact, many statistics or metrics are associated 

with a confusion matrix, such as [37]: 

- Accuracy: it is the proportion of correct classifications ((TP+TN) / total population). This 

metric is not sufficient to express the real performance of a classifier, in particular when the 

numbers of observations in different classes vary greatly. 

- Sensitivity or recall: it is the number of genuinely positive instances divided by the number of 

false-negative instances and total positive instances (TP / (FN+TP)). In other words, the 
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sensitivity is representative of the proportion of true positive instances that a machine learning 

model has classified. 

- Specificity: it quantifies the true negative rate or the number of instances that the model 

defined as negative and that were truly negative. This is calculated by taking the number of 

instances classified as negative and dividing it by the number of false-positive instances 

combined with the true negative examples (TN / (FP+TN)). 

- Precision or Positive Predictive Value (PPV): it is concerned with how many of the instances 

that the model labelled positive were truly positive. In order to calculate this metrics, the 

number of true positive instances are divided by the number of false-positive instances plus true 

positives ((TP) / (FP+TP)). To make the distinction between sensitivity and precision clearer, 

precision aims to figure out the percentage of all instances labelled positive that were truly 

positive, while sensitivity tracks the percent of all true positive examples that the classifier 

could recognize. 

- Negative Predictive Value (NPV): it is defined as the proportion of predicted negatives which 

are real negatives (TN / (FN+TN)). 

Note that various other metrics can also be used (e.g. False Negative Rate, False Positive Rate, 

False Omission Rate, prevalence, F1 score, etc) to gauge the quality of a classifier. 

 

Table 2. Form of the simplest confusion matrix for a binary classification task, with examples 

of metrics. 

  Actual / true classes Examples of metrics 

 
Total population 

= TP+FN+FP+TN 

Positives (P) 

= TP + FN 

Negatives (N) 

= FP + TN 
 

Predicted 

classes 

Positives (𝑃̂) 

= TP+FP 

True Positives 

(TP) 

False Positives 

(FP) 

Precision or 

PPV = TP / (TP+FP) 

Negatives (𝑁̂) 

= FN+TN 

False Negatives 

(FN) 

True Negatives 

(TN) 
NPV = TN / (FN+TN) 

Examples 

of metrics 
 

Sensitivity = 

TP / (TP+FN) 

Specificity = 

TN / (FP+TN) 

Accuracy = 

(TP+TN) / Total 

population 

 

An example of confusion matrix with 4 classes is given in Eq. 1; such a matrix will be used in 

our study. Regardless of the size of the confusion matrix, the method for interpreting the table 

is the same. Some programming codes are designed for the formation of a confusion matrix 
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with two or more classes and for the calculating of the associated performance indicators. One 

example of such a code developed in the MatlabTM environment is proposed by Abbas Manthiri 

S [38]. 

 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
𝑓𝑜𝑟 4 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 =  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠
𝐶𝑙𝑎𝑠𝑠1 𝐶𝑙𝑎𝑠𝑠2 𝐶𝑙𝑎𝑠𝑠3 𝐶𝑙𝑎𝑠𝑠4

𝐶𝑙𝑎𝑠𝑠1 𝑴𝟏𝟏 𝑴𝟏𝟐 𝑴𝟏𝟑 𝑴𝟏𝟒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑙𝑎𝑠𝑠2 𝑴𝟐𝟏 𝑴𝟐𝟐 𝑴𝟐𝟑 𝑴𝟐𝟒

𝑐𝑙𝑎𝑠𝑠 𝐶𝑙𝑎𝑠𝑠3 𝑴𝟑𝟏 𝑴𝟑𝟐 𝑴𝟑𝟑 𝑴𝟑𝟒

𝐶𝑙𝑎𝑠𝑠4 𝑴𝟒𝟏 𝑴𝟒𝟐 𝑴𝟒𝟑 𝑴𝟒𝟒

   (1) 

 

Therefore, to summarize, KNN has the following basic steps: distance computing, closest 

neighbors search, vote for labels. The quality of the KNN classifier can be assessed thanks to a 

confusion matrix, which allows displaying and comparing the actual values with the predicted 

ones, possibly by the computing of suitable metrics. 

 

3.3 Details on the steps of the diagnosis method 

 

Our diagnosis method involves a series of different steps, which are synthetized by the block 

diagram of Fig. 4 and are described below. Two application examples of diagnosis will be 

presented in Sections 4 and 5. 

The initial step deals with experimentation and data collection. A compressor technology needs 

to be selected, as well as a control mode for the air line (open loop(s) / closed loop(s)) for the 

air pressure and flow, and a frequency for the data record (two values are investigated in our 

study: 1 kHz and 100 Hz). These selections being made, the air pressure signal is acquired in 

various operating conditions (NO, ALF, CSCF, IAF) and the labels are affected to the 

corresponding data. 

The feature extraction step is the process of defining a set of features, which will most 

efficiently or meaningfully represent the information that is important for the analysis and 

classification. In our case, the features are statistical values: the pressure signal is analyzed and 

described by first order statistics or moments computed on a moving scanning window, which 

has to be defined with a proper size (the effect of the scanning window size on the classification 

rate will be discussed in Section 4.2). In our study, 6 statistical values are computed for each 

point of the pressure signal on a scanning window defined in the MatlabTM environment using 

the “moving” instruction of Aslak Grinsted [39]. The choice of the statistical descriptors can be 
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examined and possibly, the dataset dimension might be slightly reduced; this will be discussed 

in Section 4.3. 

The 6 statistical features are the following ones: maximum and minimum values of the pressure 

amplitude, mean value of the pressure, variance of pressure samples, skewness of the signal 

(skewness is a measure of the asymmetry of the pressure data around the mean sample), and 

kurtosis of the signal (kurtosis is used for describing or estimating a distribution’s peakedness 

and frequency of extreme values). Some examples of plots of the statistical features estimated 

on the pressure signal by applying a scanning window will be shown in Sections 4 and 5. 

The next step consists in the creation of the training and testing bases. The 6 statistical 

descriptors (mean, max, min, var, skewness, kurtosis) are considered on 4 pressure intervals 

representative of the 4 operating conditions explored. Each one the 4 intervals can be divided 

into two parts: with n_training observations for the training phase and n_testing observations 

for the testing phase. In this case, for each operating condition (or class), the sizes of the training 

and testing bases are equal to 6×n_training and 6×n_testing respectively. The global training 

over the complete basis is done using the KNN algorithm applied to the 4×6×n_training 

elements. The global testing is done using the KNN algorithm applied to the 4×6×n_testing 

elements. The aim of the testing is to verify that the labels of the testing data, resulting from the 

KNN classification, are identical to the preliminary labels assigned. In other words, the testing 

phase allows a first assessment of the KNN algorithm performance. Classification rates of 100% 

should normally be obtained for a “sufficient” minimal size of the scanning window used to 

compute the statistical features; this issue will be investigated in the examples of Sections 4 and 

5. 

Once the quality of the KNN classifier is examined and check, new data (i.e. data out of the 

training and testing intervals) can be classified. This is the validation step, which is also the last 

step of our diagnosis method. The new data can be selected using a moving window linked with 

a set of n_new consecutive observations in the pressure signal. In our study, we have decided 

to apply a moving window with no superimposition between two successive windows of n_new 

observations. In any case, the 6 statistical features are computed on the new moving window 

and the new data set is classified using the KNN algorithm (as it was already done with the 

testing data). The operating condition on the new interval can be predicted and a classification 

rate can also be calculated, if the preliminary labels of the new points are known. 

In the next two sections, the method is applied to two different concrete cases of the 

experimental database presented in Section 2.3. 
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Fig. 4. Block diagram of the diagnosis method. 

 

4. First example of diagnosis (claw compressor, open loops, 1 kHz) 

 

In a first example, the diagnosis method is applied to an air pressure signal recorded at 1 kHz 

with a claw compressor implemented in the air line. This one is operated in open loops on 

pressure and flow, under normal and abnormal operating conditions. 

 

4.1 Feature extraction and classification on the full pressure signal 

 

The related pressure signal, which was already presented in Section 2.3. is reported at the top 

of Fig. 5., a set of subplots that are related with the main steps of the diagnosis method. The 
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initial labels and time intervals linked with the different applied conditions can be observed in 

Fig. 5.a). Therefore, in this subplot, each pressure observation has a preliminary label: NO, 

ALF, IAF, or CSCF. As there is no control through the back-pressure valve in this experiment, 

the pressure changes due to the various operating conditions can easily be observed on the 

graph. 

The same pressure signal is reported in the second subplot (Fig. 5.b)), which indicates the four 

intervals of observations selected both for the training and testing. In this case, short data 

intervals are selected with n_training = 500 observations and n_testing = 200 observations, 

leading to a global time duration of 0.7s for each one of the 4 intervals. These short durations 

are mainly chosen as an example but also with respect to the CSCF operating condition. Indeed, 

the selected CSCF interval encompasses the first occurrence of the CSCF fault. The other and 

later occurrences of the CSCF faults are not considered for the training and testing. In this 

example, the NO, ALF and IAF intervals are selected roughly in the middle of the respective 

time spans of operating conditions so that they can reasonably be considered as representative 

of these settings (other intervals of similar sizes and chosen close to those presented here lead 

to similar results). On each interval of 700 observations linked with one operating condition, 

the training and testing data can be divided either into two time-consecutive sets (first, training 

data and then, testing data), or into two groups created with a random splitting (i.e. with a 

random mix of training and testing data). 

In the third subplot (Fig. 5.c)), the four training - testing intervals are introduced into the graphs 

of the 6 statistical descriptors (mean, max, min, var, skewness, kurtosis,) computed using a 

scanning window with a size equal to 800 observations, i.e. with a duration of 0.8 s. This length 

is chosen to ensure 100 % classification rates on the testing intervals (additional information 

will be given on this issue in Section 4.2). All the selected features form a whole data space 

made of 700×4×6 elements. A first direct, visual examination of the 6 curves in Fig. 5.c) reveals 

that the mean, maximal, and minimal pressure values show noticeable variations according to 

the various operating conditions. At first glance, the morphologies of the variance, skewness 

and kurtosis plots seem to be less impacted by the faults, except on the CSCF intervals. 

The classification results obtained with the diagnosis procedure, including the KNN algorithm 

used with K = 9, applied to the complete pressure signal are displayed in Fig. 6. In this study, 

the initial pressure signal is divided into consecutive windows of n_new = 100 observations. 

The 6 statistical features computed in these new windows form some new data sets (matrixes 

of 6×100 elements) that are classified using the KNN algorithm. One classification rate (in %) 

is calculated for each one of the 100-observation set. The first point that can be checked from 
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Fig. 6 is the following one: classification rates of 100% are obtained on the (short) intervals 

dedicated to the training and testing stages. This means that top results are achieved in this first 

assessment of the diagnosis method. Mainly 100% classification rates are also obtained outside 

of the short training and testing intervals. In fact, an average classification rate close to 97% is 

obtained on the overall pressure signal (Fig. 6). The lower rates are computed during the 

transients between two operating conditions. The observations at the boundary of two operating 

modes are the most difficult to classify since the related statistical features have intermediate 

values with respect to two different conditions. Besides, as it was mentioned in Section 2.3, 

there is some uncertainty on the preliminary labelling, especially during the transitional phases, 

and the possibility of mislabeling the data was considered as non-negligible in these cases. 

Details on the classification are also shown in Fig. 6. For every window of 100 observations, 

the numbers (and thus the percentage) of elements that are classified as NO, ALF, IAF, and 

CSCF are given in the four subplots at the bottom of Fig. 6. Moreover, the four graphs indicate 

with the “True” or “False” mentions whether the labels determined by the KNN algorithm are 

identical or not to the preliminary labels. Actually, the four graphs are plotted using the 

elements contained in each confusion matrix computed by the KNN for a window of 100 

observations. Let us consider, as an example, the time value t=10.7s in Fig. 6. In this case, all 

the 100 observations of the related windows used for the KNN computing have NO as 

preliminary labels (Fig. 5.a)) and the classification rate is equal to 40% (the value is displayed 

in the first subplot of Fig. 6). The KNN allows a good prediction for 40 NO states: a “True” 

green square marker is plotted at (t=10,7, y=40) on the subplot which has the y-axis labeled as 

“Classified as NO (%)”. However, 60 observations are “Classified as IAF”: a “False” red square 

marker is plotted at (t=10,7, y=60) on the related subplot. The concordance between the subplot 

of Fig. 6 and the confusion matrix computed for t=10.7s can be observed in Eq. 2. All correct 

predictions (“True Positives” and “True Negatives” associated to the green / “True” markers of 

Fig. 6) are located in the diagonal of the table. The prediction errors (associated to the red / 

“False” markers of Fig. 6) are represented by values outside the diagonal. The red markers 

correspond to the “False Positives” for the operating condition X examined on the related 

subplot (i.e. on the subplot with an ordinate which label name is “Classified as X”). 
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Fig. 5. Example of data features extraction and classification results (Example 1: claw 

compressor, open loops, 1 kHz): a) Pressure signal and initial labels selected for the operating 

conditions; b) Pressure signal and selected training and test data; c) Evolution of the 6 

statistical features computed for a scanning window with a size of 800 observations. 
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Fig. 6. Example of classification results (Example 1: claw compressor, open loops, 1 kHz). 

 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑
𝑓𝑜𝑟 𝑡ℎ𝑒 100 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑎𝑡 𝑡 = 10.7 𝑠 𝑖𝑛 𝐹𝑖𝑔. 6 
 =  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠
𝑁𝑂 𝐴𝐿𝐹 𝐼𝐴𝐹 𝐶𝑆𝐶𝐹

𝑁𝑂 𝟒𝟎 𝟎 𝟎 𝟎
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝐿𝐹 𝟎 𝟎 𝟎 𝟎

𝑐𝑙𝑎𝑠𝑠 𝐼𝐴𝐹 𝟔𝟎 𝟎 𝟎 𝟎
𝐶𝑆𝐶𝐹 𝟎 𝟎 𝟎 𝟎

   (2) 

 

A global confusion matrix can be established to summarize all the data samples (i.e. instances) 

of the full pressure signal profile on the basis of the classification results displayed in Fig. 6. 

True (or actual) values and values predicted for the 4 classes are cross-tabulated in this matrix 

(Eq. 3), which has the form of Eq. 1 presented in Section 3.2. All correct predictions for NO, 

ALF, IAF, and CSCF operating conditions are located in the diagonal of the confusion matrix, 

while the values outside the diagonal represent the prediction errors (the link between the matrix 

content and the four last subplots of Fig. 6 can be established quite easily; the “False Positives” 

are identified with red markers). To express the classifier performance more clearly, the values 

in the global confusion matrix can also be given in Eq. 4 in percentage of the actual values: 

𝑃 = [30300 8300 9000 1500]. 
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𝐺𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
𝑓𝑜𝑟 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 1

(𝑁𝑟. 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
 =  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠
𝑁𝑂 𝐴𝐿𝐹 𝐼𝐴𝐹 𝐶𝑆𝐶𝐹

𝑁𝑂 𝟐𝟗𝟕𝟒𝟑 𝟎 𝟓 𝟎
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝐿𝐹 𝟎 𝟕𝟑𝟓𝟓 𝟎 𝟎

𝑐𝑙𝑎𝑠𝑠 𝐼𝐴𝐹 𝟑𝟓𝟕 𝟓𝟏𝟒 𝟖𝟗𝟗𝟓 𝟎
𝐶𝑆𝐶𝐹 𝟐𝟎𝟎 𝟒𝟑𝟏 𝟎 𝟏𝟓𝟎𝟎

  (3) 

 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
𝑓𝑜𝑟 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 1

(𝑖𝑛 % 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠)
 =  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠
𝑁𝑂 𝐴𝐿𝐹 𝐼𝐴𝐹 𝐶𝑆𝐶𝐹

𝑁𝑂 𝟗𝟖. 𝟐 𝟎 𝟎. 𝟏 𝟎
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝐿𝐹 𝟎 𝟖𝟖. 𝟔 𝟎 𝟎

𝑐𝑙𝑎𝑠𝑠 𝐼𝐴𝐹 𝟏. 𝟐 𝟔. 𝟐 𝟗𝟗. 𝟗 𝟎
𝐶𝑆𝐶𝐹 𝟎. 𝟕 𝟓. 𝟐 𝟎 𝟏𝟎𝟎

   (4) 

 

As mentioned in Section 3.2, such a confusion matrix generates a good overall picture of how 

the KNN algorithm performs on the full pressure profile and it can be used to gauge the quality 

of the classifier. In Eq. 4, high rates of correct predictions can be observed in the diagonal of 

the matrix (98.2%, 88.6%, 99.9%, and 100% rates are obtained for NO, ALF, IAF, and CSCF 

respectively) while the prediction errors (i.e. the values outside the diagonal) are low (the values 

are ranging from 0 to 6.2%; besides, 7 zero values can be observed outside of the diagonal). 

In order to further interpret the KNN results, some statistics or metrics associated to the matrix 

shall be computed following the notations and mathematical relations presented in Table 2. As 

the calculations for this 4 classes matrix are a little more complex than in the simple case of a 

2×2 binary table, the programming code proposed in [38] can help to compute the associated 

performance indicators. The calculations are detailed in Table 3. An excellent accuracy rate is 

obtained (0.97). The sensitivity, specificity, and NPV metrics are also excellent with values 

equal to 0.97, 0.99, and 0.99 respectively. The precision (equal to 0.90 =

𝑚𝑒𝑎𝑛([1 1 0.91 0.70])) can be considered as very good (in detail: excellent for NO and 

ALF with 1, very good for IAF with 0.91, and correct / good for CSCF with 0.70). Note that 

the very good precision ((𝑇𝑃./(𝑇𝑃 + 𝐹𝑃)) could already be observed on each one of the four 

last subplots of Fig. 6. Indeed, on each subplot, limited numbers of false predictions (“False 

Positives”) were displayed with red markers while numerous instances were characterized as 

“True Positives” with green markers. 
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Table 3. Calculations of performance indicators for the global confusion matrix related with the 

first example of diagnosis. 

Appellations Calculations 

Total population 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑆um of the values in the matrix = 49100 

Positives 𝑃 = [30300 8300 9000 1500] 

Negatives 𝑁 = 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑃 = 49100 − 𝑃 = [18800 40800 40100 47600] 

True Positives 𝑇𝑃 = [29743 7355 8995 1500] 

False Positives 𝐹𝑃 = [(0 + 5 + 0) 0 (357 + 514 + 0) (200 + 431 + 0)] = [5 0 871 631] 

False Negatives 
𝐹𝑁 = [(0 + 357 + 200) (0 + 514 + 431) (5 + 0 + 0) (0 + 0 + 0)]

= [557 945 5 0] 

True Negatives 𝑇𝑁 = 𝑁 − 𝐹𝑃 = [18795 40800 39229 46969] 

Predicted 

Positives 
𝑃̂ = [29748 7355 9866 2131] 

Predicted 

Negatives 
𝑁̂ = 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑃̂ = [19352 41745 39234 46969] 

Metrics Calculations and results 

Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑚𝑒𝑎𝑛 (𝑇𝑃 + 𝑇𝑁) / 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0.97 

Sensitivity 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑚𝑒𝑎𝑛 (𝑇𝑃./𝑃) = 𝑚𝑒𝑎𝑛([0.98 0.88 0.99 1]) = 0.97 

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑚𝑒𝑎𝑛 (𝑇𝑃./(𝑇𝑃 + 𝐹𝑃)) = 𝑚𝑒𝑎𝑛([1 1 0.91 0.70]) = 0.90 

Specificity 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑚𝑒𝑎𝑛 (𝑇𝑁./𝑁) = 𝑚𝑒𝑎𝑛([1 1 0.98 0.99]) = 0.99 

Negative 

Predictive Value 
𝑁𝑃𝑉 = 𝑚𝑒𝑎𝑛 (𝑇𝑁./(𝐹𝑁 + 𝑇𝑁)) = 𝑚𝑒𝑎𝑛([0.97 0.98 1 1]) = 0.99 

 

In this first example of diagnosis, the classification rates obtained on the dynamical pressure 

profile and displayed in Fig. 6 can be assessed as very good in general (the transient phases 

generate the most difficult data to process, due to their uncertainties on the preliminary labelling 

leading to false alarms). The performance indicators calculated from the global confusion 

matrix can also be considered as very good. These results can be achieved especially because 

well-suited choices are made in the application of the KNN method, for instance in the selection 

of the training and testing data intervals. Another parameter of paramount importance in the 

proposed diagnosis strategy is the length of the scanning window used to compute the 6 

statistical descriptors. In this first example, as previously mentioned, a scanning window 
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including 800 observations was selected to ensure 100 % classification rates on the testing 

intervals. Further explanations are given on this issue in the following sub-section. 

 

4.2 Effect of the scanning window size on the classification rate 

 

Moving window methods are applied to process data in smaller batches at a time, typically in 

order to statistically represent a neighborhood of points in the data. The moving average is a 

common data smoothing technique that slides a window along the data, computing the mean 

of the points inside of each window. This can be helpful to eliminate insignificant variations 

from one data point to the next one [40]. 

In our case, the length of the window used to compute the statistical descriptors should be 

neither too short (it could not statistically represent a neighborhood of points in the pressure 

data), nor too long (the duration of the diagnosis process would be increased, which would 

obviously constitute a disadvantage). 

The impact of the scanning window size is studied on the basis of the 4 pressure data intervals 

selected in the current example for the training and testing. Various window sizes, ranging from 

50 to 1000 with steps of 50, are considered and for each size, the whole diagnosis method (i.e. 

computing of statistical descriptors, plus KNN method) is applied to the data intervals. A KNN 

classification rate is finally computed. As the 4 data intervals need to be divided into training 

and testing observations, we decide to evaluate the performance of the diagnosis strategy on 10 

different sets from random data splits. Then, for each window size, a mean classification rate 

can be computed from the 10 KNN values. The effect of the scanning window size on the 

classification rate can be observed in Fig. 7. The lowest mean KNN rate (about 83%) is 

computed for the shortest window (50 observations made in 0.05 s). A 100% rate is reached for 

a window size close to 0.5 s and a steady rate of 100% is reached for a 0.7 s length (see Fig. 7 

and the mean values computed from the 10 data splits). For memory, in Fig. 5-6, a value of 0.8 

s (800 observations) was selected to ensure 100 % classification rates on the testing intervals. 
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Fig. 7. Impact of the scanning window size for 10 data splits made between training and test 

data (recorded at 1 kHz). 

 

 

5. Second example of diagnosis (regenerative blower, closed loops, 100 Hz) 

 

In the second example, the diagnosis method is applied to a different compressor technology, a 

regenerative blower, tested in the air line that is operated now in closed loops on pressure and 

flow (on the contrary of the first example), still under normal and abnormal operating 

conditions. The air pressure signal is now recorded at 100 Hz (i.e. not at 1 kHz anymore): the 

aim is to evaluate how the proposed algorithm is affected by the sampling frequency reduction 

(which can be seen as a benefit in terms of sensor and computing costs). An approach similar 

to that used in the first example is adopted. 

Two different cases are considered, depending on the size of the data sets used for the learning 

- testing steps of the KNN algorithm. In Section 5.1, a first attempt is made with short data sets 

(i.e. with sizes close to those of the first example). Then, larger data intervals are selected 

(Section 5.2). 

 

5.1 Preliminary tests with short data intervals for the KNN learning - testing steps 

 

The diagnosis approach is illustrated through Fig. 8. The pressure signal, already presented in 

Section 2.3. is reported at the top of Fig. 8., the set of subplots related with the main steps of 

the diagnosis method. The initial labels (NO, ALF, IAF, CSCF) and time intervals linked with 

the various applied conditions can be observed in Fig. 8.a). Unlike the first example, a pressure 
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control at 200 mbar rel. is performed using the back-pressure valve. Therefore, it is much more 

difficult to observe the pressure variations due to the changes of the operating conditions, except 

for CSCF (in this case, the quick dynamical disturbances linked with the fault cannot effectively 

be attenuated by the pressure regulation). 

The pressure signal is reported in the subplot of Fig. 8.b), with the four training and testing 

intervals. In this case, slightly longer intervals (14 s) are selected with n_training = 1100 

observations and n_testing = 300 observations, for each one of the 4 intervals. The choice is 

done as a function of the duration of the first CSCF occurrence. The NO, ALF, and IAF training 

and testing intervals are selected roughly in the middle of the time span of each operating 

condition in order to be considered as representative of these settings. As in the first example 

of diagnosis, on each interval of 1400 observations linked with one operating condition, the 

training and testing data can be divided either into two time-consecutive sets, or into two groups 

created with a random splitting. The plots of the 6 statistical descriptors (mean, max, min, var, 

skewness, kurtosis) will not be shown in Fig. 8. but the descriptors are computed using a 

scanning window with a size equal to 800 observations (equivalent to a duration of 8 s). Like 

in the first diagnosis example, this value is chosen to ensure 100 % classification rates on the 

testing intervals. The impact of the scanning window size can possibly be studied following the 

approach described in Section 4.2. All the selected features lead therefore to a whole data space 

made of 1400×4×6 elements. The classification results obtained with the diagnosis procedure, 

including the KNN algorithm (K = 9), applied to the complete pressure signal are displayed in 

the last subplot (Fig. 8.c)). The initial pressure signal is divided into consecutive windows of 

n_new = 100 observations. The 6 statistical features computed in these new windows lead to 

new data sets (6×100 matrixes) that are classified using KNN. Here, one classification rate (in 

%) corresponds to one 100-observation set. It is then possible to verify that classification rates 

of 100% are obtained on the short intervals used for the training and testing processes. Outside 

of the short training and testing intervals, the KNN classifier yields mixed results. A mean 

classification rate close to 66% is obtained on the overall pressure signal. 

The classification results can be further analyzed using the global confusion matrix of Eq. 5 

that offers an overall “mathematical picture” of the diagnosis made on the whole pressure 

profile. The global confusion matrix is also expressed in percentage (Eq. 6) of the P actual 

values, with 𝑃 = [33000 8000 7000 8000]. In order to gauge the quality of the 

diagnostic tool, statistics or metrics associated with this global confusion matrix will be 

calculated and used later in Section 5.2. Comments can be done on the contents of the global 

confusion matrix, as follows. Elements with NO as initial label are mostly classified as NO. 
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However, confusions are done with ALF and mainly with IAF. This can be explained as 

follows: in these two faulty modes, the consequences of the air leakage and clogged air line 

inlet on the pressure can be well mitigated by the back-pressure and compressor with actions 

that compensate for the change of pressure (this could already be seen on the pressure signal 

displayed at the top of Fig. 8.). Elements with ALF initial labels are mostly classified as ALF 

(confusions can be seen with NO and IAF). Elements with IAF as preliminary label are mostly 

well classified (there are confusions with NO). Elements with CSCF as initial label are mostly 

well classified (main confusions are done with IAF). It is also possible to remark that the 

elements with NO, ALF, IAF as initial labels are barely not classified as CSCF. 

 

 

Fig. 8. Example of data features extraction and classification results (regenerative blower, 

closed loops, 100 Hz): a) Pressure signal and initial labels selected for the operating 

conditions; b) Pressure signal and selected training and test data (n_training = 1100 and 

n_testing = 300); c) Classification results using the 6 statistical features computed for a 

scanning window with a size of 800 observations. 

 



29 

 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
𝑓𝑜𝑟 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 2 𝑎𝑛𝑑 𝐹𝑖𝑔. 9

(𝑁𝑟. 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
 =  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠
𝑁𝑂 𝐴𝐿𝐹 𝐼𝐴𝐹 𝐶𝑆𝐶𝐹

𝑁𝑂 𝟏𝟗𝟗𝟓𝟕 𝟕𝟑𝟖 𝟏𝟗𝟔𝟒 𝟔𝟗
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝐿𝐹 𝟖𝟑𝟗 𝟔𝟏𝟓𝟐 𝟎 𝟔𝟓

𝑐𝑙𝑎𝑠𝑠 𝐼𝐴𝐹 𝟏𝟐𝟎𝟔𝟗 𝟏𝟏𝟏𝟎 𝟓𝟎𝟑𝟔 𝟏𝟕𝟕𝟗
𝐶𝑆𝐶𝐹 𝟏𝟑𝟓 𝟎 𝟎 𝟔𝟎𝟖𝟕

  (5) 

 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
𝑓𝑜𝑟 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 2 𝑎𝑛𝑑 𝐹𝑖𝑔. 9

(𝑖𝑛 % 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠)
 =  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠
𝑁𝑂 𝐴𝐿𝐹 𝐼𝐴𝐹 𝐶𝑆𝐶𝐹

𝑁𝑂 𝟔𝟎. 𝟓 𝟗. 𝟐 𝟐𝟖. 𝟏 𝟎. 𝟗
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝐿𝐹 𝟐. 𝟓 𝟕𝟔. 𝟗 𝟎 𝟎. 𝟖

𝑐𝑙𝑎𝑠𝑠 𝐼𝐴𝐹 𝟑𝟔. 𝟔 𝟏𝟑. 𝟗 𝟕𝟏. 𝟗 𝟐𝟐. 𝟐
𝐶𝑆𝐶𝐹 𝟎. 𝟒 𝟎 𝟎 𝟕𝟔. 𝟏

   (6) 

 

To conclude the comments on this second example with short data intervals selected for the 

KNN learning - testing steps, it can be stated that the classification results obtained in this 

second example illustrating the diagnostic method are not as good as in the first example. The 

gap of performance is not due to the different compressor technologies nor to the lower data 

record frequency. Obviously, the lower data record frequency leads to the need of longer 

durations for the scanning time window used to compute the statistical features. But the main 

difficulty encountered in successfully applying the diagnosis method comes here from the 

closed loops applied in the control of air pressure and flow. These regulations tend to erase the 

impact of operating faults on the morphology of the pressure signal and this one no longer 

carries as much information as before for the diagnosis. 

 

5.2 Larger data intervals for the KNN learning - testing steps 

 

Assuming that the closed loop controls need to be retained for the air pressure and flow, one 

possible solution to enhance the diagnosis results is to consider larger data intervals for the 

learning (and testing) steps in the KNN algorithm. This is illustrated by Fig. 9 where this 

solution is adopted. Classification rates of 100% are obtained on the larger intervals dedicated 

to the training and testing stages. Nevertheless, there are still confusions between NO and IAF 

states: many NO elements outside of the NO training and testing intervals are classified as IAF. 

Besides, only a few NO and CSCF elements are classified erroneously as ALF. And only a few 

NO instances are classified erroneously as CSCF. These “errors” of classification are made in 

the transients between different operating states and they can also be related with any possible 

initial mislabeling. The results of Fig. 9 indicate the potential of the diagnosis method when 

extended data bases are considered in the training step. 



30 

 

 

 

Fig. 9. Example of data features extraction and classification results (regenerative blower, 

closed loops, 100 Hz): a) Pressure signal and initial labels selected for the operating 

conditions; b) Pressure signal and selected training and test data (n_training = 6500 and 

n_testing = 200); c) Classification results using 6 the statistical features computed for a 

scanning window with a size of 1500 observations. 

 

The global confusion matrix of Eq. 7 summarizes all the data samples resulting from the 

classification of Fig. 9.c). The global confusion matrix is also expressed in percentage of the 

actual values (Eq. 8). 
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𝐺𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
𝑓𝑜𝑟 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 2 𝑎𝑛𝑑 𝐹𝑖𝑔. 10

(𝑁𝑟. 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
 =  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠
𝑁𝑂 𝐴𝐿𝐹 𝐼𝐴𝐹 𝐶𝑆𝐶𝐹

𝑁𝑂 𝟏𝟐𝟔𝟏𝟏 𝟎 𝟎 𝟎
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝐿𝐹 𝟖𝟏 𝟕𝟖𝟏𝟑 𝟎 𝟔𝟓

𝑐𝑙𝑎𝑠𝑠 𝐼𝐴𝐹 𝟏𝟗𝟖𝟐𝟗 𝟏𝟖𝟕 𝟕𝟎𝟎𝟎 𝟎
𝐶𝑆𝐶𝐹 𝟒𝟕𝟗 𝟎 𝟎 𝟕𝟗𝟑𝟓

  (7) 

 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
𝑓𝑜𝑟 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 2 𝑎𝑛𝑑 𝐹𝑖𝑔. 10

(𝑖𝑛 % 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠)
 =  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠
𝑁𝑂 𝐴𝐿𝐹 𝐼𝐴𝐹 𝐶𝑆𝐶𝐹

𝑁𝑂 𝟑𝟖. 𝟐 𝟎 𝟎 𝟎
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝐿𝐹 𝟎. 𝟐 𝟗𝟕. 𝟕 𝟎 𝟎. 𝟖

𝑐𝑙𝑎𝑠𝑠 𝐼𝐴𝐹 𝟔𝟎. 𝟏 𝟐. 𝟑 𝟏𝟎𝟎 𝟎
𝐶𝑆𝐶𝐹 𝟏. 𝟓 𝟎 𝟎 𝟗𝟗. 𝟐

   (8) 

 

Some statistics or metrics associated to this global confusion matrix are presented in Table 4; 

with calculations similar to those already shown in Table 3. To compare and observe the effects 

of the different data interval lengths selected for the learning - testing steps used in the KNN 

algorithm, the same statistics are reported in Table 4 for the global confusion matrix of Eq. 5 

(that was related with Fig. 8.c)). The metrics of Table 3 computed for the first example (claw 

compressor, open loops, 1 kHz) are also reported in the last column of Table 4, as a reminder. 

In the two cases related with the second example of diagnosis, whatever the learning - testing 

interval sizes, the accuracy rate and the other metrics values are clearly lower than those of the 

first example where the metrics could be considered as excellent (sensitivity, specificity, and 

NPV) or very good (precision). This quick comparison between the two examples highlights 

the net (negative) effect of the pressure control mode on the diagnosis results. 

In the second example, the change of the learning - testing interval lengths does not really 

impact the accuracy rate, nor the (mean) specificity and Negative Predictive Value (NPV) 

metric (Table 4). In detail, small variations can be observed for the specificity and NPV values 

computed for each operating case (this cannot be observed on the mean statistical values). For 

instance, the specificity linked with NO changes positively from 0.88 to 1 with larger learning 

- testing intervals. On the contrary, the NPV value linked with NO varies negatively from 0.61 

to 0.53. Larger learning - testing intervals may therefore have different effects (i.e. either 

positive or negative) on the statistical measures linked with different operating conditions. The 

main interest of increasing the learning - testing interval sizes is the improvements of the mean 

sensitivity value (from 0.71 to 0.84) and mean precision rate (from 0.74 to 0.8). In detail (that 

is considering the values computed for each operating condition), the increase of the interval 

lengths is not beneficial for the sensitivity linked with the NO case (from 0.61 to 0.38; there are 
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more “False Negatives” for NO in Eq. 7 and 8 than in Eq. 5 and 6). However, the increase of 

the interval lengths has clearly positive impacts for the other operating cases, namely ALF, IAF, 

and CSCF. In Table 4, one can also note that the precisions for NO and ALF are better with 

larger learning - testing intervals (increase from 0.88 to 1, and from 0.87 to 0.98 respectively); 

lower numbers of false predictions (“False Positives”) are thus displayed with red markers in 

Fig. 9.c) for NO and ALF while numerous instances are characterized with green markers as 

“True Positives”. 

 

Table 4. Performance indicators for the second example of diagnosis and comparisons between 

the two cases: short and larger learning / testing intervals. Last column: reminder of the metrics 

computed for the first example (claw compressor, open loops, 1 kHz). 

Metrics Results for the confusion matrix of 

Eq. 5 related with Fig. 8.c) (short 

learning - testing intervals) 

Results for the confusion matrix of 

Eq. 7 related with Fig. 9.c) (larger 

learning - testing intervals) 

Results obtained 

for the first 

example 

Accuracy 0.66 0.63 0.97 

Sensitivity 0.71 = mean ([0.61, 0.77, 0.72, 0.76]) 0.84 = mean ([0.38, 0.98, 1, 0.99]) 0.97 

Precision 0.74 = mean ([0.88, 0.87, 0.25, 0.98]) 0.8 = mean ([1, 0.98, 0.26, 0.94]) 0.90 

Specificity 0.89 = mean ([0.88, 0.98, 0.69, 0.99]) 0.89 = mean ([1, 0.99, 0.59, 0.99]) 0.99 

NPV 0.87 = mean ([0.61, 0.96, 0.95, 0.96]) 0.88 = mean ([0.53, 1, 1, 1]) 0.99 

 

 

6. Conclusions 

 

The application-oriented tool presented in this article is proposed to detect and identify typical 

faults that may occur in FC air supply and conditioning subsystems. The fault scenarios are 

reproduced on a specific experimental testbench specifically designed to emulate a FC air line 

and to examine the portability of the diagnostic tool with two various compressor technologies, 

two pressure / flow mode controls, and two data record frequencies. A data-driven diagnosis 

approach based on the collected pressure datasets is selected with the aim to utilize the fault 

stamps present in the morphology of the pressure transmitter signals. 

A clear discrimination between the operating modes is obtained when the pressure is not 

regulated. In this case, excellent classification rates can be obtained if well-suited choices are 

made in the application of the KNN method, for instance in the selection of the training and 
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testing data intervals. Mainly the observations at the boundary of two steady-state operating 

conditions are difficult to classify. 

The discrimination between the operating modes is much more difficult when the pressure 

control mode is applied. In that case, the fault stamps in the morphology of the pressure signal 

tend to be removed and one possible solution to increase the performance of the diagnostic tool 

consists in lengthening the data intervals related with the learning step. However, in the view 

of a real application, the diagnosis procedure should preferably be applied to the FC air supply 

subsystems operated in open loop, for example before the start-up, after the shut-down or during 

idle mode phases of the FC generator. 

Regarding the frequency of the data record, both 1000 and 100 Hz values are found effective 

for the isolation of the air subsystem. The highest frequency level allows shorter detection times 

while the lowest frequency should be more appropriate to reduce the costs of the data 

acquisition and process system. 
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