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Abstract. Krylov subspace algorithms are important methods for solv-
ing linear systems. In order to solve large-scale linear systems and speed
up the solution of linear systems, one has to use parallelism techniques.
However, parallelism often enlarge the non-associativity of floating-point
operations. This can lead to non-reproducibility of the computations.
This paper compares the performance of the parallel preconditioned
BiCGSTAB algorithm implemented with two different libraries (ExBLAS
and ReproBLAS) that can ensure reproducibility of the computations.
To address the effect of the compiler, we explicitly utilize the fma in-
structions. Finally, numerical experiments show that the BiICGSTAB
algorithms based on the two BLAS implementations are reproducible,
the BICGSTAB algorithm based on ExBLAS is more accurate but more
time-consuming, and the BICGSTAB algorithm based on ReproBLAS is
relatively less accurate but less expensive.

Keywords: floating-point arithmetic - reproducibility - ExBLAS - ReproB-
LAS - Parallel Preconditioned BiCGSTAB.

1 Introduction and Motivation

In many scientific and engineering calculation fields, such as nuclear reactor simu-
lation, radiation (magneto) hydrodynamics, radiation diffusion problems, oil and
gas resource exploration, numerical weather prediction, etc. [26-28], differential
equations are often used as mathematical models to describe problems. In order
to simulate on a computer, it is necessary to discretize the differential equations
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to obtain a set of linear equations. Therefore, efficiently solving linear equations
is the key to numerical simulation. For large-scale sparse matrices generated
in actual problems, iterative methods based on Krylov subspace [8] are more
advantageous because of the high computational complexity of direct solvers.
However, the direct use of iterative methods may not converge or convergence
can be very slow. The usual remedy is to use preprocessing techniques.

When the matrix is symmetric and positive definite, the Conjugate Gradient
(CG) method [21] is one of the most effective Krylov subspace methods. When
the matrix is unsymmetric, the BiConjugate Gradient Stabilized (BiCGSTAB)
[22] and Generalized Minimal Residual (GMRES) methods [23] are the preferred
Krylov subspace methods. BICGSTAB performs better than GMRES for prob-
lems with complex eigenvalues [24]. Therefore, the BICGSTAB method being
a commonly used Krylov subspace iteration method. Getting bitwise identical
floating-point results from multiple runs of the same program is a property that
many users need for example for debugging or correctness checking in many codes
[30]. Reproducibility is also needed for verification and validation, and even con-
tractual obligations [25]. For the above reasons, we may expect that the results
of the sequential and parallel implementations of Preconditioned BiCGSTAB
(abbreviated as PBICGSTAB) are identical, for instance, in the number of itera-
tions, the intermediate and final residuals, as well as the output vector. However,
in practice this is not often the case due to different reduction trees - the Message
Passing Interface (MPI) implementations (libraries) [9] offer up to 14 different
implementations for reduction -, data alignment, instructions used, order of the
input data, etc. Each of these factors impacts the order of floating-point oper-
ations especially additions that are commutative but not associative. This can
lead to non-reproducible results.

When parallel Preconditioned BiICGSTAB is used to solve linear equations,
different numbers of processes will get different results, and the results of paral-
lel Preconditioned BiCGSTAB program and serial Preconditioned BiCGSTAB
program will also be different. This brings difficulties to verification and debug-
ging. Therefore, our aim is to implement reproducible parallel Preconditioned
BiCGSTAB algorithm that can achieve the same result using different number
of processes on the same platform. For that, we implemented the reproducible
parallel precondition BICGSTAB solver using the two main BLAS libraries that
can ensure reproducibility for basic operations; these are the ExBLAS and the
ReproBLAS libraries, respectively. The ExBLAS library is more accurate, but
more time-consuming, and the ReproBLAS library is less computationally ex-
pensive.

The rest of the paper is organized as follows. Section 2 introduces the ExBLAS
method and the ReproBLAS method. Section 3 introduces the PBiCGSTAB al-
gorithms and describes in detail its MPI implementation. We present strategies
for ensuring reproducibility of PBiCGSTAB in Section 4 and evaluate corre-
sponding implementations in Section 5. Section 6 introduces some related work.
Finally, Section 7 draws conclusions and proposes future work.
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2 Methodology

2.1 ExBLAS

The ExBLAS project [4] is an attempt to derive fast, accurate, and reproducible
BLAS library by constructing a multi-level approach for these operations that
are tailored for various modern architectures with their complex multilevel mem-
ory structures. ExXBLAS combines together long accumulator and floating-point
expansion (FPE) into algorithmic solutions. It has two features. On one side,
this method aims to save each bit of information before finally rounding to the
desired format. It is accurate and correctly rounded , so it is reproducible. On
the other side, it is effectively tuned and implemented on various architectures,
including conventional CPUs, Nvidia and AMD GPUs, and Intel Xeon Phi co-
Processors.

The corner stone of ExBLAS is reproducible parallel reduction. The ExBLAS
parallel reduction relies upon FPEs with the TwoSum error-free transformation
(EFT) [29] and long accumulators. In practice, the latter is invoked only once
per overall summation that results in the little overhead (less than 8%) on ac-
cumulating large vectors. For details of the algorithm, please refer to [20]. In
this article, we are concerned with the distributed dot product of two vectors.
The dot product problem can be transformed into a summation problem using
the TwoProd EFT [1]. The ExBLAS library also contains other routines, such as
matrix vector multiplication, triangular solver and matrix matrix multiplication.
The library is available at https://github.com/riakymch/exblas.

2.2 ReproBLAS

ReproBLAS aims at providing users with a set of (Parallel and Sequential) Ba-
sic Linear Algebra Subprograms that guarantee reproducibility regardless of the
number of processors, of the data partitioning, of the way reductions are sched-
uled, and more generally of the order in which the sums are computed. ReproB-
LAS has three assumptions: (1) Floating-point numbers are binary and corre-
spond to the IEEE 754-2008 Floating-Point Standard. (2) Floating-point opera-
tions are performed in round-to-nearest mode (ties may be broken arbitrarily).
(3) Underflow occurs gradually (subnormal numbers must be supported) [25].
The corner stone of ReproBLAS [7] is reproducible summation, which is
independent of the summation order. The reproducible summation algorithm
can be found in [13,14]. It is communication-optimal, in the sense that it does
just one pass over the data in the sequential case, or one reduction operation
in the parallel case, requiring an “accumulator” represented by just 6 floating-
point words (more can be used if higher precision is desired). The arithmetic
cost with a 6-word accumulator is 7n floating-point additions to sum n words,
and (in IEEE double precision) the final error bound can be up to 1078 times
smaller than the error bound for conventional summation. Let us denote T' =
2;2—01 xj, and T the floating-point approximation ot the summatino obtained
with ReproBLAS. The absolute error of the reproducible summation algorithm
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is |T—T| < n2"W =) max |2, 4 Tul Z;:Ol xj| where w is the unit roundoff. The
default configuration under double precision is W = 40, K = 3 [7]. Similarly, the
dot product problem is transformed into a summation problem.

3 Algorithm(s)

We first state the Preconditioned BiICGSTAB algorithm, and then state the
parallel Preconditioned BICGSTAB algorithm.

3.1 Preconditioned BiCGSTAB

The BiCGSTAB algorithm was developed to solve nonsymmetric linear systems.
The algorithmic description of the classical iterative PBiCGSTAB is presented
in Algorithm 1 [3]. The loop body consists of sparse matrix-vector products
(SpMV), dot products, AXPY (-like) operations, the preconditioner applica-
tion, and a few scalar operations. For simplicity, in our implementation of the
PBiCGSTAB method, we integrate the Jacobi preconditioner, which is composed
of the diagonal elements of the matrix. As a consequence, the use of Jacobi pre-
conditioner requires two vectors to be multiplied element by element.

3.2 Message-Passing Parallel PBiCGSTAB

In our parallel Preconditioned BICGSTAB algorithm, we use M processes. The
matrix A is partitioned into M blocks of rows (Ay, A, ..., As, ..., Apyr), where
each process stores one row-block. Vectors are partitioned and distributed in the
same way as with the block-row distribution of A. In lines 13 and 17 of Algorithm
1, both need to calculate a SpMV, we call M PI _Allgatherv() to synthesize the
local vector of each process into a complete vector. At lines 4, 14, 15, 18, and
21 of Algorithm 1, the distributed dot product needs to be computed, for non-
reproducible parallel Preconditioned BiCGSTAB, we call M PI _Allreduce. We
have implemented a reproducible distributed dot product, which is different from
the ordinary dot product. This is also the main difference between the repro-
ducible parallel Preconditioned BiCGSTAB and the non-reproducible parallel
Preconditioned BICGSTAB. For details on reproducible distributed dot prod-
ucts, please see Section 4.

4 Strategies for Reproducibility

In [18], the article implements a reproducible parallel Preconditioned BICGSTAB
algorithm based on ExBLAS, also implemented with its lighter FPE-based ver-
sion. In this paper, we implement a reproducible parallel Preconditioned BICGSTAB
algorithm based on ReproBLAS, and compare the performance of the solvers
based on ExBLAS and ReproBLAS. In this section, we state our reproducible
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Algorithm 1: The Preconditioned BiConjugate Gradient Stabilized

Method (PBiCGSTAB) [3].
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double_binned *isum = NULL;

2| double_binned *local_isum = binned_dballoc(K);

s binnedBLAS_dbddot(K, n, r, 1, r, 1, local_isum);

4| MPI_Reduce(local_isum, isum, 1, binnedMPI_DOUBLE_BINNED (K),
5| binnedMPI_DBDBADD (K), 0, MPI_COMM_WORLD);

6| if (myId == 0){

7 tol = binned_ddbconv (K, isum);

5|}

9| MPI_Bcast (&tol, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD) ;

Listing 1. Reproducible Allreduce with ReproBLAS.

strategy for the parallel Preconditioned BICGSTAB algorithm. Let us now in-
spect the sources of non-deterministic computations in the PBiCGSTAB solver
as well as present our mitigation strategies for them.

Dot products: The main issue of non-determinism emerges from dot products
and, thus, parallel reductions such as M PI_Allreduce(). We use the ExBLAS
method to provide a reproducible and correctly rounded dot product, and use the
ReproBLAS method to provide a reproducible dot product. In [6], the authors
provided a pseudocode for implementing distributed dot product with ExBLAS.
Listing 1 provides pseudocodes for our implementation of the distributed dot
product using the ReproBLAS.

Sparse matriz-vector product: Each process has a local A;, and the complete
vector is obtained by using M PI_Allgatherv(), then each process calculates
a SpMV, since the computations are carried locally and sequentially, they are
deterministic and, thus, reproducible.

AXPY (-type) vector updates: For computing the axpy(-type) vector updates,
we rely upon the sequential MKL implementation of axpy(-type).

Application of the preconditioner: We are using Jacobi preconditioner. The
application of the Jacobi preconditioner is rather simple: first, the inverse of
the diagonals is computed and then the application of the preconditioner only
involves element-wise multiplication of two vectors. Thus, this part is both cor-
rectly rounded and reproducible.

5 Numerical Results

5.1 Setup

The following experiment is performed on Sugon HPC cluster with 172 compute
nodes (16 GPU nodes), consisting of two 12-core Intel E5-2680 v3 processors
each (24 cores per node). Each GPU computing node is equipped with 1 NVIDIA
TESLA K80 GPGPU accelerator card (2.911TFlops). Nodes are connected by
Intel Omni-Path high-speed computing network. The peak performance of the
whole system is 211.2TFlop/s, and the memory is 64GB. The OS used by the
cluster is Redhat7.2. The MPI library used for this experiment is MPICH.
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For the experimental analysis, we leveraged a sparse (symmetric positive
definite) coefficient matrix arising from the finite-difference method of a 3D
Poisson’s equation with 27 stencil points. In the following experiment, we use
the ill-conditioned matrix in [6]. This generator scales the first row and the first
column of the matrix so that dot product attains specified condition number
and, hence, the matrix.

The right-hand side vector b in the iterative solvers was always initialized to
the product A(1,1,...,1)7, and the PBICGSTAB iteration was started with the
initial guess ¢ = 0. The parameter that controls the convergence of the iterative
process is ||77||2 < 1078, where j is the number of iterations.

5.2 Accuracy and Reproducibility Evaluation

In this section, we report the results of the accuracy and reproducibility eval-
uation. Additionally, we derive a sequential version of the code that relies on
the GNU Multiple Precision Floating-Point Reliably (MPFR) library [5] - a C
library for multiple (arbitrary) precision floating-point computations on CPUs -
as a highly accurate reference implementation. This implementation uses 2048
bits of accuracy for computing dot product (192 bits for internal product of two
floating-point numbers) and performs correct rounding of the computed result
to double precision.

We analyzed the reproducibility of the reproducible parallel PBiCGSTAB.
Hereafter, we will call them ExBLAS and ReproBLAS for short. In ReproBLAS,
there is a parameter K controlling accuracy, when there is no special description,
we take the default K = 3. With double as the working precision, when W =
40, K = 3, |T — T| < n2**(=2max |z;| + 7 x 2753 Z?;& zj|. When K > 3,
T —T| ~7x 2% Z?;(} x|, therefore choose the smallest K that can achieve
the highest summation accuracy. In Table 1, the matrix size is n = 4,019,679
and the condition number is 10'2. Table 1 shows the 2-norm of the intermediate
and final residual of the PBiCGSTAB solver in each iteration, i.e. ||r7||2. Table 2
shows the 2-norm of the intermediate and final residual of the ReproBLAS in each
iteration when K = 2 and K = 3. We used one node on the Sugon cluster with
24 processes each pinned to one core. We present only few iterations, however
the difference is present on all iterations. The ExBLAS implementation delivers
both accurate and reproducible results that are identical with the MPFR library.
The ReproBLAS implementation delivers reproducible results. Furthermore, we
have also computed the direct error (see Table 3). Table 3 shows the infinite
norm of the approximate and exact solutions of the PBiICGSTAB solver in each
iteration, i.e. |27 —2*| . Note that the result on ExBLAS is identical to MPFR.
Table 4 shows the infinite norm of the approximate and exact solutions of the
ReproBLAS in each iteration when K =2 and K = 3.

5.3 Performance Evaluation

We first analyze the performance of regular dot product, ExBLAS-based and
Reproblas-based dot product. Hereafter, we will call them ExBLASdot and
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Table 1. Accuracy and reproducibility comparison on the intermediate and final resid-
ual against MPFR for a matrix with condition number of 10*2. The matrix is generated
following the procedure from Section 5.1 with n = 4,019, 679(1593).

Residual
Tteratiof] MPFR Original 1 proc Original 48 proc ExBLAS 48 proc ReproBLAS 48 proc(K = 3)
0 6.199998000000062¢ | 14 |6.199998000000064¢ 14 |6.199998000000064¢ 114 ||6.199998000000062¢ |14 ||6.199998000000062¢ | 14
2 7.773390285775344e+07 |7.773396235537358e+07 |7.773396235219534e+07 |[7.773390285775344e4+07 ||7.773396235223217e+07
18 1.800391538018418e 402 [9.920664169207433e+02 |7.848983492248201e 102 ||1.800391538018418e02 ||3.647699220519532¢+01
19 4.527368042985061e401 [9.920511721210302¢+02 |1.708520638885489¢+02 |[4.527368042985061e+01 |[|1.377536701580542¢+01
38 1.572043303241533¢-06  |3.155149206702169¢-03  |2.941521670086655¢-04 1.572043303241533¢-06 2.215388966485101e-07
39 2.453500079721513e-07  |1.269826897510669¢-03  |2.783864941272381e-04 2.453500079721513e-07 3.834134369067694¢-08
40 3.854451111920641e-08  [1.237807074881981e-03  [4.132770031308131e-05 3.854451111920641¢-08 6.701333941850470e-09
41 6.068369560766913e-09  [4.530740507879870e-05  [4.060713358832429¢-05 6.068369560766913¢-09
49 7.217500962630385¢-08  |2.373922675763727e-08
50 1.275390456398120e-08  |3.914596612172984e-09
51 9.575558932042771e-09

Table 2. Comparison of the reproducibility of the intermediate and final residuals of
the matrix with a condition number of 10'2. The matrix is generated following the
procedure from Section 5.1 with n = 4,019, 679(159%).

Rosidual
Tteratiof] ReproBLAS 24 proc(K = 2) |ReproBLAS 48 proc(K = 2) [ReproBLAS 24 proc(K = 3) [[ReproBLAS 48 proc(K = 3)
0 6.199998000000062¢ 1 14 6.199998000000062¢ + 14 6.199998000000062¢ 1 14 6.199998000000062¢ 1 14

2 7.773396235223238¢+07 7.773396235223238¢+07 7.773396235223217e+07 7.773396235223217e+07

18 5.598082147961621e+02 5.598082147961621e+02 3.647699220519532e+01 3.647699220519532e01

19 1.401936884527657c+02 1.401936884527657e+02 1.377536701580542¢+01 1.377536701580542¢+01

38 6.514290840710756e-05 6.514290840710756e-05 2.215388966485101e-07 2.215388966485101e-07

39 1.434720487921011e-05 1.434720487921011e-05 3.834134369067694e-08 3.834134369067694e-08

40 1.187160733888966¢-05 1.187160733888966¢-05 6.701333941850470e-09 6.701333941850470e-09

41 2.536931803781759¢-06 2.536931803781759¢-06

42 2.193618822360498¢-06 2.193618822360498¢-06

43 2.815475613230721e-07 2.815475613230721e-07

44 3.861719136834829¢-08 3.861719136834829¢-08

45 7.197952430468738¢-09 7.197952430468738¢-09

Table 3. Direct error comparison against MPFR for a matrix with condition number
of 102, The matrix is generated following the procedure from Section 5.1 with n =
4,019,679(159%).

Direct error

Iteratio

|

MPFR

Original 1 proc

Origina 48 proc

ExBLAS 48 proc

ReproBLAS 48 proc(K = 3)

0

2

18
19
38
39
40
41
49
50
51

1.000000000000000e+-00
9.468739489168004e+04
3.759048477414416e-01
5.816123121107641e-02

8.071978641055466e-10
8.072296164840509e-10
8.076090907138678e-10
8.076523894118282e-10

1.000000000000000e+-00
9.468739489167897e+04
2.473965872164404e-+00
3.747532604204130e-01

4.484255959891215e-07
4.481986183302311e-07
1.625782982683788e-07
1.630189810919447e-07
7.744984653612619e-10
7.744849206403615e-10

1.000000000000000e+-00
9.468739489167897e+04
4.032131048428883e-01
4.049929311272970e-01

.594126798343254e-07
.417345129097527e-08
.417765470636880e-08
.606841825209983e-09
.554250641168437e-10
.554250641168437e-10

0000 W W L H

.000000000000000e+-00
.468739489168004e+-04
.759048477414416e-01
.816123121107641e-02

S UTWw O =

8.071978641055466e-10
8.072296164840509e-10
8.076090907138678e-10
8.076523894118282e-10

1.000000000000000e+00
9.468739489167897e+04
5.105001804315423e-02
9.454486314514732e-03

1.228213974968639e-09
1.228311674594806e-09
1.228331658609250e-09

7.745686314564182e-10

Table 4. Direct error comparison of matrix with condition number 10'2. The matrix
is generated following the procedure from Section 5.1 with n = 4,019, 679(159%).

Residual

Tteratiof] ReproBLAS 24 proc(K — 2) |ReproBLAS 48 proc(K — 2) |ReproBLAS 24 proc(K — 3) ReproBLAS 48 proc(K — 3)
0 1.000000000000000e+-00 1.000000000000000e+00 1.000000000000000e+-00 1.000000000000000e+-00
2 9.468739489167897e+-04 9.468739489167897e+04 9.468739489167897e+04 9.468739489167897e+-04
18 2.044747069809166e-01 2.044747069809166e-01 5.105001804315423e-02 5.105001804315423e-02
19 2.044624037738916e-01 2.044624037738916e-01 9.454486314514732e-03 9.454486314514732e-03
38 3.604734521989172e-08 3.604734521989172e-08 1.228213974968639e-09 1.228213974968639e-09
39 6.525545215296802e-09 6.525545215296802e-09 1.228311674594806e-09 1.228311674594806e-09
40 1.458647203023133e-09 1.458647203023133e-09 1.228331658609250e-09 1.228331658609250e-09
41 1.229433221894283e-09 1.229433221894283e-09

42 1.230030521881531e-09 1.230030521881531e-09

43 1.230010315822483e-09 1.230010315822483e-09

44 1.230061830170825e-09 1.230061830170825e-09

45 1.230070045821208e-09 1.230070045821208e-09
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ReproBLASdot for short. We use the same data generation method as the
ReproBLAS library [7], i.e. a; = sin(2.0 x 7 x (i/n — 0.5)), b; = sin(2.0 % 7
(¢/n —0.5)), n = 16200000. Table 5 reports the execution time ratio of different
dot products (averaged for 5 different executions). Figure 1 (a) reports the to-
tal execution time (averaged for 5 different executions) of the reproducible dot
product for this cluster normalized with respect to the execution time of the
regular MPI version, when we vary the number of cores. From table 5 and figure
1 (a), we can see that ReproBLASdot is faster than ExBLASdot product.

Then, we analyzed the performance of the reproducible parallel PBiCGSTAB.
Our experiments evaluate the strong scaling of this reproducible implementation
compared against the regular (non-reproducible) version of PBiCGSTAB using
MPI. We analyze the performance of the three implementations in the afore-
mentioned cluster. Specifically, in order to assess the strong scalability, we fix
the matrix size to n = 16,003,008 and increase the number of cores. Table 6
reports the execution time ratio (averaged for 5 different executions) of the dif-
ferent MPI PBiCGSTAB solvers on this platform, varying the number of cores
(from 48 to 144 in Sugon) as we maintain the problem size, the number of it-
erations in parentheses. Figure 1 (b) reports the total execution time (averaged
for 5 different executions) of the reproducible MPI PBiCGSTAB solvers for this
cluster normalized with respect to the execution time of the regular MPI ver-
sion, when we vary the number of cores. From table 6 and figure 1 (b), we can
see that ReproBLAS is faster than ExBLAS. We also found that ReproBLAS is
faster than regular MPI version when using 72, 96, and 144 processes, because
ReproBLAS has fewer iterations, so the total time is shorter when the same accu-
racy conditions are met. It can be seen from this example that although the dot
product uses a reproducible dot product, each iteration pays a certain amount of
overhead, but it may reduce the total number of iterations and reduce the total
overhead. Table 7 reports the average time ratio of each iteration (averaged for
5 different executions) of the different MPI PBiCGSTAB solvers on this plat-
form, varying the number of cores (from 48 to 144 in Sugon) as we maintain the
problem size. Figure 2 (a) reports the average time of each iteration (averaged
for 5 different executions) of the reproducible MPI PBiCGSTAB solvers for this
cluster normalized with respect to the execution time of the regular MPI version,
when we vary the number of cores. We fixed the total number of iterations to 60,
figure 2 (b) reports the total execution time (averaged for 5 different executions)
of the reproducible MPI PBiCGSTAB solvers for this cluster normalized with
respect to the execution time of the regular MPI version.

From our experiment, we can observe the following facts:

— The dot product based on ReproBLAS is faster than that based on ExBLAS.

— Reproducible parallel PBiICGSTAB based on ExBLAS library can get the
same results as MPFR. It is reproducible and accurate.

— Reproducible parallel PBICGSTAB based on ReproBLAS library has the
same result no matter how many processes are used, but it cannot get the
same result as MPFR.
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Table 5. Different MPI implementations of dot product on Sugon, where one process
is pinned to one core.

Execution time ratios
Number of cores

Regular dot ExBLASdot ReproBLASdot

48 1 2.171 1.041
72 1 1.588 1.020
96 1 1.588 1.051
120 1 1.632 1.007
144 1 1.380 1.057

Table 6. Strong scalability of different MPI implementations of the PBICGSTAB
method on Sugon, where one process is pinned to one core.

Execution time ratios
Number of cores

Regular ExBLAS ReproBLAS

18 1(43)  1.314(43) 1.009(43)
72 1(50)  1.081(43) 0.881(43)
96 1(47)  1.129(43) 0.932(43)
120 1(43)  1.195(43) 1.012(43)
144 1(50)  1.028(43) 0.867(43)

Table 7. Time for one iteration of different MPI implementations of the PBICGSTAB
method on Sugon, where one process is pinned to one core.

Execution time ratios
Number of cores

Regular ExBLAS ReproBLAS

48 1 1.314 1.009
72 1 1.257 1.024
96 1 1.234 1.018
120 1 1.195 1.012
144 1 1.197 1.009
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— When K = 2, the reproducible parallel PBiCGSTAB based on the ReproB-
LAS library is also reproducible, but the result is different from K greater
than or equal to 3.

— For ill-conditioned matrices, using a high-precision library to calculate the
inner product may reduce the number of iterations. In our experiment, when
the condition number is 104, there is only one difference in the number of
iterations. When the condition number is 10'2, there is a difference of 10 in
the number of iterations.

— The reproducible parallel PBICGSTAB based on the ReproBLAS library is
faster than the reproducible parallel PBiCGSTAB based on the ExBLAS
library.

6 Related Work

Accuracy and reproducibility issues have different motivations and natures [10],
but they are due to the same reason, which is caused by rounding errors. Al-
though achieving reproducibility will not improve accuracy, increasing accuracy
will help reduce the severity of reproducible problems. Here, we briefly introduce
the reproducible work of hardware manufacturers, several BLAS, and Krylov
subspace methods.

Intel has introduced a version of their Math Kernel Library (MKL) that sup-
ports reproducibility under certain restrictive conditions [11]. NVIDIA’s cu BLAS
routines are, by default, reproducible under the same conditions [12].

Collange, Defour, Graillat and Iakymchuk proposed ExBLAS [4]. ExBLAS
is based on combining long accumulators and floating-point expansions in con-
junction with error-free transformations. Demmel and Nguyen proposed a series
of reproducible summation algorithms [13,14]. Ahrens, Nguyen, and Demmel
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extended their concept to few other reproducible BLAS routines, distributed
as the ReproBLAS library [7]. Mukunoki and Ogita presented their approach
to implement reproducible BLAS, called OzBLAS [15], with tunable accuracy.
Chohra introduced RARE-BLAS (Reproducible, Accurately Rounded and Effi-
cient BLAS) that benefits from recent accurate and efficient summation algo-
rithms [16, 17].

Regarding the reproducible Krylov subspace method, Iakymchuk et al. re-
alized the reproducibility of pure MPI parallel Preconditioned CG on the CPU
based on ExBLAS, use Jacobi preconditioner [6]. Further, they realized the re-
producibility of the pure MPI parallel Preconditioned BiCGSTAB algorithm
on the CPU based on ExBLAS, use Jacobi preconditioner [18]. Furthermore,
they have also achieved reproducibility in the MPI+OpenMP environment [19].
Mukunoki et al. realizes the reproducibility of the CG solver on the CPU and
GPU [10].

7 Conclusions and Future Work

We emphasized the reproducibility problem of the parallel Preconditioned BICGSTAB
algorithm. We at first analyzed the MPI implementation of the PBiCGSTAB
method and identified two major sources of non-deterministic behavior, namely
dot products and compiler optimization. The latter may change the order of oper-
ations or replace some of them in favor of the fused multiply-add (fma) operation.
To tackle compiler interference in computations, we reconstruct computations
as well as explicitly invoke fma instructions. For reproducible and distributed
dot product, we use two methods, which are based on ExBLAS and based on
ReproBLAS. Both the reproducible parallel preconditioned BICGSTAB method
realize the reproducibility of the number of iterations, intermediate and final
residuals and the final output vector. The ExBLAS method is more accurate
than the ReproBLAS method, but the ReproBLAS method is faster. Since the
dot product accounts for a relatively low percentage of computation time in the
parallel preconditioned BICGSTAB, when we fix the total number of iterations
to 60, the average time cost of reproducible parallel preconditioned BiICGSTAB
method based on ExBLAS is 1.23 times that of the non-reproducible parallel
preconditioned BiCGSTAB, the average time cost of reproducible parallel pre-
conditioned BiCGSTAB method based on ReproBLAS is only 1.02 times that
of the non-reproducible parallel preconditioned BiICGSTAB.

In the future, we will add a comparison with OzBLAS and RARE-BLAS. We
also intend to compare reproducible parallel preconditioned BICGSTAB method
based on four BLAS implementations in a mixed MPI+OpenMP environment.
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