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ABSTRACT 8 

As part of the ANR CENSE project, a questionnaire was sent in January 2019 to households in a 1 km² study 9 

area in the city of Lorient, France, to which about 318 responded. The main objective of this questionnaire 10 

was to collect information about the inhabitants' perception of the sound environments in their neighborhood, 11 

in their street, and in their dwelling. In the same study area, starting mid-2019, about 70 sensors were 12 

continuously positioned, and fifteen of them were selected for testing sound source recognition models. The 13 

French lockdown due to the COVID-19 crisis occurred during the project, and the opportunity was taken to 14 

send a second questionnaire during April 2020. About 31 of the first 318 first survey respondents answered 15 

to this second questionnaire. This unique longitudinal dataset, both physical and perceptual, allows us to 16 

undertake an analysis from different perspective of such a period. The analysis reveals the importance of 17 

integrating source recognition tools, soundscape observation protocol, in addition to physical level analysis, 18 

in order to accurately describe changes in the sound environment. 19 

 20 
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I. INTRODUCTION  22 

 23 

The emergence and the spread of Covid-19 pandemic from late 2019 to 2020 impacted all 24 

continents. It forced governments to undertake unprecedented social distancing measures to slowdown 25 

the virus propagation, from which the most emblematic was the lockdown imposed in a large number 26 

of countries in the spring of 2020. Severe restrictions on ground transportation and flights, as well as 27 

population lockdown measures, had an immediate and dramatic impact on urban activity and thus on 28 

sound environments. City dwellers in many cities around the world have collectively experienced a 29 

sudden reduction of noise levels, as well as a modification in the distribution of sound sources 30 
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dominating urban sound mixtures. Newspapers quickly reported on these sudden changes in urban 31 

sound environments and their impact on perceptions (Bui and Badger, 2020). From a research point 32 

of view, this unprecedented event questions the ways in which both the physical modifications in 33 

urban sound environments during this period can be witnessed and objectified, as well as their 34 

perception by populations. This question is crucial to understand the impact of such a crisis, which is 35 

likely to modify perceptions and expectations regarding noise in the long term. It is also important in 36 

order to propose protocols that are able to capture and understand the impact of slower and less 37 

obvious modifications in sound environments.  38 

 39 

Despite initiatives to homogenize observations such as the one proposed by Asensio et al. (Asensio, 40 

Aumond, Can, Gascó, Lercher, Wunderli, Lavandier, de Arcas, Ribeiro, Muñoz, and Licitra, 2020), 41 

the observation protocols in the recent literature on the topic of the change of sound environment due 42 

to the Covid-19 lockdown are very disparate. We have chosen to refer to about 17 studies that we 43 

consider to be the most representative. 44 

First, cities equipped with noise measurement networks capturing continuously noise levels have 45 

been quick to consistently point out the drop-in noise levels. An equivalent sound level reduction of 46 

about 4 to 7 dB(A) has been reported on average in Rio (Gevú, Carvalho, Fagerlande, Niemeyer, 47 

Cortês, and Torres, 2021), Montreal (Steele and Guastavino, 2021), Lyon (Munoz, Vincent, Domergue, 48 

Gissinger, Guillot, Halbwachs, and Janillon, 2020), Madrid (Asensio, Pavón, and de Arcas, 2020), 49 

Milan (Zambon, Confalonieri, Angelini, and Benocci, 2021), Girona (Alsina-Pagès, Bergadà, and 50 

Martínez-Suquía, 2021) or Paris (BRUITPARIF, 2020), based on 21 to more than a hundred fixed 51 

sensors. Numerous short-term measurements were carried out in London in (Aletta, Oberman, 52 

Mitchell, Tong, and Kang, 2020), through a series a 30-second binaural recordings pre-lockdown and 53 

during-lockdown (481 samples) at 11 locations, which highlighted a similar tendency. This sound 54 

level decrease is however not homogeneous in both space and time. The London study showed that 55 

active areas were affected the most, followed by traffic-dominated areas and quiet areas. Similar 56 

trends were found in Madrid, although less pronounced (Asensio, Pavón, and de Arcas, 2020) or into 57 

the Brazilian study (Gevú, Carvalho, Fagerlande, Niemeyer, Cortês, and Torres, 2021), which 58 

complements its measurements with modeling approach. These slight discrepancies between the two 59 

studies may be due to a different classification between the site categories. The observed noise 60 

decrease has even reached 20 dB(A) near work site areas and 30 dB(A) near airports in Paris  61 

(BRUITPARIF, 2020), revealing the difference in the “lockdown sound experience” between 62 

populations. In Montreal, special emphasis is being placed on dramatically reducing noise at festivals 63 

and events in public spaces during the summer of 2020(Steele and Guastavino, 2021). In Temporal 64 

structures of sound environments were also impacted. Basu et al. showed that minimum hourly sound 65 

levels Lmin,1h dramatically decreased, which were attributed to reductions in both road and air traffic 66 

movements (Basu, Murphy, Molter, Sarkar Basu, Sannigrahi, Belmonte, and Pilla, 2021) . In Madrid, 67 

Asensio et al. showed a significant variation in the daily noise patterns, with the activity starting 68 



 

 

earlier in the morning and decreasing significantly in the afternoon (Asensio, Pavón, and de Arcas, 69 

2020).  70 

While very useful for understanding which populations were most impacted by the reduction of 71 

noise levels based on their residential location, and on a national scale based on government decisions, 72 

these studies fail to qualify the modification of noise environments in terms of sound sources. The 73 

shift in daily noise patterns observed in (Asensio, Pavón, and de Arcas, 2020) could for instance be 74 

hypothesized as the result of the emergence in natural sound sources. In (Derryberry, Phillips, 75 

Derryberry, Blum, and Luther, 2020), Derryberry et al. showed that white-crowned sparrows shifted 76 

their song frequency, in response to the disappearance of traffic sounds, benefiting this new emptied 77 

acoustic space in order to enhance communication. These results underline the importance of being 78 

able to recognize the sources composing the sound mixtures within the sensor networks for a better 79 

understanding of the balances between anthropogenic and biophonic sound sources. The Dynamap 80 

project in Italy also studied the differences in sound environment caused by the lockdown due to 81 

COVID-19 in Italy (period 2019 vs 2020) (Pagès, Alías, Bellucci, Cartolano, Coppa, Peruzzi, 82 

Bisceglie, and Zambon, 2020). Their ANED (Anomalous Noise Events Detection) algorithm identifies 83 

non-traffic related sounds using binary identifier classifications. It showed a distinct change in ANEs 84 

during the night in Rome and, to a lesser extent, in Milan.  85 

Studies based on perceptual approaches and questionnaires have also underlined the impact of the 86 

lockdown on the perceived sound environments. In Argentina, a study of a thousand people showed 87 

that most participants preferred the new acoustic environment, and especially in large cities, where 88 

mechanical sounds dominate the sound environment (Maggi, Muratore, Gaetán, Zalazar-Jaime, Evin, 89 

Pérez Villalobo, and Hinalaf, 2021). Analyses in noise complaints in London showed an increase in 90 

noise complaints of 48%, mainly due to construction and neighborhood noise (Tong, Aletta, Mitchell, 91 

Oberman, and Kang, 2021). In (Munoz, Vincent, Domergue, Gissinger, Guillot, Halbwachs, and 92 

Janillon, 2020), (BRUITPARIF, 2020) and (Bartalucci, Bellomini, Luzzi, Pulella, and Torelli, 2021), 93 

questionnaires were distributed to residents, spread respectively over the French and Italian countries . 94 

The analysis of those questionnaires underlined the perceived modification in the sound environments, 95 

namely a decrease in transportation and mechanical sound sources and an increase in natural sound 96 

sources. Questions relative to the period before and during the lockdown period were answered 97 

simultaneously. This could have introduced memory and cognitive biases. Finally, Lenzi et al. 98 

provided a comprehensive analysis of the sound environment at one location in the city of Gexto, 99 

based on audio recordings and annotations of perceived sounds, diary notes, and evaluation of 100 

soundscape quality (Lenzi, Sádaba, and Lindborg, 2021). The study revealed that bioacoustic indices 101 

such as eventfulness, acoustic complexity, and acoustic richness increased significantly over the 102 

lockdown period, while the amount of technological sounds decreased.  103 

While studies on noise levels on one side and studies on perception on the other side have their 104 

respective merits, we believe that performing both at the same time and location can shed a new light 105 

on the topic under study. For that purpose, in this paper, an innovative protocol is proposed to relate, 106 



 

 

with a great level of detail, the physical and perceptual modifications of the sound environments 107 

during this period. It associates a measurement network coupled with an automatic sound source 108 

recognition module, and questionnaires distributed before and during lockdown. The objective here 109 

is not to define a universal characterization of the impact of lockdown, but to demonstrate the 110 

relevance of such a protocol to characterize such an event. The protocol of this study follows closely 111 

the recommendations described in the "triangulation" section of the ISO/TS 129313-3:2019 112 

soundscape standard, and aims to test/demonstrate its value. 113 

This paper is organized as follows. Section 2 presents the questionnaires and the measurement 114 

network that includes a sound recognition module. Section 3 presents the perceptual analysis as well 115 

as the analyses of the sound levels and of the perceived time of presence for different sound sources. 116 

This section finishes with a cross analysis of those indicators. A discussion of these results is then 117 

given in Section 4. 118 

II. MATERIAL AND METHODS 119 

A. Questionnaire 120 

During the second week of January 2019, a questionnaire was sent to approximately 2000 121 

households in a 1 km² wide study area in the city of Lorient, France. Until March 15, 2019, residents  122 

were allowed to return a paper version of the questionnaire or to complete it through a web platform. 123 

The questionnaire was designed to take about 20-25 minutes to complete and is composed of 5 sections 124 

detailed below. A second questionnaire was sent to participants of the first questionnaire during the 125 

lockdown period in 2020, from early April until mid of May. It was identical in every aspect 126 

concerning the first two sections. 318 people completed the first questionnaire and about 50 of these 127 

participants also completed the 2nd questionnaire (31 complete questionnaires). 128 

 129 

In the first section of the questionnaire, the respondents had first to assess the quality of the sound 130 

environment in their neighborhood and second in their street (when walking or cycling home). The 131 

evaluation relied on 5 bipolar semantic scales (7 levels) inspired by the Swedish protocol (Axelsson, 132 

Nilsson, and Berglund, 2012). Table 1 presents the French semantic elements as well as a proposal for 133 

translation into English. 134 

 135 

Table 1 – Elements of the bipolar scales (1 to 7). The last column corresponds to their codification 136 

Désagréable Unpleasant Agréable Pleasant Pl 

Inerte, Amorphe Inert Animé, mouvementé Eventful Ev 

Bruyant Noisy Silencieux Silent Si 

Ennuyeux, Inintéressant Boring Stimulant, Intéressant Exciting Ex 

Agité, Chaotique Chaotic Calme, Tranquille Calm Ca 



 

 

En inadéquation avec vos 

attentes 

In inadequacy with your 

expectations 

En adéquation avec 

vos attentes 

In adequacy with 

your expectations 

Ad 

 137 

Then the respondents had to fill a table dedicated to the perceived time of presence and the 138 

perceived sound level of 13 sound sources that they could have heard when they come in or out of 139 

their homes, on foot or by bike, on their streets, and during the year (long-term assessment). The 140 

perceived time of presence ranges from rarely or never present (1) to always present (7) in the sound 141 

environment. For the latter, they had the possibility to mention the season when the source was 142 

specifically heard. The nomenclature had been previously established using information from sound 143 

sources in situ, bibliographic work and own previous studies (Aumond, Can, De Coensel, 144 

Botteldooren, Ribeiro, and Lavandier, 2017; Ricciardi, Delaitre, Lavandier, Torchia, and Aumond, 145 

2015). Table 2 presents the sources that were assessed. A free comment window closed this first 146 

section, allowing the respondent to give more details about their perceptions. 147 

 148 

Table 2 – List of sources that were assessed in the questionnaire 149 

Road Traffic (Tra) 
Sirens, alarms  

(Sir) 

Children's voices (schools, 

playgrounds)  

(ChV) 

Gulls*  

(Gul) 

2-wheel motor vehicles 

(2Wh) 

Urban maintenance 

(cleaning, garbage...) 

(UMa) 

Music from bars, 

restaurants, shops... 

(Mus) 

Sources from neighboring 

dwellings (voices, steps, 

animals, crafts, music...) 

Rail traffic  

(Rail) 

Expressive voices, festive 

voices, laughter, shouts 

(ExV) 

Wind in the vegetation 

(Wnd) 
Other ... 

Air traffic  

(Air) 

Calm voices, 

conversations… 

(CaV) 

Small birds  

(Brd) 
Other ... 

* Lorient is a harbor city with several complaints in the local press about the noise of gulls.  150 

 151 

The second section of the questionnaire focused on the long-term annoyance. Questions on the 152 

annoyance following the Guidelines from the noise Team of ICBEN were asked to respondents (Fields, 153 

De jong, Gjestland, Flindell, Job, Kurra, Lercher, Vallet, Yano, Guski, Felscher-suhr, and Schumer, 154 

2001). This section of the questionnaire can be summarized by the following sentence: 155 

 156 

“Thinking about the last 12 months, when you are here  157 

- at home with your windows closed, 158 

- at home with your windows open or on your balcony or in your garden,  159 

- in the street, when you arrive at home by bike or on foot,  160 



 

 

how much does  161 

- global noise 162 

- noise from (noise sources from Table 2)  163 

bother, disturb, or annoy you: Extremely, Very, Moderately, Slightly or Not at all? ” 164 

 165 

In the third section of the questionnaire, four free paragraph boxes allowed respondents to share 166 

free expressions regarding remarkable environments (pleasant, unpleasant, conducive to walking and 167 

conducive to rest) of their neighborhood. 168 

 169 

In the fourth section of the questionnaire, personal information was collected: noise sensitivity of 170 

the inhabitants based on the 6-item Weinstein's noise sensitivity scale (WNSS) (Kishikawa, Matsui, 171 

Uchiyama, Miyakawa, Hiramatsu, and Stansfeld, 2006), gender, age, socio-professional category, 172 

membership (or not) to an association fighting against noise.  173 

 174 

In the fifth and last section of the questionnaire, residents were invited to provide information on 175 

where they live: the exact location, so that the questionnaires can be linked with the acoustic 176 

measurements or simulations made in the area, and a set of questions on housing type (Table 3). 177 

 178 

Table 3 – Questions about the housing of participants 179 

Tenant / Owner Courtyard or garden area? (yes/no) Has quiet room? 

(yes /no) 

House/Apartment Living space overlooking the street? 

(yes/no) 

Double glazing? 

(yes /no) 

Time of occupancy? 

(<1 year, 1-3 year, >3 year) 

Living space with a view on natural 

elements? 

(no, a little, a lot) 

Insulation of the facade <10 years ago? 

(yes/no) 

 180 

Under this fifth section, the respondents also had to give their level of satisfaction (5 levels) on 181 

four dimensions: 182 

• Acoustic insulation of their housing; 183 

• To what extent they are globally satisfied with their (home/street/neighborhood) as a place to 184 

live. 185 

More information can be found in the conference papers (Aumond, Can, and LAVANDIER, 2019; 186 

Aumond and Lavandier, 2019). 187 

B. MEASUREMENT NETWORK  188 

Specific low-cost noise monitoring sensors have been developed by the CENSE project in order to 189 

be integrated in a large measurement network (Ardouin, Baron, Charpentier, Ecotière, Fortin, Gontier, 190 



 

 

Guillaume, Lagrange, Libouban, Picaut, and Ribeiro, 2021; Picaut, Can, Fortin, Ardouin, and 191 

Lagrange, 2021). The complete network planned is 123 noise sensors with 70 sensors currently 192 

connected to the cloud through a hybrid communication network based on wireless and public street 193 

lamp network equipped with power-line communication systems. The sensors have been specifically 194 

designed and developed to consider urban sound environment constraints. They transmit acoustic 195 

indicators continuously thanks to wireless communications based on 802.15.4 modulation with 196 

6LoWPAN MAC layer as described by IEEE RFC4944. The microphones used are MEMS 197 

microphones, and recording and transmitting systems are based on STM32L4 microcontroller s or on 198 

small single-board computers Raspberry-Pi. Real-time audio processing is included in both type of 199 

sensors in order to perform the calculation of the LAeq,1s and LZeq,1s acoustic indicators, as well as the 200 

acoustic spectrum every 125 ms, using third octave bands from 20 Hz to 12.5 kHz. The recording 201 

sampling rate is 32 kHz. 202 

 203 

In April 2020, about 70 sensors were installed in the study area. Among these sensors we 204 

strategically select 15 of them that reliably transmitted data over the study periods and that are 205 

spatially distributed to match the areas of living of the respondents of the questionnaires. To facilitate 206 

the processing of the data, only the first 10 minutes of each hour is analysed under the assumption 207 

suggested in (Brocolini, Lavandier, Quoy, and Ribeiro, 2013) that they are representative of the entire 208 

homogeneous corresponding period. Figure 1 shows the comparison between the locations of the 209 

measurement points (labelled pins) and the spatial distribution of the responses to the questionnaires 210 

(heatmap). 211 



 

 

 212 

Figure 1 – CENSE study area. Labels correspond to the selected sensors (n=15). Labels circled in red 213 

correspond to the stations we focus on more during the analysis. The heat map displays the density of 214 

responses to the questionnaire first call (n = 318). 215 



 

 

C. SOUND RECOGNITION 216 

In addition to the analysis of subjective assessments and acoustic indicators, we investigate d 217 

variations in the content of sound environments through automatic sound source recognition. 218 

Specifically, a deep neural network has been designed to identify cars, trucks, motorcycles, voices, 219 

small birds, seagulls, and background noise activities from CENSE sensor measurements. 220 

 221 

Source identification is conducted on short segments of 8 fast third-octave frames (8*125ms = 1s). 222 

To do so, a deep convolutional architecture first extracts time-frequency patterns relevant to the 223 

identification of sound sources from each 1s third-octave segment. It is composed of 6 layers with 224 

3x3 filters and 64, 64, 128, 128, 256, and 256 output channels respectively. Convolutional layers are 225 

followed by batch normalization (Ioffe and Szegedy, 2015) and rectified linear unit activations. 226 

Maximum pooling layers down sample the hidden representation in time and frequency by a factor of 227 

2 after each set of two convolutional layers. Then, a single-layer gated recurrent unit (Cho, van 228 

Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, and Bengio, 2014) with 128 neurons draws 229 

predictions on each 1s segment from the current output of the convolutional architecture as well as its 230 

recurrent internal state, which aggregates past information. The step duration between subsequent 1s 231 

segments processed by the network is 125ms. At inference, presence or absence labels predicted for 232 

each sound source are averaged over time to obtain the time of presence in third-octave measurements 233 

of arbitrary duration2. 234 

 235 

The model is trained on a fully synthetic set of 400 sound scenes of 45s each  as described in 236 

(Gontier, Lostanlen, FORTIN, Lagrange, Lavandier, and Petiot, 2021). Sound scenes are simulated 237 

with the simScene Matlab library 3  by combining background noise recordings and extracts 238 

representing sound events from up to three sources of interest. The source categories, signal -to-noise 239 

ratios, and inter-onsets characteristics of sound events are drawn semi-randomly from normal 240 

distributions. The corresponding parameters, as well as the overall sound level of each scene, are 241 

conditioned on a desired type of sound environment: quiet street, noisy street, very noisy street, park, 242 

or square. All background and event extracts appearing in the synthetic training set are recorded in 243 

the city of Lorient. The ground truth composition, i.e. separate channels for each active sound source, 244 

is known for synthetic scenes. This enables automatically labeling source presence in order to train 245 

the deep neural architecture in a supervised approach. Synthetic scene generation and automatic 246 

annotation processes are further detailed in (Gontier, LAVANDIER, Aumond, Lagrange, and Petiot, 247 

2019). Figure 2 shows an example of source identification by the trained model. Only the third-octave 248 

spectrogram of the mixed scene (top) is visible to the network.  249 

                                                        
2 The full code and databases will be made available upon publication  
3 https://bitbucket.org/mlagrange/simscene 

https://bitbucket.org/mlagrange/simscene/downloads


 

 

 250 

Figure 2 – Example of predicted source activity for a simulated sound scene. From the mixed scene (top), 251 

the model infers the presence of seven sound sources along time (shaded areas). Separated waveform 252 

contributions for each source are shown for illustrative purposes and are hidden to the predictor. 253 

 254 

D. MATCHING MEASUREMENTS TO QUESTIONNAIRES 255 

1. Temporal match 256 

 257 

Table 4 represents the timeline of the different periods concerned by this study: 258 

• The first questionnaire was sent out in early January 2019 and responses poured in until 259 

early March 2019 (although most arrived within the first few weeks). This period will be 260 

called hereafter Q1; 261 

• The second questionnaire was sent out in early April 2020 and responses poured in until 262 

mid-may 2020 (although most arrived within the first few weeks). This period will be 263 

called hereafter Q2; 264 

• Since the measurements from the sensors are only available since the end of 2019, we 265 

chose the period between January 11 and February 11, 2020 as the "out of lockdown" 266 

period called M1 and the period from April 11 to May 11, 2020 as the "during lockdown" 267 

period called M2. 268 

 269 



 

 

The analyses are done on the period out of lockdown called P1, which will relate results from the 270 

beginning of the year 2019 (Q1) to the beginning of the year 2020 (M1), assuming that the sound 271 

environments remain similar over these two time periods.  272 

Table 4 - Timeline of the time periods considered in the study to gather data. 273 

 January 

2019 

March 

2019 

January 

2020 

February 

2020 

March 

2020 

Mid of 

April 2020 

Mid of 

May 2020 

French 

Lockdown 

Before Lockdown After Lockdown 

Questionnaire Q1   Q2 

Measurement  M1  M2 

Cross analysis P1  P2 

 274 

The period during the lockdown called P2 relates the responses to the questionnaires (Q2) to 275 

measurements (M2) over the same time period (April-May 2020). 276 

 277 

2. Spatial match 278 

 279 

There are no direct spatial links that can be established between the sensors and the questionnaires , 280 

as the sensors were not positioned in the gardens or right in front of each house of the respondents. 281 

We thus propose to interpolate the results of the questionnaires and calculate an aggregated value for 282 

each of the sensor locations. For this purpose, a spatial Kriging algorithm is used, following the 283 

protocol used in (Aumond, Can, Mallet, De Coensel, Ribeiro, Botteldooren, and Lavandier, 2018) . 284 

 285 

The Kriging method is a well-known interpolation method that has been used in a variety of 286 

applications, particularly in the environmental field. It bears resemblance with classical data 287 

assimilation methods that have been applied to environmental forecasting, particularly at the urban 288 

scale for air pollution and noise pollution. The approach is relevant when a meaningful function can 289 

fit the empirical variogram of a value to interpolate. The variogram and kriging algorithms presented 290 

in this study are applied using the “variogram”, “vgm” and “gstat” functions of the “gstat” R package 291 

(Pebesma, 2004).  292 

 293 

The parameter used to calculate the empirical variogram is the perceived sound level "Sil", 294 

evaluated in the first part of the questionnaire.  The variogram is calculated over a distance of 350 295 

meters. The exponential covariance model is used to calculate the best fit of the experimental 296 

variogram. This regression curve fitting estimates the 3 following standard parameters: “nugget” (1.0), 297 

“range” (50 m), and “sill” (1.5). Figure 3 present the empirical variogram and the fitted curve.  298 



 

 

 299 

Figure 3 – Empirical variogram of the “Sil” parameter along the Euclidian distance. The fitted parameters 300 

are “nugget” (1.0), “range” (50 m), and “sill” (1.5). 301 

III. RESULTS 302 

A. PERCEPTUAL ANALYSIS 303 

It can be expected that the lockdown had a drastic impact on the overall sound levels but also on 304 

the sound sources activity in the urban sound environment, and we expect that this impact can be 305 

measured from the gathered data. Table 5 shows the variation on their respective scales of a set of 306 

questionnaire variables between January 2019 and March 2020 (respectively Q1 and Q2). The 307 

statistical information is extracted from 2-sample nonparametric studentized permutation test for 308 

paired data (Brunner-Munzel test) from R package “nparcomp” (Konietschke, Placzek, Schaarschmidt, 309 

and Hothorn, 2015). The Brunner Munzel test (also called the Generalized Wilcoxon Test) is a non-310 

parametric statistical test for stochastic equality of two samples.  The null hypothesis for the test is H0 311 

= 0.5, which implies stochastic equality. If the estimated relative effect “hat” is superior to 0.5, greater 312 

values occur in the second group and conversely. 313 

 314 

Table 5. Brunner-Munzel Test (n=31-Q1/31-Q2) between Q1 and Q2; hat: estimated relative effect; 315 

Lower: Lower limit of the confidence interval; Upper: Upper limit of the confidence interval; T: 316 

studentized test statistic; p val: p-value for the hypothesis. *** p-value < 0.01, ** p-value < 0.05, * 317 

p-value < 0.1 318 

 Lower hat Upper T p val  Lower hat Upper T p val 

Brd 0,71 0,80 0,89 6,89 *** Pl 0,81 0,89 0,97 9,93 *** 

Tra 0,06 0,17 0,28 -6,11 *** Ex 0,49 0,64 0,80 1,87 ** 

CaV 0,32 0,44 0,57 -0,91  Ca 0,75 0,85 0,95 6,98 *** 

ExV 0,07 0,18 0,29 -6,03 *** Ev 0,07 0,17 0,27 -6,83 *** 

ChV 0,26 0,41 0,57 -1,15  Sil 0,73 0,83 0,94 6,38 *** 

Gul 0,43 0,57 0,71 1,01  Ad 0.60 0.71 0.82 3.66 *** 



 

 

2Wh 0,12 0,27 0,43 -3,01 ***       

 319 

As expected, we observe an important and significant decrease in the perceived sound level (Sil) 320 

as well as in the presence time of road traffic (Tra) and two-wheelers (2Wh). We also notice a 321 

significant increase in the time of presence of birds (Brd). Nevertheless, this result must be put into 322 

perspective, as this increase can be due to the lockdown effects but also to the spring seasonal effect 323 

(P1 is in winter and P2 in spring). There is a significant decrease in the perceived time of presence of 324 

expressive voices (ExV), nevertheless the assessment of calm voices (CaV) did not change 325 

significantly. 326 

 327 

More generally, the perceptual assessments allow a rather detailed description of what happened 328 

in the sound environment of Lorient, as it mixes affects and description of sound source activities. 329 

However, it is difficult to capture the subjective part of the phenomenon. For example, people 330 

probably spent more time passively or actively listening to the sound environment than in the first 331 

questionnaire and at different periods of the day. Variations in the evaluation may then come from 332 

changes in the mode of perception rather than from the sound environment per se.  In addition, the low 333 

temporal resolution of the perceptual data makes it difficult to evaluate the impact of the moment at 334 

which the respondent does the evaluation, and his/her ability to mentally project himself/herself on 335 

an average value of the period under evaluation. 336 

 337 

The literature often mentions perceptual models that link two main perceptual dimensions 338 

(pleasantness and eventfulness) to the sound sources birds, traffic and voices (perceived time of 339 

presence) (Aumond, Can, De Coensel, Botteldooren, Ribeiro, and Lavandier, 2017; Ricciardi, Delaitre, 340 

Lavandier, Torchia, and Aumond, 2015). A statistical analysis using the R package ‘multcomp’ (Bretz, 341 

Hothorn, and Westfall, 2010) allows us to extract the multilevel components of this type of model. It 342 

is a question of evaluating which part of the variance proportion in the model can be attributed to the 343 

individuals (associated to different locations) and which part to the analysis period (Q1/Q2). Table 6 344 

shows the results of the multi-level linear regressions for both independent variables pleasantness (Pl) 345 

and eventfulness (Ev). 346 

 347 

Table 6 - Multi-level linear regression of the independent parameters pleasantness (Pl) and 348 

eventfulness (Ev) and the dependent parameters presence time of birds (Brd), traffic (Tra) and calm 349 

voices (CaV) and expressive voices (ExV). The random effects are associated to the individuals or the 350 

questionnaire period (Q1/Q2). 351 

n=62 Pl Ev 

Interc 6.6*** 2.0** 

Brd 0.3*** 0.0 

Tra -0.5*** 0.3*** 

CaV  0.0 0.09 

ExV -0.1 0.11 

 R²total = 67% R²total = 37% 



 

 

R²fixedeffects = 52% R²fixedeffects = 15% 

Random effect :  Std.Dev. Std.Dev. 

Individuals 0.6 0 

Questionnaire period 

(Q1/Q2) 

0.1 0.7 

 352 

The time of presence of birds and traffic have a significant impact over the estimation of the 353 

pleasantness. The random effect is quite small and mainly due to the disparity between individuals. 354 

The model and its strength are very close to the literature (Aumond, Can, De Coensel, Botteldooren, 355 

Ribeiro, and Lavandier, 2017; Aumond and Lavandier, 2019; Ricciardi, Delaitre, Lavandier, Torchia, 356 

and Aumond, 2015). For example, for the city of Paris with quite different experimental conditions 357 

but with a similar questionnaire (Aumond, Can, De Coensel, Botteldooren, Ribeiro, and Lavandier, 358 

2017), the best perceptual model is: 359 

 360 

Pl = 8,11 – 0,38*(OL) – 0,15*Tra + 0,20*Voi + 0,15*Brd      (4) 361 

 362 

with “Voi”, the perceived time presence of voices and the overall loudness “OL” corresponds to 363 

(10-Si) of this paper and explain 58% of the global variance (Radj² = 58%). In (Lavandier, Aumond, 364 

Can, Gontier, Lagrange, and Petit, 2021), readers can also find more comparison between these similar 365 

models on different study cases. Multi-level linear regression also reveals that the variation of the 366 

pleasantness depends much more on the individual differences (e.g. different locations) than on 367 

differences in the different periods.  368 

We find that the time of presence of traffic is the only one that has a significant impact on the 369 

estimation of the eventful character. The total explained variance is much lower (R²= 37%). We can 370 

also observe a significant random effect due to the period of the questionnaire . This is in line with the 371 

fact that the Q2 period is much calmer than the Q1 period, and with the fact that the calm dimension 372 

is opposed to the eventful dimension in the circumflex model (Axelsson, Nilsson, and Berglund, 2012). 373 

The literature consistently highlights the instability of the definition of this parameter according to 374 

the translations (Jeon, Hong, Lavandier, Lafon, Axelsson, and Hurtig, 2018; Nagahata, 2018) . For 375 

example, Jeon et al. state in their study “The perceived dominance of sound of human activities shows 376 

a positive relationship with Eventfulness scores in Korea and Sweden, while the same relationship is 377 

not statistically significant in France.” (Jeon, Hong, Lavandier, Lafon, Axelsson, and Hurtig, 2018). 378 

Also, due to the ambivalence of this term in French, a semantic shift may have occurred when there 379 

was very little traffic during the lockdown period. 380 

B. SOUND LEVEL ANALYSIS 381 

 382 

Figure 4 shows the median and interquartile range of LAeq,1s (10 minutes every hour correspond to 383 

600 values of LAeq, 1s) for the 7 days of the week and for the two stations respectively located on a 384 

boulevard and in a quiet residential area for each period of measurement M1 and M2 (n1h= 2400 LAeq,1s 385 



 

 

values for 4 weeks). 386 

 387 

 388 

  

 

(a) (b)  

Figure 4 – Median and interquartile range of LAeq,1s (10 min, every hours) for the 7 days of the 389 

week and for the two focus stations respectively located (a) in a quiet residential area and (b) on a 390 

boulevard for each period of measurement M1 and M2. 391 

 392 

The typical daily and weekly pattern is maintained for both periods studied. A difference of up to 393 

-15 dB(A) is observed between the period before and during lockdown for the station p0640. A multi-394 

level linear regression (n=470992, groups: 15 stations) indicates that the fixed effect related to the 395 

period (M1 vs M2) is 7.4 dB(A) (std: 0.03; t-value: -279.70). This dramatic decrease is in accordance 396 

with the literature (Asensio, Pavón, and de Arcas, 2020; BRUITPARIF, 2020; Munoz, Vincent, 397 

Domergue, Gissinger, Guillot, Halbwachs, and Janillon, 2020). The random effects related to the 398 

stations have a significant variance of 12 dB(A), which reflects a fairly large variability on the selected 399 

stations. Figure 5 shows the LAeq,M1 computed from LAeq,1s (10min every hour) and its difference (pre, 400 

LAeq,M1 and during lockdown, LAeq,M1 – LAeq,M2) for the 15 stations. 401 

 402 

  

(a) (b)  

Figure 5 - For the 15 stations, (a) the pre-lockdown LAeq,M1 and (b) its difference with the period 403 

during the lockdown LAeq,M1 – LAeq,M2. 404 

 405 



 

 

The Pearson correlation coefficient, calculated between LAeq,M1 and LAeq,M1 – LAeq,M2, shows that 406 

the most noise-exposed sensors are generally those with the greatest decrease in noise leve l (r = 0.4, 407 

p<0.01). The most drastic decrease was in the downtown area around Jules Ferry Park. It is the center 408 

of the city with a lot of animation, road traffic, bars, restaurants, etc . during the non-lockdown period. 409 

Only one sensor has seen its level slightly increase, it is the sensor p0720 near the Scorff River located 410 

in a residential area, possibly due to an increase in naturally occurring sounds and the presence of 411 

local residents walking during the M2 period in a very quiet area. 412 

 413 

C. SOUND RECOGNITION ANALYSIS 414 

Figure 6 shows the average hourly median of the perceived time of presence estimated for the 6 415 

different parameters from the algorithm presented in Section 2.3, for the 7 days of the week and for 416 

the 2 stations. The two focus stations selected are again p0640 as representative of a boulevard and 417 

p0720 as representative of a residential area. 418 

 419 

 

 

 420 

Figure 6 - Average hourly median of the presence time of the 6 estimated parameters for the 2 421 

focus stations over the week period (left column, boulevard, right column quiet residential area) and 422 

for the presence time of the 6 estimated parameters. 423 

 424 

 425 

First, the expected general diurnal and weekly behavior is observed for most of the variables  (e.g. 426 

the morning bird songs peak at sunrise), which strengthen our confidence in the source recognition 427 



 

 

model. Concerning voices, there is a significant increase during the afternoons of the M2 period  and 428 

especially for the station in the quiet area and during the week-ends. This is probably due to the 429 

outings in the urban outdoor space (the lockdown rule in France allowed an exit of 1 hour possible). 430 

In France, the weather was particularly good during this period, probably reinforcing this effect. The 431 

difference between the M1 and M2 periods is less noticeable on Wednesdays (in France, children have 432 

the afternoon off on this day) and on Sundays. As concerning motorcycles, in the M1 period, there 433 

was a peak in the Friday and Saturday evenings. In the M2 period this peak seems to occur more 434 

frequently at the end of the day. Several hypotheses discussed in Section 4 can account for this 435 

phenomenon. As expected, the "Background" parameter is inversely correlated with the number of 436 

events recognizable by the algorithm and its level is generally higher  in the M2 period and for the 437 

station located in the quiet area. Finally, birds are increasingly noticed during M2 at both locations, 438 

what is in accordance with (Aletta, Oberman, Mitchell, Tong, and Kang, 2020; Gordo, Brotons, 439 

Herrando, and Gargallo, 2021). 440 

 441 

Table 7. Brunner-Munzel Test (n=154/154); hat: estimated relative effect; Lower: Lower limit of 442 

the confidence interval; Upper: Upper limit of the confidence interval; T: studentized test statistic; p 443 

val: p-value for the hypothesis. *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1 444 

 445 

 Lower hat Upper T p val  Lower hat Upper T p val 

Bird 0,88 0,90 0,93 28,06 *** Seagulls 0,67 0,72 0,77 8,88 *** 

Car 0,11 0,14 0,18 -18,66 *** MotorBike 0,43 0,49 0,55 -0,35  

Voice 0,49 0,55 0,60 1,70 * Background 0,56 0,60 0,64 5,28 *** 

 446 

We complete this analysis with a non-parametric post-hoc test (Brunner-Munzel). Table 7 shows 447 

the difference (and related significance) of the 6 estimated variables between M1 and M2. Also, Figure 448 

7 shows the relative change of the mean value during the periods M1 and M2 (reference period M1) 449 

for relevant estimated parameter and each station. Both Figures 6 and 7 and the statistical evaluation 450 

show a strong increase in the estimated presence time of birds and Seagulls, and a decrease of the 451 

presence time of road vehicles, recognized by the algorithm. There is also a decrease in the estimated 452 

presence time of voices during the lockdown period (M2) in the hyper center and near the bars, but 453 

an increase in the small streets or on the ballade of the Scorff. Figure 7(f) shows the slight increase 454 

of the “background” estimation during the M2 period everywhere except close to the Scorff river.  455 

Figure 7(e) shows spatial variability in changes in “motorbike” estimates that is difficult to relate in 456 

an obvious way to any spatial features. 457 

 458 



 

 

   

(a) (b) (c) 

    

(d) (e) (f) 

  459 

Figure 7. Relative change between the average estimated time presence of sound sources between 460 

the periods M1 and M2 (M2-M1)/M1 461 

 462 

D. CROSS-COMPARISON OF THE DIFFERENT EVALUATION METHODS 463 

1. Preamble 464 

 465 

All the methods presented provide complementary information for the analysis of the change in 466 

the sound environment. In this section, we now propose to cross-reference these data in order to 467 

highlight, or not, the consistency between these perspectives. Section 2.4 presents the spatial and 468 

temporal methods used to link the measurement stations to the different questionnaires.  469 

 470 

2. Global analysis 471 

 472 

First, the comparison of the results of Tables 5 and 7 shows a very good agreement between the 473 

decrease of source presence as measured by questionnaires and by automatic source recognition tools 474 

for birds (hat value of 0.8 and 0.9) and for road traffic (hat value of 0.14 and 0.17).  475 

 476 

The analysis for voice is less straightforward. The questionnaire introduced a discrimination 477 



 

 

between expressive voices, calm voices and children voices that is not accessible through the sound 478 

recognition model. The algorithm learning database being mainly conversational voices, one can 479 

assumes that the algorithm refers primarily to calm voices. Then, both forms of analysis converge on 480 

a very small change in calm voices times of presence. 481 

 482 

Lastly, the decrease of presence of motorcycles is much higher for the questionnaires than in the 483 

source recognition estimates. A first hypothesis would be that when the traffic noise is low, the noise 484 

of the 2-wheelers propagates further before being masked. Thus, the estimated presence time of this 485 

parameter decreases only slightly from the algorithm point of view but the perceived time of presence 486 

by inhabitants decreases more strongly due to the decrease in the number of vehicles.  487 

Another hypothesis could be that the type of two-wheeled noise sources and driver behavior may 488 

have changed between the two periods. Many delivery vehicles appeared during the P2 period (small 489 

engines and moderate acceleration) and there may have been a decrease in recreational or long -490 

distance use of two-wheelers. The recognition algorithm does not identify the difference between 491 

these two types of vehicles, but their noise characteristics and the perception induced for the 492 

inhabitants may be very different. 493 

 494 

3. Spatial analysis 495 

 496 

Using the method described in Section 2.4, it is possible to interpolate the perceived values at the 497 

location of each of the sensors in the area. Then, the spatio-temporal correlations between the sensor 498 

estimates and the questionnaires for P1 and P2 periods and each location can be performed. Table 8 499 

shows Pearson correlation coefficients with their respective significance (p-value inferior to certain 500 

thresholds) between the variables from the questionnaire, the source recognition, but also the physical 501 

indicators directly calculated from the sensors. 502 

 503 

Table 8 - Pearson correlation coefficients between perceived (interpolation), physical and source 504 

recognition parameters for the periods P1, P2 and P1&P2. *** p-value < 0.01, ** p-value < 0.05, * p-505 

value < 0.1 506 

 507 

Perceptual 

assessments 

Recognized times 

of presence 

Physical indicators P1 (spatial) 

n=15 

P2 (spatial)  

n=15 

P1&P2 (spatio-

temporal) 

n=30 

Sil  LAeq -0,36 -0,44* -0,78*** 

Sil  LA50 -0,37 -0,51** -0,83*** 

Tra  LAeq 0,34 0,35 0,76*** 

Tra  LA50 0,32 0,18 0,81*** 

 Car LAeq 0,34 0,65*** 0,63*** 



 

 

 Car LA50 0,26 0,44* 0,56*** 

Brd Birds  0,30 -0,23 0,63*** 

Tra Car  -0,08 0,34 0,47*** 

CaV Voice  0,53*** -0,01 0,27 

ExV Voice  0,72*** 0,13 0,19 

ChV Voice  0,51** -0,44* 0,20 

Gul Seagulls 
 

0,33 -0,20 0,52*** 

2Wh Motorbike  0,28 0,04 -0,01 

Sil Background  0,46** 0,09 0,37*** 

 508 

First, it should be pointed out that these correlation coefficients reflect a link between the observed 509 

variables, but also the spatial and/or temporal dynamics of these variables. Weak dynamics will 510 

probably lead to a more difficult link to highlight between two variables. 511 

 512 

The indicators LAeq and LA50 correspond to the average value of all the LA50,10min, LAeq,10min 513 

calculated respectively on the periods P1 and P2. As expected, the perceived silence (Sil) and the 514 

measured sound level indicators LAeq and LA50 are significantly inversely correlated (rSil/LAeq = -0.78; 515 

rSil/LA50=-0.83). These variables for the periods P1 are significantly inversely correlated (r Sil/LA50 = -516 

0.36; r Sil/LA50=-0.37) and P2(r Sil/LA50 = -0.44; r Sil/LA50=-0.51). The equivalent or median sound level 517 

is again a good physical indicator of the perceptual variable "Silent to Noisy". The correlation 518 

coefficients may seem rather weak, but the perception of the residents is based on memory and not on 519 

a judgment of a sound environment that they listen to. Also, low density of sensors analyzed in the 520 

area and therefore to the large distances between sensors and questionnaires can explain these low 521 

values.  522 

 523 

Exactly the same dynamics are observed when comparing the measured sound level  LAeq and LA50 524 

and the perceived traffic presence time (Tra). We also observe that the correlations are slightly weaker 525 

for this perceived variable, which reflects the part of the overall noise level that is not related to road 526 

traffic. The gap between the time of presence of road traffic and the noise level is confirmed by looking 527 

at the correlation coefficients between noise levels and the presence time of cars as estimated by the 528 

algorithm at each sensor (rcars/LA50 = 0.63; rcars/LA50 =0.56).  529 

 530 

Even if the correlation coefficients between the perceived time of presence of traffic and birds 531 

(recognized by the algorithm and perceptual assessed) is not significantly spatially correlated over the 532 

periods P1 (rBrd/Birds=0,30; rTra/cars=-0,08) and P2 (rBrd/Birds=-0.23; rTra/cars=0.34), the spatio-temporal 533 

correlation coefficients are significant for these two observables (rBrd/Birds=0.63; rTra/cars=0.47), which 534 

confirms that the perceptual and algorithmic methods lead to the same observations.  535 

 536 



 

 

The perceived time of presence of voices is significantly correlated to the estimation from source 537 

recognition only for the periods P1 (rCaV/Voice=0.53; rExV/Voice=0.72; rChV/Voice=0.51). During the period 538 

P2, people were restricted to go out in a radius of one kilometer around their home. The resulting loss 539 

of spatial dynamics for this variable thus may prevent the measurement/perception correlation from 540 

being revealed.  541 

 542 

Lastly, we observe a significant spatial correlation on the period P1 of the perceived sound level 543 

"Sil" and the variable "background" of the algorithm (rSil/Background=0.46). On the P2 period, the 544 

dynamics of this last variable is probably too weak to reveal any difference  (rSil/Background=0.09). Over 545 

the period P1+P2, the spatio-temporal correlation of this variable is significant (rSil/Background=0.37). 546 

This variable thus seems to correctly reveal the absence of sound sources in the environment.  547 

IV. DISCUSSION 548 

 549 

First of all, the overall results are consistent with the existing literature: we observe an overall 550 

decrease in noise levels in comparable ranges with respect to those of other cities, and this decrease 551 

is all the more important near the main roads. We also observe an emergence of natural sound sources, 552 

and a drastic decrease of mechanical noise, both reflected by questionnaires and sensors. 553 

 554 

 When crossing the physical and perceptual analysis methods, two main limitations arise. The 555 

small number of sensors spatially close to participant questionnaires does not allow a direct link 556 

between a questionnaire and a nearby measurement station. The chosen interpolation method 557 

alleviates this issue but introduces approximations. Nevertheless, the average proximity between 558 

stations and questionnaires remains acceptable to justify the methodology (median = 108 m, 80% < 559 

155 m). From a temporal point of view, technical limitations forced us to choose periods spaced one 560 

year apart for the unconfined period (M1 vs Q1). Despite these approximations, the proposed protocol 561 

allows us to evaluate the performance of the source recognition algorithm, on site and at scale with 562 

an applied scenario, and to confront its prediction with the citizens' appreciation.  563 

 564 

Regarding the questionnaire and co-factors influencing perception, an important aspect of the 565 

housing questions is whether respondents live alone or with others in their homes , as investigated in 566 

Torresin et al. (Torresin, Albatici, Aletta, Babich, Oberman, Stawinoga, and Kang, 2022) . This 567 

question is particularly relevant in the context of COVID-19-related lockdown. Unfortunately, this 568 

variable was not collected in our questionnaire. 569 

 570 

Our analysis of the perceptual results indicates that individuals/places are more important in the 571 

evaluation of pleasantness than the difference between periods. In a context such as the lockdown 572 

with very high variation in the sound environment, even in the most unpleasant locations in the city, 573 



 

 

one could hypothesize that this observation also partly reflects non-acoustic factors (e.g., visual 574 

context (Jeon and Jo, 2020; Jeon, Lee, Hong, and Cabrera, 2011)) that cannot be captured by the 575 

sensors (and thus by the model). 576 

 577 

In this study, the perceptual assessment provides a fairly accurate description of what happened in 578 

the Lorient sound environment during the lockdown period. We could hypothesize that there is no bias 579 

in the perceptual assessment and that it accurately reflects the sound environment. But the lockdown 580 

period could have implied a modification of the perceptions, such as an overestimation of the time of 581 

presence of the birds or of the decrease of the road noise exacerbated by the sensations of the moment 582 

or by the surprise to discover such a peaceful urban sound environment. It would therefore be 583 

interesting to go further by conducting a contextual analysis or an analysis according to the 584 

psychosocial characteristics of the individuals interviewed, but the sample size of  our study was not 585 

sufficient. 586 

 587 

Different from that of the questionnaire, which can induce biases in the comparison, the method 588 

linked to source recognition allows a very detailed temporal follow-up. For example, the low 589 

correlation coefficient between the perceived time of presence of the 2-wheelers and the 590 

measurements can be partly explained by the very different temporal resolution of these two 591 

observation methods. Indeed, the presence of the 2-wheelers has a very specific behavior, in particular 592 

at the time of the lockdown in the evening between 6 pm and 8 pm which can probably be attributed 593 

to food deliveries. It is difficult to estimate how this behavior translates into perceptual assessments 594 

over the period linked to the questionnaire. 595 

V. Conclusion 596 

In this paper, three methods of sound environment analysis were jointly considered over periods before 597 

and during the lockdown related to the COVID-19 crisis in the city of Lorient, France. The analysis of sound 598 

levels reflects the results of many other studies on the subject, namely an average decrease in equivalent 599 

sound level of about 5-10 dB(A). The analysis of the questionnaire results allows us to go into detail about 600 

the changes in the perceived time of presence of certain sources, like as expected, the drastic decrease of the 601 

road traffic and the increase of the birds' songs perceived presence.  602 

 603 

This study also introduced a protocol of integration of the analysis of the presence of sound sources from 604 

questionnaires and from automatic estimation using deep convolutional network algorithms. The analysis of 605 

the latter reveals a temporal detail on the presence of sources that is very complementary to the questionnaires 606 

one. The differences between the questionnaires and the algorithm also make it possible to question the 607 

perceptual or algorithmic biases that may be present.  608 

 609 

The lockdown related to COVID-19 allowed us to validate the relevance of the proposed approach, as 610 



 

 

strong assumptions on the expected behaviors of the analysis variables could be made. Despite some 611 

methodological and technical limitations that could be improved in the future, this paper demonstrates the 612 

interest of introducing multidisciplinary analyses, as proposed in the "triangulation" section of the ISO/TS 613 

129313-3:2019 soundscape standard, to account for the short-term and long-term evolutions of urban sound 614 

environments and their appraisal. With further validation in order to increase our confidence in the 615 

performance of the recognition algorithm, we believe that this kind of cross analysis will allow us to highlight 616 

perceptual biases that are particularly revealing of the modes of perception of sound environments considered 617 

by citizens.  618 
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