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ABSTRACT:
As part of the Agence Nationale de Recherche Caract�erisation des ENvironnements SonorEs urbains

(Characterization of urban sound environments) project, a questionnaire was sent in January 2019 to households in a

1 km2 study area in the city of Lorient, France, to which about 318 responded. The main objective of this

questionnaire was to collect information about the inhabitants’ perception of the sound environments in their

neighborhoods, streets, and dwellings. In the same study area, starting mid-2019, about 70 sensors were continuously

positioned, and 15 of them were selected for testing sound source recognition models. The French lockdown due to

the COVID-19 crisis occurred during the project, and the opportunity was taken to send a second questionnaire dur-

ing April 2020. About 31 of the first 318 first survey respondents answered this second questionnaire. This unique

longitudinal dataset, both physical and perceptual, allows the undertaking of an analysis from different perspectives

of such a period. The analysis reveals the importance of integrating source recognition tools, soundscape observation

protocol, in addition to physical level analysis, to accurately describe the changes in the sound environment.
VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0009324
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I. INTRODUCTION

The emergence and the spread of the COVID-19 pan-

demic from late 2019 to 2020 impacted all continents. It

forced governments to undertake unprecedented social dis-

tancing measures to slow down the virus propagation, from

which the most emblematic was the lockdown imposed in a

large number of countries in the spring of 2020. Severe

restrictions on ground transportation and flights, as well as

population lockdown measures, had an immediate and dra-

matic impact on urban activity and, thus, on sound environ-

ments. City dwellers in many cities around the world have

collectively experienced a sudden reduction of noise levels,

including a modification in the distribution of sound sources

dominating urban sound mixtures. Newspapers quickly

reported on these sudden changes in the urban sound envi-

ronments and their impact on perceptions (Bui and Badger,

2020). From a research point of view, this unprecedented

event questions the ways in which the physical modifica-

tions in urban sound environments during this period can be

witnessed and objectified and their perception by the popu-

lations. This question is crucial to understand the impact of

such a crisis, which is likely to modify perceptions and

expectations regarding noise in the long term. It is also

important to propose protocols, which are able to capture

and understand the impact of slower and less obvious modi-

fications in sound environments.

Despite initiatives to homogenize observations, such as

the one proposed by Asensio et al. (2020a), the observation

protocols in the recent literature on the topic of the change of

the sound environment resulting from the COVID-19 lock-

down are very disparate. We have chosen to refer to about 17

studies, which we consider to be the most representative.

First, cities equipped with noise measurement networks,

capturing continuous noise levels, have been quick to con-

sistently point out the drop in the noise levels. An equivalent

sound level reduction of about 4–7 dB(A) has been reported,

on average, in Rio (Gev�u et al., 2021), Montreal (Steele and

Guastavino, 2021), Lyon (Munoz et al., 2020), Madrid

(Asensio et al., 2020b), Milan (Zambon et al., 2021), Girona

(Alsina-Pagès et al., 2021), or Paris (Bruitparif, 2020) based

on 21 to more than 100 fixed sensors. Numerous short-term

measurements were performed in London in Aletta et al.
(2020) through a series a 30-s binaural recordings pre-

lockdown and during the lockdown (481 samples) at 11
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locations, which highlighted a similar tendency. This sound

level decrease is, however, not homogeneous in both space

and time. The London study showed that active areas were

affected the most, followed by traffic-dominated areas and

quiet areas. Similar trends were found in Madrid, although

less pronounced (Asensio et al., 2020b), or the Brazilian

study (Gev�u et al., 2021), which complements its measure-

ments with the modeling approach. These slight discrepan-

cies between the two studies may be the result of a different

classification between the site categories. The observed

noise decrease has even reached 20 dB(A) near the work site

areas and 30 dB(A) near the airports in Paris (Bruitparif,

2020), revealing the difference in the “lockdown sound

experience” between populations. In Montreal, special

emphasis is being placed on dramatically reducing noise at

festivals and events in public spaces during the summer of

2020 (Steele and Guastavino, 2021). In the temporal struc-

tures of sound, environments were also impacted. Basu

et al. (2021) showed that minimum hourly sound levels

Lmin,1h dramatically decreased, which were attributed to the

reductions in road and air traffic movements. In Madrid,

Asensio et al. (2020b) showed a significant variation in the

daily noise patterns with the activity starting earlier in the

morning and decreasing significantly in the afternoon.

Although very useful for understanding which popula-

tions were most impacted by the reduction of noise levels

based on their residential location and on a national scale

based on government decisions, these studies fail to qualify

the modification of noise environments in terms of the sound

sources. The shift in daily noise patterns observed in Asensio

et al. (2020b) could, for instance, be hypothesized as the

result of the emergence in natural sound sources. Derryberry

et al. (2020) showed that white-crowned sparrows shifted

their song frequency in response to the disappearance of traf-

fic sounds, benefiting this new emptied acoustic space to

enhance communication. These results underline the impor-

tance of being able to recognize the sources composing the

sound mixtures within the sensor networks for a better under-

standing of the balances between the anthropogenic and bio-

phonic sound sources. The Dynamap project in Italy also

studied the differences in the sound environment caused by

the lockdown due to COVID-19 in Italy (period 2019 vs

2020; Pagès et al., 2020). Their ANED (anomalous noise

events detection) algorithm identifies the non-traffic-related

sounds using the binary identifier classifications. It showed a

distinct change in anomalous noise events (ANEs) during the

night in Rome and, to a lesser extent, Milan.

The studies based on perceptual approaches and ques-

tionnaires have also underlined the impact of the lockdown

on the perceived sound environments. In Argentina, a study

of 1000 people showed that most participants preferred the

new acoustic environment and, especially in large cities,

where mechanical sounds dominate the sound environment

(Maggi et al., 2021). The analyses of noise complaints in

London showed an increase of 48%, which is mainly because

of construction and neighborhood noise (Tong et al., 2021).

In Munoz et al. (2020), Bruitparif (2020), and Bartalucci

et al. (2021), the questionnaires were distributed to residents

in the French and Italian countries. The analyses of those

questionnaires underlined the perceived modification in the

sound environments, namely, a decrease in the transportation

and mechanical sound sources and an increase in the natural

sound sources. The questions relative to the period before

and during the lockdown period were answered simulta-

neously. This could have introduced memory and cognitive

biases. Finally, Lenzi et al. (2021) provided a comprehensive

analysis of the sound environment at one location in the city

of Gexto, based on audio recordings and annotations of the

perceived sounds, diary notes, and evaluation of the sound-

scape quality. The study revealed that bioacoustic indices,

such as eventfulness, acoustic complexity, and acoustic rich-

ness, increased significantly over the lockdown period,

whereas the amount of technological sounds decreased.

Although studies on noise levels, on one hand, and stud-

ies on perception, on the other hand, have their respective

merits, we believe that performing both at the same time and

location can shed a new light on the topic under study. For

that purpose, in this paper, an innovative protocol with a

great level of detail is proposed to relate the physical and per-

ceptual modifications of the sound environments during this

period. It associates a measurement network coupled with an

automatic sound source recognition module and question-

naires distributed before and during the lockdown. The

objective here is not to define a universal characterization of

the impact of the lockdown but to demonstrate the relevance

of such a protocol to characterize such an event. The protocol

of this study follows closely the recommendations described

in the “triangulation” section of the ISO/TS (2019) sound-

scape standard and aims to test/demonstrate its value.

This paper is organized as follows. Section II presents the

questionnaires and measurement network, which includes a

sound recognition module. Section III presents the perceptual

analysis as well as the analyses of the sound levels and the per-

ceived times of presence for the different sound sources. This

section finishes with a cross-analysis of those indicators. A

discussion of these results is then given in Sec. IV.

II. MATERIAL AND METHODS

A. Questionnaire

During the second week of January 2019, a questionnaire

was sent to approximately 2000 households in a 1 km2 wide

study area in the city of Lorient, France. Until March 15, 2019,

the residents were allowed to return a paper version of the ques-

tionnaire or complete it through a website platform. The ques-

tionnaire was designed to take about 20–25 min to complete

and is composed of five sections detailed below. A second ques-

tionnaire was sent to pthe articipants of the first questionnaire

during the lockdown period in 2020 from early April until mid

May. It was identical in every aspect concerning the first two

sections. Of these participants, 318 people completed the first

questionnaire and about 50 people also completed the second

questionnaire (31 complete questionnaires).
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In the first section of the questionnaire, the respondents

had to assess the quality of the sound environment in their

neighborhood and then in their street (when walking or

cycling home). The evaluation relied on five bipolar semantic

scales (seven levels) inspired by the Swedish protocol

(Axelsson et al., 2012). Table I presents the French semantic

elements as well as a proposal for the translation into English.

Then the respondents had to fill in a table dedicated to

the perceived time of presence and the perceived sound level

of 13 sound sources, which they could have heard when they

came in or out of their homes, on foot or by bike, on their

streets, and during the year (long-term assessment). The per-

ceived time of the presence ranges from rarely or never pre-

sent (“1”) to always present (“7”) in the sound environment.

For the latter, they had the possibility to mention the season

when the source was specifically heard. The nomenclature

had been previously established using information from

sound sources in situ, bibliographic work, and their own pre-

vious studies (Aumond et al., 2017; Ricciardi et al., 2015).

Table II presents the sources that were assessed. A free com-

ment window closed this first section, allowing the respon-

dent to give more details about their perceptions.

The second section of the questionnaire focused on the

long-term annoyance. The respondents were asked questions

on the annoyance, following the guidelines from the noise

team of ICBEN Fields et al., 2001). This section of the ques-

tionnaire can be summarized by the following sentence:

“Thinking about the last 12 months, when you are here

• at home with your windows closed,
• at home with your windows open, on your balcony, in

your garden, or
• in the street when you arrive at home by bike or on foot,

how much does

• global noise and
• the noise sources from Table II

bother, disturb, or annoy you: extremely, very, moder-

ately, slightly, or not at all?

In the third section of the questionnaire, four free para-

graph boxes allowed the respondents to share free expres-

sions regarding the remarkable environments (pleasant,

unpleasant, conducive to walking, and conducive to rest) of

their neighborhood.

In the fourth section of the questionnaire, personal

information was collected: noise sensitivity of the inhabi-

tants based on the six-item Weinstein’s noise sensitivity

scale (WNSS; Kishikawa et al., 2006), gender, age, socio-

professional category, and membership (or not) to an associ-

ation fighting against noise.

In the fifth and last section of the questionnaire, the resi-

dents were invited to provide information on where they

live: the exact location, such that the questionnaires can be

linked with the acoustic measurements or simulations made

in the area, and complete a set of questions on the housing

type (Table III).

Under the fifth section, the respondents also had to give

their level of satisfaction (five levels) on four dimensions:

• acoustic insulation of their housing and
• to what extent they are globally satisfied with their

(home/street/neighborhood) as a place to live.

More information can be found in the conference papers

by Aumond et al. (2019) and Aumond and Lavandier (2019).

B. Measurement network

Specific low-cost noise monitoring sensors have been

developed by the CENSE project to be integrated in a large

measurement network (Ardouin et al., 2021; Picaut et al.,
2021). The complete network planned is 123 noise sensors

with 70 sensors currently connected to the cloud through a

hybrid communication network based on the wireless and

public street lamp network equipped with power-line com-

munication systems. The sensors have been specifically

TABLE I. The elements of the bipolar scales (1–7). The last column corresponds to their codification.

D�esagr�eable Unpleasant Agr�eable Pleasant Pl

Inerte, amorphe Inert Anim�e, mouvement�e Eventful Ev

Bruyant Noisy Silencieux Silent Si

Ennuyeux, inint�eressant Boring Stimulant, int�eressant Exciting Ex

Agit�e, chaotique Chaotic Calme, tranquille Calm Ca

En inad�equation avec vos attentes In inadequacy with your expectations En ad�equation avec vos attentes In adequacy with your expectations Ad

TABLE II. The list of sources that were assessed in the questionnaire.

Road traffic (Tra) Sirens, alarms (Sir) Children’s voices

(schools, playgrounds; ChV)

Gullsa (Gul)

Two-wheeler (2Wh)

motor vehicles

Urban maintenance

(cleaning, garbage, etc.; UMa)

Music from bars, restaurants,

shops, etc. (Mus)

Sources from neighboring

dwellings (voices, steps, animals, crafts, music, etc.)

Rail traffic (rail) Expressive voices, festive voices,

laughter, shouts (ExV)

Wind in the vegetation (Wnd) Other

Air traffic (air) Calm voices, conversations, etc. (CaV) Small birds (Brd) Other

aLorient is a harbor city with several complaints in the local press about the noise of gulls.
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designed and developed to consider the urban sound envi-

ronment constraints. They transmit acoustic indicators con-

tinuously, thanks to the wireless communications based on

the 802.15.4 modulation with a IPv6 Low power Wireless

Personal Area Networks (6LoWPAN) Medium Access

Control (MAC) layer as described by IEEE (Montenegro,

2007). The microphones used are micro-electromechanical

system (MEMS) microphones, and the recording and trans-

mitting systems are based on the STM32L4 microcontrollers

or small single-board computers Raspberry-Pi. Real-time

audio processing is included in both types of sensors to per-

form the calculations of the LAeq,1s and LZeq,1s acoustic indi-

cators, as well as the acoustic spectrum every 125 ms, using

the third-octave bands from 20 Hz to 12.5 kHz. The record-

ing sampling rate is 32 kHz.

In April 2020, about 70 sensors were installed in the

study area. Among these sensors, we strategically selected

15 that reliably transmitted data over the study periods and

are spatially distributed to match the areas of living for the

respondents of the questionnaires. To facilitate the process-

ing of the data, only the first 10 min of each hour are ana-

lysed under the assumption suggested in Brocolini et al.
(2013), and they are representative of the entire homoge-

neous corresponding period. Figure 1 shows the comparison

between the locations of the measurement points (labeled

pins) and the spatial distribution of the responses to the

questionnaires (heatmap).

C. Sound recognition

In addition to the analyses of the subjective assessments

and acoustic indicators, we investigated the variations in the

content of the sound environments through automatic sound

source recognition. Specifically, a deep neural network has

been designed to identify the cars, trucks, motorcycles, voi-

ces, small birds, seagulls, and background noise activities

from the CENSE sensor measurements.

Source identification is conducted on short segments of

eight fast third-octave frames (8 � 125 ms¼ 1 s). To do so,

a deep convolutional architecture first extracts the time-

frequency patterns, which are relevant to the identification

of the sound sources, from each 1 s third-octave segment. It

is composed of 6 layers with 3� 3 filters and 64, 64, 128,

128, 256, and 256 output channels. The convolutional layers

are followed by batch normalization (Ioffe and Szegedy,

2015) and rectified linear unit activations. The maximum

pooling layers down sample the hidden representation in the

time and frequency by a factor of 2 after each set of two

convolutional layers. Then, a single-layer gated recurrent

unit (Cho et al., 2014) with 128 neurons draws the

predictions on each 1 s segment from the current output of

the convolutional architecture as well as its recurrent inter-

nal state, which aggregates the past information. The step

duration between the subsequent 1 s segments processed by

the network is 125 ms. At the inference, presence or absence

labels predicted for each sound source are averaged over

time to obtain the time of presence in the third-octave mea-

surements of arbitrary duration.1

The model is trained on a fully synthetic set of 400

sound scenes of 45 s each as described in Gontier et al.
(2021). The sound scenes are simulated with the simScene

MATLAB library2 by combining the background noise

recordings and extracts, representing the sound events from

up to three sources of interest. The source categories, signal-

to-noise ratios, and inter-onset characteristics of the sound

events are drawn semi-randomly from the normal distribu-

tions. The corresponding parameters, as well as the overall

sound level of each scene, are conditioned on a desired type

of sound environment: quiet street, noisy street, very noisy

street, park, or square. All background and event extracts

appearing in the synthetic training set are recorded in the

city of Lorient. The ground truth composition, i.e., separate

channels for each active sound source, is known for the syn-

thetic scenes. This enables automatically labeling the source

presence to train the deep neural architecture in a supervised

approach. the synthetic scene generation and automatic

annotation processes are further detailed in Gontier et al.
(2019). Figure 2 shows an example of the source identifica-

tion by the trained model. Only the third-octave spectrogram

of the mixed scene (Fig. 2, top) is visible to the network.

D. Matching measurements to questionnaires

1. Temporal match

Table IV represents the timeline of the different periods

concerned by this study.

• The first questionnaire was sent out in early January 2019,

and the responses poured in until early March 2019

(although most arrived within the first few weeks). This

period, hereafter, will be called Q1;
• the second questionnaire was sent out in early April 2020,

and the responses came in until mid-May 2020 (although

most arrived within the first few weeks). This period,

hereafter, will be called Q2; and
• because the measurements from the sensors are only avail-

able since the end of 2019, we chose the period between

January 11 and February 11, 2020 as the “out of lockdown”

period, called M1, and the period from April 11 to May 11,

2020 as the “during lockdown” period, called M2.

TABLE III. Questions about the housing of the participants.

Tenant/owner Courtyard or garden area? (yes/no) Has a quiet room? (yes /no)

House/apartment Living space overlooking the street? (yes/no) Double glazing? (yes /no)

Time of occupancy? (<1 yr, 1–3 yr, >3 yr) Living space with a view on natural elements? (no, a little, a lot) Insulation of the facade

<10 years ago? (yes/no)
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The analyses are performed on the period out of lock-

down, called P1, which will relate the results from the

beginning of the year 2019 (Q1) to the beginning of the year

2020 (M1), assuming that the sound environments remain

similar over these two time periods.

The period during the lockdown, called P2, relates the

responses to the questionnaires (Q2) to the measurements

(M2) over the same time period (April–May 2020).

2. Spatial match

There are no direct spatial links that can be established

between the sensors and questionnaires as the sensors were

not positioned in the gardens or right in front of each house

of the respondents. We, thus, propose to interpolate the

results of the questionnaires and calculate an aggregated

value for each of the sensor locations. For this purpose, a

spatial Kriging algorithm is used, following the protocol

used in Aumond et al. (2018).

The Kriging method is a well-known interpolation

method, which has been used in a variety of applications,

particularly in the environmental field. It bears resemblance

with the classical data assimilation methods, which have

been applied to environmental forecasting, particularly at

the urban scale for air pollution and noise pollution. The

approach is relevant when a meaningful function can fit the

empirical variogram of a value to interpolate. The variogram

and kriging algorithms presented in this study are applied

FIG. 1. (Color online) The CENSE study area. The labels correspond to the selected sensors (n¼ 15). The labels circled in red correspond to the stations

that we focus on more during the analysis. The heat map displays the density of the responses to the questionnaire in the first call (n¼ 318).
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using the “variogram,” “vgm,” and “gstat” functions of the

gstat R package (Pebesma, 2004).

The parameter used to calculate the empirical vario-

gram is the perceived sound level “Sil,” evaluated in the first

part of the questionnaire. The variogram is calculated over a

distance of 350 m. The exponential covariance model is

used to calculate the best fit of the experimental variogram.

This regression curve fitting estimates the three following

standard parameters: “nugget” (1.0), “range” (50 m), and

“sill” (1.5). Figure 3 present the empirical variogram and

the fitted curve.

III. RESULTS

A. Perceptual analysis

It can be expected that the lockdown had a drastic

impact on the overall sound levels and, also, on the sound

sources activity in the urban sound environment, and we

expect that this impact can be measured from the gathered

data. Table V shows the variation on their respective scales

of a set of questionnaire variables between January 2019

and March 2020 (respectively, Q1 and Q2). The statistical

information is extracted from the two-sample nonparametric

studentized permutation test for paired data (Brunner-

Munzel test) from the R package “nparcomp” (Konietschke

et al., 2015). The Brunner-Munzel test (also called the gen-

eralized Wilcoxon test) is a nonparametric statistical test for

the stochastic equality of two samples. The null hypothesis

for the test is H0¼ 0.5, which implies stochastic equality. If

the estimated relative effect “hat” is superior to 0.5, greater

values occur in the second group and conversely.

As expected, we observe an important and significant

decrease in the perceived sound level (Sil) as well as in the

presence time of road traffic (Tra) and two-wheelers (2Wh).

We also notice a significant increase in the time of presence of

birds (Brd). Nevertheless, this result must be put into perspec-

tive as this increase can be due to the lockdown effects and

also to the spring seasonal effect (P1 is in winter, and P2 is in

spring). There is a significant decrease in the perceived time

of presence of expressive voices (ExV); nevertheless the

assessment of calm voices (CaV) did not change significantly.

More generally, the perceptual assessments allow a

rather detailed description of what happened in the sound

environment of Lorient as it mixes the affects and descrip-

tions of the sound source activities. However, it is difficult

to capture the subjective part of the phenomenon. For exam-

ple, people probably spent more time passively or actively

listening to the sound environment than in the first question-

naire and at different periods of the day. The variations in

the evaluation may then come from changes in the mode of

perception rather than from the sound environment per se.

In addition, the low temporal resolution of the perceptual

data makes it difficult to evaluate the impact of the moment

at which the respondent does the evaluation and his/her abil-

ity to mentally project himself/herself on an average value

of the period under evaluation.

The literature often mentions the perceptual models,

which link two main perceptual dimensions (pleasantness

FIG. 2. (Color online) An example of the predicted source activity for a

simulated sound scene. From the mixed scene (top), the model infers the

presence of seven sound sources along the time (shaded areas). The sepa-

rated waveform contributions for each source are shown for illustrative pur-

poses and hidden to the predictor.

TABLE IV. The timeline of the time periods considered in the study to gather data.

January 2019 March 2019 January 2020 February 2020 March 2020 Mid-April 2020 Mid-May 2020

French lockdown Before lockdown After lockdown

Questionnaire Q1 Q2

Measurement M1 M2

Cross analysis P1 P2

FIG. 3. The empirical variogram of the Sil parameter along the Euclidian

distance. The fitted parameters are nugget (1.0), range (50 m), and sill (1.5).
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and eventfulness) to the sound sources birds, traffic, and voi-

ces (perceived time of presence; Aumond et al., 2017;

Ricciardi et al., 2015). A statistical analysis using the R
package “multcomp” (Bretz et al., 2010) allows us to extract

the multilevel components of this type of model. It is a ques-

tion of evaluating which part of the variance proportion in

the model can be attributed to the individuals (associated

with the different locations) and which part can be attributed

to the analysis period (Q1/Q2). Table VI shows the results

of the multilevel linear regressions for the independent vari-

ables pleasantness (Pl) and eventfulness (Ev).

The times of presence of birds and traffic have a signifi-

cant impact over the estimation of the pleasantness. The ran-

dom effect is quite small and mainly caused by the disparity

between the individuals. The model and its strength are very

close to the literature (Aumond et al., 2017; Aumond and

Lavandier, 2019; Ricciardi et al., 2015). For example, for

the city of Paris with quite different experimental conditions

but with a similar questionnaire (Aumond et al., 2017), the

best perceptual model is

Pl ¼ 8:11� 0:38� OLð Þ � 0:15�Traþ 0:20�Voi

þ 0:15�Brd;

where “Voi” is the perceived time of presence of the voices,

and the overall loudness, “OL,” corresponds to (10 - Si) of

this paper and explains 58% of the global variance

(Radj
2¼ 58%). In Lavandier et al. (2021), the readers also

can find more comparisons between these similar models on

different study cases. The multilevel linear regression also

reveals that the variation of the pleasantness depends much

more on the individual differences (e.g., different locations)

than on the differences in the different periods.

We find that the time of presence of traffic is the only

one that has a significant impact on the estimation of the

eventful character. The total explained variance is much

lower (R2¼ 37%). We can also observe a significant random

effect due to the period of the questionnaire. This is in line

with the fact that the Q2 period is much calmer than the Q1

period, and the calm dimension is opposed to the eventful

dimension in the circumflex model (Axelsson et al., 2012).

The literature consistently highlights the instability of the

definition of this parameter, according to the translations

(Jeon et al., 2018; Nagahata, 2018). For example, Jeon et al.
(2018) state in their study that “The perceived dominance of

sound of human activities shows a positive relationship with

eventfulness scores in Korea and Sweden, while the same

relationship is not statistically significant in France.” Also,

because of the ambivalence of this term in French, a seman-

tic shift may have occurred when there was very little traffic

during the lockdown period.

B. Sound level analysis

Figure 4 shows the median and interquartile range of

LAeq,1s (10 min every hour corresponds to 600 values of

LAeq, 1s) for the seven days of the week and the two stations,

respectively, located on a boulevard and in a quiet residen-

tial area for each period of measurement M1 and M2

(n1h¼ 2400LAeq,1s values for 4 weeks).

The typical daily and weekly patterns are maintained

for both periods studied. A difference of up to �15 dB(A) is

observed between the period before and during the lock-

down for the station p0640. A multilevel linear regression

(n¼ 470 992 groups, 15 stations) indicates that the fixed

effect related to the period (M1 vs M2) is 7.4 dB(A)

(standard deviation, 0.03; t-value, �279.70). This dramatic

decrease is in accordance with the literature (Asensio et al.,
2020b; Bruitparif, 2020; Munoz et al., 2020). The random

effects related to the stations have a significant variance of

12 dB(A), which reflects a fairly large variability on the

selected stations. Figure 5 shows the LAeq,M1 computed

from LAeq,1s (10 min every hour) and its difference (pre,

LAeq,M1 and during lockdown, LAeq,M1 – LAeq,M2) for the 15

stations.

The Pearson correlation coefficient, calculated between

LAeq,M1 and LAeq,M1 – LAeq,M2, shows that the most noise-

exposed sensors are generally those with the greatest

decrease in the noise level (r¼ 0.4, p < 0.01). The most

drastic decrease was in the downtown area around Jules

Ferry Park. It is the center of the city with a lot of animation,

TABLE V. The Brunner-Munzel test (n¼ 31-Q1/31-Q2) between Q1 and

Q2; hat, estimated relative effect; lower, lower limit of the confidence inter-

val; upper, upper limit of the confidence interval; T, studentized test statis-

tic; p val, p-value for the hypothesis. ***p-value < 0.01, **p-value < 0.05,

*p-value < 0.1.

Lower Hat Upper T p val Lower Hat Upper T p val

Brd 0.71 0.80 0.89 6.89 *** Pl 0.81 0.89 0.97 9.93 ***

Tra 0.06 0.17 0.28 �6.11 *** Ex 0.49 0.64 0.80 1.87 **

CaV 0.32 0.44 0.57 �0.91 Ca 0.75 0.85 0.95 6.98 ***

ExV 0.07 0.18 0.29 �6.03 *** Ev 0.07 0.17 0.27 �6.83 ***

ChV 0.26 0.41 0.57 �1.15 Sil 0.73 0.83 0.94 6.38 ***

Gul 0.43 0.57 0.71 1.01 Ad 0.60 0.71 0.82 3.66 ***

2Wh 0.12 0.27 0.43 �3.01 ***

TABLE VI. The multilevel linear regression of the independent parameters

pleasantness (Pl) and eventfulness (Ev) and the dependent parameters pres-

ence time of birds (Brd), traffic (Tra), and calm voices (CaV) and expres-

sive voices (ExV). The random effects are associated with the individuals

or the questionnaire period (Q1/Q2). ***p-value < 0.01, **p-value < 0.05,

*p-value < 0.1.

n¼ 62 Pl Ev

Intercept 6.6*** 2.0**

Brd 0.3*** 0.0

Tra �0.5*** 0.3***

CaV 0.0 0.09

ExV �0.1 0.11

R2 total¼ 67% R2 total¼ 37%

R2 fixed effects¼ 52% R2 fixed effects¼ 15%

Random effect : Standard deviation Standard deviation

Individuals 0.6 0

Questionnaire

period (Q1/Q2)

0.1 0.7
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road traffic, bars, restaurants, etc. during the non-lockdown

period. Only one sensor has seen its level slightly increase,

and it is the sensor p0720 near the Scorff River, located in a

residential area, possibly caused by an increase in the natu-

rally occurring sounds and the presence of local residents

walking during the M2 period in a very quiet area.

C. Sound recognition analysis

Figure 6 shows the average hourly median of the per-

ceived time of presence estimated for the six different

parameters from the algorithm presented in Sec. II C for the

seven days of the week and two stations. The two focus sta-

tions selected are again p0640 as a representative of a boule-

vard and p0720 as a representative of a residential area.

First, the expected general diurnal and weekly behav-

iors are observed for most of the variables (e.g., the morning

bird songs peak at sunrise), which strengthen our confidence

in the source recognition model. Concerning the voices,

there is a significant increase during the afternoons of the

M2 period and especially for the station in the quiet area

and during the weekends. This is probably caused by the

outings in the urban outdoor space (the lockdown rule in

France allowed an exit of 1 h possible). In France, the

weather was particularly good during this period, probably

reinforcing this effect. The difference between the M1 and

M2 periods is less noticeable on Wednesdays (in France,

children have the afternoon off on this day) and Sundays.

Concerning the motorcycles, in the M1 period, there was a

peak on Friday and Saturday evenings. In the M2 period,

this peak seems to occur more frequently at the end of the

day. Several hypotheses, discussed in Sec. IV, can account

for this phenomenon. As expected, the “background” param-

eter is inversely correlated with the number of events recog-

nizable by the algorithm, and its level is generally higher in

the M2 period and for the station located in the quiet area.

Finally, birds are increasingly noticed during M2 at both

locations, which is in accordance with Aletta et al. (2020,

and Gordo et al. (2021).

We complete this analysis with a nonparametric post
hoc test (Brunner-Munzel). Table VII shows the difference

(and related significance) of the 6 estimated variables

FIG. 4. (Color online) The median and interquartile range of LAeq,1s (10 min, every hour) for the seven days of the week and two focus stations, respectively,

located (a) in a quiet residential area and (b) on a boulevard for each period of measurement M1 and M2 are shown.

FIG. 5. (Color online) For the 15 stations, (a) the pre-lockdown LAeq,M1 and (b) its difference with the period during the lockdown LAeq,M1 – LAeq,M2 are

depicted.
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between M1 and M2. Also, Fig. 7 shows the relative change of

the mean value during the periods M1 and M2 (reference period

M1) for relevant estimated parameter and each station. Figures 6

and 7 and the statistical evaluation show a strong increase in the

estimated presence time of birds and seagulls and a decrease in

the presence time of road vehicles, recognized by the algorithm.

There is also a decrease in the estimated presence time of voices

during the lockdown period (M2) in the hyper center and near

the bars but an increase in the small streets or on the ballade of

the Scorff River. Figure 7(f) shows the slight increase in the

background estimation during the M2 period everywhere except

close to the Scorff River. Figure 7(e) shows spatial variability in

the changes in the “motorbike” estimates, which is difficult to

relate in an obvious way to any spatial features.

D. Cross-comparison of the different evaluation
methods

1. Preamble

All of the methods presented provide complementary

information for the analysis of the change in the sound envi-

ronment. In this section, we propose to cross-reference these

FIG. 6. (Color online) The average hourly median of the presence time of the six estimated parameters for the two focus stations over the week period (left

column, boulevard; right column quiet residential area) and the presence time of the six estimated parameters are shown.

TABLE VII. The Brunner-Munzel test (n¼ 154/154); hat, estimated relative effect; lower, lower limit of the confidence interval; upper, upper limit of the

confidence interval; T, studentized test statistic; p val, p-value for the hypothesis. ***p-value < 0.01, **p-value < 0.05, *p-value < 0.1.

Lower Hat Upper T p val Lower Hat Upper T p val

Bird 0.88 0.90 0.93 28.06 *** Seagulls 0.67 0.72 0.77 8.88 ***

Car 0.11 0.14 0.18 �18.66 *** Motorbike 0.43 0.49 0.55 �0.35

Voice 0.49 0.55 0.60 1.70 * Background 0.56 0.60 0.64 5.28 ***

J. Acoust. Soc. Am. 151 (2), February 2022 Aumond et al. 919

https://doi.org/10.1121/10.0009324

https://doi.org/10.1121/10.0009324


data to highlight, or not, the consistency between these per-

spectives. Section II D presents the spatial and temporal

methods used to link the measurement stations to the differ-

ent questionnaires.

2. Global analysis

First, the comparison of the results of Tables V and VII

shows a very good agreement between the decrease in the

source presence as measured by the questionnaires and auto-

matic source recognition tools for birds (hat values of 0.8

and 0.9) and road traffic (hat values of 0.14 and 0.17).

The analysis for voice is less straightforward. The ques-

tionnaire introduced a discrimination between the expres-

sive voices, calm voices, and children voices, which is not

accessible through the sound recognition model. The algo-

rithm learning database is mainly conversational voices, and

one can assume that the algorithm refers primarily to calm

voices. Then, both forms of analysis converge on a very

small change in the calm voices times of presence.

Last, the decrease in the presence of motorcycles is

much higher for the questionnaires than in the source recog-

nition estimates. A first hypothesis would be that when the

traffic noise is low, the noise of the 2Wh propagates further

before being masked. Thus, the estimated presence time of

this parameter decreases only slightly from the algorithm

point of view, but the perceived time of presence by the

inhabitants decreases more strongly due to the decrease in

the number of vehicles.

Another hypothesis could be that the type of two-

wheeled noise sources and driver behavior may have

changed between the two periods. Many delivery vehicles

appeared during the P2 period (small engines and moderate

acceleration), and there may have been a decrease in the rec-

reational or long-distance use of 2Wh. The recognition algo-

rithm does not identify the difference between these two

types of vehicles, but their noise characteristics and the per-

ception induced for the inhabitants may be very different.

3. Spatial analysis

Using the method described in Sec. II D, it is possible to

interpolate the perceived values at the locations of each of

the sensors in the area. Then, the spatiotemporal correlations

between the sensor estimates and questionnaires for the P1

and P2 periods and each location can be performed.

Table VIII shows the Pearson correlation coefficients with

their respective significances (the p-value is inferior to cer-

tain thresholds) among the variables from the questionnaire,

FIG. 7. (Color online) The relative change between the average estimated time of presence of sound sources between the periods M1 and M2 (M2 - M1)/M1

is depicted.
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the source recognition, and also the physical indicators

directly calculated from the sensors.

First, it should be pointed out that these correlation

coefficients reflect a link between the observed variables

and also the spatial and/or temporal dynamics of these varia-

bles. The weak dynamics will probably lead to a more diffi-

cult link to highlight between two variables.

The indicators LAeq and LA50 correspond to the average

values of all of the LA50,10min, LAeq,10min calculated, respec-

tively, on the periods P1 and P2. As expected, the perceived

silence (Sil) and measured sound level indicators LAeq and

LA50 are significantly inversely correlated (rSil/

LAeq¼�0.78; rSil/LA50¼�0.83). These variables for the

periods P1 are significantly inversely correlated (rSil/

LA50¼ –0.36; rSil/LA50¼�0.37) and P2(rSil/LA50¼�0.44;

rSil/LA50¼�0.51). The equivalent or median sound level is

again a good physical indicator of the perceptual variable

“silent to noisy.” The correlation coefficients may seem

rather weak, but the perception of the residents is based on

the memory and not on a judgment of a sound environment

that they listen to. Also, the low density of the sensors ana-

lysed in the area and, therefore, to the large distances

between the sensors and questionnaires can explain these

low values.

Exactly the same dynamics are observed when compar-

ing the measured sound levels LAeq and LA50 and the per-

ceived traffic presence time (Tra). We also see that the

correlations are slightly weaker for this perceived variable,

which reflects the part of the overall noise level that is not

related to road traffic. The gap between the time of presence

of road traffic and the noise level is confirmed by looking at

the correlation coefficients between the noise levels and the

presence time of cars as estimated by the algorithm at each

sensor (rcars/LA50¼ 0.63; rcars/LA50¼ 0.56).

Even if the correlation coefficients between the per-

ceived times of presence of traffic and birds (recognized by

the algorithm and perceptually assessed) is not significantly

spatially correlated over the periods P1 (rBrd/Birds¼ 0,30;

rTra/cars¼�0,08) and P2 (rBrd/Birds¼�0.23; rTra/cars¼ 0.34),

the spatiotemporal correlation coefficients are significant for

these two observables (rBrd/Birds¼ 0.63; rTra/cars¼ 0.47),

which confirms that the perceptual and algorithmic methods

lead to the same observations.

The perceived time of presence of voices is significantly

correlated to the estimation from the source recognition

only for the periods P1 (rCaV/Voice¼ 0.53; rExV/Voice¼ 0.72;

rChV/Voice¼ 0.51). During the period P2, the people were

restricted to go out in a radius of 1 km around their home.

The resulting loss of spatial dynamics for this variable, thus,

may prevent the measurement/perception correlation from

being revealed.

Last, we observe a significant spatial correlation on the

period P1 of the perceived sound level Sil and the variable

background of the algorithm (rSil/Background¼ 0.46). On the

P2 period, the dynamics of this last variable are probably

too weak to reveal any difference (rSil/Background¼ 0.09).

Over the period P1 þ P2, the spatiotemporal correlation of

this variable is significant (rSil/Background¼ 0.37). This vari-

able, therefore, seems to correctly reveal the absence of the

sound sources in the environment.

IV. DISCUSSION

First of all, the overall results are consistent with the

existing literature: we observe an overall decrease in the

noise levels in comparable ranges with respect to those of

other cities, and this decrease is all the more important near

the main roads. We also observe an emergence of natural

sound sources and a drastic decrease in mechanical noise,

which are both reflected by the questionnaires and sensors.

When crossing the physical and perceptual analysis

methods, two main limitations arise. The small number of

sensors spatially close to the participant questionnaires does

not allow a direct link between a questionnaire and a nearby

measurement station. The chosen interpolation method alle-

viates this issue but introduces approximations.

Nevertheless, the average proximity between the stations

TABLE VIII. The Pearson correlation coefficients between the perceived (interpolation), physical, and source recognition parameters for the periods P1, P2,

and P1 and P2. ***p-value < 0.01, **p-value < 0.05, *p-value < 0.1. Bold entries are correlation coefficients with a p-value < 0.1.

Perceptual assessments Recognized times of presence Physical indicators P1 (spatial) n¼ 15 P2 (spatial) n¼ 15 P1 and P2 (spatiotemporal) n¼ 30

Sil LAeq �0.36 20.44* 20.78***

Sil LA50 �0.37 20.51** 20.83***

Tra LAeq 0.34 0.35 0.76***

Tra LA50 0.32 0.18 0.81***

Car LAeq 0.34 0.65*** 0.63***

Car LA50 0.26 0.44* 0.56***

Brd Birds 0.30 �0.23 0.63***

Tra Car �0.08 0.34 0.47***

CaV Voice 0.53*** �0.01 0.27

ExV Voice 0.72*** 0.13 0.19

ChV Voice 0.51** 20.44* 0.20

Gul Seagulls 0.33 �0.20 0.52***

2Wh Motorbike 0.28 0.04 �0.01

Sil Background 0.46** 0.09 0.37***

J. Acoust. Soc. Am. 151 (2), February 2022 Aumond et al. 921

https://doi.org/10.1121/10.0009324

https://doi.org/10.1121/10.0009324


and questionnaires remains acceptable to justify the method-

ology (median¼ 108 m, 80% < 155 m). From a temporal

point of view, the technical limitations forced us to choose

the periods spaced one year apart for the unconfined period

(M1 vs Q1). Despite these approximations, the proposed

protocol allows us to evaluate the performance of the source

recognition algorithm on site and at scale with an applied

scenario and confront its prediction with the citizens’

appreciation.

Regarding the questionnaire and cofactors influencing

the perception, an important aspect of the housing questions

is whether the respondents live alone or with others in their

homes, as investigated in Torresin et al. (2022). This ques-

tion is particularly relevant in the context of the COVID-19-

related lockdown. Unfortunately, this variable was not

collected in our questionnaire.

Our analysis of the perceptual results indicates that the

individuals/places are more important in the evaluation of

pleasantness than the difference between the periods. In a

context such as the lockdown with very high variation in the

sound environment, even in the most unpleasant locations in

the city, one could hypothesize that this observation also

partly reflects the non-acoustic factors (e.g., visual context;

Jeon and Jo, 2020; Jeon et al., 2011) that cannot be captured

by the sensors (and, thus, by the model).

In this study, the perceptual assessment provides a fairly

accurate description of what happened in the Lorient sound

environment during the lockdown period. We could hypoth-

esize that there is no bias in the perceptual assessment and it

accurately reflects the sound environment. But the lockdown

period could have implied a modification of the perceptions,

such as an overestimation of the time of presence of the

birds, the decrease in the road noise exacerbated by the sen-

sations of the moment, or the surprise to discover such a

peaceful urban sound environment. It would, therefore, be

interesting to go further by conducting a contextual analysis

or an analysis according to the psychosocial characteristics

of the individuals interviewed, but the sample size of our

study was not sufficient.

Different from that of the questionnaire, which can

induce biases in the comparison, the method linked to the

source recognition allows a very detailed temporal follow-

up. For example, the low correlation coefficient between the

perceived time of presence of the 2Wh and the measure-

ments can be partly explained by the very different temporal

resolutions of these two observation methods. Indeed, the

presence of the 2Wh has a very specific behavior, in particu-

lar at the time of the lockdown in the evening between 6 pm

and 8 pm, which can probably be attributed to food deliver-

ies. It is difficult to estimate how this behavior translates

into perceptual assessments over the period linked to the

questionnaire.

V. CONCLUSION

In this paper, three methods of the sound environment

analysis were jointly considered over the periods before and

during the lockdown related to the COVID-19 crisis in the

city of Lorient, France. The analysis of the sound levels

reflects the results of many other studies on the subject,

namely, an average decrease in the equivalent sound level

of about 5–10 dB(A). The analysis of the questionnaire

results allows us to go into detail about the changes in the

perceived times of presence of certain sources, such as those

expected, for instance, the drastic decrease in the road traffic

and th increase in the birds’ songs perceived presence.

This study also introduced a protocol of integration of

the analysis of the presence of sound sources from question-

naires and automatic estimation using the deep convolu-

tional network algorithms. The analysis of the latter reveals

a temporal detail on the presence of sources, which is very

complementary to the questionnaires. The differences

between the questionnaires and the algorithm also make it

possible to question the perceptual or algorithmic biases that

may be present.

The lockdown related to COVID-19 allowed us to vali-

date the relevance of the proposed approach as strong

assumptions on the expected behaviors of the analysis varia-

bles could be made. Despite some methodological and tech-

nical limitations that could be improved in the future, this

paper demonstrates the interest of introducing multidisci-

plinary analyses, as proposed in the triangulation section of

the ISO/TS (2019) soundscape standard, to account for the

short-term and long-term evolutions of the urban sound

environments and their appraisals. With further validation to

increase our confidence in the performance of the recogni-

tion algorithm, we believe that this kind of cross-analysis

will allow us to highlight the perceptual biases, which are

particularly revealing of the modes of perception of the

sound environments considered by the citizens.
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