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Nuclear shape coexistence is the phenomenon in which distinct shapes occur within the same nucleus and at a similar energy. In this work, we provide an overview of the experimental investigations of shape coexistence, focusing on those regions of the nuclear chart that have been the most actively investigated within the past decade. In particular, we focus on coexistence phenomena at low angular momentum and on the new experimental information, placed within the context of previous results. We first give a summary of the experimental signatures that can be used for assessing shape coexistence, and then discuss the evidence for shape coexistence from experimental results, with particular attention paid to regions where its presence has been suggested along isotopic or isotonic chains, and in regions where "islands" of such structures have been proposed. We conclude with an overview, with an emphasis on the emerging regions where indications for multiple shape coexistence exist.

Introduction

The atomic nucleus, composed of an ensemble of protons and neutrons, can be viewed as a macroscopic object in a way that is analogous to a liquid drop. Using a set of coordinates that defines the nuclear surface, rather than describing the motions of the individual particles, from the 1/r potential that the electrons experience due to the electromagnetic force originating from the point-like nucleus. In contrast, the nucleus can take a variety of shapes that include spherical, prolate, oblate, etc., that emerge as a consequence of the more complicated nucleonnucleon interaction. The shape of a nuclear state depends on the particularities of the microscopic wave function, and thus it may change not only as a function of the number of nucleons, but it may also vary from one state to another within the same nucleus. This latter possibility, referred to as shape coexistence, was first suggested by Morinaga [1] nearly 60 years ago for the 6.05-MeV 0 + state in 16 O that was deformed while the ground state possessed a spherical shape. What began as a rare and exotic phenomenon is now suggested to be widespread and perhaps lurking in nearly every nucleus [2]. Establishing shape coexistence is challenging and requires highly-refined experimental techniques, but provides one of the most demanding and stringent tests of modern theories and models of the nuclear structure. It is for this reason that studies of shape coexistence are at the forefront of nuclear structure research.

There is no strict, universal, definition of shape coexistence. The earliest examples of shape coexistence, starting with 16 O and expanded upon in the light-mass region, were interpreted within a view of well-developed minima in the potential energy surface of the nucleus. The early calculations often explicitly incorporated deformed 2p -2h and 4p -4h configurations that arose from promotion of particles across a closed major shell, as these kinds of solutions resulted from Hartree-Fock calculations [3]. The simple picture of states residing in a particular potential well that is separated by a significant barrier from other minima has guided much of our thinking. Figure 1 shows the results of beyond-mean-field calculations for 186 Pb [4]. In this work, the Skyrme interaction SLy6 was used for the Hartree-Fock-Bogoliubov mean-field calculation, and a variational calculation was performed following particle-number and angular momentum projections of the mean-field wave functions in order to mix configurations with different deformation β 2 (defined in Sect. 2). The states depicted in Fig. 1 reveal four unique sets that can be classified as a spherical ground state and 2 + state, a prolate band with a band head with β 2 ≈ 0.32, an oblate band with a band head with β 2 ≈ -0.2, and another prolate band with a band head with β 2 ≈ 0.45. An eigenstate does not necessarily "reside" in a particular potential well, but rather at an average deformation given by the weights associated with the mean-field states.

Poves [5] states "Shape coexistence is a very peculiar nuclear phenomenon consisting in the presence in the same nuclei, at low excitation energy, and within a very narrow energy range, of two or more states (or bands of states) which: (a) have well defined and distinct properties, and, (b) which can be interpreted in terms of different intrinsic shapes." In the context of the present work, we use a definition of shape coexistence that is closely aligned to this and also the intent stated by Wood and co-workers [6] "The meaning that we assign to coexistence here is to imply in general, coexisting collective structures and, in particular, coexisting shapes." The first part of this statement eliminates the trivial cases of assigning, for example, shape coexistence to single-particle states near closed shells possessing different quadrupole moments that arise from harmonic oscillator wave functions. The difficulty arises in the definition of "distinct" or "different intrinsic" shapes. While it may be somewhat straightforward to cite coexistence when it involves spherical states, like those at or near closed shells, and deformed configurations that are obvious due to the observation of rotational bands, large quadrupole moments, etc., it becomes very subtle when it involves different deformed configurations. For example, we would claim coexistence Figure 1: States predicted in beyond-mean-field calculations for 186 Pb for the parity and angular momentum, I π , indicated and with projection K = 0 as a function of the quadrupole deformation parameter β 2 . The states are plotted with their excitation energy relative to the lowest 0 + state predicted, and are located on the horizontal axis at the effective mean deformation. The curves are the calculated particle-number-and angular-momentum-projected potential energies, with the lowest for I π = 0 + , and increasing with spin. The large energy gain for the states compared to the potential curves arises from the mixing of the configurations. Figure taken from Ref. [4].

when it involves states (or set of states) that might possess the same magnitude of deformation |β 2 |, but would have different and distinct values of the shape parameter γ, as in the above example in 186 Pb of oblate and prolate states. A less clear demarcation line occurs, however, when dealing with states of the same type of shape, e.g. prolate, but different values of β 2 , or similar values of β 2 and different values of γ that do not lie at the extremes of prolate (γ = 0 • ) or oblate (γ = 60 • ). A similar ambiguity arises in the use of excitation energies as a guide; a state at an excitation energy of 6.05 MeV, as it is the case for the first excited state in 16 O, might be considered as a high-energy state in heavy nuclei. We thus avoid a hard definition of shape coexistence, and leave it fluid so that it can be adapted to the structures observed in each region of the nuclear chart.

A common feature behind all examples of shape coexistence, and indeed the reason behind the existence of competing shapes within a narrow energy window, is the tremendous gain in energy that arises from the correlations amongst the particles. One of the common mechanisms for generating shape coexistence is due to the promotion of multiple particles (for example protons) across shell gaps, thereby increasing the number of valence particles and holes that can interact with valence particles of the other type (neutrons in this example). The correlation energies that arise from both pairing and quadrupole-quadrupole interactions largely offset, and sometimes overcome, the energy cost of promoting particles from one orbital to another. The fact that the nucleus re-organizes into configurations that possess a different deformation from the original "normal-ordered" state (i.e., without the multi-particle multi-hole excitation) may impact many nuclear properties, perhaps even the location of the so-called driplines [7]. The study of the properties of shape-coexisting states enables us to investigate the correlations of particles under different conditions, i.e., deformation, within the same nucleus.

There have been a number of reviews of shape coexistence, and here we mention a few only. Some of the earlier reviews by Heyde et al. [3] on odd-mass nuclei, and Wood and co-workers [6] on even-even nuclei, remain as definitive studies that provide a broad view of the background material. Approximately a decade ago, a further detailed review by Heyde and Wood [2] gave a comprehensive update of the tremendous progress of the field in the intervening decades since the earlier reviews. This was complemented by a special issue (see the introduction by Wood and Heyde [8]) of J. Phys. G that contained submissions from a number of authors reviewing particular aspects of shape coexistence. In the present contribution, we describe the recent progress on the experimental evidence for shape coexistence for regions where it has been recently suggested to emerge, as well as new results for those regions where it has been well established. For the latter, we attempt to place the new measurements in the context of previous results in order to provide a more complete picture. We do not intend to present an over-arching review on all aspects of shape coexistence -for example, we generally do not discuss superdeformed structures at high spin, nor clustering phenomena, nuclear halos, molecular states, etc. -but our focus is on shape coexistence at low spin, and ideally those that manifest at spin 0. We also do not treat the theoretical progress that has been achieved, or possible future developments, as we could not do these subjects proper justice, but instead direct the reader to the other sources (e.g., articles contained within Ref. [8] and also Refs. [2,[9][10][11], for example). Further, we do not discuss those regions where shape coexistence has been established, but for which there have been no, or very few, recent experimental studies. The reflections herein are biased to our own interests, and we hope our colleagues will forgive us if we do not explicitly mention their work.

Basic concepts and experimental fingerprints of shape coexistence

Shape coexistence can be studied via a variety of experimental probes. The first indication of nuclear deformation can be obtained from the level energies, or alternatively from the electromagnetic transition strengths. In particular, observation of low-lying 0 + states in even-even nuclei is usually interpreted as a hint of shape coexistence. The observation of rotational bands evidences an enhanced deformation, which can be estimated from their moments of inertia.

For odd-mass and odd-odd nuclei, the spectroscopic quadrupole moment of the ground state can be measured using laser spectroscopy, bringing direct information on the charge distribution in the nucleus. If, however, a different microscopic configuration appears low in excitation energy, those simple observables may be influenced by mixing of the wave functions corresponding to different configurations. These methods are also obviously not suited to investigate properties of short-lived non-yrast states built on different microscopic configurations. Therefore a more sophisticated approach is mandatory, involving determination of complete sets of electromagnetic transition rates between low-lying excited states, and static quadrupole moments. Those can be further analysed in terms of quadrupole invariants resulting from the Kumar-Cline sum rules [12,13] yielding model-independent information on shape parameters of individual states. Measurements of E0 transition strengths bring invaluable complementary data on configuration mixing, and microscopic components of the wave functions can be deduced from nucleon-transfer cross sections.

Consideration of all of the observables is important when assigning configurations and making conclusions about the structure of states.

In the following sections, we present a brief introduction to observables related to experimental shape-coexistence studies including basic formulas relating them to nuclear deformation.

Nuclear deformation and level energies

If we begin with the usual assumption that nucleus can be modelled as a liquid drop, which is an underlying concept of the Bohr model [START_REF] Bohr | Nuclear Structure, Vols. I & II[END_REF][START_REF] Eisenberg | Nuclear Theory: Nuclear Models[END_REF], the nuclear surface can be described as a series of spherical harmonics. The most important contribution to departure from a spherical shape comes from quadrupole deformation, and thus a general expression can be reduced to

R(θ, φ) = R 0         1 + µ α * 2µ Y 2µ (θ, φ)         , (1) 
where R 0 is the radius of the nuclear surface in the spherical configuration, Y 2µ are the spherical harmonics of degree 2, order µ, and α 2µ are the expansion parameters describing the deformation of the nuclear surface. This equation describes the nuclear shape with an arbitrary orientation in space. A more natural description can be achieved by applying a transformation into the principalaxis frame, using the Wigner rotation matrices, D J νµ (α, β, γ), via

a 2µ = ν D 2 νµ (α, β, γ)α 2ν (2) 
with the Euler angles (α, β, γ) chosen such that a 2±1 = 01 . The commonly used deformation parameters are defined as

a 20 = β 2 cos γ, a 22 = 1 √ 2 β 2 sin γ (3) 
and the radii along the principal-axis directions are

R k = R 0 + δR k (4) 
with

δR k = 5 4π R 0 β 2 cos γ - 2πk 3 . (5) 
Figure 2 displays the nuclear shapes calculated for β 2 = 0.35 and γ = 0 • (prolate) and γ = 60 • (oblate).

With the breaking of rotational symmetry, deformed systems can possess rotational excitations built on each intrinsic state of the nucleus, which are the familiar rotational bands observed in the majority of nuclei. The rotational states can be described via moments of inertia, and provided that the underlying intrinsic state does not change, they evolve smoothly as a function of the angular momentum. With the assumption of axial symmetry, only rotations about an axis perpendicular to the symmetry axis are permitted, and it is possible to define a moment of inertia, J, via the relationship

E = 2 2J I(I + 1). ( 6 
)
Using the definition of the magnitude of the angular momentum as J = √ I(I + 1), we can extract a kinematic moment of inertia via

J (1) 2 = 1 2 dE dJ 2 -1 . (7) 
Taking into account the discrete nature of the level energies, such that ∆E = E(I) -E(I -2) = E γ , results in

J (1) 2 ≈ 2I -1 E γ . ( 8 
)
While this is valid for large angular momenta, we adopt this definition for all values of spin I. The identification of shape coexistence often begins through the observation of states at excitation energies where they are not expected, or from trends observed in energy systematics. The former implies that we have a high degree of confidence in our knowledge of the structure of the 165 ground state so as to predict the excitation spectrum. An example of this are the "additional" 0 + and 2 + states that appeared in the vicinity of the presumed two-phonon vibrational triplet in 112,114 Cd that were identified as problematic in the early 1960s [START_REF] Motz | [END_REF]17]. The use of excitation energy systematics is typically far more reliable than focusing on individual states in nuclei, although the conjectures must be followed with detailed investigation to provide proof, for example by measurements of quadrupole moments or other quantities that are sensitive to the nuclear shape.

In the vicinity of closed shells or sub-shells, the excitation energies of shape-coexisting states are often observed to present a parabolic-like behaviour as a function of neutron number when traversing an isotopic chain (in principle, it is possible to have a similar parabolic behaviour for an isotonic chain, although identifying such structures has proven to be difficult, see, e.g., Urban et al. [18] for suggested neutron intruder excitations in the Sr -Sn region). This behaviour is stemming from the mechanism believed to underlie shape coexistence in these nuclei, which is illustrated, in the case for medium to heavy nuclei, in Fig. 3. An estimation of the energy of the lowest 0 + state formed from a proton (π) 2p -2h configuration is [2] E i = 2( j πj π ) -∆E pair + ∆E M + ∆E Q (9) where the term ( jj ) is the energy needed to promote a particle from an orbital with energy j to an orbital with energy j . The term ∆E pair is the contribution to the pairing energy, defined as the difference in the pairing energy of the ground state and the 2p -2h state. The ∆E M term is the change in the proton-neutron monopole interaction energy, and ∆E Q is the change in the protonneutron quadrupole interaction energy. As shown in Ref. [19], an expression for the quadrupole interaction energy is given by

∆E Q 4κN ν Ω π -N π Ω ν -N ν ( 10 
)
where N π (N ν ) is the number of valence proton (neutron) pairs outside the closed shells, Ω π (Ω ν ) are the degeneracies of the proton (neutron) orbitals involved, and κ is the strength parameter for the residual quadrupole-quadrupole force κ Qπ • Qν . Is it this term that is mainly responsible for the parabolic-like behaviour of the energies of the so-called "intruder" states.

In many cases, identification of shape-coexisting states is based on the observation of deformed structures appearing at low excitation energy in nuclei that have spherical or weakly deformed ground states, which is related to a simple fact: it is far easier to identify rotational-like structures in nearly spherical nuclei that have a low level density than vice versa.

Quadrupole moments

The spectroscopic electric quadrupole moment Q s of a state of spin I is defined as the diagonal matrix element of the µ = 0 component of the M(E2, µ) quadrupole operator, with states of maximum M value: 

where I M(E2) I is the reduced diagonal matrix element of the M(E2, µ) operator. In order to relate the intrinsic quadrupole moment Q 0 , defined in the principal-axis frame, and the spectroscopic quadrupole moment Q s , the transformation as used in Eq. 2 must be applied. For example, for an axially symmetric rotor the reduced matrix elements of the M(E2, µ) operator can be related to Q 0 as follows:

KI f M(E2) KI i = (2I i + 1)(I i , K, 2, 0|I f , K) 5 16π eQ 0 , (12) 
where K denotes the projection of the nuclear spin I on the symmetry axis of the nucleus. Combining Eqs. 11 and 12 yields the following relation between Q s and Q 0 :

Q s = (I, K, 2, 0|I, K)(I, I, 2, 0|I, I)Q 0 = 3K 2 -I(I + 1) (I + 1)(2I + 3) Q 0 (13) The spectroscopic quadrupole moment vanishes for spins of 0 and 1/2, even if Q 0 is nonzero, i.e., for a state that is deformed, since they have I = K. Thus, the ground states for all even-even nuclei, and odd-A nuclei with I = 1/2, have Q s = 0. The electric quadrupole operator can be expressed as

M(E2, µ = 0) = ρ( r)r 2 Y 20 (θ, φ) d 3 r (14) 
and in order to proceed, a model of the charge density must be adopted. For simplicity, usually a constant density is assumed (we only consider the use of collective variables, as defined above, rather than using single-particle coordinates), and thus 

M(E2) = 3Z 
Using the expression for the radius as

R(θ, φ) ≈ R 0 1 + β 2 Y 20 (θ, φ) (16) 
which does not define the shape of an ellipsoid, leads to the relation

Q 0 = 3 √ 5π ZR 2 0 β 2        1 + 2 7 5 π β 2 + . . .        ≈ 3 √ 5π ZR 2 0 β 2 1 + 0.36 β 2 . ( 17 
)
An alternative expression found in the literature is

Q 0 = 3 √ 5π ZR 2 0 β e f f        1 + 1 8 5 π β e f f        ≈ 3 √ 5π
ZR 2 0 β e f f 1 + 0.16 β e f f (18) that arises from the definition of the quadrupole moment of a symmetric ellipsoid, and with β e f f defined as the difference between the semi-major and semi-minor axis lengths

β e f f = 4 3 π 5 ∆R R . (19) 
Herein, we will use the definition of β 2 from Eq. 17.

The intrinsic quadrupole moment Q 0 can be calculated, under model assumptions, from the measured spectroscopic quadrupole moment Q s or, alternatively, from the measured B(E2) values. Equations 13 and 12 provide the necessary relations for the most common approximation of an axially symmetric rotor. An intrinsic quadrupole moment derived from a B(E2) value via Eq. 12 is commonly referred to as transitional quadrupole moment Q t .

Magnetic moments

A comprehensive discussion of various aspects of nuclear magnetic moments and their experimental studies can be found, for example, in Refs. [20,[START_REF] Castel | Modern Theories of Nuclear Moments[END_REF]. Here we briefly present the basic 195 definitions and aspects important for shape-coexistence studies.

The magnetic dipole moment of a nuclear state with spin I, µ(I), is defined as the diagonal matrix element of the z component of the μ magnetic dipole operator, with states of maximum M value, and can be further related to the nuclear gyromagnetic factor g:

µ(I) = I, M = I|µ z |I, M = I = gIµ N ( 20 
)
where µ N is the nuclear magneton.

Since μ is a one-body operator, it can be written as a sum of single-particle operators, each of them acting on a specific valence particle. Moreover, one can consider orbital and spin gyromagnetic factors separately, which results in the following expression for the magnetic dipole moment µ:

µ = i µ i = i g i l l i + g i s s i (21) 
The orbital gyromagnetic factors are g π l = 1 for protons and g ν l = 0 for neutrons. The spin gyromagnetic factors, obtained experimentally for free protons and neutrons, are g π s = 5.5845 and g ν s = -3.8263, respectively.

The single-particle magnetic moment for a valence nucleon coupled to an inert core is expressed as follows:

µ =            j -1 2 g l + 1 2 g s for j = l + 1/2 j j + 1 j + 3 2 g l -1 2 g s for j = l -1/2, ( 22 
)
which assuming the experimental values for gyromagnetic factors leads to the following expressions for the so-called Schmidt values:

µ =          j + 2.
293 for j = l + 1/2 j j + 1 ( j -1.293) for j = l -1/2 (23) for protons and

µ =          -1.913 for j = l + 1/2 -1.913 j j + 1 for j = l -1/2 (24) 
for neutrons. These expressions, while providing limiting values, reflect the important differences between the values obtained for wave functions that are dominated by valence protons or neutrons. The deviations from Schmidt values, commonly observed, are due to the influence of other nucleons via meson-exchange currents as well as core polarisation [START_REF] Castel | Modern Theories of Nuclear Moments[END_REF], and therefore the single-particle moments are usually calculated using effective proton and neutron g factors. Nonetheless, nuclear magnetic moments remain very sensitive to the specific orbitals which are occupied by the valence nucleons, especially in the case of unpaired nucleons. The sensitivity to the number of nucleon pairs occupying a given orbital is much lower, and the influence of nucleon-pair excitations on the magnetic moments is referred to as second-order core polarisation.

Kumar-Cline sum rules

The electric quadrupole operator is a rank-2 spherical tensor, and thus transforms in a similar manner as the shape coordinates shown in Eq. 2. In the principal-axis frame, this tensor, M (E2), can be expressed using two parameters:

M (E2, µ = 0) = Q cos δ M (E2, µ = ±2) = 1 √ 2 Q sin δ. (25) 
By definition, in this frame of reference the M (E2, µ = ±1) components vanish. The parameters Q and δ are analogous to the deformation parameters β 2 and γ, but instead of the mass distribution they represent the quadrupole charge distribution. The electromagnetic matrix elements measured in the laboratory frame and the deformation parameters defined by Eq. 25 can be linked via Kumar-Cline sum rules [12,13]. The products of the E2 operators coupled to zero angular momentum are rotationally invariant and thus their expectation values can be expressed by the Q and δ on one hand, and by products of I j M(E2) I i E2 matrix elements on the other hand, as shown below for the lowest-order invariant:

(-1) 2I i √ 2I i + 1 j I i M(E2) I j I j M(E2) I i 2 2 0 I i I i I j = 1 √ 5 (2I i + 1) j I j M(E2) I i 2 = 1 √ 5 Q 2 ( 26 
)
where {} is a 6 j symbol. The sum formally extends over all states I j that can be reached from the state in question I i via a single E2 transition, however, typically only a few key states contribute to it. In particular, for the ground state of even-even nuclei, the sum is generally dominated by the coupling to the 2 + 1 state, which contributes well over 90% of the total. Thus

Q 2 0 + 1 ≈ 2 + 1 M(E2) 0 + 1 2 (27) 
leading to the well-known expression linking β 2 and B(E2; 0 + 1 → 2 + 1 ):

β 2 2 ≈ 4π 3ZR 2 0 B(E2; 0 + 1 → 2 + 1 )/e 2 . ( 28 
)
Products of three quadrupole tensors coupled to angular momentum zero yield

(-1) 2I i 2I i + 1 jk I i M(E2) I j I j M(E2) I k I k M(E2) I i 2 2 2 I k I i I j = 2 35 Q 3 cos 3δ . ( 29 
)
For states with an axial prolate shape cos 3δ = 1; for axial oblate states cos 3δ = -1; for maximally triaxial or spherical states cos 3δ ≈ 0. Often, in evaluating experimental data, the approximation is made

Q 3 cos 3δ ≈ Q 2 3/2 cos 3δ . ( 30 
)
The evaluation of the parameter cos 3δ requires knowledge of a more extensive set of matrix elements, including their relative signs. If we consider a 0 + 1 ground state, the expression in Eq. 29 reduces to

Q 3 cos 3δ = - 7 10 jk 0 + 1 M(E2) 2 + j 2 + j M(E2) 2 + k 2 + k M(E2) 0 + 1 . (31) 
To a very good approximation, the terms 0

+ 1 M(E2) 2 + 1 2 + 1 M(E2) 2 + 1 2 + 1 M(E2) 0 + 1 and 0 + 1 M(E2) 2 + 1 2 + 1 M(E2) 2 + 2 2 + 2 M(E2) 0 +
1 dominate the sum for even-even nuclei [START_REF] Andrejtscheff | [END_REF], thus

215 cos 3δ ≈ -7 10 Q 2 0 + 1 -3/2 0 + 1 M(E2) 2 + 1 2 2 + 1 M(E2) 2 + 1 +2 0 + 1 M(E2) 2 + 1 2 + 1 M(E2) 2 + 2 2 + 2 M(E2) 0 + 1 . (32) 
Assuming identical charge and mass distributions, one can relate the Q 2 and δ quantities to the deformation parameters β 2 and γ by [23] 

Q 2 = q 2 0 β 2 2 ( 33 
)
and

Q 3 cos 3δ = q 3 0 β 3 2 cos 3γ (34) 
with q 0 = 3 4π ZeR 2 0 and R 0 = 1.2A 1/3 fm. The expressions depend upon the convention chosen for the collective variables; for example, using the lengths of the semi-axes leads to the formulas given in the appendix of Ref. [24].

A finite value of Q 2 may result from both a static deformation, β stat , which would be the case for well-deformed rotational nuclei, as well as a dynamic deformation, β dyn , that would arise for vibrational or non-collective systems. These can be distinguished based on the fluctuations in Q 2 that can be determined via

σ Q 2 = Q 4 -Q 2 2 ; ( 35 
)
however, in order to obtain the Q 4 invariant, products of four matrix elements need to be considered, which requires a level of detail that is difficult to achieve experimentally. Similarly, fluctuations in Q 3 cos 3δ can be evaluated, requiring even more extensive experimental data. Another measure that can be used to infer if the deformation is static or dynamic is the magnitude of the spectroscopic quadrupole moment; values close to 0 imply a spherical, maximally triaxial or completely γ-soft shape, whereas for more axially symmetric nuclei large values imply static deformation.

Two-state mixing model

The phenomenological two-state mixing model is based on the assumption that the observed physical states with the same spin-parity I π 1,2 can be expressed as linear combinations of two unperturbed states I π A,B :

| I π 1 = + cos θ I | I π A + sin θ I | I π B ( 36 
) | I π 2 = -sin θ I | I π A + cos θ I | I π B
where cos θ I , sin θ I are the mixing amplitudes, and θ I is referred to as the mixing angle. The transitions between states belonging to different unperturbed structures are usually assumed to be forbidden. If the structures 1 and 2 form rotational bands, it is possible to deduce the mixing angles θ I from the perturbation of level energies with respect to a rigid-rotor behaviour. They can also be obtained from e.g. E0 (Sec. 2.6) or E2 transition strengths. In the latter case, Eq. 36 applied to an example of 0 + 1,2 and 2 + 1,2 states yields the following relations between physical and unperturbed matrix elements:

2 + 1 E2 0 + 1 ≡ M 11 = sin θ 0 sin θ 2 2 + B E2 0 + B + cos θ 0 cos θ 2 2 + A E2 0 + A (37) 2 + 1 E2 0 + 2 ≡ M 12 = cos θ 0 sin θ 2 2 + B E2 0 + B -sin θ 0 cos θ 2 2 + A E2 0 + A 2 + 2 E2 0 + 1 ≡ M 21 = sin θ 0 cos θ 2 2 + B E2 0 + B -cos θ 0 sin θ 2 2 + A E2 0 + A 2 + 2 E2 0 + 2 ≡ M 22 = cos θ 0 cos θ 2 2 + B E2 0 + B + sin θ 0 sin θ 2 2 + A E2 0 + A .
Solving for θ 0 , θ 2 yields

tan θ 0 = R ± √ R 2 + 1 (38) tan θ 2 = M 11 tan θ 0 + M 12 M 21 tan θ 0 + M 22
where

R = M 2 11 + M 2 21 -M 2 12 -M 2 22 2(M 11 M 12 + M 21 M 22 ) .
Assuming a weak mixing between the 2 + A,B states (i.e., θ 2 = 0), which is a reasonable approximation for e.g. N ≈ 60 nuclei described in Sec. 3.4.1, Eq. 38 can be simplified to

tan θ 0 = 0 + 2 E2 2 + 1 0 + 1 E2 2 + 1 . (39) 
The two-level mixing model can be also applied to two-nucleon transfer cross sections, see Sec. 2.7, or α-decay hindrance factors (Sec. 3.7); in such cases it is assumed that the unperturbed configurations are the same in projectile and ejectile, or mother and daughter nuclei. Despite its simplicity, the two-state mixing model can describe remarkably well the experimental data for numerous nuclei, as demonstrated in the following sections. In some cases a satisfactory reproduction of all observables required its extension to three-level mixing, and such examples are presented in Sec. 3.1.2 and Sec. 3.1.3.

E0 transition strengths

245

E0 transitions, that are allowed only for ∆J = 0 decays, are sensitive to the changes in the nuclear charge-squared radii since the E0 operator has the form

M(E0) = i e i r 2 i ( 40 
)
where the sum extends over the A bodies in the nucleus with their charges e i and radial positions r i . It can also can be expressed in terms of the collective variables from the Bohr model [26]:

M(E0) = 3Z 4π       4π 5 + β 2 2 + 5 √ 5 21 √ π β 3 2 cos γ       . (41) 
The usual quantity quoted when referring to E0 transitions are the ρ 2 (E0) values, defined via

Γ(E0) = 1 τ(E0) = ρ 2 (E0) j Ω j (Z, ∆E) (42) 
where Γ(E0) is the partial width for the decay, τ(E0) the partial lifetime, and Ω(Z, ∆E) the electronic factor that depends on the atomic number Z and the energy of the transition ∆E. The nuclear-structure information is contained in the ρ(E0) quantity, defined by

ρ(E0) = 1 eR 2 I f |M(E0)| I i . (43) 
The E0 transition strengths depend on the mixing of configurations that have different meansquare charge radii [25]. In a two-level mixing solution,

ρ 2 (E0) = Z 2 R 4 cos 2 θ sin 2 θ r 2 A -r 2 B 2 ( 44 
)
where r2 A = Ψ A |r 2 |Ψ A is the mean charge-squared radius for the wave function |Ψ A , and similarly for r 2 B . Using the operator expressed in the collective variables, and with the deformation parameters for the two states defined as (β A , γ A ) and (β B , γ B ), the E0 strength is characterized by [25,26] 

ρ 2 (E0) = 3Z 4π 2 cos 2 θ sin 2 θ •       β 2 A -β 2 B + 5 √ 5 21 √ π β 3 A cos γ A -β 3 B cos γ B       2 . ( 45 
)
As the determination of a ρ 2 (E0) value requires not only the observation of an E0 transition and a determination of its relative intensity but also the level lifetime, the experimental information of this kind is still rather limited. Additionally, the ρ 2 (E0; I → I) values for I 0 are often affected by large uncertainties since precise intensities for the contribution of the M1 and E2 multipolarity conversion electrons to the transition must be known.

Using shell-model harmonic-oscillator wave functions, the r 2 operator only depends on the principal quantum number N and within a major shell, the E0 transitions should vanish. Thus, E0 transitions must involve configurations from different harmonic oscillator shells. In Ref. [27], important contributions to the E0 strength were shown to arise from the core polarization.

Single-particle content via single-nucleon transfer reactions

Single-nucleon transfer reactions, by definition, probe the single-particle composition of the nuclear wave functions. The initial ground-state wave function |Ψ I i may correspond to a quasiparticle vacuum (even-even nuclei), one-quasiparticle state (odd-mass nuclei), or two-quasiparticle state (odd-odd nuclei), or a multi-particle (mp) or multi-hole state (mh) 2 . Single-nucleon transfer reactions give information on the overlap of the wave functions of the initial and the final state, where the final state is of the form

Φ I f M f = M i ,m a † jm Ψ I i M i I i M i jm I f M f . (46) 
The spectroscopic factor S jl (or alternatively written as C 2 S , where C refers to an isospin Clebsch-Gordan coefficient) is defined as

S jl = Ψ I f M f Φ I f M f ( j, I i ) 2 = Ψ I f a † j Ψ I i 2 2I f + 1 ( 47 
)
where l is the orbital angular momentum of the single-particle orbital into which the particle is transferred. This orbital angular momentum can be determined from the angular distribution of the ejectiles in the reaction for the population of a specific final state, whereas j is often inferred from knowledge of the available orbitals near the Fermi surface.

In the following, we focus our attention on the initial and final states of the nuclei under investigation, and we assume that the collision partners in the process have simple structures that are well understood, as is the case for light nuclei up to α particles. The spectroscopic strength can be extracted through a comparison of the experimental angular distributions of the ejectiles of the reaction with those predicted with a distorted-wave Born approximation (DWBA) calculation.

The spectroscopic factors are excellent tools to locate the single-particle strength in odd-A nuclei, and can also be used to determine the orbital occupancies in even-even nuclei. Shape-coexisting states can be populated if a component of their wave function has a significant overlap with the initial ground-state wave function. If we consider a reaction in which the nucleon is removed, for example, from an initial state with a mp configuration, it can populate final states with the configuration of (m -1)p or mp-1h. An analogous situation can arise in reaction in which a nucleon is added to an initial state with a mh configuration -it can populate final states with (m -1)h or mh-1p configurations. Sum rules for transfer reactions provide a powerful tool to determine nucleon occupancies. For a specific j transfer, the number of holes h and particles p can be found from (assuming a spin 0 for the initial state)

h = i (2 j + 1)S i adding , p = i S i removing (48) 
with the summation extending over all states for the same values of the transferred angular momentum j and l. The spectroscopic factors are defined as above for the addition of nucleons, such as a (d, p) stripping reaction, and the removal of nucleons, as in a (d, t) pickup reaction. When these reactions are performed using the same initial nucleus, e.g., the same target used for the (d, p) and (d, t) reactions, the numbers of particles and holes sum to (2 j + 1).

Probing pairing content via two-nucleon transfer reactions

Since shape coexistence manifests itself via strong correlations in the wave functions, experiments that probe these correlations are of utmost importance. Among the most important are the pairing correlations, which can be described as the binding of two nucleons in J π = 0 + states, and the correlation effect can be expressed in terms of a pair field that is responsible for creating and annihilating two particles in time-reversed orbits. Reactions that involve the transfer of two alike particles, such as the (p, t) two-neutron transfer or ( 3 He, n) two-proton transfer reactions, specifically probe such pairing correlations.

For the two-nucleon transfer process, the spectroscopic amplitudes are defined by

B(I f ; [ j 1 j 2 ]J, I i ) = 1 1 + δ j 1 j 2 Ψ I f M f a † j 1 ⊗ a † j 2 J ⊗ Ψ I i I f M f ( 49 
)
where the two nucleons, with single-particle angular momenta j 1 and j 2 that couple to angular momentum J, couple to the initial angular momentum I i resulting in the final angular momentum I f . To a very high degree of accuracy, when the two transferred nucleons are both of the same type, they couple to total spin S = 0, so J = L. Unlike single-nucleon transfer reactions, the spectroscopic amplitudes must be added with the final sum squared, so that there may be interference effects. In general, multiple pairs of particles that can couple to J can contribute to the sum, depending on the availability of the orbitals near the Fermi surface. The cross-section angular distributions are sensitive to the L value, and while the magnitude of the cross section is sensitive to the j components, the shapes of the angular distributions generally are not. Thus spectroscopic strengths for the transfer of a particular pair cannot be extracted from the experimental data, and often the ratios of cross sections are used to infer the nature of the final state. When available, two-nucleon amplitudes from shell-model calculations can be used to construct the spectroscopic amplitudes and combined with a reaction code to predict the cross sections.

The two-nucleon transfer cross section for the 0 + gs → 0 + gs transition typically dominates over all other transitions, and in situations where excited 0 + states are two-particle or two-quasiparticle states, their population cross sections are a few percent of the ground-state cross section. Exceptions to this may arise when the excited states also possess significant pairing correlations similar to those of the ground state, for example when they are mixed with the ground state, or when they have the form of pairing vibrations. Enhancements in the cross sections to excited 0 + states may also occur when the normal pairing regime has broken down, for example as the structure evolves from that near closed shells (described as the "normal" pairing phase) to open-shell well-deformed nuclei (described as a "superfluid" pairing phase). The large two-nucleon transfer cross sections that amount to tens of percent or more relative to the cross section for population of the ground state thus signify a highly collective transition and consequently indicate that the final 0 + state has a very special character.

Recent progress in experimental shape-coexistence studies

Shape coexistence in light nuclei

Light N Z nuclei

Shape coexistence in the light N Z nuclei is often closely connected to the discussion of clustering aspects in nuclei, especially those of α-particle clusters. The high binding energy of the α particle naturally led to it being considered as a sub-unit on which to build nuclear states that are pictured as geometric arrangements of the clusters in much the same way that molecules are geometrical arrangements of atoms. The experimental evidence for cluster states has been outlined in a number of excellent reviews (see, e.g., Refs. [28][29][30]). Since the field of clusters in nuclei has been recently reviewed by Freer et al. [30], and we could not do it proper justice, we refer the reader instead to the reviews listed above for the recent results in this very active area. As an example, even in the well-studied nucleus 12 C, recent measurements (see, e.g., Refs. [31][32][33][34][35]) resulted in the assignment of additional rotational states built on the 0 + 2 (the so-called Hoyle) state and identification of the K π = 3 -rotational band [36] that has a significantly different moment of inertia than the band built on 0 + 2 .

The superdeformed band in 24 Mg was suggested [2] to include the states at 6.433 MeV (0 + 2 ), 7.349 MeV (2 +

3 ), and 8.439 MeV (4 + 3 ). In much earlier work, Warburton et al. [38] had proposed instead the 4 + 4 state at 9.301 MeV to be the third member of this band. The 2 + 3 → 0 + 2 transition

Figure 4: Partial level scheme for 28 Si showing the oblate ground-state band, the K = 0 prolate band built on the 6.691-MeV 0 + 2 state, and the candidate superdeformed band with the 2 + member at 9.796 MeV. The transitions are labelled with B(E2) values in W.u. The values highlighted in the yellow boxes for decay from the 2 + member of the proposed superdeformed band are derived assuming 0.01 W.u for the transition to the ground state. Figure taken from Ref. [41]. is unobserved, and both 4 + candidates decay to the 2 + 3 level with enhanced B(E2) values. There are several conflicting results for the 4 + states in question. In the evaluated data [39], the 4 + state at 8.439 MeV has a lifetime τ = 5.5 [START_REF] Motz | [END_REF] fs, whereas Warburton et al. [38] report 26 (10) fs. The potential 4 + state at 9.301 MeV proposed by Warburton et al. [38] is not adopted in the evaluated data, and the situation is rather confused by the potential presence of a triplet of levels at 9.3 MeV. Using the values from Ref. [38] for consistency, the B(E2; 4 + 3,4 → 2 + 3 ) values are 11(5) W.u. and 15(6) W.u., respectively. Since the 8.439-MeV state is populated in the decay of the K = 4 24 Al ground state with a log f t value of 3.9, this state is favoured as a K = 4 band head [38]. Regardless of the assignment of the band members, the 0 + 2 state has been determined to be highly deformed. Its E0 decay was recently observed [40] to proceed with one of the largest E0 strengths observed across the entire nuclear chart, namely 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) = 380 (70). A two-level mixing calculation, assuming a maximum mixing scenario, leads to ∆(β 2 2 ) 0.43. The groundstate band β 2 = 0.497 (2), extracted from the B(E2; 2 + 1 → 0 + 1 ) value via Eq. 28, implies that the superdeformed band in 24 Mg has β 2 (0 + 2 ) 1 [40]. In view of the conflicting results regarding the 4 + states discussed above, the spectroscopy of the potential members of the 0 + 2 band should be re-investigated, in particular the decay branches of the 4 + 3,4 states and their lifetimes, and the unobserved 2 + 3 → 0 + 2 transition. The understanding of the shape of the 0 + 2 state, in particular, is of prime importance. A candidate superdeformed band was also recently proposed in 28 Si [41]. An oblate shape is assigned to the ground-state band based on a Coulomb-excitation measurement [42], which yielded a spectroscopic quadrupole moment of the 2 + 1 state of Q = 0.17(5) eb. A band built on the 0 + 2 state, with transitional quadrupole moments of |Q t | = 0.876 +0.110 -0.085 eb, was identified by Glatz et al. [43] and suggested to have a prolate shape. The recent work [41] proposed a superdeformed band as shown in Fig. 4, and noted that its 4 + and 6 + members were strongly populated in α-particle transfer reactions, and, most remarkably, that the 6 + member was populated with a significant g 9/2 component in the 12 C( 20 Ne,α) 28 Si reaction [44]. Thus, 28 Si potentially possesses three distinct deformed shapes, but further work is required to characterize them. A key question is the location of the potential 0 + band head of the superdeformed band that in principle could be determined through particle transfer reactions such as 30 Si(p, t) or 26 Mg( 3 He,n). Lifetime measurements of the suggested rotational band members for the prolate and superdeformed structures would also be of great interest.

Shape coexistence and the "island of inversion" at N=20

Already in 1970s, mass measurements demonstrated that the binding energies of 31,32 Na [45] and 31,32 Mg [46] are unexpectedly large and do not present a decrease that usually follows a shell closure. Combined with a large increase in mean-square charge radii observed in 29,30,31 Na [47], this suggested a sudden onset of deformation, further supported by the observation of a low-lying 2 +

1 state [48] and an enhanced B(E2; 2 + 1 → 0 + 1 ) transition strength in 32 Mg [49][50][51][52][53][54][55]. This region, commonly referred to as an "island of inversion", is now understood to include nuclei whose collective ground-state properties result from an inversion of the spherical ground-state configurations with deformed intruder states related to excitations across the N = 20 shell gap. Strong experimental evidence exists for coexistence of these structures and their different deformations.

In particular, direct reactions and laser spectroscopy have been extensively used to pin down the underlying microscopic configurations. A recent review [56] summarizes the existing experimental data on N = 19 and N = 21 isotones, with a particular focus on conclusions that can be drawn from the properties of ground and isomeric states. To complement this evaluation, we focus in the following on short-lived excited states and their decay properties. The deformed character of the ground state in 32 Mg, suggested by the lowering of the 2 + 1 energy (886 keV, with respect to 1483 keV in 30 Mg) was supported by identification of the 4 + and 6 + members of the rotational ground-state band [57,58]. The observed evolution of the moment of inertia was tentatively attributed to the admixture of a 4p -4h configuration increasing with spin [58]. The B(E2; 2 + 1 → 0 + 1 ) values resulting from several intermediate-energy Coulomb-excitation studies [49][50][51][52][53][54] as well as a fast-timing measurement following β decay of 32 Na [55] display a rather large spread, but all of them point to a significant deformation of at least β 2 = 0.38.

The excited 0 + 2 state in 32 Mg was identified at 1058 keV in a 30 Mg(t, p) 32 Mg two-neutron transfer study [59] performed in inverse kinematics. A strong reduction of the number of observed γ-ray decays of this state with respect to the number of corresponding protons detected was attributed to the decay of the recoiling 32 Mg occurring far away from the reaction target, leading to the conclusion that the 0 + 2 lifetime is longer than 10 ns. On the other hand, an upper limit for this lifetime, 38 ns, was deduced by combining the upper limit for the cross section to populate the 0 + 2 state via two-proton removal [60] with the number of its observed decays in flight following the same reaction [61]. These lifetime constraints correspond to the B(E2; 2 + 1 → 0 + 2 ) value in the 19 range between 28 and 122 e 2 fm 4 , a precision that is insufficient to draw meaningful conclusions regarding the structure of the 0 + 2 state. The B(E2; 2 + 1 → 0 + 1 ) value in 30 Mg was measured in low- [62] and intermediate-energy Coulomb excitation [50,52], with the result of Ref. [52] being considerably larger than the other two. All three values correspond to β 2 ≥ 0.35, and a comparison of evaluated B(E2; 2 + 1 → 0 + 1 ) values in 30 Mg and 32 Mg [63,64] suggests an increase of collectivity in the latter, in line with the decreasing 2 + 1 excitation energy. The ground-state band was extended to spin 4 + in a 14 C( 18 O,2p) 30 Mg reaction study [65], and the E(4 + 1 )/E(2 + 1 ) energy ratio of 2.3 is far from the value expected for an axial rotor. A long lifetime of 3.9(4) ns was measured for the 1789-keV state in 30 Mg [55], leading to a tentative 0 + spin-parity assignment, which was later confirmed by a direct observation of its E0 decay to the ground state [66] and γ-ray angular correlations [67]. The measured 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) transition strength of 26.2(75) [66] is consistent with weak mixing between the wave functions of the 0 + 1,2 states. The (2 + ) state at 2.467 MeV was proposed to be a member of the band built on 0 + 2 [55], while the sequence of (2 + ) and 3 + states at 3.543 MeV and 4.695 MeV, respectively, was interpreted as the γ band and linked to significant triaxiality of 30 Mg [67].

It was shown [68,69] that the measured 30 Mg(t, p) 32 Mg reaction cross sections [59] as well as evaluated B(E2; 2 + 1 → 0 + 1 ) values in 30,32 Mg [63,64] and ρ 2 (E0; 0 + 2 → 0 + 1 ) in 30 Mg [66] can be reproduced assuming three-level mixing of normal-order, 2p -2h and 4p -4h configurations. The conclusion of this analysis is that the ground state in 30 Mg is dominated by the normalorder configuration, while the ground state in 32 Mg has a predominantly intruder configuration, involving both 2p -2h and 4p -4h excitations. This is also consistent with the measured cross sections of one-neutron removal in this mass region. For example, some admixture of the intruder configuration to the ground state in 30 Mg is necessary to explain the population of negative-parity states in 29 Mg [70]. Moreover, a study of one-neutron removal from 31 Mg yielded a spectroscopic factor of 0.20 ± 0.04 for the 0 + 2 state in 30 Mg [71], which is lower than what would be expected for a pure 2p -2h configuration, and hence was interpreted as resulting from an important admixture of the 4p -4h configuration to this state. A consequence of the three-level mixing is the prediction that a 0 + 3 , at approximately 2.2 MeV, is predominately the 0p -0h state [68,69], however the twoproton knockout reaction failed to locate the required strength, indicating that either the reaction is strongly quenched, or that the 0p -0h configuration is highly fragmented or even above the neutron separation energy [61].

There exists strong experimental evidence that the ground state in 31 Mg is dominated largely by the 2p-2h intruder configuration, which includes its g factor [72] and an observation of a deformed rotational band built on the ground state, discussed below. Configurations of several states in 31 Mg can also be inferred from their selective population in direct reactions. The measured cross sections of one-nucleon removal reactions leading to 31 Mg are presented in Fig. 5. One-neutron knockout from 32 Mg is expected to favour the deformed intruder states, and this reaction [70] populated strongly the ground state, as well as the levels at 220 keV and 461 keV (with tentative spin assignments of (3/2 -) and (7/2 -), respectively). Additionally, population of the states at 945 keV and 2.244 MeV was observed. In contrast, one-proton knockout from 32 Al [73], having a normal-order configuration of the ground state, preferentially populated the states at 673 keV and 2015 keV (assigned as 3/2 + and 5/2 + , respectively, in Ref. [74]), which consequently were 31 Mg in one-nucleon removal reactions. The bars in the top panel represent the cross sections measured in one-neutron knockout from 32 Mg [70], and those in the bottom panel are from one-proton knockout from 32 Al [73]. The former favours deformed intruder states, i.e. the ground state and the (3/2 -) and (7/2 -) states at 220 keV and 461 keV, respectively, and the latter the normal-ordered 3/2 + and 5/2 + states at 673 keV and 2015 keV, respectively. Note different cross-section scales used in the two panels.

suggested to have normal-order configurations. A negligible population of the 31 Mg ground state in this reaction is consistent with its nearly pure intruder configuration.

The decay scheme of 31 Mg has been extended and spins and parities of several states firmly assigned in β-γ spectroscopy following β decay of spin-polarised 31 Na [74,75]. As the ground state of the parent has a predominantly intruder character, this decay preferentially feeds intruder states in the daughter nucleus. Two rotational bands dominated by the intruder configuration were proposed: a K = 1/2 + deformed band based on the ground state and including, among others, the 5/2 + state at 945 keV, and a K = 1/2 -deformed band, for which the lowest members are the states at 220 keV and 461 keV. Additionally, the 2.244-MeV level (with a firm spin-parity assignment of 1/2 + ) was strongly populated, in line with its proposed intruder configuration, which is further supported by its decay pattern favouring states in the K = 1/2 + band. For each of the two proposed deformed bands, one in-band B(E2) value is known. Both the B(E2; 5/2 + → 1/2 + ) value of 61(7) e 2 fm 4 , or 10.5(12) W.u. (K = 1/2 + band) measured in low-energy Coulomb excitation [76] and 4 , or 11.6(10) W.u. (K = 1/2 -band) obtained from fast timing [55] are comparable with the B(E2; 2 + 1 → 0 + 1 ) values in 30,32 Mg and indicate collective enhancements. In contrast, a considerably lower B(E2; 3/2 + → 1/2 + ) = 10(4) e 2 fm 4 was obtained for the decay of the level at 673 keV to the ground state [76], in line with different configurations of the initial and final states.

B(E2; (7/2 -) → (3/2 -)) = 67(6) e 2 fm
A large g factor of the ground state in 34 Al was interpreted as resulting from an important 2p -2h intruder admixture to the normal-order configuration [77]. A very different g factor obtained for the low-lying 1 + isomer in 34 Al led to its association with a 1p -1h intruder configuration [78]. The absolute value of the quadrupole moment of this state is about 50% larger than that of the normal-order ground state in 32 Al [78], evidencing an enhanced deformation due to the particle-hole excitation across the N = 20 shell gap. Based on β-γ and β-γ-γ coincidences observed in the β decay of 34 Mg, the 1 + isomer was shown to be located only 47 keV above the normal-order ground state in 34 Al, which identifies 34 Al as a crossing point of the normal-order and intruder configurations [79].

Detailed experimental data also reveal coexistence of normal-order and intruder structures in 34 Si. An intermediate-energy Coulomb-excitation study [80] identified the 2 + 1 state in 34 Si at 3.3 MeV. The observed hindrance of the B(E2; 2 + 1 → 0 + 1 ) value, equal to 17(7) e 2 fm 4 , was interpreted as resulting from a small overlap between the 2p -2h wave function of the 2 + 1 state and the normal-order configuration of the ground state [80]. A candidate for a 2 + state based on the normal-order configuration was observed at 5.33 MeV in the 36 S( 11 B, 13 N) 34 Si two-proton pickup [81] and in the 34 P( 7 Li, 7 Be) 34 Si charge-exchange reaction [82]. This supports its proton character, which is expected for a normal-order configuration. This state is probably identical to that observed at 5.348 MeV in a recent β-decay study [83], which was found to be fed weakly by the decay of the 1 + intruder isomer in 34 Al, consistent with its normal-order character.

The excited 0 + 2 state at 2.719(3) MeV was populated in β decay of 34 Al [84] and from the measured 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) = 13(1) a rather weak mixing of the 0 + states of cos 2 θ 0 = 0.78(9) was estimated [84]. The measured branching ratio for the 0 + 2 decay resulted in a B(E2; 2 + 1 → 0 + 2 ) value of 61(40) e 2 fm 4 [84], while its later remeasurement [83] led to the reduction of the B(E2;

2 + 1 → 0 +
2 ) value to 47(19) e 2 fm 4 , with the uncertainty of this value dominated by the precision of the B(E2; 2 + 1 → 0 + 1 ) measurement [80]. The corresponding β 2 deformation of the deformed configuration, 0.27 (5), is lower than those of the ground-state structures in 30,32 Mg. Finally, a 2 + 2 state at 4.519 MeV was proposed in a β-decay study [85] and based on its decay properties and excitation energy with respect to that of the 2 + 1 state, the importance of triaxiality in the structure of 34 Si was discussed. While this state has been confirmed by a subsequent β-decay study [83], contrary to the findings of Ref. [85] its decay branch to the 0 + 2 state has not been observed, and the corresponding upper limit points to it being much weaker than what is expected for a triaxial state. The information on shape coexistence in lighter N ≈ 20 nuclei is scarce due to their proximity to the neutron dripline, but one should note that multiple multiparticle-multihole configurations in 30 Na were identified via a combination of one-proton, one-neutron and one-proton-one-neutron removal reactions [86].

Highly deformed structures around 40 Ca

Highly deformed structures were identified in 40 Ca [87], 42 Ca [88], 44 Ti [89] and 38 Ar [90] using particle spectroscopy following single-and multi-nucleon transfer reactions. A compilation of these results can be found in Ref. [6]. In particular, two bands interpreted as based on 4p -4h and 8p -8h configurations were populated in 40 Ca via a 32 S( 12 C,α) 40 Ca cluster-transfer reaction [87].

Figure 6 shows the lowest-lying levels assigned to the 0 + 2 (4p -4h) and 0 + 3 (8p -8h) structures in 40 Ca, together with the observed γ band. Somewhat later, advancements in high-resolution γ-ray spectroscopy enabled extending these bands to high spin, and their strongly deformed rotational character was confirmed by the measured moments of inertia and in-band B(E2) values [91][92][START_REF] Austin | Lifetimes of Superdeformed States in 38 Ar[END_REF][START_REF] Ideguchi | [END_REF][95]. Table 1 lists β 2 deformation parameters obtained from the transitional quadrupole moments measured for the known deformed structures in 40 Ca [91], 36 Ar [92], 38 Ar [START_REF] Austin | Lifetimes of Superdeformed States in 38 Ar[END_REF], 40 Ar [START_REF] Ideguchi | [END_REF] and 35 Cl [96], assuming axial symmetry, via Eq. 17. The existing experimental information for the analo- Figure 6: Selected levels in 40 Ca and 42 Ca, labelled with their I π values and excitation energies in keV. Rust coloured arrows indicate transitions with E2 multipolarity and are labelled with B(E2) values in W.u., and E0 transitions are represented as green coloured and labelled with their 10 3 × ρ 2 (E0) values, with uncertainties in parentheses (note that in cases of asymmetric uncertainties, they have been averaged for simplicity of display). For 40 Ca, rotational bands built on the 0 + 2 and 0 + 3 states as well as the K=2 band are presented, with all excited states drawn lowered by 2 MeV. For 42 Ca, the states built on the ground-state configuration are shown in addition to the 0 + 2 rotational band and the presumed K=2 bandhead. The measured quadrupole moments of the 2 + 1 and 2 + 2 states, expressed in eb, are given in italics below the levels. Data are taken from Refs. [39,97,102]. gous structure in 44 Ti [95] is also presented, as well as the β 2 deformation parameters for the 0 + 2 and 2 + 2 states in 42 Ca obtained from the Q 2 quadrupole invariants [97]. The Q t values for specific nuclei were obtained under different assumptions. In the lifetime studies of 40 Ca [91] and 40 Ar 500 [START_REF] Ideguchi | [END_REF] it was necessary to fit all measured lineshapes for transitions in the deformed band with a single Q t value. For 36 Ar [92], 38 Ar [START_REF] Austin | Lifetimes of Superdeformed States in 38 Ar[END_REF], and 35 Cl [96] individual lifetimes were determined, and the β 2 deformation parameters were deduced from the weighted averages of Q t values obtained for several decays in the middle part of the band, as those were assumed to be free of mixing with less deformed states in the bottom of the band, and also not affected by a reduction of collectivity at higher spin observed when approaching band termination. It is worth noting that in the study of 38 Ar [START_REF] Austin | Lifetimes of Superdeformed States in 38 Ar[END_REF] various fit methods and feeding hypotheses have been tested and the obtained lifetimes were found to depend very strongly on the assumptions made. In a later measurement on 40 Ca [98], instead of a common fit of all lineshapes in the entire band built on the 0 + 3 state, two separate fits limited to its top and bottom sections were performed, yielding transitional quadrupole moments of 1.81 +0. 41 -0.26 ±0.21 eb and 1.18 +0.06 -0.05 ±0.13 eb, respectively, where the first uncertainty listed is statistical and the second is systematic. The important reduction of collectivity at low spin was attributed to an admixture of configurations involving fewer nucleon pairs promoted through the N, Z=20 shell gaps.

For comparison, for each of the nuclei in question, Tab. 1 provides the β 2 deformation parameters for the ground states, calculated via Eq. 17 from the transitional quadrupole moments for the 2 + 1 → 0 + 1 transitions in even-even nuclei [99] and for the 11/2 -→ 7/2 -transition in 35 Cl [96]. One can see that while the β 2 parameters deduced for the highly deformed structures are distinctly larger than those of the ground states, they span a rather broad range, starting from around 0.3 and reaching values observed elsewhere only for superdeformed bands in the A ∼ 150, A ∼ 190 and A ∼ 230 regions. However, contrary to those, the highly deformed structures in the A ∼ 40 region are linked to less deformed states by intense γ-ray transitions, suggesting an important configuration mixing.

The mixing of the ground-state band members with more deformed states is also supported by the important population of the latter in single-nucleon transfer (e.g., 41 Ca(d, p) 42 Ca [88]), the observed enhancement of quadrupole moments of the 2 + 1 states in Ca isotopes, see Tab. 2, as well as by the small positive values of g factors measured for these states in 42,44 Ca [100]. Since for the normal-order configuration of the ground states, with valence neutrons occupying the f 7/2 orbital, large negative values would be expected, this result suggests a substantial admixture of a multiparticle-multihole configuration in the 2 + 1 states, at a level close to 50% [100]. The mixing of the ground and 0 + 2 states can be estimated from the measured E0 transition strengths, which are known for 40,42,44,48 Ca and 38 Ar as listed in Tab. 2. One should note here a significant difference between the ρ 2 (E0) values obtained for 42,44 Ca from measurements of e + -e -pair production and those resulting from electron scattering studies, with the latter being lower by about one third [101,102]. Assuming, whenever available, β 2 values from Tab. 1 for the deformed 0 + state and a spherical shape for the normal-order configuration of the ground state, one can deduce the mixing angles cos 2 θ 0 using Eq. 45, which are listed in Tab. 2. The differences between the values obtained for individual nuclei are rather large, but they all seem to point to rather limited mixing of the 0 + states, in contrast to the findings of Ref. [100] for the 2 + states in 42,44 Ca. It is interesting to note that a particularly low mixing observed for the 0 + states in 38 Ar coincides with a measurement for the neighbouring 40 Ar of a spectroscopic quadrupole moment of the 2 + 1 state consistent with its (d 3/2 ) -2 character, which suggests a very limited mixing of the 2 + states. The g factors measured for the 2 + 1 states in 36,38 Ar [103], 40 Ar [104] and 44 Ti [105] can also be explained without taking into account multiparticle-multihole excitations across the N, Z = 20 shell gap. On the other hand, the recently remeasured lifetime of the 2 + 1 state in 44 Ti [106] cannot be reproduced without accounting for those. It is clear that the existing information on the mixing of spherical and deformed configurations in the A ∼ 40 region is incomplete and it is difficult to make firm conclusions about its The most detailed evidence for shape coexistence in the A ∼ 40 mass region comes from a recent Coulomb-excitation experiment of 42 Ca [97,107] that provided magnitudes and relative signs of numerous E2 matrix elements coupling the low-lying states in this nucleus, which were further interpreted in terms of quadrupole invariants for the 0 + 1,2 and 2 + 1,2 states. In particular, the spectroscopic quadrupole moment of the 2 + 2 state was measured for the first time, and its value of -0.42 (12) eb corresponds to β 2 = 0.48 [START_REF] Motz | [END_REF]. The low-lying levels in 42 Ca, relevant for this study, are shown in Fig. 6, together with the measured B(E2) and ρ 2 (E0) transition rates. The Q 2 quadrupole invariants for the 0 + 1,2 and 2 + 1,2 states in 42 Ca [97,107] are large and constant within the deformed band, while those for the ground-state band are considerably lower, with an important increase observed between the 0 + 1 and the 2 + 1 states. This effect can be attributed to the mixing of the 2 + states. From the analysis of Q 2 fluctuations (defined by Eq. 35) one can conclude that the ground state exhibits a considerable softness, while the 0 + 2 state is more rigid [107]. This is consistent with the value of the Q 3 cos 3δ invariant for the 0 + 1 state being close to zero, which is interpreted as resulting from a γ-soft character of this state (averaging over all possible quadrupole shapes ranging from prolate to oblate yields a γ parameter of 30 • ). In Ref. [107], an attempt was made to apply the two-state mixing model to the measured E2 matrix elements coupling the 0 + 1,2 and 2 + 1,2 states in 42 Ca. The resulting mixing angle for the 0 + states, cos 2 θ 0 =0.88(4), is consistent with the value of 0.83(6) determined using the measured ρ 2 (E0; 0 + 2 → 0 + 1 ) transition strength and deformation parameters for the 0 + 2 state obtained with the quadrupole sum rules approach, see Tab. 2. However, the cos 2 θ 2 =0.39(8) value obtained from the E2 matrix elements shows that the two-level mixing model cannot be applied to the 2 + 1,2 states in 42 Ca, as it suggests that the 2 + 1 state has a 61% admixture of the deformed configuration, while the 2 + 2 state is dominated by the spherical one, at odds with their measured quadrupole moments. One can note here that the cross sections to populate the 2 + 1,2 states in 42 Ca in one-neutron transfer [88] were almost identical, which suggests the same admixture of the ( f 7/2 ) 2 configuration to both states. On the other hand, their quadrupole moments are different, which means that other configurations must contribute to these states in different proportions, and this in turn implies that the two-level mixing model is overly simplified in this case.

The importance of triaxiality in this mass region is an open question. The Q 3 cos 3δ invariant determined for the 0 + 2 state in 42 Ca suggests a small deviation from an axially symmetric shape (γ=13(5) • ). The few lowest members of K = 2 bands were identified in 44 Ti and 40 Ca [89,91], and these structures were interpreted as γ bands associated with the deformed configurations (8p -4h and 4p -4h, respectively). A 2 + 3 state, linked by intense transitions to both the ground-state and deformed bands, is also known in 42 Ca (see Fig. 6 for decay properties of the proposed K = 2 structures in 40,42 Ca). Extension of this band to higher spin, as well as the identification of its counterparts in other A ∼ 40 nuclei exhibiting shape coexistence, remains a challenge for γ-ray spectroscopy.

Shape coexistence has also been suggested for a number of odd-mass nuclei in this mass region, as shown in Fig. 7. The experimental data in support of this scenario are mostly limited to level energies and B(E2) values, as discussed in Refs. [2,3]. Early measurements, summarized in Ref. [3], revealed evidence for the presence of intruder states, in particular through the use of transfer reactions, but often were unaccompanied by complementary data that would support shape coexistence. Remarkably, there have been few recent studies that have advanced this view. Specifically, the quadrupole moment of the excited 3/2 + state in 45 Sc, of the intruder proton d (-1) 3/2 f 2 7/2 configuration, was measured to be Q s = +0.28(5) eb [108], in comparison with Q s = -0.22 (1) eb for the ground state [39]. Given the recent work on the neighbouring even-even nuclei, the odd-mass nuclei would appear to be ripe for re-investigation with modern spectrometers.

3.1.4. Shape coexistence around the "island of inversion" at N = 28

The development of an "island of inversion" south of 48 Ca is linked to the coexistence of spherical and deformed configurations in N ≈ 28 nuclei. The most important body of evidence has been obtained for 44 S, using γ-ray and electron spectroscopy following fragmentation or particle knockout from intermediate-energy stable and radioactive beams [109][110][111][112][113]. An isomeric 0 + 2 state at 1365(1) keV in 44 S was observed only 36 keV above the 2 + 1 state [109], and its E0 decay branch corresponds to 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) = 8.7(7) [110]. The mixing of the two 0 + states can be estimated from the B(E2; 0 + 2 → 2 + 1 )/B(E2; 2 + 1 → 0 + 1 ) ratio via Eq. 39, yielding cos 2 θ 0 equal to 0.88. This, combined with the measured E0 transition strength, points to the deformations of the two unperturbed 0 + states differing by ∆β 2 ≈ 0.27. Compared with β 2 =0.25 estimated from the B(E2; 2 + 1 → 0 + 1 ) value [114], it suggests that the deformation of the 0 + 2 state is close to zero. A 2 + 2 level at 2156 (49) keV was subsequently identified and assigned to the spherical configuration on the basis of a comparison with shell-model calculations [111]. A different candidate for the second member of the band built on the 0 + 2 state was proposed in Ref. [112], again with a support from theory calculations. This work also proposed a (2 + ) level at 3248 keV, and the observed 1891-keV γ ray, not seen in coincidence with the 2 + 1 → 0 + 1 decay, was attributed to the decay of the level at 3248 keV to the 0 + 2 state. Finally, a recent lifetime measurement yielded a B(E2; 4 + 1 → 2 + 1 ) value of 0.61(19) W.u. [113], indicating a drastically reduced collectivity with respect to the B(E2; 2 + 1 → 0 + 1 ) of 7(2) W.u. This suggests that the 4 + member of the ground-state rotational band is non-yrast and has not been identified yet, and that its mixing with the observed 4 + 1 state is limited. It is possible, as proposed by Ref. [113], that the 4 + 1 state represents a third different configuration appearing at low excitation energy, but the existing experimental information is insufficient to firmly state that a triple shape coexistence is present in 44 S.

A g-factor measurement of the 321-keV 7/2 -isomer in 43 S [115] suggested that this state has a normal-order 1 f 7/2 neutron-hole configuration. Its measured lifetime [115,116] implies a quadrupole character of its decay to the ground state, which leads to the attribution of the 3/2 -spin to the latter, consistent with a neutron 2p 3/2 intruder character. This configuration of the ground state was also supported by spectroscopic factors measured in one-neutron knockout reaction from 44 S [117]. The spectroscopic quadrupole moment of the 7/2 -isomer was found to be larger than expected for a single-particle state, suggesting an admixture of the intruder configuration [118]. A level at 971 (6) keV was proposed as a member of the rotational band based on the deformed ground state, on the basis of an enhanced B(E2) value for its population from the ground state, B(E2; 3/2 - gs → (7/2 - 2 ))=19(8) W.u., deduced from an intermediate-energy Coulomb-excitation study [119] and a reduced cross section for its population in intermediate-energy single-neutron knockout [120]. Recently measured lifetimes and γ-γ coincidence information obtained via single- proton knockout from 44 Cl [121] suggest that the ∼970-keV γ ray observed in Refs. [119,120] feeds not the ground state, but a 184-keV state with a tentative spin assignment of (1/2 -). The measured lifetime of the state decaying via the ∼970-keV γ-ray transition is consistent with its collective character (16(5) W.u.). The ordering of the two transitions proposed by Ref. [121] was, however, not confirmed by the results of one-neutron knockout from 44 S [117], which also casts some doubt on the lifetime obtained in Ref. [121]. A cascade of two coincident γ rays of 628 keV and 1159 keV, assigned by Ref. [121] as the (5/2 - 3 )

→ (3/2 - 2 ) → 3/2 -
gs transitions based on a comparison with shell-model calculations, was confirmed and extended by Ref. [117].

While it has been suggested that the band-like structure built on the (3/2 - 2 ) state corresponds to a different intrinsic shape [121], further experimental evidence would be necessary to verify this interpretation (currently only the B(E2; 3/2 - gs → (3/2 - 2 )) of 1.0(7) W.u. is known [122]). Finally, a candidate for a state built on the top the 7/2 - 1 isomer was recently proposed [117] and the energy of its decay to the isomer (1532 keV) supports weak deformation of the latter. Interestingly, a recent intermediate-energy Coulomb-excitation study [122] yielded a B(E2; 3/2 - gs → (7/2 - 2 )) value of 10(2) W.u., much lower than that of Ref. [119], and a comparable B(E2; 7/2 - 1 → (9/2 -)) value of 11(4) W.u. for the population of the state built on the 7/2 - 1 isomer, suggesting a similar collectivity of the two structures.

The contradictions between the existing data demonstrate the challenges of experimental studies in this mass region. Shape coexistence is expected to persist inside the "island of inversion", but there is very little experimental evidence for it. One can mention here the direct population of the 2150(13)-keV state in 42 Si observed in one-proton knockout from 43 P [123], which excluded the previous 4 + assignment of this state [124] and suggested instead that it may be a low-lying 0 + 2 state predicted by various theoretical calculations. Outside the border of the "island of inversion" the experimental information on shape coexistence is also very limited; while these nuclei are less exotic and thus more accessible experimentally, the presumed intruder configurations appear at much higher excitation energies than the normal-order states in S and Si nuclei. Notably, a 0 + 2 state was identified at 3695 keV in 46 Ar following the 44 Ar(t,p) 46 Ar two-neutron transfer reaction, and its spin-parity was unambiguously assigned based on the shape of the differential cross section [125].

Figure 7 displays a portion of the chart of the nuclides highlighting the Na -Ti nuclei, with a colour coding indicating the available data which provide evidence for shape coexistence. The lack of colour coding for other nuclei does not imply that these quantities are unknown, but are insufficient to substantiate a claim for shape coexistence. For some nuclei, like 42 Ca, the evidence is so strong that they provide anchors for systematics in the region -the energy patterns, B(E2) values, E0 strengths, transfer cross sections, quadrupole moments and quadrupole invariants all point to coexisting shapes. For other nuclei, the suggestion or assignment of shape coexistence is based on the energy patterns or systematics only, and further studies are definitely required. Many of the odd-mass nuclei fall into this category. Figure 7 reveals a clustering effect of studies; in the Ar -Sc region a wealth of data exists for stable nuclei, while experimental information on shape coexistence in neutron-deficient isotopes is very limited, even though it is suggested by theoretical calculations. The Mg and Si isotopes, on the other hand, are hard to access experimentally due to their neutron-rich character and it has only been the advent of radioactive beam facilities that has enabled the wide variety of studies to elucidate their structure, with detailed transfer studies worth mentioning in particular.

Shape coexistence around Z=28 3.2.1. Vicinity of 56 Ni

Very similar to the observations in the immediate vicinity of Z = N = 20, highly deformed structures are also present near Z = N = 28 56 Ni. For example, studies using fusion-evaporation reactions populated states in 56 Ni at moderate-to-high spin, and identified two well-deformed rotational bands [126]. One of these bands, built on the 0 + 3 state at 5.003 MeV, is explained as a 4p -4h excitation, with proton 2p -2h contributions revealed by its population in the ( 3 He,n) reaction (under the assumption that the ground state wave function of 54 Fe has a 2h character) [127]. The second band, observed to be built on the spin (5) state at 8.890 MeV, was also interpreted as a 4p -4h excitation with one particle in the g 9/2 orbital [126], and lifetimes extracted from DSAM measurements were consistent with an average transitional quadrupole moment Qt similar to that for the highly deformed band in 58 Cu that had Qt = 2.0(3) eb [128]. Highly deformed structures were also observed in the neighbouring isotope 58 Ni, with a negative-parity band having Qt = 2.4(3) eb identified in Ref. [130]. The suggested configuration involved two neutrons and one proton occupying the 1/2 [440] Nilsson orbital, and a proton hole in either the 1/2 [321] or the 5/2 [312] orbital. The spectroscopy of 58 Ni was studied in detail in Ref. [131], where nine rotational band structures were observed built on states at moderate spins. In addition to the above neutron two-particle and proton particle-hole configuration, other configurations that emerged from the cranked-Nilsson-Strutinsky calculations [131] were similar to the configurations assigned in 56 Ni and included two neutrons in the g 9/2 orbital coupled to a 4p -4h configuration in the p f shell. A deformed rotational band with Q t = 2.2 +1.1 -0.8 eb was also identified in 62 Ni [129], and structures with similar moments of inertia are also known in odd-mass Ni isotopes, 57 Ni [132,133], 59 Ni [134] and 63 Ni [135]. While the uncertainties are often large, the extracted β 2 values for these structures are in the range of 0.3-0.45 [135].

The states at 3531 keV (0 + 3 ) in 58 Ni, 3319 keV (0 + 3 ) in 60 Ni, and 3519 keV (0 + 4 ) in 62 Ni were observed to be populated strongly in the two-proton-transfer ( 3 He,n) reactions [136][137][138] or the ( 6 Li,d) or ( 16 O, 12 C) α-particle transfer reactions, and were identified as the T = 1, T = 2, and T = 3 proton pairing vibration states [136,139]. What is remarkable is that the 0 + 3 states in 58,60 Ni have very strong E0 transitions to the ground state, with 10 3 × ρ 2 (E0) values of 80 (30) and 77 +66

-42 [102], respectively, whereas it is the 0 + 2 level in 62 Ni, that was not observed in the proton-pair transfer reactions, which decays with a similarly enhanced E0 strength with 10 3 × ρ 2 (E0) = 130 +60

-70 [140]. These ρ 2 (E0) values are some of the largest known between 0 + states outside of the shapetransition regions at N = 60 and N = 90 [25,102]. Strongly enhanced ρ 2 (E0) values have also been observed for the 2 + 2 → 2 + 1 transitions in 58,60,62 Ni [140,141]. In 58,60 Ni, the excitation energies of the 2 + 2 states are lower than those of the 0 + 2 states, and thus cannot be easily described as members of a shape-coexisting 0 + band. Figure 8 summarizes some of the spectroscopic data for the lowest 0 + and 2 + excitations in the even-even Ni isotopes. The quadrupole moments of the 2 + 1 states are consistent with a spherical shape, and the large ρ 2 (E0) values could naively be interpreted as indicating deformed states. The lack of known rotational structures built on these levels, however, is curious, and perhaps indicates that the origin of the E0 strength is related to dynamic, rather than static, deformation. In Ref. [27], calculations were performed for several nuclei including 58 Ni, exploring the origin of the enhancement of E0 transitions, and found that important contributions to the E0 strength arise from the core polarization. More work is required to characterize the nature of these states in the mid-shell Ni isotopes.

Vicinity of 68 Ni

A new region of deformed nuclei with Z < 28 and N ≈ 40 has been identified and extensively investigated in the recent years. The yrast bands of the even-even Ni isotopes beyond N = 40 are expected to show a seniority character with neutrons occupying the νg 9/2 shell, similar to the N = 50 isotones with protons dominantly confined to the πg 9/2 shell. Isomeric 8 + states arising from the alignment of a broken neutron pair with seniority ν = 2 were observed in 68,70 Ni [146]. The ν = 2 seniority multiplet should consist of pure neutron states, i.e., decaying with low E2 transition probabilities, as shown in Fig. 10 for 68 Ni. In 70 Ni, the 8 + 1 and 6 + 1 states present such character, while the enhanced B(E2; 2 + 1 → 0 + 1 ) value of 10.0(17) W.u., together with a trend 30 Figure 8: Spectroscopic data for low-lying 0 + and 2 + states in 56-62 Ni. The arrows represent E0 transitions and are labelled with their 10 3 × ρ 2 (E0) values. The values under the 2 + 1 levels are the spectroscopic quadrupole moments Q s in eb. The values, in bold, under the 0 + states are the population strengths, expressed in percent, relative to the ground state for the ( 6 Li,d) reactions (red, left) and the ( 3 He,n) reactions (blue, right). For 60 Ni, the two-protontransfer strength of 150% is attributed to the 3588-keV 0 + 4 state in Refs. [136,137], and to the 3318-keV 0 + 3 state in Ref. [138]. As the α-transfer strength is definitely listed for the 0 + 3 state in Ref. [139], it is likely that the ( 3 He,n) strength should also be associated with the 0 + 3 state. The 5004-and 5350-keV levels in 56 Ni have been assigned as the lowest-spin members of the superdeformed band. Data are taken from the National Nuclear Data Center database [39] and Refs. [102,140,141] (E0), [139] ( 6 Li,d), and [127,[136][137][138] ( 3 He,n). observed in the Zn isotopes, was interpreted as reflecting a strong polarization of the Z = 28 core [147]. It was speculated that the underlying cause was a reduction of the Z = 28 proton shell gap in the immediate vicinity of 68 Ni leading to deformation [147,148].

The first suggestions of shape coexistence at N = 40 followed the identification of a lowlying 0 + 2 state in 68 Ni [149,150]. This level, being the first excited state in 68 Ni, was initially measured to have an excitation energy of 1.77 MeV [149,150] with later studies placing it at 1604 keV [151]. Its interpretation is that of primarily a neutron excitation, with two particles promoted from the p f orbitals to the g 9/2 orbital [2,151,152]. Pauwels et al. [152] emphasize the similarity of 68 Ni and 90 Zr, and suggest that the lowering of the ground-state energy, resulting in an artificially high 2 + 1 excitation energy, is due to the role of pairing and the mixing of 0 + states from the ν(p 1/2 ) 2 and ν(g 9/2 ) 2 configurations [2]. Two-neutron transfer cross sections measured in the 66 Ni(t, p) 68 Ni reaction showed a strong population of the 0 + 1 state and a weak population of the 0 + 2 state, consistent with the ν(g 9/2 ) 2 interpretation of the latter [START_REF] Elseviers | Probing the semi-magicity of 68 Ni via the 66 Ni(t, p) 68 Ni two-neutron transfer reaction in inverse kinematics[END_REF][START_REF] Flavigny | [END_REF]. The 2 + 1 and 0 + 2 states were suggested to form a band based on the the measured B(E2; 2 + 1 → 0 + 2 ) = 8.9(28) W.u. [155] (compared to 3.2(7) W.u. [156] for the 2 + 1 decay to the ground state) and their oblate character has been proposed [155,157]. However, the strong population of the 2 + 1 state in the two-neutron transfer reaction was shown to be inconsistent with shell-model calculations having a Figure 9: Energy systematics of selected positive-parity excited states in even-even 56-78 Ni isotopes, showing yrast bands, three lowest 0 + excited states and bands postulated to be built on them. The normal-order states are marked with black squares. The π(2p -2h) states are shown with blue circles; for those observed to be populated strongly in proton-transfer reactions dark blue is used, whereas those assigned based on calculations (which predict prolate shapes) are plotted with light-coloured circles and dotted lines. The superdeformed 4p -4h state in 56 Ni is denoted with a magenta triangle. The 0 + states presumed to be oblate and related to neutron excitations are shown with red triangles, and the presumed spherical 0 + states with green diamonds. The states, for which the existing information is insufficient to characterize them as a specific configuration are marked with yellow stars. Data are taken from the National Nuclear Data Center database [39] and Refs. [142][143][144][145].
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dominant ν(g 9/2 ) 2 configuration, indicating a more complex wave function that must involve twoparticle components of lowj orbitals [START_REF] Flavigny | [END_REF]. These two interpretations are illustrated in Fig. 10, highlighting that there remains uncertainty regarding the interpretation of the low-lying excited states as belonging to a deformed configuration, or as seniority or broken-pair structures.

A state at 2511 keV, tentatively assigned as (0 + 3 ), was observed in the β decay of a low-spin isomer in 68 Co [158] and its spin has recently been confirmed by an angular correlation measurement [159]. Limits on its E0 decay strengths were also extracted, with 10 3 × ρ 2 (E0; 0 [155,157]. Placed in the context of the large ρ 2 (E0) values observed in the lighter Ni isotopes, these ρ 2 (E0) values are remarkably small, revealing either a similar deformation of these states or small mixing of the respective wave functions (or both). A 2 + 2 state at 2743 keV excitation energy has been proposed as a member of the 0 + 3 band [142,157]; the energy spacing would imply β 2 ∼ 0.45, i.e., twice that of the purported 0 + 2 band. The excitation energy of the 2511-keV 0 + 3 state is compatible with the shell-model predictions for an intruder state corresponding to a 2p -2h proton excitation across the Z = 28 shell [155], and also with estimates using the locations of the π(1p -2h) and π(2p -1h) states in 67 Co and 69 Cu, respectively [152]. If the assignments of Ref. [155] are correct, however, it would imply that the spherical 2 + 8.9( 28 The levels are organized into deformed bands as assigned in Ref. [142,155] (coloured levels on the left-hand side), and Refs. [142,146,152,[START_REF] Flavigny | [END_REF] (black-coloured levels on the right-hand side) where they were suggested to have significant components of the labelled configurations. The two-neutron transfer cross sections measured [START_REF] Flavigny | [END_REF] for the 0 + 2 and 2 + 1 states were shown to be consistent with ν(g 9/2 ) 2 and lowj neutron-pair structures, respectively.

+ 3 → 0 + 1 ) ≤ 5 and 10 3 × ρ 2 (E0; 0 + 3 → 0 + 2 ) ≤ 26
state has yet to be observed, and also would (likely) have a very high excitation energy.

Similar deformed configurations of a proton character were postulated in 64 Ni [144], 66 Ni [145,160,161] and 70 Ni [162][163][164]. The systematics of low-lying excited states in 56-78 Ni, including yrast bands and the three lowest 0 + states, are presented in Fig. 9. The prolate-deformed proton intruder states are postulated to be the 0 + 4 states in 64,66 Ni, the 0 + 3 state in 68 Ni, and possibly the 0 + 2 level in 70 Ni, with the other low-lying 0 + states suggested to be of a neutron nature and likely weakly-to-moderately deformed [144,145,[160][161][162][163][164]. This leads to a triple shape-coexistence scenario proposed for these nuclei, and an open question of the natures of the excited 0 + states in the lighter Ni isotopes, and the existence of low-lying deformed 0 + states in 72,74 Ni close to the neutron mid-shell.

A delayed 168(1)-keV γ-ray transition in 68 Ni was observed in a two-proton transfer reaction 238 U( 70 Zn, 68 Ni) 240 Pu [165], and was interpreted as the decay of another 0 + state at 2202(1) keV to the 2 + 1 state. This new isomer was not confirmed by Ref. [159]. The comparison with the 70 Zn( 14 C, 16 O) 68 Ni data remains, however, puzzling. In the experiments of Refs. [149,150], the 0 + 2 and 2 + 1 states were proposed to be located at 1770 and 2200 keV, respectively. Further measurements changed these excitation energies to 1604 and 2033 keV, respectively. This represents differences of 166 and 167 keV, very close in energy to the delayed 168(1)-keV transition observed uniquely in Ref. [165]. This systematic shift is intriguing and gives room for a possible explanation of the origin of the 168(1)-keV transition. One could speculate that the study of Ref. [165] populated a third excited 0 + state similar to those in 64,66 Ni.

The systematics of the 2 + 1 excitation energy in the Fe isotopes (Z = 26) shows a continuous decrease from N = 36 to N = 46, which is accompanied by an increase of the corresponding reduced transition probabilities [166] clearly indicating collectivity, and suggesting that the ground states are deformed. The reproduction of the lifetimes of the 2 + 1 and 4 + 1 states in 64,66 Fe required a significant occupancy of the νg 9/2 and νd 5/2 orbitals coupled to the proton holes [167,168]. One can speculate that there may be a similarity of configurations between the deformed ground states in the Fe nuclei and the deformed excited states in the Ni isotopes, as well as between the expected weakly deformed excited states in the former and the ground states in the latter. Shell-model calculations [169] predict indeed that that the 0 + 2 state in 66 Fe would be almost spherical, with nearly identical proton occupancies in the p f shell, and less important role of neutron (mpmh) excitations across N = 40, compared to the 0 + 1 state. A 0 + 2 state at 1414 keV has been identified in 66 Fe following β decay of 66 Mn [161, 169, 170] and its excitation energy agrees very well with the theoretical prediction of Ref. [169]. Additional work is required to characterize the nature of the states in the Fe isotopes, however, and the presence of shape coexistence is not yet based on firm experimental evidence.

In 61 Fe, a (9/2 + ) isomeric state at 861 keV was reported. Its quadrupole moment has been measured and corresponds to a moderately deformed shape, which indicates its possible g 9/2 intruder character. This state coexists with a weakly deformed ground-state band consisting of 1/2 -, 3/2 -and 5/2 -states, compatible with the coupling of a single neutron to the 0 + 1 and 2 + 1 states in the even-even 60 Fe core [171]. In 63 Fe, a (9/2 + ) state is also proposed, but unplaced in the level scheme [172]. The 1/2 - gs , 3/2 - 1 , and 5/2 - 1 states in 65 Fe, populated in the β decay of 65 Mn, are compatible with the coupling of the 0 + ground state and the 2 + 1 state in 64 Fe with a single neutron in the p f shell. Low-lying 9/2 + and 5/2 + states have also been identified and associated to the intruder gd orbitals, supporting their importance just below N = 40, as evidenced also by the collective properties of 64,66 Fe [173]. No experimental evidence for shape coexistence, however, has yet been reported, and the spectroscopy of 67 Fe is very incomplete.

Co isotopes

The Co isotopes (Z = 27) may also be expected to exhibit shape coexistence. Unfortunately, due to its chemical properties, cobalt is almost impossible to extract rapidly from a thick ISOL target, and therefore laser spectroscopy of the ground state was achieved only for stable or very long-lived Co isotopes, whereas the key nuclei, near N = 40, have millisecond lifetimes that make their spectroscopy difficult to perform. In the last decade, several experimental programs have tried to address the expected shape coexistence in Co isotopes via in-beam γ-ray spectroscopy, β-decay studies, and measurements of lifetimes of states to enable the determination of transition probabilities. The natures of the ground states in the Co isotopes were inferred through systematic verifications of the "core-coupling" model (for details, see, e.g., [START_REF] Shalit | Nuclear Shell Theory[END_REF]). Spherical or weakly deformed excited states in Co nuclei should exhibit the characteristics of core-coupled states (weak coupling scheme), i.e., the barycentre of the lowest-lying core-coupled multiplet should be located at the 2 + 1 energy of the even-even Ni core, and the B(E2) values for the decay of core-coupled states to the ground state should equal the B(E2; 2 + 1 → 0 + 1 ) value for the core. In contrast, the deformed states should possess rotational bands with moments of inertia and B(E2) values similar to those of the deformed states in the even-even Fe cores.

The lowest-lying weak-coupled states result from the f -1 7/2 ⊗ 2 + Ni coupling that yields the set 3/2 -, 5/2 -, 7/2 -, 9/2 -, and 11/2 -. Candidate levels for members of this multiplet have been suggested [START_REF] Pauwels | [END_REF]176] in 63,65,67 Co with excitation energies similar to those of the 2 + 1 states in the corresponding Ni cores, although their identification in many cases is tentative due to uncertain spin-parity assignments. The hypothesis that the first (3/2 -), (9/2 -), (11/2 -) states in 63.65 Co have a core-coupled character, which would support a weakly deformed character of the ground state, was tested by lifetime measurements [177,178], and Tab. 3 presents the resulting B(E2) values for their decay to the ground state, compared to the B(E2; 2 + 1 → 0 + 1 ) value in the even-even core. The B(E2;

(3/2 - 1 ) → 7/2 - 1 ) and B(E2; (11/2 - 1 ) → 7/2 - 1 )
values in 63 Co are similar, as expected from the coupling scheme, but they are both significantly lower than the B(E2; 2 + 1 → 0 + 1 ) value in 64 Ni. The remaining values displayed in Tab. 3 agree within uncertainties with the values for the Ni cores. The systematics of (9/2 -) states was extended beyond N = 40 in 69,71,73 Co, and the energies of the tentative (9/2 -) → (7/2 -) transitions are similar to those of the 2 + 1 → 0 + 1 transitions in the corresponding 70,72,74 Ni cores [180]. It should be emphasized that the uncertainties of the B(E2) values are large and the δ(E2/M1) mixing ratios are, mostly, not measured. Thus, more precise measurements are needed to determine possible deviations from the weak-coupling model to probe the influence of the deformed configurations.

A (1/2 -) state was reported at 1095 keV in 65 Co and interpreted, in a comparison with shellmodel calculations, as a deformed proton state involving excitation across the Z = 28 shell gap [178]. While there is no unambiguous evidence to affirm this interpretation, a 1/2 -state cannot belong to the π f -1 7/2 ⊗ 2 + 1Ni multiplet, and a single-particle p 1/2 state at such a low excitation energy 
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Figure 11: Dominant configurations and presumed shapes of low-lying states in N = 40 isotones 66 Fe, 67 Co and 68 Ni, resulting from calculations of Refs. [161,169]. The vertically stretched ellipses denote prolate deformation, horizontally stretched ones oblate, and circles nearly spherical shapes. Purple shades denote proton components in the wave function, green ones neutron components, and the intensity of the color is related to the number of nucleons promoted across a shell gap according to the calculations of Refs. [161,169]. would be surprising. A higher-lying (3/2 -) state at 1223 keV has a significant branch to the (1/2 -) state. While lifetimes for these states have been measured [178], the lack of knowledge of mixing ratios prevents the determination of the B(E2) values. These states have been suggested to arise from the π( f -2 7/2 p 1 3/2 ) deformed configuration, i.e., the 1/2 - [321] orbital [152,176,178]. A (1/2 -) isomeric state at 491 keV excitation energy is reported in 67 Co and interpreted as a deformed intruder state also. Based on this energy and that of the 7/2 -isomer in 69 Cu (1711 keV), interpreted as the π(2p-1h) configuration, one can expect that the π(2p-2h) 0 + deformed state in 68 Ni should appear at 491+1711 = 2202 keV, i.e., close to the energy of the 2511-keV 0 + 3 state, supporting its present interpretation [152]. One could speculate that with additional neutrons added to the νg 9/2 orbital, the (1/2 -) intruder state could become the ground state in the Co isotopes beyond N = 40, however, their ground-state spins and parities remain unknown. In 69 Co [181], an isomeric state with an unknown excitation energy, tentatively assigned as having I π = (1/2 -), is proposed as a candidate for a proton intruder state. A possible spin-parity inversion of the Co ground states from 7/2 -to 1/2 -should be investigated, and possible members of a rotational band built on the (1/2 -) state should be sought.

Combining the observed states in the N = 40 isotones with the expected ph excitations, a picture as presented in Fig. 11 emerges. In this picture, the 0 + 3 state in 68 Ni corresponds to the π(2p -2h) configuration, the 491 keV state in 67 Co the π(1p -2h) configuration, and the ground state in 66 Fe has a π(2h) configuration. The "normal" configuration, corresponding to the ground state in 68 Ni, the π(1h) ground state in 67 Co, and the π(2h) state in 66 Fe, may then appear as a lowlying 0 + state in the latter. Further away from Z = 28, low-lying 0 + states of a similar configuration were also predicted in 62,64 Cr (Z = 24), and a candidate in 62 Cr was observed experimentally [182]. It is stressed that while these states are labelled by their proton p-h content, all of them will involve neutron mpmh contributions. In particular, both the ground and the 0 + 2 state in 66 Fe are predicted to have important ν(mpmh) contributions [169], which are larger for the former, leading to its deformed nature. This particular region suffers from lack of experimental data as well as some inconsistencies between the results, but the overall reproduction of the available data by shellmodel calculations provides confidence in the predicted shapes for these excitations. Experiments aimed at testing these predictions will be crucial, although challenging.

A low-spin isomer, with unknown excitation energy, is also reported in 68 Co [158]. Several spin-parity assignments were proposed for this isomer based on the states in 68 Ni that are populated by its β decay [157,158,183]. The spin assignments proposed in Refs. [157,183] support its interpretation as a deformed proton state. A direct measurement of its excitation energy and, more importantly, of its spin and parity will provide an important experimental constraint on the microscopic configuration of the 0 + 3 state in 68 Ni. Figure 13 summarizes the quantities that have been measured in the Fe -Ni isotopes that are used to support shape-coexistence assignments. We stress here that large ρ 2 (E0) strengths were measured for the decay of low-lying 0 + and 2 + states in 58,60,62 Ni, and although these nuclei satisfy many of the criteria for shape coexistence, no rotational-like bands built on these states have been identified. While rich and diverse data are now available for 68 Ni, considerable uncertainty remains regarding the assignments of its first two excited states, which, together with the recent suggestions of shape coexistence in the 64,66 Ni isotopes, provides strong motivation for further studies.

Vicinity of 78 Ni

The first and most direct evidence for shape coexistence in the immediate vicinity of 78 Ni was obtained through the measurement of a large isomer shift for the 1/2 + isomer in 79 Zn [184]. The excitation energy of this isomer was determined in a 78 Zn(d, p) 79 Zn study to be 1.10(15) MeV [185].

The ground-state β 2 deformation of 79 Zn, estimated from its measured spectroscopic quadrupole moment [184], is equal to 0.15 (2), which is consistent with the values of 0.15(2) and 0.14(2) obtained from the measured B(E2; 2 + 1 → 0 + 1 ) values in 78 Zn and 80 Zn, respectively [186]. If the measured isomer shift is entirely attributed to an increase of deformation, it leads to an estimate of β 2 ≈ 0.22 for the isomer [184]. Based on the measured g factor of the isomer [184] one can assign to it a 2h -1p intruder configuration related to neutron excitation across the N = 50 shell gap. Similar conclusions can be drawn from a recent 80 Ge(d, p) 81 Ge study [187], which deduced strong 3s 1/2 and 2d 5/2 components in 679-keV 1/2 + and 711-keV 5/2 + states, respectively, thus linking them to neutron promotion across the N = 50 shell gap. Low-lying states of a 2h -1p intruder configuration were also identified in N = 49 isotones 83 Se [188], 85 Kr [189], and 87 Sr [190] via (d, p) transfer reactions.

Two recent measurements used β decay of 80 Ga to perform electron-conversion spectroscopy of 80 Ge [191,192]. A conversion-electron peak at 628 keV was reported in Ref. [191], which was attributed to the decay of a 0 + 2 state at 639 keV, located just below the first excited 2 + 1 state at 659 keV and interpreted as a neutron 2p -2h intruder excitation across N = 50. However, a later study [192] did not confirm the state at 639 keV and the question of possible shape coexistence in 80 Ge remains open.

Two excited 0 + states were identified in 82 Ge at 2.3 MeV and 3.1 MeV, respectively, and their decay patterns were observed to be different [193]. The 0 + 2 → 2 + 1 γ-ray transition seems to be hindered with respect to the decay of the 2 + 2 state feeding the 0 + 2 state, while no such effect is observed for the 0 + 3 → 2 + 1 decay. This difference was interpreted as due to an enhanced E0 0 + 2 → 0 + 1 branch, which would suggest different deformations of the 0 + 1 and 0 + 2 states and their significant mixing. In contrast, a weak E0 0 + 3 → 0 + 1 decay implies that either the deformations of the 0 + 1 and 0 + 3 states are more similar, or the mixing between these two states weaker. In more exotic nuclei at and beyond N = 50, the hints of shape coexistence come from the observation of non-yrast states. Their spin assignments and interpretation usually result from comparisons with theoretical calculations. Notably, a sequence of 1067-keV and 2910-keV transitions feeding the ground state in 78 Ni was observed following the 80 Zn(p, 3p) 78 Ni reaction and attributed to the decay of a 4 + 2 state at 3.98 MeV and a 2 + 2 state at 2.91 MeV, respectively (for comparison, the energy of the first excited state in 78 Ni is 2.6 MeV) [143]. These non-yrast states were interpreted as belonging to a deformed intruder configuration [143]. In a study of 82 Zn via a 83 Ga(p, 2p) 82 Zn reaction, in addition to the strong 4 + 1 → 2 + 1 → 0 + 1 cascade, a weaker transition was observed and tentatively assigned to the decay of a possible 0 + 2 state at 987 keV [194]. A candidate for a 0 + 2 or 2 + 2 state was found at 2.99 MeV in 76 Ni in a β-decay study [195]. 

Neutron-deficient nuclei with N ≈ Z

The neutron-deficient nuclei close to the N = Z line, between the Ge and Zr isotopic chains, have been known for a long time to exhibit shape coexistence. The support for this scenario has been obtained via a variety of probes, as illustrated in Fig. 15, and a thorough review of experimental data available before 2011 has been published in Ref. [2].

The low excitation energies of the 0 + 2 states in 70-76 Ge, descending even below the 2 + 1 state in 72 Ge, motivated a multitude of single-nucleon and multinucleon transfer studies aimed at extracting the microscopic configurations of ground and excited states in these nuclei. These results are reviewed in Ref. [2] and point to important mixing of both proton and neutron components of the wave functions of the 0 + 1,2 states, with a maximum observed for 72 Ge. This is consistent with the mixing angles deduced from the measured E2 matrix elements assuming a two-level mixing model. By applying Eq. 38 to the most recent set of 2 + i E2 0 + j matrix elements for 72 Ge [196], cos 2 (θ 0 ) = 0.52(4) was obtained, while the same procedure applied to 70,74,76 Ge [198] yielded admixtures of 5%, 4% and 3%, respectively. While the unperturbed 2 + A,B E2 0 + A,B matrix elements resulting from this analysis are very similar for 72,74,76 Ge and indicate that in these nuclei deformed ground-state configurations coexist with spherical excited ones, their values obtained for in 72 Ge, the difference between the shapes of the two underlying configurations should be considerably larger in the former. This picture would be consistent with the multi-nucleon transfer results [2]. These observations are further supported by the systematics of quadrupole invariants obtained in Coulomb-excitation studies [196][197][198][199][200]. The Q 2 values of the ground states in 70-76 Ge have similar values of about 0.2 e 2 b 2 , while those of the 0 + 2 states evolve considerably, from being consistent with zero in 74,76 Ge [199,200], almost identical with that of the ground state in 72 Ge [196,197]), to a value of 0.64(26) e 2 b 2 in 70 Ge [198]). The recent detailed Coulomb-excitation studies of 72 Ge [196] and 76 Ge [201] have also confirmed a rotational character of the ground-state bands in these nuclei, with the Q 2 values being remarkably constant up to spin 8. The only significant deviation from this pattern is a slight reduction observed for the 0 + 1 state in 72 Ge, which may be attributed to the strong mixing with a less deformed configuration.

Triaxiality plays an important role in the structure of Ge nuclei. Gamma bands were identified in all Ge isotopes with 66 ≤ A ≤ 78, and the level staggering observed in the γ band in 76 Ge [202], as well as the decay pattern with enhanced ∆I = 1 transitions for that in 78 Ge [203], were discussed in the context of rigid triaxial deformation. Quadrupole invariants Q 3 cos 3δ were obtained for multiple states in both ground-state and γ bands in 72 Ge [196] and 76 Ge [201]. The corresponding cos 3δ values appear to be rather constant with spin and correspond to almost maximum triaxiality. Similar observations were made for the ground-state band in 74 Ge, although the experimental information is limited only to its two lowest members [199]. The deduced fluctuations of Q 3 cos 3δ (see Sec. 2.4) for the 0 + 1 , 2 + 1 and 2 + 2 states in 76 Ge are consistent with rigid triaxial deformation [201]. The cos 3δ values obtained for the 0 + 1 and 0 + 2 states in 72 Ge are very similar, in line with their strong mixing [196].

A Coulomb-excitation study of 66 Zn [204] yielded a Q 3 cos 3δ invariant for the ground state corresponding to an average δ of 44(8) • , demonstrating that triaxiality is also important for this nucleus. A similar conclusion was reached for 68 Zn [205] based on the strongly reduced Q s (2 + 1 ) value of +0.09(3) eb. Low-lying 0 + 2 states were observed in 62-72 Zn, and the excitation energies of those in 66-72 Zn display a characteristic parabolic pattern with a minimum for 70 Zn. The 2 + 3 state in 68 Zn was proposed to be a member of a deformed band built on the 0 + 2 state, based on a strong B(E2; 2 + 3 → 0 + 2 ) value of 17.4( 14) W.u. [205], which is nonetheless comparable with the B(E2; 2 + 1 → 0 + 1 ) value (15.6(10) W.u.). While Ref. [204] reports that the Q2 invariant for the 0 + 2 state in 66 Zn is considerably smaller than that for the ground state, the authors stress that the former may be strongly underestimated, as it includes contributions from only two lowest 2 + states, and the 2 + member of the band built on the 0 + 2 state has not been identified yet. Similarity between the deformations of the 0 + 2 states in 64-70 Zn and those of the respective ground states would also be consistent with the measured 10 3 × ρ 2 (E0) strengths, which are in all cases below 10. Thus, while there are hints of shape coexistence in the Zn isotopes, perhaps unsurprisingly given their proximity to the Ge isotopes, the data are as yet insufficient to make a firm claim.

Low-lying 0 + 2 states were identified in 72,74,76 Se, while 68,70 Se present two rotational bands with ∆I = 2, characterised by different moments of inertia: one built on the ground state and the other on a low-lying 2 + 2 state. The spectroscopic quadrupole moments measured for the 2 + 1 states in 76,78,80,82 Se [206,207] suggest that these states are prolate deformed, and the level energies and B(E2) values within the ground-state bands are consistent with their rotational character. The 2 + and 4 + members of the band built on the 0 + 2 state in 76 Se were recently identified in an inelastic neutron scattering study [208], and the B(E2) values within this band were shown to be smaller than those in the ground-state band (e.g., B(E2; 74 Se [209] has identified a 0 + 3 state at 1.675 MeV, and on the basis of the measured branching ratios suggested that together with the 2 + 3 state it may form a strongly deformed band, while the 0 + 2 state was interpreted as related to the vibration of the weaklydeformed ground state. While the spectroscopic quadrupole moment of the 2 + 1 state in 74 Se has not been unambiguously determined, the moment of inertia of the ground-state band is similar to those in the heavier Se isotopes, see Fig. 16, pointing to its prolate deformation. The similarity of these structures is further supported by the results of a 76 Se(p, t) 74 Se study [210], which observed no substantial strength to the excited 0 + states in 74 Se. The moments of inertia in the ground-state band in 72 Se resemble those for 74,76 Se, although the perturbation of excitation energies of its lowspin members is more significant than in the heavier Se nuclei, which may be due to the mixing of the coexisting configurations. The B(E2; 2 + 2 → 0 + 2 ) value of 36(3) W.u. significantly exceeds its counterpart in the ground-state band (23(2) W.u.), suggesting that the structure built on the 0 + two-neutron pickup reaction was found to be 11% of that to the ground state [212], which limits the mixing amplitude of the 0 + states, cos(θ 0 ), to less than 0.3 assuming a two-state mixing model.

2 + 3 → 0 + 2 ) = 31(5) W.u. versus B(E2; 2 + 1 → 0 + 1 )) = 44(1) W.u.). A β-decay study of
A negative spectroscopic quadrupole moment was measured for the 2 + 1 state in 72 Se, supporting its prolate character [213]. Despite many experimental efforts, no excited 0 + states are known at low excitation energy in 68,70 Se. The evolution of the moments of inertia in the band built on the 2 + 2 state in 70 Se is remarkably close to that observed for the ground-state band in 72 Se, as shown in Fig. [START_REF] Motz | [END_REF]. In contrast, the moments of inertia of the ground-state band in 70 Se evolve in a very irregular manner, which has been interpreted as due to a transition from an oblate shape at low spin to a prolate one at higher excitation energy, with a strong mixing of the two configurations [214]. An attempt has been made to measure the quadrupole moment of the 2 + 1 state in this nucleus by combining an integrated low-energy Coulomb-excitation cross section to populate this state [215] and its high-precision lifetime measurement [216]. Unfortunately, the precision of the former was not sufficient to firmly determine the sign of the quadrupole moment, although an oblate shape seems to be favoured. The moments of inertia in the ground-state band of 68 Se evolve smoothly with excitation energy, but remain much lower than those in the ground-state bands of heavier Se nuclei, which was attributed to the oblate shape of the former [217]. In contrast, the moments of inertia obtained for states of spin 8 and above in the second rotational structure in 68 Se closely follow those for the high-spin members of the ground-state band in 70 Se, while their irregular behaviour observed at lower spin may be linked to a strong mixing of the two configurations.
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The existing data consistently point to shape coexistence in 68-76 Se, with an important mixing of the coexisting configurations. In particular, a change of the ground-state configuration, with respect to the heavier Se isotopes, seems to take place in 70 Se. A more precise measurement of the spectroscopic quadrupole moment of the 2 + 1 state in this nucleus would bring a definite proof of this scenario.

In the 72,74,76 Kr isotopes, the moments of inertia of the ground-state bands were observed to be perturbed at low spin, as readily seen in Fig. 17. Similarly, the reduced transition probabilities show a reduction of collectivity at low spin that has been attributed to shape mixing [218]. The mixing was first quantified, within the two-state mixing model, from the perturbation of the excitation energies of low-spin members of the ground-state rotational bands with respect to an extrapolation of energies of their high-spin members [219]. This analysis yielded an admixture of 27% of the 0 + B configuration (see Eq. 36) to the 76 Kr ground state. From this analysis, the mixing of the 0 + states reaches a maximum of 50% in 74 Kr, where also a maximum value of 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) = 85 (19) and minimum excitation energy of the 0 + 2 state are observed. In 72 Kr, the 0 + 2 excitation energy increases, and the mixing deduced from level energies is reduced to 10% [219]. The observed parabolic trend of the 0 + 2 excitation energy suggests that the two configurations cross at 74 Kr, where they are almost degenerate and maximally mixed [219]. The initial conclusions on the sign of the deformation, i.e., prolate or oblate, were derived from a comparison with theoretical models. For instance, by comparing the measured B(E2; 2 + 1 → 0 + 1 ) value with theoretical predictions, Iwasaki et al. [220] concluded that the first 2 + state in 72 Kr has an oblate shape, which in turn suggested prolate shapes for the ground-state bands in heavier isotopes. Similarly, the enhancement of the B(E2; 2 + 1 → 0 + 1 ) in 70 Kr with respect to its mirror nucleus 70 Se was interpreted as resulting from a substantial difference between their shapes [221]. Direct evidence for different shapes of the two configurations came from low-energy Coulomb-excitation studies of 74 Kr and 76 Kr [222], which yielded spectroscopic quadrupole moments of the short-lived 2 + 1,2,3 and 4 + 1 states in these nuclei, providing an experimental proof of prolate deformation in the ground-state bands and oblate deformation of the structures built on the 0 + 2 states. The mixing of the two configurations extracted from the measured E2 matrix elements via Eq. 38 was found to be consistent with the conclusions of the level-energy analysis for 74 Kr, while the discrepancies observed for 76 Kr were attributed to a significant mixing with the 2 + 2 bandhead of the γ band. Comparisons with beyond-mean-field calculations led to a conclusion that allowing for the triaxial degree of freedom is required for the theoretical description of these isotopes [222][223][224].

Experimental data on the neutron-deficient Sr isotopes are more scarce. In 80 Sr, the state at 1-MeV excitation energy was assigned 0 + spin-parity from the angular distribution measured in the two-proton transfer reaction 78 Kr( 3 He,n) 80 Sr, and its strong population in this study was associated with shape coexistence [225]. No excited states built on this 0 + 2 level are known. Large deformations with β 2 0.4 can be deduced for the ground states of 76,78,80 Sr from the measured B(E2) values in the ground-state bands [226,227] via Eq. 28. The level energies in these bands, contrary to those in 72,74 Kr, do not display strong perturbations at low spin, see Fig. The correlation between the R 42 =4 + 1 /2 + 1 excitation-energy ratio and the B(E2; 2 + 1 → 0 + 1 ) value expressed in W.u. and normalized to A [227], as shown in Fig. 18, suggests a similarity between 76,78,80 Sr and 72,74,76 Kr, with these N ∼ Z nuclei exhibiting a different behaviour than the heavier Z ≈ 40 or Z ≈ 60 isotopes. While the observed effect can be attributed to strong mixing in 72,74,76 Kr, there is currently no evidence for it in the Sr isotopes. Indeed, the excitation energies of the 2 + 1 and 4 + 1 states in 76,78,80 Sr are much lower than their counterparts in the Kr nuclei. Under the 72,74,76 Kr and 74,76,78,80 Sr. Data are taken from the National Nuclear Data Center database [39].
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assumption of a similar mixing strength as in the Kr isotopes [227], the increase of energy spacing between the ground state and the 2 + 1 state due to mixing is of the same order of magnitude as the 2 + 1 excitation energy in 76,78 Sr, making the R 42 ratio much more sensitive to small mixing than, e.g., in the Kr isotopes. This calls for more spectroscopic data, such as the excitation energy of the 0 + 2 states in 76,78 Sr, currently unknown, and their decay properties. One should also note that the moments of inertia measured for 74 Sr [228] closely follow those for its mirror nucleus 74 Kr, which hints at a presence of a shape-coexisting state strongly mixed with the ground state, in analogy to 74 Kr. Laser spectroscopy of Rb isotopes (Z=37) revealed large isomer shifts for 81 Rb [229] and 85 Rb [230]. There exists also an extensive set of ground-state spectroscopic quadrupole moments measured by laser spectroscopy for the odd-proton and odd-neutron isotopes between Z = 32 and Z = 41 [231], which complements those of the 2 + 1 states in even-even nuclei resulting from Coulomb-excitation studies. For even-even N = 40 isotones, one can observe an increase in the quadrupole moments, and hence deformation, when moving away from the closed shells and approaching the N = Z nuclei ( 72 Ge: Q s (2 + 1 ) = -0.13(6) eb, 74 Se: Q s (2 + 1 ) = -0.36(7) eb, 74 Kr: Q s (2 + 1 ) = -0.7(2) eb). The spin-parities of the ground states in odd-mass N ∼ Z nuclei resulting from laser spectroscopy, together with their proposed Nilsson configurations, are presented in Fig. 19. For some of them, spectroscopic quadrupole moments are also known [231], and the corresponding shape (prolate or oblate) is indicated in the figure . From this overview, one can see that there is no convincing experimental evidence for oblate ground states, in particular in the vicinity of the N = Z line. Except for the N = 39 75 Kr and 77 Sr isotopes, all ground-state configurations involve orbitals arising from the p f shells. One should note here that although many spectroscopic quadrupole moments have been measured, a proper determination of the deformation in the intrinsic frame of reference would require assumptions with regard to the axial symmetry. Strong evidence exists, however, that the triaxial degree of freedom plays a major role in this mass region, and its importance evolves rapidly as a function of nucleon number, which would render such extractions of β 2 questionable.

Shape coexistence in

A ≈ 100, Z ≈ 40 nuclei
The evolution of two-neutron separation energies shows that the binding energy of Rb, Sr, Y and Zr isotopes suddenly increases in the vicinity of N = 60 [232]. At the same neutron number, the systematics of the δ r 2 , presented in Fig. 20, shows an abrupt increase of nuclear radii. These features have been interpreted as a consequence of dramatic increases of the groundstate deformations. The low-Z border of this phenomenon was established in the Kr isotopes by means of mass measurements, which do not show any deviation at N=60 from the prevailing trend toward the dripline [233]. The localized character of this effect suggests that it originates from the interaction between specific proton and neutron orbitals. The abrupt ground-state deformation change at N = 60 is now clearly established. It is unique in the nuclear chart: it occurs at exactly N=60 for several elements (Rb, Sr, Y and Zr); it is sudden (from spherical N=58 isotones to highly-deformed N=60 isotones); for elements lighter than Rb, or heavier than Zr, the change in deformation is more gradual. In contrast, while shape coexistence occurs throughout this mass region, the information on it is incomplete, and in particular direct measurements of deformation of excited and ground states are scarce. New results have been obtained in the recent years, notably with the development of post-accelerated radioactive ion beams. The types of available data used to establish shape coexistence are shown in Fig. 21. 

Even-even nuclei with Z ≤40

The systematics of 2 + 1 excitation energies in the Sr and Zr isotopic chains show a sudden drop at N = 60, see Fig. 22 (left) and, by applying a simple geometrical model, one can relate it to a change of deformation from β 2 = 0.1 to β 2 = 0.4. In contrast, a more gradual evolution is observed for both lighter (i.e., Kr) and heavier nuclei (i.e., Mo, Ru). Similar conclusions can be reached from the B(E2; 2 + 1 → 0 + 1 ) values. Their systematics, recently extended by the measurements of Refs. [237,[239][240][241][242], are presented in Fig. 22 (right), where the B(E2) values expressed in W.u. are normalized to the mass A for each isotope. This representation illustrates schematically the fraction of nucleons that contribute to the collectivity: if this ratio equals unity, all nucleons participate in the collective behaviour. The values for the Sr and Zr isotopes with N ≤ 60 are very small, as expected for spherical nuclei. For 96,98 Zr, the local maximum of the 2 + 1 excitation energy (see left panel of Fig. 22), observed when the valence neutrons are filling the s 1/2 orbital, corresponds to a local minimum in the right panel of Fig. 22. At N = 60 and beyond, the ratio saturates at 1, consistent with an almost perfect rigid-rotor character. The evolution observed for Kr, Mo and Ru isotopes is again much more gradual. Low-lying 0 + states, indicating possible shape coexistence, were identified in the Zr and Sr chains and, similar to the 2 + 1 state, a drop of the 0 + 2 energy is observed at N = 60, as can be seen in Fig. 23. A shape-coexistence scenario was therefore proposed where the 0 + 2 states for N < 60 correspond to a deformed configuration, which then becomes the ground state at N = 60, while the spherical configuration of the ground state for N < 60 becomes non-yrast.

There exist extensive experimental data on excited states in neutron-rich Sr isotopes. The spectroscopic quadrupole moment of the 2 + 1 state in 96 Sr, -22 +33 -31 efm 2 , is compatible with zero, and combined with a moderate B(E2; 2 + 1 → 0 + 1 ) value of 7.8(4) W.u. is consistent with a vibrational character of the 2 + 1 state and a nearly spherical shape of the ground state [247][248][249]. Two low-lying 0 + states at 1229 and 1465 keV were established by Jung et al. [250] and interpreted as candidates for a deformed band head, supporting the shape-coexistence scenario. A highly enhanced electric monopole transition of 10 3 × ρ 2 (E0) = 185 (50) was observed between these two states [251,252], indicating both the presence of a sizeable difference in deformation and mixing of the configurations; the proximity in energy of the states limits the mixing matrix element to < 120 keV. The E0 decays of the 0 + 2,3 states to the ground state have not been observed. The 2 + 2 and 2 + 3 states are very close in energy to the 0 + 2 and 0 + 3 states, respectively, and can be considered as candidates for rotational band members. The 4 + 2 , 6 + 2 and 8 + 2 states form a rotational band, but it is not clear to which band head they should be assigned. The lifetimes of the 6 + 2 and 8 + 2 states were measured [253] and indicate a rather weak deformation.

In 98 Sr, the ground-state band has a rotational character, and the large B(E2) values between the excited states, deduced from lifetime measurements [267][268][269][270][271][272][273] and Coulomb excitation [247], Table 4: Quadrupole invariant quantities Q 2 defined as in Eq. 26, which reduces to j B(E2; 0 + i → 2 + j ), for 0 + i states of nuclei in the Z = 38 -52 region. The Q 2 quantities for excited 0 + states should be considered as lower limits. The data used to obtain the Q 2 quantities are taken from Ref.

[39] and/or from the references listed in the right column.

Isotope Q 2 (0 + 1 ) [e 2 b 2 ] Q 2 (0 + 2 ) [e 2 b 2 ] Q 2 (0 + 3 ) [e 2 b 2 ]
Ref. 96 are consistent with a deformed character of the ground state. A low-lying 0 + 2 state at 215.3 keV was established by Schussler et al. [274] and interpreted as the band head of a presumably spherical structure. A strong electric monopole transition of 10 3 ×ρ 2 (E0) = 53 (5) was measured between the 0 + 2 and 0 + 1 states, again supporting the shape-coexistence scenario [274,275]. The spectroscopic quadrupole moments of states in the ground-state band, measured via low-energy Coulomb excitation, are large and negative [247][248][249], indicating a prolate deformation with β 2 =0.5 (1). While those for spin 4 + and above are consistent with values deduced from the corresponding B(E2) strengths assuming the rigid-rotor model, a reduction of the quadrupole moment is observed for the 2 + 1 state, which has tentatively been attributed to its significant triaxiality [248]. As there is no candidate for a low-lying γ band in 98 Sr, the role of triaxiality in this nucleus remains an open question. (A candidate γ band has been suggested [276] in the isotone 100 Zr with a bandhead at 1292 keV.) The spectroscopic quadrupole moment of the 2 + 2 state, 2 +13 -12 efm 2 , is compatible with zero, and the B(E2;

2 + 2 → 0 + 2 ) value of 7.4(3) W.u. is identical to the B(E2; 2 + 1 → 0 + 1 )
value in 96 Sr. The striking similarity of these two structures is further supported by the similarity of the quadrupole invariants Q 2 for the 0 + 1 state in 96 Sr and the 0 + 2 state in 98 Sr [248], as listed in Table 4. Together, these results provide firm experimental evidence for coexistence of a well-deformed ground-state band with a weakly deformed structure built on the 0 + 2 state in 98 Sr, and strongly support the analogy between the 0 + 1 state in 96 Sr and the 0 + 2 state in 98 Sr. Very recently, information on the single-particle nature of excited states in 96 Sr was obtained from a study of the 95 Sr(d, p) 96 Sr neutron-transfer reaction [277,278]. The 95 Sr ground state is well described as a νs 1/2 spherical state, and thus the (d, p) reaction favours the population of spherical states in 96 Sr of the form νs 1/2 ⊗ νl j . The 0 + states in 96 Sr were populated with spectroscopic factors of C 2 S = 0.19(3), 0.22(3), and 0.33 (12) for the 0 + 1 , 0 + 2 , and 0 + 3 states, respectively. The small occupancy of the s 1/2 orbital in the 96 Sr ground-state wave function disagreed with shell model calculations, and was interpreted as possible evidence for a weakly oblate or triaxial shape [277]. While the uncertainty on the spectroscopic quadrupole moment of the 2 + 1 state measured via Coulomb excitation [247] does not exclude such a scenario, a weak prolate deformation seems to be favoured. The larger transfer strengths observed for the 0 + 2 and 0 + 3 states were interpreted within a two-state mixing model. Combined with the known ρ 2 (E0; 0 + 3 → 0 + 2 ) value and under the assumption that the unperturbed 0 + de f deformed state is not directly populated, the wave function of the 0 + 2 level was determined to have a 40% admixture of the spherical component [277,278]. It was suggested that 96 Sr may exhibit triple shape coexistence, with a weakly deformed ground state, and two excited 0 + configurations -a deformed and a spherical one -which undergo strong mixing.

The existing experimental data for the Zr isotopes, summarized in Fig. 24, also point to configuration coexistence, with the types data used to support it shown in Fig. 21. In 94 Zr, the g-factor measurements indicate a neutron dominance in the wave function of the 2 + 1 state and proton dominance in that of the 2 + 2 state [279]. In addition, the 2 + 2 level at 1671 keV is populated an order of magnitude weaker than the 2 + 1 state in two-neutron pickup, 96 Zr(p, t) 94 Zr [280], and two-neutron stripping, 92 Zr(t, p) 94 Zr [281] reactions, consistent with a difference between the neutron configurations of these two states. Furthermore, from a comparison of deformation parameters obtained for the 2 + 2 state in inelastic proton scattering [282] and extracted from its electromagnetic decay, one can deduce β n /β p ≈ 0.83, consistent with its proton character. The observation of the strongly enhanced 2 + 2 → 0 + 2 E2 transition of 19(2) W.u. [283] suggests that the 2 + 2 level belongs to a deformed band built on the 0 + 2 state. The Q 2 invariants, listed in Tab. 4, show that the 0 + 2 state in 94 Zr possesses greater deformation than the ground state. In 96 Zr, the B(E2; 2 + 2 → 0 + 1 ) value was recently measured using electron scattering [255]. The deduced B(E2; 2 + 2 → 0 + 2 ) value of 36(11) W.u., compared to the B(E2; 2 + 1 → 0 + 1 ) value of 2.3(3) W.u., demonstrates that an excited deformed configuration coexists with a nearly spherical ground state. From the Q 2 value for the former (Tab. 4) β 2 0.24 can be estimated. In both 94 Zr and 96 Zr, there are strong M1 transitions observed between the 2 + 2 and 2 + 1 levels of B(M1) ≈ 0.15 µ 2 N , which was suggested to be due to a mixed-symmetry component present in the 2 + 2 wave function [279,[284][285][286].

The lifetimes of excited states in 98 Zr (N = 58), measured following fission [237] and twoneutron transfer [238], suggest coexistence of two or three structures differing in deformation. The 2 + 3 level at 1745 keV is interpreted as built on the spherical ground state, consistent with its weak E2 decay to the ground state, as shown in Fig. 24. The 0 + 2 and 2 + 1 states seem to form a moderately deformed band, with β 2 = 0.20(2) or β 2 = 0.12 +0.02 -0.01 deduced from the B(E2;

2 + 1 → 0 + 2 )
values of 28(6) W.u. [237] and 11 +3 -2 W.u. [238], respectively. The important differences between the lifetimes of the 4 + 1 state reported in Refs. [237,238] and the fact that the B(E2;

4 + 1 → 2 + 2 ) and B(E2; 4 + 1 → 2 + 1 )
values are comparable, make it difficult to conclude on the nature of remaining low-spin states in 98 Zr. Shown in Fig. 24 are two scenarios for the assignment of structures in 98 W.u. In an alternative interpretation shown in Fig. 24, suggested by Karayonchev et al. [238], the 0 + 3 , 2 + 2 , 4 + 1 states form a two-quasiphonon triplet of weakly deformed states, and the 6 + 1 is a three-quasiphonon state, which is consistent with the B(E2;

6 + 1 → 4 + 1 )/B(E2; 4 + 1 → 2 +
2 ) ratio resulting from this study, and the enhanced B(E2; 2 + 2 → 2 + 1 ) value of 46 +35 -14 W.u. On the other hand, in the shape-coexistence scenario the latter would suggest a strong mixing of the two deformed structures in 98 Zr, in line with the important mixing between the 0 + 2 and 0 + 3 states deduced for the N = 58 96 Sr isotone from the 95 Sr(d, p) 96 Sr neutron-transfer results [277,278]. Moreover, the observation of a large ρ 2 (E0; 0 + 3 → 0 + 2 ) = 0.076( 6) value [102] demonstrates both a substantial change in deformation ∆β 2 and mixing. A higher-lying 0 + state, the 0 + 4 level at 1859 keV, decays with an enhanced ρ 2 (E0; 0 + 4 → 0 + 3 ) = 0.061(8) [102], indicating a change in deformation β 2 also between the 0 + 3 and 0 + 4 states. The energy spectrum of 98 Zr and the measured B(E2) values reasonably agree with the results of MCSM calculations [237] that suggest that the nearly spherical ground state coexists with two structures built on 0 + 2,3 states, a moderately deformed and a strongly deformed one. The calculated proton and neutron occupancies for the 0 + 2 and 0 + 3 deformed states are very similar, and only minor differences between them lead to a change in deformation. A similarly good reproduction of the electromagnetic properties of 98 Zr has been achieved within a framework of the interacting boson model with configuration mixing (IBM-CM) [238], that interpreted the 0 + 1 and 2 + 3 levels as spherical single-particle states, and the remaining low-lying states were suggested to have an intruder character and be nearly spherical or weakly deformed and arranged in multiphonon structures. Consequently, the two models predict the B(E2; 2 + 2 → 0 + 3 ) values differing by one order of magnitude: in MCSM it is enhanced, being related to an inband transition in a deformed structure, while in IBM-CM it is a hindered transition between two members of the two-quasiphonon triplet. Combining the lifetime of the 2 + 2 state [238] with the branching ratio for the 2 + 2 → 0 + 3 transition [287] yields an unphysical B(E2; 2 + 2 → 0 + 3 ) value of over 500 W.u., and consequently it is pertinent to remeasure these two values. A measurement of the quadrupole moments of the 2 + states in 98 Zr would also likely be able to discriminate between the two theoretical interpretations.

Insight into the nature of the 0 + states in the Zr isotopes can be ascertained from observations from transfer reactions. In a series of (t, p) reactions, the excited 0 + 2 states in 92 Zr and 94 Zr were weakly populated, with cross sections relative to the ground state of 5% and 4%, respectively, and no strength was observed to the 0 + 2 state in 98 Zr. In contrast, the 0 + 2 state in 96 Zr was populated with 39% of the ground-state cross section [288], suggestive of a neutron-pairing-vibration interpretation as might be expected due to the strong d 5/2 subshell closure. In the (p, t) reaction [280], significant strength was observed to high-lying states in 90 Zr, consistent with a neutron-pairingvibration interpretation, but the 0 + 2 states in 92,94 Zr were weakly populated with relative strengths < 5%. The enhanced population of the 0 + 2 state in 96 Zr was also observed in the (d, 6 Li) reaction, where it was populated stronger by a factor 2.2 than the ground state, and much stronger than excited 0 + states in other Zr isotopes [289]. From an analysis of the ( 3 He,d) and (d, 3 He) reactions [290,291], the fullness factors for the πp 1/2 orbital in the Zr ground states were deduced. The average of the two results yield ground-state wave functions with admixtures, a 2 , for the π(p 1/2 ) 2 component of 0.6, 0.5, 0.65, and 0.9 for 90,92,94,96 Zr, respectively. It was found that a qualita- N . The levels are colour-coded according to assigned configurations. For 98 Zr, dashed gray lines are used to connect the same energy levels in the proposed band structures resulting from the two interpretation scenarios outlined in the text. For 100 Zr, the (2 + ) state at 1196 keV has been alternatively suggested as a member of the 0 + 3 band (blue) [2], or as the head of the γ band (green) [276]. Data are taken from the National Nuclear Data Center database [39] and Refs. [102,237,238,255,276,283].

tive explanation of the (d, 6 Li) cross sections could be obtained with modelling of the 0 + 1 state as aπ(p 1/2 ) 2 + bπ(g 9/2 ) 2 with an orthogonal combination adopted for the 0 + 2 state, where the amplitude a is derived from the above admixture factors. These results demonstrated the role that the proton configuration was playing in the (d, 6 Li) reaction -a result confirmed in the two-proton pickup ( 6 Li, 8 B) reaction performed on targets of 92,94,96,98,100 Mo [292]. In the 98 Mo( 6 Li, 8 B) 96 Zr reaction, an enhanced cross section to the 0 + 2 state in 96 Zr was observed, where it was populated with a cross section equal to that for the ground state, and in 98 Zr the cross section to populate the 0 + 2 state was found to exceed that for the ground state by a factor of 2.1. This was taken as evidence that the π(p 1/2 ) 2 component in the ground-state wave function increased to 96%, and that of the π(g 9/2 ) 2 component was 4% [292]. We note that this is in qualitative agreement with the MCSM results for 98 Zr [237,293], although the calculated wave functions are far more complex than those of the simple analysis performed in Refs. [289,292].

The similarity in the structures of 98 Sr and 100 Zr, with the 0 + 2 states decaying via enhanced E0 transitions to the ground state, and the structures built on them having much smaller moments of inertia compared to the ground-state band, was shown in Ref. [2]. Measurements on 100 Zr have been thus far mostly constrained to those using fission sources or β decay. Recent measurements [273] for 100 Zr, obtained from 248 Cm fission, have confirmed the lifetimes of states in the ground state band of the 8 + -12 + band members. Direct timing measurements [241], with 100 Zr obtained from 235 U and 241 Pu fission, were in agreement with the previously established lifetime of the 2 + 1 level, but gave a somewhat shorter lifetime for the 4 + 1 state. To date, no measurements of lifetimes have been performed for the rotational states in the 0 + 2 band. Figure 25 shows the orbitals relevant for the present discussion and a schematic picture of the normal-ordered and intruder configurations as deduced from the studies of the even-even Zr and Sr isotopes presented in this section. In the calculations of Refs. [255,293], the normal configuration corresponds to the 0 + 1 and 2 + 1 excitation in 96 Zr, with the 2 + 2 state as an intruder configuration, and these assignments are consistent with the experimental data. The 0 + 2,3 and 2 + 1,2 states in 98 Zr [237] also are calculated to have intruder character, with proton ph excitations from the p f shell into the g 9/2 orbital and neutron excitations from the d 5/2 orbital into higher-lying shells, even including the h 11/2 orbital.

3.4.2. Odd-mass and odd-odd nuclei with Z ≈ 40 1285

In odd-mass isotopes, the spin and parity of the ground state and long-lived isomers give strong indication of the involved Nilsson orbitals. Figure 26 shows the systematics of ground and isomeric states in Zr, Y and Sr isotopes, highlighting those that have measured quadrupole moments. Isotones are presented in the same column and a colour code indicates the element. The horizontally stretched ellipses denote oblate deformation, vertically stretched ones prolate or triaxial, and circles nearly spherical shapes. Filled symbols are used if the deformation was extracted from spectroscopic quadrupole moments measured in laser spectroscopy or Coulomb excitation. Patterned symbols are used if the deformation was deduced from level energies or a comparison with model calculations. The dashed lines connect the levels if there are arguments for their configurations being similar. The arrow between the 1229-keV and 1465-keV states in 96 Sr denotes their strong mixing, with the deformed unperturbed configuration resembling that of the ground state in 98 Sr (see text for details). The interpretation used for 98 Zr is that from Ref. [237]; Fig. 24 displays an alternative interpretation from Ref. [238].

Even-neutron odd-proton nuclei. The spins and parities of the ground states of odd-mass yttrium 1290 isotopes with 48 ≤ N ≤ 58 are I π = 1/2 -, and the large single-proton pickup strengths from the even-even Zr targets [290,294] demonstrate that these ground states have a normal-order configuration with a single proton in the 2p 1/2 orbital. The odd-A Y isotopes, 85-97 Y, also possess I π = 9/2 + isomers that can be characterized as (predominately) πg 9/2 single-particle excitation. Spectroscopic quadrupole moments have been measured for many of these isomeric states [295],

and they vary from Q s = -0.43 (6) eb in 89 Y to -0.76 (8) eb for 97 Y. This latter value can be interpreted as favouring an oblate shape for the isomeric state that can be considered as πg 9/2 ⊗ 96 Sr(g.s.), and it has been suggested [296] that the weak-coupled states involving the 13/2 + πg 9/2 ⊗ 96 Sr(2 + 1 ), and 17/2 + πg 9/2 ⊗ 96 Sr(4 + 1 ) lie at 1657 keV and 2559 keV, respectively. The low-lying states in the N = 58 isotones above Z = 40 appear as spherical, with the exception of 101 Tc. The most extensive assignments of the single-particle states are for 99 Nb populated with single-proton transfer reactions on 100 Mo [294], and favour a spherical shape, in agreement with the lack of rotational bands. In 101 Tc, on the other hand, rotational-like bands appear that have been described as arising from its asymmetric rotor character [297], and they display a strong similarity to the ground-state bands of 100 Mo and 102 Ru, both of which have a triaxial nature [23,254].

At N = 60, the 99 Y ground state changes structure compared to the lighter Y isotopes and has I π = 5/2 + with a rotational band observed (see, e.g., Ref. [298]) that is assigned as the π5/2 [START_REF] Svensson | Coulomb excitation of vibrational nuclei[END_REF] configuration. As shown in Fig. 27, the 5/2 [START_REF] Svensson | Coulomb excitation of vibrational nuclei[END_REF] orbital also forms the ground-state configurations of 101 Nd and 103 Tc, and has been shown to persist in the heavier Y and Nb isotopes [301].

The deformed nature of 99 Y is supported by the value of β 2 0.4 extracted from both laser spectroscopy [295] and in-beam γ-ray spectroscopy [299][300][301]. Lifetimes in the 5/2 [START_REF] Svensson | Coulomb excitation of vibrational nuclei[END_REF] ground-state rotational bands were also measured in 101 Y and 101,103,105 Nb [301], and they were shown to be consistent with deformations of β 2 = 0.35 -0.4. It should be noted that the B(E2; 2 + 1 → 0 + 1 ) = 0.259(8) e 2 b 2 in 98 Sr [247] is similar to the measured B(E2; 9/2 + → 5/2 + ) = 0.25(2) e 2 b 2 for the 5/2 [START_REF] Svensson | Coulomb excitation of vibrational nuclei[END_REF] rotational band in 99 Y [301], strongly supporting comparable collectivity. There is no firm evidence for the appearance of spherical states in the N = 60 isotones shown in Fig. 27. In 97 Rb, an isomeric state at 77 keV was shown to have negative parity [302], and comparison to calculations favoured I π = 1/2 or 3/2 -values for the level that could arise from either an oblate or a prolate shape. The ground-state band in 97 Rb, based on the 3/2 [431] orbital, was determined to have a prolate shape with a large transitional quadrupole moment Q t = 2.95(5) eb [303].

Even-proton odd-neutron nuclei. The ground-state spins of the odd-mass Zr isotopes with N > 50 follow the expected pattern for neutrons above the N = 50 shell gap, with I π = 5/2 + for 91,93,95 Zr. The magnetic moments have been measured for the ground states with values of µ = -1.30362(2) µ N for 91 Zr [304], and slightly less |µ| = 1.103 (23) µ N for 95 Zr [305]. The very strong populations of the 91,93,95 Zr ground states in single-neutron transfer reactions are consistent with a singleparticle νd 5/2 configuration. In 97 Zr, the ground state has I π = 1/2 + with a measured magnetic moment of µ = -0.937(2) stat (3) sys µ N , and was strongly populated in the 96 Zr(d, p) reaction with L = 0 and a spectroscopic factor of S = 1 [306], consistent with a single-particle νs 1/2 assignment.

Measurements of isotope shifts for the Zr isotopes, shown in Fig. 20, [307] demonstrate a sudden increase in the mean-square charge radii occurring at N = 60 ( 100 Zr). The ground state of 99 Zr, with I π = 1/2 + , has a measured magnetic moment of µ = -0.930(1) stat (3) sys µ N , nearly identical to that of 97 Zr. The apparent lack of a rotational band associated with the ground state, Figure 27: Low-lying non-rotational states in the N = 60 isotones 97 Rb, 99 Y, 101 Nb, and 103 Tc. The ellipses denote prolate deformation, filled symbols are used if the deformation was extracted from spectroscopic quadrupole moments measured in laser spectroscopy, and patterned symbols if it was deduced from level energies or a comparison with model calculations. The dashed lines connect the levels if there are arguments for their configurations being similar.

together with the trend observed in the isotope shifts and the magnetic moment, strongly favour a spherical or very weakly deformed shape for the ground state of 99 Zr. In contrast, the structure observed in 101 Zr, with a clear rotational band built on the I π = 3/2 + ground state, and the measured spectroscopic quadrupole moment of Q s = +0.812(56) eb [307], is consistent with a deformed nature of the ground state. The lack of observed rotational bands built on the 3/2 + and 7/2 + states in 99 Zr favours a spherical shape interpretation for those levels, and hence they are given the νl j labels in Fig. 28. However, very recent measurements of the magnetic moments of the 3/2 + 1 and 7/2 + 1 states in 99 Zr [308] of µ = +0.42 (6) and |µ| = 2.31(4), respectively, were interpreted within interacting boson-fermion model (IBFM) calculations. The wave functions were described as mixtures of the d 5/2 , g 7/2 , s 1/2 , and d 3/2 spherical orbitals, as would be expected for deformed states. As pointed out in Ref. [308] the g-factor for the 7/2 + state exceeds the Schmidt limit (Eq. 24) for a single-particle g 7/2 state. The apparent disagreement over the interpretation of these low-lying levels has been pointed out in Refs. [309,310], and emphasize the need for more experimental information on the excitations in 99 Zr.

There are rotational bands in 99 Zr, the lowest built on the state at 576 keV assigned as a mixture of the ν3/2 [411] and ν3/2 [START_REF] Svensson | Coulomb excitation of vibrational nuclei[END_REF] orbitals, followed by the ν3/2 [541] configuration at 614 keV, and the ν9/2 [404] configuration at 1039 keV [311]. These states are also shown in Fig. 28. Very recent lifetime measurements [312] for the ν3/2 [411] and ν3/2 [541] band members result in transitional quadrupole moments consistent with deformations of β 2 = 0.32(3) and β 2 = 0.34 (1). The band based on the 9/2 [404] orbital has been identified in 101 Zr, as well as in the N = 59 isotone 97 Sr, and the isomeric nature of the band head has been attributed to the hindrance of the γ-ray decays due to the ∆K = 3 required (one degree of K forbiddenness for E2 transitions) to the lowerlying K π = 3/2 + orbital [313]. It should be noted that this demonstrates that K is already a good quantum number, and that the γ-ray transitions are hindered in spite of the allowed g 9/2 → d 5/2 single-particle transition that could occur between the spherical-basis orbitals that are dominant in the 9/2[404] and 3/2 [411] configurations, respectively. The low-lying level structure of 97 Sr has a strong similarity to that of 99 Zr, possessing a I π = 1/2 + ground state, with a 3/2 + state at 167 keV and a 7/2 + state at 308 keV that are analogous to the spherical states in 99 Zr, as well as the 3/2 + [411], 3/2 -[541], and 9/2 + [404] configurations with their associated rotational bands. Lifetime measurements [314,315] for the spherical states and some rotational band members in 97 Sr and 99 Zr reinforced the previous determinations of the transitional quadrupole moments and are consistent with the assumed shapes. The 1/2 + , 3/2 + and 7/2 + states in 97 Sr were populated in the (d, p) reaction [278] with strengths considerably lower than expected for spherical shell model states, but this was attributed to the complicated 96 Sr ground-state wave function as mentioned above. The most interesting result for 97 Sr was the observation of the L = 2 transfer to the 522-keV (1/2 + ) level, which lead to its re-assignment as (3/2,5/2) + , with the 5/2 + spin-parity favoured due to the observation of such a state in 95 Sr [278]. It might be expected that the lowlying states in the N = 59 isotone 101 Mo would resemble those in 97 Sr and 99 Zr, but the data are inconclusive. The 101 Mo ground state has a νs 1/2 assignment, as revealed from the singleneutron transfer reaction [316]. The L = 2 transfer strength in the 100 Mo(d, p) reaction is highly fragmented, with the strongest transitions to the 5/2 + state at 57 keV and the 3/2 + state at 352 keV. This may favour their assignments as the d 5/2 and d 3/2 states, but the spectroscopic strengths are not sufficiently large to provide a convincing assignment. Further, the 3/2 + state at 13 keV, weakly populated in the single-neutron transfer reaction, may be a candidate for the 3/2 + [411] state, but the associated rotational band has not been identified (we note that the 57-keV 5/2 + state decays with B(E2; 5/2 + → 3/2 + ) = 33(19) W.u. [39]). This difficulty to assign spherical and deformed states may be due to the triaxial deformation of the 100 Mo ground state [23], in contrast to the spherical ground states for 96 Sr and 98 Zr. Thus, shape coexistence has been established in 97 Sr and 99 Zr, but cannot yet be claimed in 101 Mo. It is to be noted that in the N = 59 isotone 95 Kr, the three lowest excited states also bear a strong resemblance to those in 97 Sr and 99 Zr, but higher-lying rotational bands are yet to be discovered.

On the other side of the shape transition at N = 60, the N = 61 isotones of Sr, Zr, and Mo might also be expected to exhibit shape coexistence. The low-lying states are shown in Fig. 28 (right) with their Nilsson classifications. Since the spherical structures beyond N = 60 are no longer expected to form the ground states, if they exist they would be located within a background of deformed and rotational states, making their identification extremely difficult. To date, the spectroscopic knowledge is insufficient to ascertain shape coexistence at N = 61 and beyond.

Odd-odd nuclei. In N = 57 96 Y, the properties of the structures built on the 0 -ground state and the 8 + isomer point to their nearly spherical shapes. The spectroscopic quadrupole moment of the 8 + , 9.6-s isomer, -98(11) efm 2 , corresponds to a weak β 2 deformation of -0.16(2) [295]. A rotational band built on the (6 + ), 181(9)-ns isomeric state at 1655 keV was recently identified, and its moment of inertia suggests an oblate deformation [317]. The non-observation of transitions between 97 Sr, 99 Zr, and 101 Mo and (right) N = 61 isotones 99 Sr, 101 Zr, and 103 Mo. The ellipses denote prolate deformation, and circles nearly spherical shapes. Filled symbols are used if the deformation was extracted from spectroscopic quadrupole moments measured in laser spectroscopy, and patterned symbols if the deformation was deduced from level energies or a comparison with model calculations. The dashed lines connect the levels if there are arguments for their configurations being similar. The states in 101 Mo are difficult to classify, as explained in the text.

this band and the structure identified above the 8 + , 9.6-s isomer, despite similar spins, is consistent with a large structural difference between the two configurations. In N = 59 98 Y, detailed spectroscopy of the isomers [318] shows the coexistence of several deformed bands, including intruder configurations, as well as the presence at low excitation energy of the neutron ν9/2 [404] Nilsson orbital and a (8 + ) spherical configuration similar to the 8 + isomeric state in 96 Y.

Mo isotopes

The stable Mo isotopes have provided an excellent laboratory in which to study shape coexistence, as they span from the closed N = 50 shell 92 Mo to N = 58 100 Mo. The systematics of the low-lying states in the even-even Mo isotopes are shown in Fig. 29, which include the recently discovered 0 + 2 states in 108,110 Mo [319]. The energy of the 0 + 2 state drops dramatically with increasing neutron number: at the closed neutron shell it is found at 2.5 MeV, then becomes the first excited state in N = 56 98 Mo at 735 keV, and finally reaches a minimum in 100 Mo at 695 keV.

It should be noted that the 2 + 1 state in 98 Mo does not have the high energy encountered in 96 Zr, but rather mirrors the trend observed in the Sr isotopes as shown in Fig. 22. Unlike Sr and Zr, however, the 2 + 1 energies do not undergo a sudden drop in energy when proceeding from N = 58 to N = 60, and the 0 + 2 energies are somewhat constant from 98 Mo to 102 Mo before rising slightly to approximately 1 MeV in 104 Mo. Detailed Coulomb-excitation studies of the stable 96,98,100 Mo isotopes yielded quadrupole invariants for the ground and 0 + 2 states [23,256,320] as listed in Tab. 4. As shown in Fig. 30, the Q 2 values, calculated using Eq. 26, are vastly different for the 0 + 1 and 0 + 2 states in 96 Mo, with that for the 0 + 2 state possessing a very small value consistent with an approximately spherical shape. It is, in fact, difficult to identify the 2 + state associated with the 0 + 2 state, as very similar B(E2) values of < 1 W.u are measured for the transitions to the 0 + 2 level from each of the 2 + 2 , 2 + 3 , and 2 + 4 states [256]. The ground-state band, on the other hand, has definite collectivity with enhanced transitions and B(E2; 2 + 1 → 0 + 1 ) = 20.7(4) W.u. Unfortunately, the quadrupole moment for the 2 + 1 state has considerable uncertainty, with values ranging from +0.04 (8) or -0.20( 8) eb [304], or -0.33(4) eb [256]. In the case of 98 Mo, both the 0 + 1 and 0 + 2 states have approximately the same values of Q 2 ; however, the values of cos 3δ (Eq. 29) indicate that the ground state is triaxial, whereas the 0 + 2 state is much closer to a prolate shape. The 2 + 3 state in 98 Mo appears to be associated with the 0 + 2 level with B(E2; 2 + 3 → 0 + 2 ) = 7.2(3) W.u. [320]. An E0 decay with 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) = 27.3 (11) [102] confirms the difference in shape between the two states. The invariant quantities Q 2 extracted for both the 0 + 1 and 0 + 2 states in 100 Mo are significantly greater than those for 98 Mo, with that for the 0 + 2 state being much larger, and the cos 3δ values repeat the pattern as in 98 Mo that the 0 + 2 state is prolate, and the 0 + 1 state is triaxial. The 2 + member of the 0 + 2 band is well established as the 2 + 3 state with B(E2; 2 + 3 → 0 + 2 ) = 19.1(6) W.u. [23]. The E0 transition also becomes more enhanced, with 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) = 36(6) [102]. For the N = 60 102 Mo, the invariant quantities are not determined, but if we use the approximation that the 2 + 1 state exhausts most of the E2 strength to the ground state, Q 2 = 1.05(13) e 2 b 2 can be estimated. The largest E0 transition in the Mo isotopes is observed in 102 Mo, with 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) = 120(50) [102], definitely indicating that the 0 + 2 state possesses a significantly different deformation from that of the ground state. The proton vacancies and neutron occupancies (see Sect. 2.7) for 98 Mo and 100 Mo were extracted in an extensive series of single-proton and single-neutron transfer reactions on targets of 98,100 Mo and 100,102 Ru [321], and are shown in Fig. 31. The changes in the neutron occupancy between 98 Mo and 100 Mo reflect the additional two neutrons which are predominately in the g 7/2 and h 11/2 orbitals. Interestingly, one also sees a change in the proton occupancy, with a rearrangement from the p 1/2 and the f 5/2 orbital to the g 9/2 orbital. These changes in occupancy are reflected in the changes in deformation of the ground state, as outlined above. With these results, the Mo isotopes, specifically 98,100 Mo, offer the rare opportunity for understanding structure in mediumheavy nuclei in that detailed information on the shapes, through the sum-rule invariants, and the microscopic components of the wave functions are known to high precision.

Excitation energy [MeV]

Ru isotopes

The Ru isotopes, located adjacent to the Mo isotopes with their well-established examples of shape-coexisting structures, might be considered as candidates for shape coexistence as well, but the evidence in support of this has been sparse. The energy systematics of the 2 + 1 states, 61 98,100 Mo [321] for the πp 1/2 , πg 9/2 , and π f 5/2 orbitals (left) and for the νs 1/2 , νd 5/2 + d 3/2 , νg 7/2 , and νh 11/2 orbitals (right). The proton occupancies have been deduced from the listed vacancies in Ref. [321]. The uncertainties on the total occupancies were estimated to be in the 0.2-0.3 range. and the ratios E(4 + 1 )/E(2 + 1 ) have been used to suggest that the ground-state shape evolves from spherical for the lighter Ru isotopes, 96,98 Ru, to γ-soft and deformed for the heavier Ru isotopes 106,108 Ru, and this evolution has often been modeled using the IBM (see, e.g., Refs. [322][323][324][325][326]).

Because of this evolution of the shape, it has been difficult to use the typical indicators of shape coexistence, such as the energy systematics of the 0 + 2 state for example. The best evidence for shape coexistence to date has been inferred from Coulomb excitation. The results from a Coulombexcitation study of 104 Ru, performed by Stachel et al. [327], were used to suggest that the 0 + 2 state was not the first excited 0 + state predicted by collective models, but rather was built on an "intruder" configuration with a smaller deformation and a higher degree of triaxiality than the ground state. The large number of matrix elements obtained in the Coulomb-excitation study of 104 Ru performed by Srebrny et al. [258] permitted several sum-rule invariant quantities to be determined, including both the Q 2 (Eq. 26) and cos 3δ (Eq. 29) for the ground state and 0 + 2 state, as listed in Tab. 4. The Q 2 values for the ground-state band were approximately constant at 0.9 e 2 b 2 up to spin 8 + , which corresponds to β 2 ≈ 0.28, and the dispersion in this value was σ(Q 2 ) ≈ 0.22(6) e 2 b 2 (Eq. 35) [258], indicating some softness but far from vibrational. For the 0 + 2 state, the Q 2 ≈ 0.52(12) e 2 b 2 corresponds to β 2 ≈ 0.21, significantly less than that of the ground state. The cos 3δ value for the ground state was approximately 0.38 (12), which is equivalent to the shape parameter γ ≈ 25 • , and that for the 0 + 2 state 0.1(3), which indicates, within uncertainty, a maximally triaxial shape. The gradual change in the shape of the ground state of the Ru isotopes, in contrast to the rapid change observed in Sr and Zr isotopes, was suggested [328] as due to the occupation of protons in the g 9/2 orbital that block the promotion of protons from the lower p f orbitals.

A study of 102 Ru by Urban et al. [329], using the (n, γ) reaction, assigned the band built on the 0 + 2 state. Based on the energy systematics, beginning at N = 52 96 Ru, it was suggested that the ground state in the lighter Ru isotopes was nearly spherical in shape, and it crossed with the 0 + 2 configuration in the region of 100,102 Ru to become the 0 + 2 state. The 0 + 2 state in 96 Ru was also suggested to possess a low deformation, but with increasing neutron number the deformation increased. The mixing in the crossing region resulted in both states taking on deformed characteristics. A recent study of 98 Ru [254] has revealed the presence of bands built on the 0 + 2 and 2 + 2 states. Shown in Fig. 32 are the systematics of the ground-state band, the "γ" band, and the 0 + 2 band in the chain of Ru isotopes from 96 Ru to 106 Ru. It was noted that the 0 + -2 + -4 + level spacing of the ground-state band in 98 Ru matched that of the 0 + 2 band in 102 Ru, and the spacing in the 0 + 2 band in 98 Ru matched that of the ground-state band in 102 Ru. Focusing on the behaviour of the bands, rather than only the 0 + band heads, it was suggested [254] that the crossing of the configurations occurs between 98 Ru and 100 Ru. The Q 2 quantities for 100,102,104 Ru for the 0 + 1 and 0 + 2 states, listed in Tab. 4, show a trend that the ground-state deformation is increasing with neutron number. The Q 2 invariant for the 0 + 2 state in 100 Ru is slightly greater than that of its ground state. In contract, in both 102,104 Ru the 0 + 2 Q 2 values are substantially lower than those of the ground states, consistent with the picture of crossing configurations.

Configuration mixing in the Z ≈ 40 region

Experimental data, in particular E2 matrix elements, can be used to calculate the mixing amplitudes, cos 2 θ I , between the two pure (unperturbed) configurations. Following the method described in Ref. [222], using the complete set of E2 matrix elements in 98 Sr small mixing angles of cos 2 θ 0 = 0.82(2) and cos 2 θ 2 = 0.99 (1) were extracted for the 0 + and 2 + wave functions, respectively [247][248][249]. An evaluation of the mixing angles for the 0 + and 2 + states requires a large set of E2 matrix elements, which is not available for many nuclei in this mass region. Assuming a negligible mixing between the 2 + states, however, one can extract an approximate mixing angle for the 0 + states from the 0 + 2 E2 2 + 1 and 0 + 1 E2 2 + 1 matrix elements using Eq. 39. The cos 2 θ 0 values obtained in this way for N = 58, 60 Sr, Zr, Mo, Ru and Pd nuclei are presented in Tab. 5. In general, a rather weak mixing between the ground state and the excited configuration is observed for nuclei in this mass region, both inside and outside the region of enhanced ground-state deformation.

Table 5: Values of cos 2 θ 0 for the mixing angles between the 0 + states in N = 58, 60 nuclei extracted using Eq. 39. The second and fourth column show the B(E2) values used for the calculations.

Element

N = 58 N = 60 

B(E2; 2 + 1 → 0 + 1 )/B(E2; 0 + 2 → 2 + 1 ) cos 2 θ 0 B(E2; 2 + 1 → 0 + 1 )/B(E2; 0 + 2 → 2 + 1 ) cos 2 θ 0 [e 2 b 2 ] [e 2 b

Shape coexistence around Z = 50

The nuclei in the immediate vicinity of Z = 50, especially the Cd and Sn isotopes, have provided well-studied examples of shape coexistence (see, e.g., Ref. [6]). An advantage that this region offers is that the even-Z species have many stable isotopes, and thus a wide variety of probes have been used in their study. This is reflected in Fig. 33, which demonstrates the richness of experimental data supporting shape coexistence in specific nuclei from Pd through Te. Ironically, while long-recognized in the Cd and Sn isotopes, shape coexistence is less well established (or accepted) in the Te or Pd isotopes, and it is not widely observed in the odd-A isotopes.

Cd isotopes

The discovery of shape coexistence in the Cd isotopes is intimately linked with their suggestion as excellent examples of nearly harmonic vibrational motion. Very early studies [START_REF] Motz | [END_REF]17] identified additional 0 + and 2 + levels in the vicinity of the two-phonon triplet, which were suggested [335,336] to belong to shape-coexisting structures. The shape-coexistence interpretation remained speculative until Meyer and Peker [337], using γ-ray spectroscopy following β-decay Red bars indicate that shape-coexisting structures were proposed based on their level energies (e.g., observation of a low-lying 0 + state, or rotational structures with very different moments of inertia), orange bars mean that additional information was obtained from E2 transition probabilities, yellow bars mean that information on E0 transition strengths is known, green bars mean measured cross sections to populate the coexisting configurations in direct reactions, light blue bars indicate that quadrupole moments of both configurations were measured, and dark blue bars correspond to quadrupole invariants. Stable nuclei are indicated with a darker shade. of 110 In, observed a band-like structure built on the 0 + 2 state at 1473 keV in 110 Cd. Nearly simultaneously, Fielding et al. [338] reported very strong population of this state (amounting to 42% of the ground-state population) with the ( 3 He,n) two-proton-transfer reaction, as shown in Fig. 34. Also shown in Fig. 34 are the data for the 110 Pd( 3 He,n) 112 Cd reaction, where the 0 + 2 state is strongly populated with 55% of the ground-state cross section. These can be contrasted with the recent 114 Cd(p, t) two-neutron-transfer results [339] that populated the 0 + 2 state with only 1.7% of the ground-state cross section. It was suggested [337] that the configuration for the 0 + 2 state and the deformed band built on it was based on proton 2p -4h intruder configurations such as π(g 9/2 ) -4 (d 5/2 ) 2 or π(g 9/2 ) -4 (g 7/2 ) 2 , an interpretation expanded upon by Heyde and co-workers [340,341]. The two-proton stripping results, combined with the non-observation [342] of any excited states in 110 Cd in the (d, 6 Li) transfer reaction, reveals that the intruder configuration possesses the characteristic signature of a proton pairing vibration.

The shape-coexisting intruder states in the 110,112,114 Cd isotopes were well studied in the 1980s and early 1990s, and these early data are summarized in the review by Wood et al. [6]. The systematics of the intruder bands in mid-neutron-shell Cd isotopes was expanded using in-beam γ-ray spectroscopy following light-ion fusion-evaporation reactions [343][344][345][346][347][348]. Candidates for the intruder band heads were also suggested in the heavier Cd isotopes, 116-120 Cd, as well as in the lighter isotopes 106,108 Cd (see e.g. Refs. [343,344]). The intruder band in 108 Cd was extended by Gade et al. [349] using a combination of β + /EC decay and light-ion reactions, and those in 114,116 Cd by Juutinen et al. [350] using heavy-ion collisions. Thorslund et al. [351,352] suggested that a sequence of states in 108 Cd involving the 4 + at 2239 keV, the 6 + at 2994 keV, and the 8 + at 3861 keV, belonged to a deformed intruder band, but having a predominant ν(h 11/2 ) 2 structure rather than the proton 2p -4h configuration. Studies of 106 Cd [353], 110 Cd [354][355][356], 112 Cd [357][358][359], 114 Cd [360], and 116 Cd [361] using the (n, n γ) reaction elucidated the level schemes, and provided crucial level lifetimes determined via the Doppler-shift attenuation method (DSAM) [362].

Very recently, detailed spectroscopy following the β + /EC decay of 110 In, and the β decay of 110,112 Ag, enabled the observation of very weak low-energy transitions between highly non-yrast states in 110 Cd and 112 Cd. From the known level lifetimes, the B(E2) values for the in-band transitions were determined, and in many cases they corresponded to a highly collective nature [261,363], leading to interpretation of these states as forming rotational-like bands. With the aid of beyond-mean-field calculations, it was suggested that multiple shape coexistence occurs in 110,112 Cd. Figure 35 shows the levels assigned to the 0 + 2 and 0 + 3 bands in 110,112 Cd [261,363] based on the presence of enhanced B(E2) values.

The 0 + states in neighbouring Cd isotopes that have the same decay pattern as the 0 + band heads assigned in 110,112 Cd [261,363] may be considered candidates for analogous shape-coexisting structures. Shown in Fig. 36 are the properties of the 0 + 2 and 0 + 3 states in the Cd isotopes, showing the B(E2; 0 + → 2 + ) and ρ 2 (E0) values, where known, as well as the ( 3 He,n) population relative to the ground state if measured. A feature of the decay of the original "intruder" band head is an enhanced transition rate for its decay to the 2 + 1 state; this is seen in 112,114 Cd [39, 261, 262]. For 110 Cd, only a lower limit for the lifetime of the 0 + 2 level is known that results in an upper limit of 40 W.u. for the 0 + 2 → 0 + 1 transition [356]. Recent results from Coulomb excitation [260] show that the Q 2 value for the 0 + 2 state is 0.51(8) e 2 b 2 , slightly larger than that of the ground state with 0.44(1) e 2 b 2 , as listed in Tab. 4. We contrast the decay of the 0 + 2 states in 110,112,114 Cd with those of the 0 + 3 states that clearly favour the decay to the 2 + 2 state. This pattern is also observed for 106,108 Cd, strongly suggesting that the natures of the 0 + 3 states in these nuclei are very similar. 66 Moreover, for nuclei where the absolute value of the 0 + 3 → 2 + 2 transition rate has been measured, i.e., 112,114 Cd, it is highly enhanced. In the heavier Cd isotopes, the natures of the 0 + 2 and 0 + 3 states seem to interchange in 116 Cd, where the 0 + 2 state strongly favours the decay to the 2 + 2 state, and the 0 + 3 has an enhanced decay rate to the 2 + 1 state. The pattern becomes more confusing in 118 Cd. The intruder band head was assigned by Aprahamian et al. [364,365] as the 0 + 3 state.

An upper limit for the observation of the 0 + 3 → 2 + 2 decay was established, corresponding to the B(E2; 0 + 3 → 2 + 2 )/B(E2; 0 + 3 → 2 + 1 ) ratio lower than 19. The lifetime measurements by Mach et al. [366] provided an upper limit for the 0 + 3 level, leading to a lower limit of B(E2; 0 + 3 → 2 + 1 ) > 1.2 W.u., and determined the lifetime for the 0 + 2 state corresponding to B(E2; 0 + 2 → 2 + 1 ) = 5.3(8) W.u. It thus appears that at 118 Cd and beyond, the nature of the 0 + 2,3 bands changes, perhaps dramatically.

The energy systematics for the even-even Cd isotopes are shown in Fig. 37. The BMF calculations reported in Refs. [261,363] suggested that the 0 + 2 states in 110,112 Cd possess triaxial shapes, with the wave-function distributions having mean values of (β 2 , γ) = (0.4, 20 • ). The 0 + 3 states in these nuclei were suggested to be oblate deformed. The oblate and the triaxial states may interchange their positions at 116 Cd. In reality, it is very likely that the degree of deformation of the states shifts dramatically as a function of the neutron number. Indicators of this are the kinematic moments of inertia, displayed in Fig. 38. We note some clear trends that can be observed from these plots. Firstly, the loci of points for the ground-state band begin with E γ in the range of 0.5-0.65 MeV, and with J (1) ≈ 5 2 /MeV. The intruder bands, by contrast, begin with loci of points ) value for the 0 + 3 state in 108 Cd relative to the E2 to the 2 + 1 level. The numbers inside boxes attached to the levels are the ratios (in %) of the ( 3 He,n) transfer cross sections to those of the ground state. Quantities contained within the brackets are the Q 2 e 2 b 2 values; those for excited states, especially, should be considered as lower limits. Data are taken from the National Nuclear Data Center database [39] and Refs. [102, 260-262, 338, 353, 361, 363].

that span a wide range, with E γ values from approximately 0.25 MeV to 0.575 MeV, and with J (1) ranging from 5 to 13 2 /MeV. In particular, we see that 114 Cd presents the smallest E γ value, and then 112,116 Cd, 110,118 Cd, and 108,120 Cd form approximate pairs. Isotopes that have well-established intruder bands, namely 110,112,114 Cd, have J (1) moments that possess a concave shape and turn over at E γ of approximately 0.4 MeV -in 110 Cd this is more gradual. The intruder band in 116 Cd is a notable exception. It is also be to noted that 118 Cd has a much steeper slope of J (1) vs. E γ , perhaps indicating that its band assignment is in error. One should also mention that there is considerable uncertainty in the assignment of the 0 + 2 level in 120 Cd. The 883-keV transition feeding the 2 + 1 level, attributed [367,368] to the decay of a 0 + state at 1389 keV, was shown to be a doublet and these γ rays were placed elsewhere in the level scheme by Batchelder et al. [369]. This latest study, however, placed a previously unobserved transition of 630 keV feeding the 2 + 1 state, and suggested state. The BMF calculations of Refs. [261,363] predicted that the ground states in 110,112 Cd possessed prolatedeformed shapes with β 2 ≈ 0.2, the "intruder" 0 + 2 states were suggested to have triaxially deformed shapes with (β 2 , γ) = (0.4, 20 • ), and the 0 + 3 states had oblate shapes with β 2 ≈ 0.3. The states in neighbouring isotopes suggested to have similar shapes are shown in black (prolate), blue (triaxial), and oblate (red). For states that have tentative shape assignments, dotted lines and lighter colours are used. The 2 + 2 state, labelled as the "γ"-band head, is shown in green, and the calculations for 110,112 Cd suggest that it has a very similar β 2 to the ground state, and is maximally triaxial [261,363]. Data taken from the National Nuclear Data Center database [39] and Ref. [369].

that a new level at 1136 keV was the 0 + 2 state. This latter assignment is adopted in Fig. 37. Finally, the 0 + 4 states were postulated to be the heads of prolate bands in Refs. [261,363]. Shown in Fig. 39 are data highlighting the E2 γ-ray decays of the 0 + 2,3,4 states in 110,112,114 Cd, that clearly show the dominance of the 0 + 4 decays to the 2 + 3 levels, i.e. to members of the intruder bands built on the 0 + 2 states. The corresponding transition rate has been measured in 114 Cd, and found 1595 to be enhanced with B(E2; 0 + 4 → 2 + 3 ) = 18(6) W.u. [262]. Interestingly, the higher energy E2 transitions to the 2 + 2 levels are unobserved in these isotopes, with limits on the ratio of B(E2;

0 + 4 → 2 + 2 )/B(E2; 0 + 4 → 2 +
3 ) values of < 0.65% in 110 Cd, and < 9.5% in 112 Cd [356,370]. In 112 W.u. [261,363].

The recent investigations of the odd-A Cd nuclei have been a series of high-spin studies of the neutron-deficient 105,107,109 Cd isotopes, mainly investigating the so-called "shears" bands, band termination, anti-magnetic rotational bands, etc. (see, for example, Refs. [371][372][373]). Studies of 117,119 Cd following spontaneous fission of 252 Cf [374] and detailed g-factor measurements in 1605 111,113 Cd [375,376] should also be mentioned. The results of these studies were consistent with a deformed character of the cores. Shape coexistence at low spin has been difficult to establish in the odd-A Cd isotopes, primarily because of the high level density compared with the even- 2 , 0 + 3 , and 0 + 4 levels in 110,112,114 Cd. The widths of the arrows are proportional to the B(E2) values, and the transitions are labeled with the absolute B(E2) values in W.u. with uncertainties in parenthesis, or relative B(E2) values in square brackets. The data show the enhanced decay of the 0 + 2 intruder band heads to the 2 + 1 levels, the enhanced decay of the 0 + 3 states to the 2 + 2 γ-band heads, and the preferred decay of the 0 + 4 levels to the 2 + 3 intruder band members. Figure taken from Ref. [261].

even isotopes. Furthermore, the identification of single-particle states coupled to the intruder configuration of the even-even core can be complicated because of the suggested triaxial nature of the cores. To date, no firm examples of low-spin shape-coexisting states in the odd-A Cd isotopes have been identified.

Sn isotopes

The first evidence for proton 2p -2h intruder excitations in the Sn isotopes resulted from enhanced cross sections to excited 0 + states measured in the Cd( 3 He,n) reactions [338]. The very large populations observed for the 0 + 2 states in 114,116,118 Sn -comparable to, or greater than the ground-state cross sections -were strongly suggestive of a proton-pairing vibration and were not recognized immediately as evidence for shape coexistence. In 108,112 Sn, the ground-state and excited-state ( 3 He,n) populations are much larger than in the heavier isotopes, and they are also more fragmented, with larger cross sections to 0 + states in the excitation energy range of 3.5-5

MeV [338]. These very large populations of the excited 0 + states in the ( 3 He,n) reactions are in stark contrast to their weak populations (of typically a few percent) observed in the (p, t) twoneutron transfer reactions [380][381][382][383][384][385]. Those data for isotopes where both the ( 3 He,n) and the (p, t) cross sections have been measured, namely 112,114,116,118 Sn, are shown in Fig. 40. (In the (t, p) reaction, on the other hand, relatively stronger populations of 7% and 10% of the groundstate cross section were observed to the 0 + 2 and 0 + 3 states in 114 Sn [386], respectively, whereas in 118,120,126 Sn, their weak populations were observed [386,387].) While the resolutions achieved in the ( 3 He,n) measurements were insufficient to resolve the 0 + 2 and 0 + 3 states, the data presented in Fig. 40 favour that it is the 0 + 2 state that is populated, and we make that assignment here. These data clearly show that the 0 + 2 states involve correlated proton-pair excitations.

A short time after the ( 3 He,n) study [338], Bron et al. [388] used the (α, 2nγ) reactions to study states in 112,114,116,118 Sn. Rotational-like sequences built on the 0 + 2 states were observed up 71 to I π = 12 + . The intrinsic configurations of the intruder bands were suggested to be mixtures of the π(1/2 [431]) 2 and π(9/2[404]) 2 configurations, consistent with the observation of these Nilsson orbitals in the low excitation-energy regions in the neighbouring In and Sb isotopes (see, e.g., Ref. [2]). Shown in Fig. 41 are the excitation energy systematics of the intruder bands in the eveneven Sn isotopes, showing a characteristic minimum near the neutron mid-shell (i.e., for 116 Sn). Also shown on the plot are the energies of the 0 + 3 states, which display a similar parabolic trend. The minimum at the neutron mid-shell is in contrast to the trends observed for the normal states. The trend of the 0 + 3 energy is suggestive of shape coexistence, but the evidence from the ( 3 He,n) reaction indicates that its structure may be different than that of the 0 + 2 state which seems to result from a coherent π(2p -2h) configuration.

Further studies, employing heavy-ion fusion-evaporation reactions, have assigned the highspin states based on proton π(g 9/2 ) -2 (g 7/2 ) 2 configurations in even-even 106-118 Sn nuclei [389][390][391][392][393]. In a study of 108 Sn that measured lifetimes employing the DSAM, the transitional quadrupole moments were used to deduce the deformation of states up to spin 26 , and found that the intruder states above 12 , involving the alignment of a pair of h 11/2 neutrons coupled to the intruder π(g 9/2 ) -2 (g 7/2 ) 2 configuration, possess a moderate quadrupole deformation of β 2 0.20 [394]. Above spin 26, the deformation appears to drop dramatically as the band-termination point is The bars on the left-hand side of the plots represent the ratios observed in the ( 3 He,n) reaction, and those on the right-hand side are for the (p, t) reactions. The insets on the right-hand sides of the plots display a ratio scale expanded to 0.03 (3%) to make the data more clearly observable. Large enhancements for population of excited 0 + states are observed for the ( 3 He,n) reaction, whereas those for the (p, t) reaction rarely exceed a few percent. The data are taken from Refs. [338,[381][382][383][384]. 1 levels in 114-120 Sn, in contrast to the much lower B(E2;

0 + 3 → 2 + 1 )
values. The numbers inside boxes attached to the levels are the ratios (in %) of the ( 3 He,n) transfer cross sections to those of the ground state. Data are taken from the National Nuclear Data Center database [39] and Refs. [102,263,338,397,401]. capture reaction that expanded upon the earlier work [408]. A transition feeding the 0 + 2 state at 1710 1657 keV from the 2 + 3 state at 2039 keV was placed, and the lifetime of the 2 + 3 state was measured via the GRID method [409], and confirmed using the (n, n γ) reaction [266] 

B(E2; 2 +

3 → 0 + 2 ) = 20(3) W.u. provided support for the identification of the 2 + 3 level as a member of a band built on the 0 + 2 state. Figure 43 displays the energy systematics of the levels in the ground-state bands as well as those suggested to belong to the shape-coexisting intruder structures built on the 0 + 2 state in the even-even Te isotopes. The presumed intruder states follow the typical parabolic pattern observed for the intruder states in the Cd and Sn isotopes. Figure 44 displays the properties of the 0 + 2 and 0 + 3 states observed in 118-126 Te, and as observed in the Cd isotopes (Fig. 36) and the Sn isotopes (Fig. 42), the 0 + 2 levels have enhanced B(E2) values for the decays to the 2 + 1 levels. Further evidence in favour of a shape-coexisting character of these states comes from the presence of favoured E0 transitions between the 0 + 3 and 0 + 2 states, with X(E0/E2) factors varying from 4.6(15) to 51(10) from 118 Te to 122 Te [102], and enhanced two-proton transfer cross sections observed in the Pd( 3 He,n) reactions [338].

Pd isotopes

Guided by the observation of the 2p -2h and 2p -4h intruder states in the Sn and Cd isotopes, respectively, and the presence of deformed bands in the odd-A Ag and Rh isotopes (see, e.g., Refs. [411][412][413][414][415]), suggestions were made that such structures appear in the Pd isotopes as well [416][417][418]. Recent studies [419] of 106 Pd using the (n, n γ) reaction have measured a large number of level lifetimes and significantly expanded the level scheme. The levels were arranged into a series of rotational bands, as shown in Fig. 45. The measured lifetimes [420] were used to deduce the ρ 2 (E0) values from previously determined X(E0/E2) values [421]. The ρ 2 (E0) values were The numbers inside boxes attached to the levels are the ratios (in %) of the ( 3 He,n) transfer cross sections to those of the ground state; for 122 Te, the value is represented by a horizontal line at the centroid of the observed peak. Data are taken from the National Nuclear Data Center database [39] and Refs. [102,338].

moderate in strength for the E0 decays of the K π = 0 + 2 band members to the ground-state band. In contrast, a large E0 strength of 10 3 × ρ 2 (E0) = 96 +43 -61 from the 2 + 5 state to the lowest K π = 2 + band head was determined, which lead to a suggestion that the 2 + 5 state is a K = 2 excitation built on the 1735 0 + 2 state. It was also suggested that the 2 + 4 state at 1910 keV is a member of a band built on the 0 + 3 state at 1706 keV. This would yield a moment of inertia more than twice that of the ground-state band, implying that the 0 + 3 band is highly deformed. The 0 + 3 level decays to the 2 + 2 state with an enhanced E2 transition rate of 15.1 +4.2 -3.0 W.u. [259,419]. These findings in 106 Pd are consistent with the results of previous Coulomb-excitation work [13,259,[START_REF] Svensson | Coulomb excitation of vibrational nuclei[END_REF]] on 106,108,110 Pd that provided a large number of matrix elements such that the invariant quantities Q 2 and Q 3 cos 3δ could be determined for a number of states in the three Figure 45: Partial level scheme of 106 Pd displaying levels arranged into rotational bands as assigned in Ref. [419]. The widths of the arrows are proportional to the B(E2) values (rust colour) labeled with the absolute values in W.u. (only shown for the band heads, with weak transitions omitted for clarity) and 10 3 × ρ 2 (E0) (green), with uncertainties in parenthesis. Numbers in brackets written above the 0 + levels are the Q 2 values (expressed in e 2 b 2 ) from Ref. [259].

Members of the band built on the 0 + 3 level at 1706 keV have not been firmly assigned; shown above this level are two possible 2 + candidates that have not yet been assigned to other structures. Asymmetric uncertainties have been averaged. Data are taken from the National Nuclear Data Center database [39] and Refs. [102,419,420].

nuclei. The Q 2 values increase nearly linearly with neutron number, 0.63(3) e 2 b 2 , 0.77 +0. 10 -0.11 e 2 b 2 , and 0.86 +0.02 -0.06 e 2 b 2 for the 0 + 1 state in 106,108,110 Pd, respectively, and 0.87(4) e 2 b 2 , 1.22 +0.12 -0.14 e 2 b 2 , and 1.58 +0.11 -0.22 e 2 b 2 for the 0 + 2 state. In the axially-symmetric rotor model, Q 2 ∝ β 2 2 , and thus these could imply that, for example, in 110 Pd the deformation of the 0 + 2 state is approximately 40% larger (β 2 0.35) than that of the ground state (β 2 0.25). The cos 3δ quantities favour a prolate shape for the ground state and 0 + 2 state, but a triaxial one for the 0 + 3 state that has a similar Q 2 value to the ground state [13]. The combined information on the invariant quantities Q 2 and cos 3δ , and the ρ 2 (E0) values, strongly supports shape coexistence in the mid-neutron-shell Pd isotopes.

Figure 46 displays the properties of the 0 + 2 and 0 + 3 states in 102-110 Pd. As has been seen in the other nuclei in the vicinity of the Z = 50 closed shell, the 0 + 2 state has an enhanced decay to the 2 + 1 level, with weak-to-moderate E0 strengths for the decay to the ground state, and the 0 + 3 level favours the decay to the 2 + 2 state rather than the 2 + 1 state. A trend observed, using the data available from Coulomb excitation [259], is that the B(E2; 0 + 2 → 2 + 1 ) values become increasingly enhanced as the neutron number increases, indicating substantial structural changes in the levels correlated with the increasing degree of deformation.

Shape coexistence near N=90

For isotopic chains near Z = 64 and N = 90, rapid changes in the energies of the 2 + 1 state, and in the B(E2; 2 + 1 → 0 + 1 ) values, are observed that are very similar to those found in nuclei near Z = 40

and N = 60. Additionally, the discontinuities in the isotope shifts and two-neutron separation energies are strongly localized at N = 90, just as they are at N = 60. Very early studies [424][425][426][427][428][429][430] with two-neutron transfer reactions were interpreted in terms of shape coexistence, with the presence of "spherical" states in 152 Sm, populated strongly in the (t, p) reaction, and "deformed" states in 150 Sm, populated strongly in the (p, t) reaction. Using both (p, t) and (t, p) reactions, a consistent picture for the populations of the 0 + 2 and 0 + 3 states was established as well in the Nd, Gd, and Dy isotopes [431][432][433][434][435][436][437][438][439]. Figure 47 compares the ratios of the cross sections to excited 0 + 2 and 0 + 3 states, relative to the ground-state cross section. In all cases, very strong populations of the 0 + 2 states (solid fill) and 0 + 3 states (patterned fill) in N=88,90,92 Nd, Sm, Gd and Dy isotopes, normalised to those of the ground state. The bars on the left-hand side of the plots represent the ratios observed in the (t, p) reactions, and those on the right-hand side are from the (p, t) reactions. The bar for the N = 90 Sm (p, t) cross section ratio for the 0 + 3 state represents an upper limit. Question marks imply that the experiment has not been performed. Data are taken from Refs. [425,427,431,432,[434][435][436][437][438][439].

strong populations to the 0 + 3 states were also observed. Where known, the two-neutron stripping reactions populating N = 88 isotones observed much weaker strengths for populating the 0 + 2 states, and no observable strength to the 0 + 3 states. The two-neutron pickup reactions on N = 92 targets populate the 0 + 2 and 0 + 3 states in the N = 90 isotones with strengths, while significant, much smaller than those observed on the N = 90 targets. Conversely, the 0 + 2 and 0 + 3 states in the N = 90 isotones are very strongly populated in the stripping reactions. These population patterns are shown in Fig. 47. Support for the interpretation of shape coexistence came from the assignment of the 2 + rotational band member at 1417 keV based on the 1256-keV 0 + 3 state in 150 Sm with a 2 + to 0 + separation of 161 keV, very close to the value of 122 keV in the 152 Sm ground-state band. The 4 + band member was suggested [427] to be the 1819-keV state, which has a favoured relative E2 γray decay to the 1417-keV 2 + state, although further members of the band have not been assigned. The 0 + 3 states in the other N = 88 isotones, however, do not have candidates for band structures that would possess a significantly different moment of inertia from that of the ground-state or 0 + 2 bands in those nuclei. Recent in-beam γ-ray spectroscopy studies [440,441] have failed to report a band based on the 0 + 3 state, which would be surprising if such a band had a large moment of inertia extending to moderate-to-high spin.

The rapid change in observables, such as the quadrupole moment and E + 4 /E + 2 ratio, has lead to the suggestion [442][443][444] that a phase transition occurs in the shape degree of freedom across neutron number N = 90. Motivated by interacting boson model calculations, these ideas were further developed, and it was suggested that 152 Sm lay at the critical point of a phase transition [445,446], with several nearby N = 90 isotones close to the critical point. An unsettled question, however, is whether N = 90 nuclei represent a critical point of a phase transition or if they involve a complex shape coexistence. The distinction between the two descriptions was outlined by Heyde and co-workers [447]; in a phase-transition picture, the states of one limit of the Hamiltonian will spread out and eventually become the eigenstates of the other limit as determined by a suitable control parameter; for shape coexistence, one has a complete set of states, which arise from distinct Hilbert spaces, built on each shape.

The introduction of solutions to the Bohr model for the critical point of a phase transition motivated a large number of experimental studies. Quantum phase transitions of nuclear shapes, and the critical points in particular, are reviewed in Ref. [448]. Detailed spectroscopy, in particular through β decay [449][450][451], found that collective models failed to described the data well. Many of these studies focused on the properties of the 0 + 2 state and its associated rotational band, since one of the main successes of the critical-point solution is that it predicted, in a parameter-free manner, the energy ratio of E(0 + 2 )/E(2 + 1 ) = 5.67, which is a nearly perfect match to the experimental energies (e.g. 5.57 in 152 Sm). As shown in Fig. 48, the moments of inertia for the 0 + 1 bands in 152 Sm and 154 Gd are nearly identical and significantly smaller than those of the 0 + 2 bands (it should be noted that the plots terminate at spin 10 where the 0 + 2 band is crossed by another structure assigned as the S band (alignment of (i 13/2 ) 2 neutrons). This suggests that the 0 + 1 band has a smaller underlying deformation than that of the 0 + 2 band. As outlined in Ref. [2], the ρ 2 (E0) values for the E0 transitions connecting the 0 + 1 and 0 + 2 bands in the N = 90 isotones 152 Sm, 154 Gd, and 156 Dy are highly enhanced, and in many cases are very precisely known. Using two-band-mixing calculations, Kulp et al. [452] were able to reproduce for 152 Sm the experimental level energies, ρ 2 (E0) values, B(E2) values, and the isomer shift of the 2 + 1 state to within ≈ 10% precision, using for the "unperturbed" 0 + A band energies those of ground-state band of 148 Ce, and for the deformed 0 + B band those of the ground-state band of 154 Sm. The mixing amplitudes determined were close to the strong-mixing limit, and are consistent with both the single-proton transfer [453] and singleneutron transfer reaction [454] results.

The detailed spectroscopic studies performed on 152 Sm and 154 Gd revealed the presence of weakly deformed bands based on the 0 + 3 states that were assigned as "pairing isomers"3 , a concept which had been introduced decades earlier [455]. As shown in Fig. 48, the 0 + 3 bands, while not known to high spin, have significantly lower moments of inertia. Elucidating these band structures is extremely challenging, and in spite of the high-statistics in-beam studies performed for 156 Dy (see, e.g. Refs. [456,457]), the band associated with the 0 + 3 state has not been found. The pairing isomer "second vacuum" has been advocated by Sharpey-Schafer and co-workers 152 Sm, 154 Gd isotones. [456,[458][459][460][461] as an explanation for the 0 + 2 states in the N = 90 isotones. In this interpretation, the second-vacuum state has a nearly full two-quasiparticle ν11/2 [505] oblate orbital. A consequence of this is that in the adjacent odd-A N = 91 isotones, states of the form ν11/2 [505] ⊗ 0 + 2 should not exist due to Pauli blocking. This appears to be the case; studies using in-beam fusion-evaporation reactions that should have observed such structures in 153 Sm [462], 155 Gd [460], and 157 Dy [463] proved negative. The study of 155 Gd, in particular, specifically searched for this structure and while it located the ν11/2[505] ⊗ 2 + γ coupling, for example, and many other rotational bands, it concluded that the ν11/2[505] ⊗ 0 + 2 configuration was nonexistent due to blocking [460]. In a recent review of evidence for vibrational states in deformed nuclei [461], it was pointed out that if the second-vacuum concept was valid, it might be expected that the excitations observed to be built on the ground state would also be present based on the 0 + 2 state, provided that they would not be dominated by contributions from the ν11/2 [505] orbital. Earlier studies have indeed suggested a pattern of repeated excitations in 152 Sm [464], and the data for 154 Gd also support the repetition of states [459,461].
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Shape coexistence around Z = 82 3.7.1. Even-even Hg nuclei

The first indication of shape coexistence in the Z ≈ 82 region came from studies of the optical hyperfine structure in neutron-deficient mercury isotopes. A huge and unexpected isotope shift, corresponding to a ∆β 2 2 deformation change exceeding 0.1, was observed between 185 Hg and 187 Hg [465], and initially interpreted as related to the possible existence of a new region of strong quadrupole deformation. Follow-up laser spectroscopy studies of 184,186,188 Hg [466] revealed a distinct odd-even staggering of mean-square charge radii of Hg isotopes, as shown in Fig. 49a. This staggering, unique in the nuclear chart, has recently been shown [467,468] to persist down to A = 179 (N = 99), where the nucleus returns to sphericity in its ground state. Additionally, while isotope shifts measured for the low-lying 13/2 -isomers in 187-191 Hg closely follow those for the ground states, a large difference is observed between those for 185m Hg and 185 Hg, again corresponding to a ∆β 2 2 deformation change of more than 0.1 [469].

In-beam γ-ray spectroscopy studies of 186 Hg [470] and 184 Hg [471] have demonstrated that the weakly-deformed ground-state bands are crossed at low spin by a more deformed configuration, and the elongation of these two structures could be estimated from the moments of inertia as β 2 ≈ 0.1 and β 2 ≈ 0.3, respectively. The band heads of the more deformed structures were soon identified to have I π = 0 + and to decay to the ground state via enhanced E0 transitions [472][473][474][475].

Level systematics reveals a parabolic trend of their energies, centered at N = 104, as displayed in Fig. 49b. Currently such structures, crossing the weakly deformed ground-state band, are known down to 176 Hg [476], although in 176,178 Hg the low-spin non-yrast members of the deformed band have not been observed.

The microscopic configurations of the two coexisting structures in light Hg nuclei were inferred via systematic α-decay studies [477,478]. In general, the α decays of the 186,188,190 Pb isotopes to the 0 + 2 states in 182,184,186 Hg are strongly hindered compared to the decays proceeding directly to the ground state, and the observed hindrance factors are of similar magnitude (≈10-20) for all three isotopes. This was interpreted as resulting from the normal-order configuration of the ground states of Pb and Hg nuclei and an intruder nature of the 0 + 2 states in 182,184,186 Hg: the population of an intruder state in the α decay of a normal-configuration state involves the removal of a proton pair from an orbital below the Z = 82 gap and the promotion of a proton pair across this gap. Consequently, the ground states of all even Pb and Hg nuclei in the vicinity of N = 104 were assumed to have similar configurations corresponding to normal-order shell occupation, while the 0 + 2 states in the Hg isotopic chain were interpreted as predominantly π(2p -2h) intruders.

The measured hindrance factors for the Hg → Pt α decay, combined with the information on mixing in the Pt daughter nuclei obtained from the perturbation of energies in the rotational bands [479], were used to estimate the mixing of normal-order and intruder 0 + states in 180,182,184 Hg. This analysis yielded a 3% admixture of the deformed configuration in the ground state of 180 Hg, while mixing of 16% and 18% was obtained for 182 Hg and 184 Hg, respectively [478]. Together with the admixtures deduced from the ρ 2 (E0; 0 + 2 → 0 + 1 ) value for 188 Hg and its upper limit for 186 Hg [480], these values display a parabolic behavior as a function of neutron number with maximum mixing observed at the N = 104 mid-shell, where the intruding structure comes closest in energy to the ground state. The mixing of coexisting structures in Hg isotopes was also investigated by applying a two-band mixing model to level energies in the observed rotational bands [479,481].

The most recent data on energies of yrast and non-yrast states were used as an input for the analysis performed in Ref. [481], which yielded a considerably lower mixing between the 0 + states than the values deduced from the α-decay work of Ref. [478], but still with a maximum around N = 102 -104 as shown in Fig. 50. In this context, measurements of ρ 2 (E0; 0 + 2 → 0 + 1 ) in Hg isotopes with A ≤ 186 are called for, as they would provide a direct measure of the degree of their mixing.

Different conclusions are reached if such analysis is applied to the 2 + states [481]. The obtained mixing strengths suggest an inversion of configurations of the 2 + 1 state between 182 Hg and 83 1 states in 180-188 Hg deduced from level energies [481] (magenta squares), ρ 2 (E0) values (red circles) and α-decay hindrance factors [478] (blue triangles). The value corresponding to the lower limit for ρ 2 (E0; 0 + 2 → 0 + 1 ) in 186 Hg is marked with an arrow. The differences of mean-square charge radii between the two configurations, necessary to extract the mixing coefficients from E0 transition strengths, were inferred from the odd-even staggering in the isotope shifts, see Fig. 49, following the procedure of Ref. [25]. As it not possible to determine from E0 data which configuration dominates the wave function of a specific state, in order to facilitate the comparison it was decided to adopt the scenario resulting from the level-energy analysis. The parabola is to guide the eye through ρ 2 (E0) and α-decay hindrance data in analogy to Fig. 28 in Ref. [25].

cleus. The configurations of the 2 + states become more pure when moving away from N = 104, both towards lighter and heavier nuclei, as it was observed also for the 0 + states. The enhanced ρ 2 (E0; 2 + 2 → 2 + 1 ) transition strengths measured for 180 Hg [482], 182 Hg [483], 184 Hg [483] and 186 Hg [484,485] support the importance of configuration mixing in the structure of 2 + states in neutron-deficient Hg nuclei. These experimental data yield a consistent picture of two distinct configurations, weakly deformed oblate and strongly deformed prolate, that contribute in varying proportions to the observed low-lying states in 182-188 Hg. The mixing of these two configurations gives rise to almost flat behaviour of the energy of the first excited 2 + state, as shown in Fig. 49b, and of the B(E2; 2 + 1 → 0 + 1 ) values in 182-188 Hg, even though the structures of 2 + 1 states are very different: while the intruder configuration dominates in 182 Hg, the contributions of both configurations are almost equal in 184 Hg, and finally the normal-order configuration prevails for 186,188 Hg.

The mixing coefficients reported in Ref. [481] can be combined with the information on electromagnetic transition probabilities in 180-188 Hg in order to obtain information on the pure normalorder and intruder configurations. Lifetimes of excited states were measured applying Dopplershift and fast-timing techniques to the 180,182 Hg [486,487] and 184,186,188 Hg nuclei [471,480,481,[488][489][490] populated in fusion-evaporation reactions. While these studies were mostly limited to yrast states, they yielded lifetimes of states in both coexisting bands since the intruder band becomes yrast at low spin (see Fig. 49b). Finally, a low-energy Coulomb-excitation study with post-accelerated 182-188 Hg beams provided magnitudes and signs of the reduced E2 matrix elements between the low-lying states of spin 0 + , 2 + and 4 + [491,492]. As extensively discussed in Ref. [490], various assumptions were made when applying the two-band mixing approach to the measured B(E2) values or E2 matrix elements, even though multiple works relied on mixing coefficients of Ref. [481]. While in Ref. [481] the unperturbed transitional quadrupole moments depended both on spin and A, Ref. [490] assumed that the transitional quadrupole moments are constant within each band, and Ref. [492] postulated that the unperturbed configurations are the same in each of the 182-188 Hg isotopes. As shown in Fig. 51, this leads to different conclusions concerning the overall deformation of the two unperturbed structures, which range from β 2 ≈ 0.22 to β 2 ≈ 0.33 for the intruder band and from β 2 ≈ 0.13 to β 2 ≈ 0.22 for the normal-order configuration. To complicate matters further, the ρ 2 (E0; 2 + 2 → 2 + 1 ) value obtained for 184 Hg from a combination of Coulomb-excitation [492] and β-decay data [483] corresponds to considerably lower mixing than that deduced from the level energies, while a good agreement is observed for 182 Hg. The mixing of 2 + states deduced from level energies in 186 Hg also agrees well with the result of an in-beam spectroscopic study [485] combined with the lifetime reported in Ref. [480], see Fig. 50. [481] assumes that the unperturbed transitional quadrupole moments depend both on spin and A, TBM-3 [490] considers a dependence on A, and in TBM-2 [492] the unperturbed transitional quadrupole moments were both spin and mass independent. Figure adapted from Ref. [490].

The lack of consensus regarding the rotational character of unperturbed structures in 180-188 Hg and their evolution with N, resulting in the differences between the deformation parameters extracted under various assumptions, seems to be due to the paucity of experimental information on the decay of non-yrast states, since in most cases only one transition probability is known in the ground-state band. While Ref. [490] yielded lifetimes of the 4 + states in both coexisting structures, the precision is not sufficient to draw meaningful conclusions. The same is true for most matrix elements involving the 2 + 2 state, determined in Ref. [492]. Moreover, it is not clear to what extent the two-band mixing model is applicable to 180-188 Hg. For example, for the higher-spin states in follows a parabolic trend as a function of neutron number, but rather displays a monotonic increase with mass (e.g., the admixtures in the 4 + states increase from 2% in 180 Hg to 20% in 188 Hg). This unexpected behaviour calls for experimental verification. An independent extraction of mixing coefficients from a large set of E2 matrix elements (see Eq. 38), as it was done for example in Ref. [222] for 74,76 Kr, or from ρ 2 (E0; I → I) values measured for states with I ≥ 4 would verify the validity of this approach. Similarly, measurements of spectroscopic quadrupole moments of low-lying states would also bring independent information on the deformation of the coexisting structures in 180-188 Hg, their evolution with spin and their mixing. Currently, only the spectroscopic quadrupole moment of the 2 + 1 state in 188 Hg is known [492], but its precision is insufficient to draw conclusions. Interestingly, a recent measurement of yrast-state lifetimes in 178 Hg [493] found that those of the states belonging to the deformed structure correspond to a β 2 deformation exceeding 0.4, considerably higher than those deduced for the excited structures in the heavier Hg isotopes. While the prevalent interpretation of the 0 + 2 states in 180-186 Hg is that they result from two-proton excitations across the Z = 82 shell, the authors of Ref. [493] attribute the observed increase of the deformation for the corresponding structure in 178 Hg to the neutron contribution, in line with MCSM calculations [467], which successfully describe the even-odd shape staggering in 177-187 Hg.

A recent study of 188 Hg [490], yielded, for the first time, lifetimes of the 14 + 1 and 16 and60). This suggests that these states belong to a different, almost spherical structure, which is consistent with the conclusions of Ref. [494], attributing a ν(i 13/2 ) 2 character to this band. Moreover, the spectroscopic quadrupole moment of the 12 + 1 state was determined to be 0.91 (11) eb [495], which, assuming K = 12, corresponds to Q 0 of 1.16 [START_REF] Bohr | Nuclear Structure, Vols. I & II[END_REF]eb, consistent with the Q t value determined from B(E2; 16 + 1 → 14 + 1 ). Together, these results form a strong body of evidence for multiple shape coexistence in 188 Hg.

Numerous low-lying 0 + states were identified in stable Hg nuclei, in particular by means of two-neutron transfer reaction studies. The lowest three such states in each nucleus are plotted in blue in Fig. 49b (only those with firm spin assignments are taken into account). The natures of these states are unclear, although the 0 + 2 states were suggested as arising from neutron pairing vibrations [496]. The enhanced cross section to populate the 0 + 2 state in 200 Hg in the (p, t) transfer reaction (12% relative to that for the ground state [496,497]) was explained [496] as arising from the gap in the neutron single-particle spectrum at N = 120 present for oblate shapes. Identification of bands constructed on these states, and measurements of transition probabilities within such structures, would be of great interest.

Even-even Pb and Po nuclei

The level of detail and precision concerning the coexisting structures in Z = 82 Pb and Z = 84 Po nuclei is lower compared to the Hg isotopes since in these isotopic chains the N=104 mid-shell lies considerably further from β stability. This is reflected in the types of available data supporting shape-coexisting structures as shown in Fig. 52. However, a consistent identification of normalorder and intruder states and an estimate of the mixing between them could be obtained from Red bars indicate that shape-coexisting structures were proposed based on their level energies (e.g. observation of a low-lying 0 + state, or rotational structures with very different moments of inertia), orange bars mean that additional information was obtained from E2 transition probabilities, yellow bars mean that information on E0 transition strengths is known, green bars mean measured cross sections to populate the coexisting configurations in direct reactions, light blue bars indicate that charge radii of both configurations were measured, and magenta bars denote information from α-particle decay. Stable nuclei are indicated with a darker shade. systematic studies of the α-decay hindrance [477,498,499]. The α decay of 194,196,198 Po proceeds preferentially to the ground states of the Pb daughter nuclei, but the competing decay to the intruder Po nuclei, with the ground-state-to-ground-state transitions becoming increasingly hindered [477,500]. The α decay that involves the removal of two protons from orbitals above the Z = 82 closed shell was observed to be a factor of 3 to 4 times faster than that involving the removal of two protons from below the gap [501]. Thus, the observed gradual increase of probability of decays feeding the intruder states in Pb was explained by an admixture of the intruder configuration in the ground states of Po. This admixture would increase with decreasing N and eventually become dominant, which is consistent with the results of charge-radii measurements in the Po isotopic chain [502,503], showing a monotonic increase of the ground-state deformation starting as early as at A ≤ 199 (N ≤ 115), see Fig. 49a.

The observation of the fine structure of the α decay of 190 Po allowed identification of two 0 + states in 186 Pb [498]. On the basis of α-decay hindrance factors, the 532(21) keV 0 + 2 state was associated with a mainly π(2p -2h) configuration. The decay to the 650(23) keV 0 + 3 state was observed to be more hindered than those to the 0 + 1,2 states, which supports a π(4p -4h) character of the former. Indeed, a transition from the normal-occupation component (π2p) of the ground state in Po to a π(4p -4h) state in Pb would involve a removal of two protons with the simultaneous promotion of a proton pair across the Z = 82 gap, leading to its significant hindrance. Similarly, a transition from the intruder admixture to the ground state in Po to a π(4p -4h) state in Pb would imply a removal of two protons from below the Z = 82 gap, while the decay to a π(2p -2h) configuration would be related to the removal of protons from above the closed proton shell and consequently it would proceed faster, as discussed above.

Two regular rotational bands were observed in 186 Pb [504,505], see Fig. 53, which may be based on the two excited 0 + states identified in the α-decay study [498]. However, the transitions between the observed 2 + band heads of both bands and the 0 + 2,3 states have not yet been identified. The intensity limits [505] 2 )/B(E2; 2 + 2 → 0 + 1 ) ratio in the neighbouring 184 Hg isotone is equal to 7(4) [492]. Low-lying 0 + states in 188 Pb were observed in conversion-electron spectroscopy [506] and α decay [500,507,508] but the results are not fully consistent. Notably, a 0 + 3 state was postulated at 767 (12) keV (Ref. [508]) and then at 725(2) keV (Ref. [506]). A later α-decay study [500] ruled out the former and put the latter in doubt, as a hindrance factor larger than 50 would be necessary to explain its non-observation in α decay. Again, no γ-ray transitions linking those states with the known 2 + states were observed. On the other hand, the rotational structures on top of the 2 + 1,2 states were identified and their moments of inertia were shown to be different [509], as shown in Fig. 54.

Experimental information for 190 Pb is more detailed, but the low-energy spectrum is dominated by the weakly deformed structures, including microsecond 11 -and 12 + isomers assigned to different configurations, although a candidate prolate band was proposed [510]. An excited 0 + state was identified in α-decay studies [511] at 658 keV, but no γ-ray transitions feeding this state are known. Similar low-lying 0 + states, appearing below the first excited 2 + state, were observed in 192 Pb and 194 Pb, and their E0 decay to the ground states corresponded to considerably lower monopole transition strengths (10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) ≈ 1 [511]) than those measured for 186,188 Hg. While there are candidates for members of bands built on the 0 + 2 states in 192,194 Pb, as indicated on Fig. 53, no transition probabilities within these bands are known.

On the other side of the N = 104 mid shell, a single rotational band was identified in each of the were found to be similar to those related to the deformed π(4p -4h) configuration in the heavier Pb isotopes. Moreover, a low-lying 0 + 2 state in 184 Pb was observed to be preferentially fed in α decay of 188 Po [499]. Based on its excitation energy, this state was tentatively interpreted as the band-head of the observed rotational band. The parabolic pattern of the assumed π(4p -4h) states is evident, as can be seen in Fig. 53, and strongly resembles that observed for the intruder states in Hg isotopes. Lifetimes in 186,188 Pb are known for the few lowest yrast states [515]. A strong reduction of transitional quadrupole moments, Q t , deduced from the B(E2; 2 + 1 → 0 + 1 ) values, with respect to those extracted from B(E2; I+2 → I), I ≥ 2 was attributed to different configurations of the ground state (spherical) and 4 + 1 , 6 + 1 , 8 + 1 (prolate deformed with β 2 =0.29 (5)). Moreover, a comparison of the B(E2; 4 + 1 → 2 + 1 ) value with those measured for the decay of higher-spin states reveals that the 2 + 1 state in 186 Pb has a pure deformed character, while for the 2 + 1 state in 188 Pb, assuming the two-state mixing model, one obtains a prolate contribution of 40% .

Excitation energy [MeV]

Three high-spin and high-K isomers have been identified in 188 Pb. Based on their decay properties, structures of bands observed on top of them, and g-factor measurements, they were assigned 9/2[624] ⊗ 7/2 [514] two-quasineutron, 9/2[505] ⊗ 13/2[606] two-quasiproton and neutron (i 13/2 ) 2 configurations, respectively [509,516,517]. In Ref. [516], the isomeric states were associated with three different potential wells corresponding to prolate, oblate and spherical shapes, respectively, suggesting that the coexistence of three distinct shapes extends to lower-spin states built in each well. This, for the moment, has not been experimentally confirmed. The 12 + isomer in 188 Pb seems to be an analogue of the 12 + isomer in 188 Hg. In the latter, however, lifetime measurements have demonstrated that the lower-spin states present higher deformation that those built on top of the spherical 12 + isomer, which supports their assignment to different configurations.

The similarity of deformed structures in Hg and Pb nuclei is further evidenced by a comparison of the kinematic moments of inertia, J (1) , plotted for yrast states in these nuclei as a function of γray energy, as shown in Fig. 54. From spin 6 + upwards, the yrast bands in 188 Pb and 186 Hg present a strikingly similar, regular behaviour. The irregular pattern of kinematic moments of inertia at lower spin can be related to the crossing and mixing of the two configurations characterised by different deformations. Interestingly, the moments of inertia obtained for 190 Po follow this pattern very closely, while those for 192,194 Po, which evolve smoothly, are considerably lower. In the absence of data on non-yrast states in these isotopes, it may still be concluded from this observation that a weakly deformed configuration forms the yrast states for N ≥ 108 (i.e., in 192 Po and the heavier Po isotopes), and in 190 Po (N = 106) the prolate-deformed intruder states of spin 2 + and above have descended in energy below their weakly deformed counterparts. This is consistent with the strong hindrance of the ground-state-to-ground-state α decay from 188 Po to 184 Pb [499], which suggests their different configurations, i.e., the intruding prolate-deformed 0 + state becoming the ground state in 188 Po. In this context, a measurement of the charge radii in 188,190 Po would be of much interest. 186 Hg, 188 Pb and 190,192,194,196 Po, and the band built on the 0 + 2 state in 188 Pb. For clarity, only states up to spin 10 + are plotted. Data are taken from the National Nuclear Data Center database [39].

The level systematics in even-even 190-210 Po isotopes reveals another intruding structure. The low-lying yrast levels in 200-210 Po can be attributed to a spherical j = 9/2 seniority structure, and their energies evolve smoothly until they drop sharply in 198 Po, as shown in Fig. 55. This drop in energy is accompanied by the appearance of low-lying 0 + states, and candidates for low-spin members of bands built on them, which were identified in 196-202 Po in αand β-decay studies [518] as well as in γ-ray spectroscopy following fusion-evaporation reactions [519]. Their energies follow a similar parabolic behaviour as the yrast levels in 190-198 Po. This was interpreted [518,519] as an intrusion of an oblate π(4p -2h) configuration, which mixes with the spherical states and pushes them down in energy. The levelling off of the level energies around 192 Po was suggested to be due to the intruder structure becoming the ground state [520]. The regularity of the kinematic moments of inertia for 192,194 Po and the fact that the |Q t | values for the 4 + → 2 + and 2 + → 0 + transitions in 194 Po are identical [515] support the picture of the ground states in 192,194 Po being dominated by the intruder configuration. On the other hand, lower moments of inertia are observed for low-spin states in 196 Po, as shown in Fig. 54, which can be attributed to the strong contribution of the spherical configuration to their structure. The observed [477,500] gradual increase, with decreasing N, of hindrance factors for the ground-state-to-ground-state α decays of Po isotopes is also consistent with this scenario. Moreover, the spectroscopic quadrupole moments of the 2 + 1 states evolve from values compatible with zero for 200,202 Po to positive values for 196,198 Po [521], in line with the yrast states changing character from spherical seniority structures to weakly deformed intruder ones. One should note here that the |Q t | values in 194 Po correspond to a deformation parameter |β 2 | ≈ 0.17(3) [515], similar to those of the normal-order configuration in the Hg isotopes, and that the moment of inertia of the structure built on the 0 + 2 state in 188 Pb is similar to those observed for the ground-state bands in 192,194 Po, as shown in Fig. 54.

Unfortunately, there is little information about the non-yrast states in the light Po isotopes apart from their energies. The 0 + 2 and 2 + 2 states in 196,198 Po were populated in a Coulomb-excitation study [521], and the E2 matrix elements related to their decay were determined, although with a rather low precision. An attempt to explain the measured E2 matrix elements within a two-state mixing model assuming the same unperturbed structures for 194-202 Po [521] was less successful than the same procedure applied to the 182-188 Hg nuclei in Ref. [492]; notably, deviations are observed for 198 Po. The spectroscopic quadrupole moments of the two unperturbed structures were 1.1 eb and -0.3 eb, supporting the scenario of a weakly deformed structure mixing with a nearly spherical one. However, given that the structure of light Po nuclei is likely to be influenced also by the more deformed prolate configuration descending to the ground state in 190 Po, it is not clear to what extent the two-state mixing model is applicable, which may explain the observed discrepancies.

The E0 transition strengths in light Po nuclei were estimated from missing γ-ray intensities in γ-γ coincidences [519,523,524] or X-ray intensities in Coulomb excitation [521]. Unfortunately, due to large uncertainties and conflicting values, no conclusions can be drawn from these data.

Even-even Pt nuclei

Moments of inertia of yrast bands in 178-186 Pt display a similar, rather regular behaviour, consistent with their well-deformed character, see Fig. 56. The anomalies observed at low spin for 176,178 Pt were attributed [525,526] to the change of configuration of the ground and lowest yrast states, which are less deformed than higher-spin states. A significantly lower moment of inertia is also determined for the yrast band in 188 Pt. A configuration change occurring between 176 . 178 Pt is supported by the sudden increase of the hindrance factor for the α decay feeding the excited states that occurs for 176 Pt [477]. Since the ground states in Hg isotopes have a predominantly weakly deformed normal-order configuration, it implies that the same is true for the ground state in 176 Pt, while those in heavier Pt isotopes have a deformed intruder configuration. The resulting interpretation of energy spectra in Pt isotopes in terms of coexisting normal-order and intruder configuration is presented in Fig. 57. Considerable progress has recently been achieved in the measurements of transition probabilities in neutron-deficient Pt isotopes [528][529][530][531][532][533][534]. Interestingly, many new lifetime measurements correspond to E2 transition strengths significantly larger compared to older data, which the authors tentatively attribute to a better treatment of side feeding. The transitional quadrupole moments deduced from lifetimes of the first four yrast states in 176-194 Pt nuclei are presented in Fig. 58. They display a roughly trapezoid pattern, particularly evident for higher-spin states, with a plateau at about 7 eb stretching from A = 178 to A = 186, and a gradual decrease on its both sides. The values obtained for 190-194 Pt are again nearly constant with Q t about 4 eb, similar to the values observed for the weakly deformed states in Hg isotopes. In the region of the plateau, where the yrast bands are supposed to be dominated by the deformed intruder configuration, it is usually observed that the transitional quadrupole moments increase with spin up to spin 4 + or 6 + , and then stabilise. It is tempting to attribute this behaviour to the mixing of the two configurations, which decreases with spin, although, surprisingly, such an effect is not present for 180 Pt.

The importance of mixing in the structures of the light Pt isotopes is supported by an almost constant behaviour of the g factors of the 2 + 1 states in 180-198 Pt [535][536][537]. In particular, the 70-80% mixing obtained for the 2 + states in 184-188 Pt from the two-band mixing model applied to level energies was in good agreement with the measured g factors [535].

Odd-mass Au, Tl and Bi nuclei

Due to the complexity of the excitation spectra, involving many multiplets, and low excitation energies of key states, the information on shape coexistence in odd-mass nuclei in this mass region is more limited compared to the even-even neighbours. Low-lying 9/2 -intruder states in the Tl isotopes (related to the proton 1h 9/2 configuration) as well as the proton 3s 1/2 hole states were identified via α-decay spectroscopy [538,539]. Unhindered α-decay branches were observed between 187-195 Bi 9/2 -ground states and 183-191 Tl 9/2 -intruder states, and between the 187-195 Bi 1/2 + intruder states and the 183-191 Tl 1/2 + ground states [538]. The excitation energies of the 9/2 -intruder states in the Tl isotopes display a characteristic parabolic behaviour as a function of neutron number and follow a similar pattern as the 1/2 + intruder states in the odd-mass Bi isotopes for N ≥ 110. For N ≤ 108, the trend in the energies of the 1/2 + intruder states in the Bi isotopes deviates from those of the 9/2 -states. Interestingly, the decay of the 1/2 + state in 185 Bi (N = 102) to the 181 Tl ground state was found to be hindered (HF=14(3) [540]), which may indicate a change of configuration of the 1/2 + state between 185 Bi and the heavier Bi isotopes. The g factors of the 9/2 -intruder states in 183-197 Tl and those of the 187-197 Bi are very similar across a wide range of N, as shown in Fig. 59b, pointing to their similar microscopic configurations.

Measurements of the charge radii for both ground and isomeric states have been performed for a wide range of Bi and Tl isotopes. As displayed in Fig. 59a [544] for the δ r 2 values for the 9/2 -isomer in the Tl nuclei versus the 1/2 + ground state, with the latter following closely those for the spherical Pb nuclei. Combined with the measured electric quadrupole moments, these results point to an oblate deformation of the 9/2 -states with |β 2 | of about 0.17. For the Bi isotopes, the β 2 deformation of the ground state starts to gradually deviate from sphericity below N = 110 197 Bi, while that of the 1/2 + isomers in 193-197 Bi is considerably larger and more constant [543]. The pattern of ground-state charge radii in light Bi isotopes resembles that observed for the Po chain (see Fig. 49), suggesting that a more deformed configuration may mix with that of the ground state when approaching the neutron mid-shell. Finally, the charge radii in the Au isotopic chain increase dramatically between N = 108 and N = 107. This is accompanied by a ground-state spin change from 1/2 + in 187 Au (normal-order configuration) to 5/2 - in 185 Au (intruder configuration). There are multiple suggestions in Tl and Bi nuclei of rotational bands interpreted as resulting from coupling of the odd proton particle or hole to the normal-order or intruder configuration of the even-even core. For example, the bands built on 13/2 + isomers in 187,189 Bi were shown to share important similarities with those in 186,188 Hg associated to prolate shapes [546], while their analogues in 191,193 Bi have a strongly coupled character, indicating that they are associated instead with a weakly deformed core configuration [547,548] 176-194 Pt nuclei. For clarity, some points are slightly offset on the horizontal axis. Data are taken from the National Nuclear Data Center database [39] and Refs. [528][529][530][531][532][533][534].

of inertia between the rotational band built on the ground state of 193 Bi and the yrast band in 194 Po, the former was interpreted as resulting from coupling of a 1h 9/2 proton to a deformed oblate configuration in 192 Pb [547]. The characteristics of the bands built on the 1/2 + intruder states are different for 191 Bi and 193 Bi, with the latter having a similar moment of inertia as the yrast bands in 188,190 Hg (indicating a weakly deformed oblate structure), and the former being significantly more deformed [548]. It would be interesting to investigate if this effect is visible in the isomer shift of the 1/2 + state in 191 Bi, and, as there is no significant difference in α-decay hindrance between the two Bi isotopes, in the charge radii of the ground state of the 187,189 Tl daughter nuclei.

Strongly-coupled bands constructed on the 9/2 -isomer were observed in even-neutron 183-189 Tl isotopes [550][551][552] and their properties are consistent with the weak oblate deformation of the band head determined from the isomer shift. Similar bands associated with the i 13/2 intruder configuration were also seen in 187 Tl [550], 189 Tl [551] and the heavier Tl isotopes. Decoupled bands due to i 13/2 , h 9/2 and f 7/2 intruders were identified in 183,185,187 Tl [550,552] and from their spectroscopic properties they were associated to prolate deformation. Lifetime measurements in 187 Tl [553] and 189 Tl [554] confirmed that the transitional quadrupole moments in the structures identified as prolate and oblate strongly differ, as can be seen in Fig. 60. Interestingly, the transitional quadrupole moments for the prolate i 13/2 structures in odd-mass Tl and Au nuclei appear, on average, larger than those for the prolate h 9/2 bands, and closer to those obtained for 188 Pb than for the 186,188 Hg isotones. At the same time, the quadrupole moments for the oblate structures in odd-mass Tl nuclei are significantly lower than those measured for the oblate states in the Hg isotones.

In odd-mass Au nuclei both proton-particle and proton-hole configurations were observed, the former resulting from coupling to even-even Pt cores, while the latter involve coupling to eveneven Hg cores. For example in 187 Au, structures resulting from coupling of the 1h 11/2 proton hole to 0 + 1 and 0 + 2 states in 188 Hg were identified (i.e., π(3h) and π(2p -5h)), as well as those where a 1h 9/2 proton couples to 0 + 1 and 0 + 2 states in 186 Pt (i.e., π(3p-6h) and π(1p-4h)) [556]. Similar structures 96 were also observed in 185 Au, and transitions between them were shown to have E0 components, 2185 consistent with their different deformations [557]. A large isomer shift was measured for the 9/2 -, t 1/2 = 2.3 s state in 187 Au, as shown in Fig. 59a. Interestingly, the g factor determined for this state is considerably lower [542] than those measured for the 9/2 - 1 states in Tl and Bi nuclei, as seen in Fig. 59b.

Recently, a regular rotational band was observed built on the second 11/2 -state in 177 Au [558].

The head of this band, interpreted as formed by the coupling of a 1h 11/2 proton hole to the 0 + 2 state in 178 Hg, presents a very different decay pattern than that observed for the analogous structure in 187 Au, as shown in Fig. 61. This suggests an important difference between the 0 + 2 structures in 178 Hg and 186 Hg, in line with the results of the lifetime measurements in 178 Hg [493] that yield a β 2 value of about 0.4 for the deformed configuration in 178 Hg, which is significantly larger than those estimated for the deformed structures in heavier Hg isotopes.

Almost constant excitation energies of the states associated with coupling of a 1h 11/2 proton hole with the ground state of the Hg core are observed over the Au isotopic chain, which is similar to the behaviour of the 2 + 1 states in Hg isotopes. In contrast, the lowest states corresponding to the intruder configuration, 9/2 -, display a parabolic trend with a minimum at N = 104 [559], as shown in Fig. 64. Recent measurements for 181,183 Au [560,561] provided more data on the variety of normal-order and intruder states in these nuclei. In particular, in 183 Au an E0 transition feeding the first 3/2 -state of the 2d 3/2 ⊗ 3s 1/2 proton-hole configuration was reported in Ref. [561]. Such an E0 decay has no counterparts in the neighbouring Au nuclei, suggesting that it may proceed from a deformed state of a configuration that has not been observed before. Identification of rotational states built on top of it would help to elucidate its character.

Conclusions

There has been tremendous progress in shape-coexistence studies in the past several decades that has been driven by a variety of factors. The data now available have resulted from the drive towards detailed spectroscopic studies. Especially noteworthy in this regard are the very high- The strongly coupled band decays exclusively to the 11/2 - isomer via two intermediate states at 521 and 525 keV. The 521-and 525-keV γ rays depopulating these states have similar energies to the 2 + 1 → 0 + 1 transition in 178 Hg (558 keV) [START_REF] Castel | Modern Theories of Nuclear Moments[END_REF] and are likely to be configurations formed by coupling 1h 11/2 proton holes to the weakly oblate 178 Hg core. The multipolarity of the 521-keV γ ray was determined using directional correlations from oriented states [START_REF] Andrejtscheff | [END_REF] and is consistent with a I = 1 transition [R DCO = 0.6(1)] leading to possible spin assignments of 9/2 or 13/2 for the initial state. The level energies associated with the 1h 11/2 ⊗ A+1 Hg configurations in odd-Au isotopes are established from the line of stability to beyond the proton drip line and vary smoothly as a function of neutron number [23][24][25]. These systematic trends favor the 13/2 -assignment for the 521-keV level. The 525-keV level is fed by 727-and 871-keV γ rays and has a similar feeding pattern to that observed in the heavier odd-mass Au isotopes where γ rays depopulating the 17/2 -and 19/2 - states feed the 15/2 -state strongly. This similarity favours a 15/2 -spin-parity assignment for the 525-keV state.

Based on the K x-ray intensity balance, a conversion coefficient for the 228-keV transition of 0.58 (23) was deduced, which compares well with the BRICC estimates for a pure M1 transition of 0.588(9) [26]. Within the experimental uncertainty an E2 admixture cannot be excluded. Moreover, the subsequent intensity balance between the transitions feeding the (13/2 -) state with the 521-keV transition that depopulates it implies that there is no significant E0 component in the latter transition. The absence of a strong E0 component suggests that the 521-keV transition is not a J → J transition, which further supports the (13/2 -) assignment for the 521-keV level. The nature of the other decay paths from the strongly coupled band and the absence of other γ -ray transitions feeding the 11/2 - isomer directly constrains the lowest observed level in the strongly coupled band to be either 11/2 -or 13/2 -. It was not possible to constrain the multipolarities of other transitions in the same way. Although a tentative 11/2 -assignment is proposed for the band head of the strongly coupled band in Fig. 2, a 13/2 -assignment would not materially affect the conclusions drawn below.

The γ -ray energies of the strongly coupled band in 177 Au are plotted as a function of the initial state angular momentum, assuming that the 749-keV level is the 11/2 -band head, alongside the prolate bands of its neighboring isotones 178 Hg [START_REF] Castel | Modern Theories of Nuclear Moments[END_REF]27] and 176 Pt [28] in Fig. 3(a). The curves for the 177 Au band are almost identical to those of the prolate bands in the even-mass isotones 178 Hg and 176 Pt. The strongly coupled band in 177 Au band is assigned to be a configuration formed by the coupling of the 1h 11/2 proton hole to the unobserved well-deformed excited 0 + state in the 178 Hg core. The moments of inertia extracted for this configuration and the small signature splitting are consistent with a well-deformed axial prolate shape.

The 1h -1 11/2 ⊗ 178 Hg(0 + 2 ) configuration in 177 Au is markedly different from analogous configurations in the heavier Au isotopes whose energies as a function of the neutron number should lie on a similar parabola to that established for the 0 + 2 states in the Hg core [2]. The structures of 1h -1 11/2 ⊗ A+1 Hg(0 + 2 ) configurations have been studied in 185 Au and 187 Au [6,7] by conversion-electron-γ -ray coincidence measurements [29]. In these isotopes, the deformed 11/2 -and 13/2 -states decay predominantly to the near-spherical 11/2 -member of the 1h 11/2 ⊗ A+1 Hg(0 + 1 ) proton-hole configuration. It should be noted that the J → J decay paths in these nuclei have strong electric monopole (E0) components [6,7]. This is not the case in 177 Au, where the decay proceeds through pairs of levels with spin (13/2 -) and (15/2 -) and not directly to the near spherical 11/2 -level; see Fig. 2. This indicates that there is no strong electromagnetic coupling between the strongly coupled band and the weakly deformed states and that the 0 + 2 state in the corresponding Hg core has a different structure in 177 Au. We 061302-3 statistics β-decay studies that enable the observation of low-energy transitions from non-yrast states, recoil-decay tagging that makes possible the separation and observation of nuclei with very low production cross sections, and also highly sensitive Coulomb-excitation experiments that provide large sets of electromagnetic matrix elements including quadrupole moments of short-lived excited states. The development of high-resolution and high-efficiency instrumentation for these studies, from particle detectors and recoil separators to HPGe γ-ray spectrometers, has enabled an unprecedented sensitivity. The wealth of data has also benefited tremendously from the availability of a variety of radioactive beam species, and the increasing intensity of such beams has opened new avenues of research, not only in regions of the nuclear chart previously inaccessible for detailed studies, but also enabling, for less exotic nuclei, the high-statistics measurements mentioned above. There have been theoretical advancements, including developments in beyond-mean-field calculations, large-scale and Monte-Carlo shell-model calculations, the widespread application of three-body forces and accounting for the tensor interactions, and the guidance for the calculations resulting from the underlying symmetries. The level of accuracy obtained in reproducing the experimental data using globally-derived interactions, rather than local fitting, has resulted in an increase in the level of confidence in interpreting the natures of the structures observed. The status of the field, from a unified experimental and theoretical viewpoint, was reviewed by Heyde and Wood [2] in 2011. Following in the footsteps of their earlier reviews, it emphasized the need for comprehensive spectroscopic studies of nuclei suggested to possess shape-coexisting structures, including measurements that provide absolute B(E2) values, ρ 2 (E0) values, single-and multinucleon transfer cross sections, etc. It further suggested that the presence of shape-coexisting structures in nuclei may be the norm, and that we might expect them in nearly all nuclei except perhaps the very lightest. The role of multiparticle-multihole excitations was highlighted, and also that of the "multishells", which made the large deformations observed near closed shells to be expected. Finally, the growth in the community directly involved in such studies, and the willingness to re-examine both open problems and previously understood structures for new insights, has created a vibrant atmosphere for collaboration and provided a diversity of perspectives. The confluence of these factors has made the present era of shape-coexistence studies perhaps the most exciting and rapidly developing in its history. In the following, we present a brief overview of the regions we have explored in the present work.

In the light-mass nuclei, many of the shape-coexisting structures display a multiparticle-multihole character. As has been shown in many calculations, states involving 2p -2h, 4p -4h, etc., configurations can be present at low excitation energies, and even become the ground states. The N = 20 "island-of-inversion" region is an excellent example of the latter. Measurements performed on 32 Mg are consistent with the ground state having a mixed 2p -2h and 4p -4h structure, and the normal-order 0p -0h 0 + state has yet to be located. Such multiparticle-multihole structures can reach large deformations, as do those that have been known to exist at low energies in the Ca isotopes, with the superdeformed 0 + 3 state in 40 Ca involving a 8p -8h configuration, and the 0 + 2 state dominated by the 4p-4h excitations. The recent Coulomb-excitation study of 42 Ca measured the Q 2 and Q 3 cos 3δ quantities for both the ground state and the 6p -4h 0 + 2 state, the first such direct determination for a superdeformed structure. A candidate superdeformed band has also been suggested in 28 Si, coexisting with a normal-deformed oblate ground state, and the observed E0 decay of the 0 + 2 state in 24 Mg is consistent with its β 2 deformation of about 1. At the double shell closure Z, N = 28, a highly-deformed 4p -4h structure is observed in 56 Ni, similar to those present in the A ≈ 40 region. Low-lying proton pairing vibration states were postulated in 58-62 Ni based on their enhanced population in proton-transfer reactions, with those in 58,60 Ni also possessing enhanced E0 transitions to the ground states. An explanation of these large E0 strengths, recently complemented by similarly large ρ 2 (E0) values for the 2 + 2 → 2 + 1 transitions in 58,60,62 Ni, remains elusive. An intense experimental effort in the last five years has clarified greatly the level schemes and spin-parity assignments for nuclei in the neighbourhood of 68 Ni. However, few relevant transition probabilities are currently known and no measurements of spectroscopic quadrupole moments have been performed. There are suggestions of triple shape coexistence in 64,66,68 Ni based on comparisons with theoretical calculations, with excited prolate and oblate states coexisting with spherical ground states. Two protons below Ni, the neutron-rich Fe isotopes have deformed ground states, and an observation of a low-lying 0 + 2 state in 66 Fe hints at shape coexistence. The properties of the ground-state bands in the Co isotopes with N < 40 point to their nearly spherical character, while those of the (1/2 -) states identified at low excitation energy in 65,67 Co provide strong evidence for shape coexistence. In both the Ni and Co isotopes, the evolution of these configurations beyond N = 40, i.e., when the νg 9/2 is filled, remains an open question. Finally, in the vicinity of 78 Ni, first observations of low-lying deformed states involving neutron excitation across the N = 50 gap have been reported in, e.g., N = 49 79 Zn and 81 Ge. At N = 50, low-lying deformed 0 + states in 82 Ge and non-yrast deformed states in 78 Ni have been proposed, while an observation of a non-yrast state in 82 Zn, tentatively assigned as 0 + 2 , represents the first hint of shape coexistence beyond N = 50. The persistence of deformed ground states towards N = 50, recently established in 66 Cr and 70,72 Fe nuclei [562] supports the hypothesis of a new "island of inversion" stretching from N = 40 to N = 50 and beyond. This would give rise to coexistence of deformed and spherical configurations along its borders, analogous to those observed, e.g., at N = 20.

A consistent picture of shape coexistence in the N ≈ Z ≈ 40 nuclei has been obtained by combining high-resolution γ-ray and electron spectroscopy, with key results obtained in recent Coulomb-excitation and lifetime measurements. The results from those studies provided firm evidence for prolate and oblate shapes in 74,76 Kr, as well as indications for prolate-oblate shape coexistence in some of the Se and Ge isotopes. There is evidence for strong mixing of the configurations, and large E0 strengths were measured in this mass region, with 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) values approaching 100 in the Kr isotopic chain. The E0 transition rates correlate with Z, with 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) values of approximately 30 measured for the Se isotopes, while those for 70,72 Ge are close to 10. By combining the mixing angles deduced from level energies with the measured E0 strengths, the difference of deformation ∆β 2 2 can be extracted, which is equal to 0.06-0.1 for 72,74,76 Kr, and 0.02-0.06 for 70,72 Ge. Another notable feature of this mass region is the importance of the triaxial degree of freedom. Structures interpreted as γ bands are observed at low excitation energy, and their band heads strongly mix with 2 + states built on the shape-coexisting configurations. The systematics of the 2 + 1 excitation energies and B(E2; 2 + 1 → 0 + 1 ) values for N = Z nuclei, presented in Fig. 62, show a rise in collectivity between 68 Se and 72 Kr followed by a more rapid increase between 72 Kr and 76 Sr. Beyond-mean-field calculations [563] predict a gradual transition along the N = Z line from weakly deformed γ-soft 60 Zn and 64 Ge to well-deformed prolate 76 Sr, passing through moderately deformed triaxial shapes. The observed increase of deformation was thus suggested to be related to a gradual reduction of the importance of the triaxial degree of freedom, in connection with a decrease of the configuration mixing. Systematic measurements of spectroscopic quadrupole moments and quadrupole sum-rule invariants in these nuclei would provide a verification of such an interpretation.

In the A ≈ 100 region, an impressive number of experimental results, contributing greatly towards understanding of shape coexistence, have been reported over the last decade. For these studies, state-of-the-art experimental devices and techniques were used, with the nuclei of interest produced via spontaneous fission or induced fission of actinides. The availability of intense radioactive beams for a variety of species has also increased dramatically, enabling measurements in this mass region that were not previously possible. Lifetime measurements of excited states and Coulomb-excitation experiments yielded rich sets of transitional and diagonal E2 matrix elements, enabling detailed comparisons with state-of-the-art theoretical models. In the Sr and Zr isotopes, where the spectroscopic data are most abundant, coexistence of nearly spherical normal-order states and deformed intruder states has been experimentally confirmed. Below N = 60, further studies are required to pin down the structure of low-lying 0 + states. Multiple shape coexistence has been proposed in N = 58 98 Zr and 96 Sr based on combined data on E0 and E2 transition strengths and neutron-transfer spectroscopic factors, but the recent conflicting measurements of lifetimes in 98 Zr highlight the difficulty of studies in this region. Interestingly, the mixing of wave functions between the ground state and the excited configurations in 96 Sr appears to be small, while the excited configurations seem to be strongly mixed. At N = 60, evidence of a nearly spherical excited configuration was reported in 98 Sr, while the data for 100 Zr are less detailed and therefore less conclusive. The sudden onset of deformation in the Zr isotopes has been reproduced for the first time, in terms of both level energies and transition probabilities, with the Monte-Carlo shell model. These calculations suggested that multiple shape coexistence occurs in the Zr isotopes, with spherical, prolate, and oblate shapes present and their ordering evolving as a function of N. An experimental verification of this scenario is necessary. A multitude of low-lying deformed states with collective structures built on top of them were reported in odd-mass A ≈ 100 nuclei from Kr to Ru, permitting the mapping of the different Nilsson orbitals before and after the shape transition at N = 60. While in odd-mass isotopes with N < 60 spherical ground states are observed to coexist with deformed bands, no evidence for low-lying spherical states beyond N ≥ 60 has yet been obtained.

A compilation of quadrupole deformation parameters β 2 deduced from the measured spectroscopic quadrupole moments for odd-neutron Kr, Sr, Zr, Mo and Ru nuclei, and for odd-proton Rb, Y, Nb and Tc isotopes [231] is shown in Fig. 63. The β 2 systematics were extended by including the spectroscopic quadrupole moments of the 2 + 1 states in 94,96 Kr [243,565], 96,98,100 Mo [23,256,320] and 102,104 Ru [39, 258], extracted from low-energy Coulomb-excitation experiments. They follow consistently the trend observed in laser spectroscopy.

Between N = 50 and 58, as the d 5/2 and s 1/2 orbitals are filled, the deformation is uniformly low ( β 2 ∼ 0.1) for all elements from Kr to Tc. The data resulting from both experimental approaches consistently point to an onset of deformation for nuclei from Rb to Nb when two neutrons are added to N = 58, i.e., the addition of neutrons to the g 7/2 orbital. Due to a large uncertainty, no conclusion can be drawn for 96 Kr, while the reduction of the quadrupole moment of the 2 + 1 state in 98 Sr has been tentatively attributed to its triaxial shape. Unfortunately, there is no experimental information for 102 Mo, but the β 2 deformation obtained for 104 Ru is considerably lower than the average β 2 ∼ 0.4 for the N ≥ 60 nuclei. The β 2 values are calculated, under assumption of axial symmetry, from the spectroscopic quadrupole moments of the ground states measured with laser spectroscopy, and from the diagonal E2 matrix elements of 2 + 1 states obtained via low-energy Coulomb excitation of even-even nuclei. Unfortunately, quadrupole moments for the ground states of 90,92 Rb (I π = 0 -), 91,93,95-98 Y (I π = 0 -, 1/2 -) and 99,101 Mo (I π = 1/2 + ) cannot be measured and those for 94-98,100 Nb have not been measured yet. The spectroscopic quadrupole moments of the 2 + 1 states in 88,90,92 Kr, 90,92,94 Sr and 92,94,96-100 Zr are currently unknown. In 94 Mo and 98,100 Ru the quadrupole moments of the 2 + 1 states were measured using the reorientation effect with light-ion beams and the analysis of Coulomb-excitation data yielded two alternative solutions, leading to different conclusions on the deformation. These data points are therefore not displayed. Shown schematically are the spherical orbitals at the Fermi level for neutrons. The dashed lines are to guide the eye. For clarity, some points are slightly offset on the horizontal axis.

Neutron number

The systematics presented in Fig. 63 highlights a particular behaviour at N = 59. While the onset of deformation is abrupt for all elements from Z = 37 to 41 when adding a pair of neutrons, at N = 59 a gradual evolution as function of the proton number emerges. The 96 37 Rb 59 deformation is estimated as β 2 ∼ 0.12, close to the mean value for N ≤ 58 and well below that for N ≥ 60. For 103 44 Ru 59 , the β 2 deformation approaches 0.3, which is slightly lower than the N ≥ 60 systematics. Therefore, a more gradual shape change seems to take place when only one neutron is added to the g 7/2 orbital and when the number of protons in the p f shell increases. Unfortunately, measurements of the ground-state quadrupole moments in the N = 59 isotones between Sr and Tc are impossible due to their 1/2 spins.

Even if the ground-state shape transition at N = 60 seems to be well understood, there are open questions related to the structure of the non-yrast configurations. The rather smooth increase of deformation with the neutron number, observed for the neutron-rich Kr isotopes, requires further investigation, also in the context of possible shape coexistence, which has been predicted but never experimentally confirmed. Theoretical calculations indicate the importance of the triaxial degree of freedom in the Kr and Se isotopes, which also requires an experimental verification [566]. The experimental information on the neutron-rich Se isotopes around N = 60 is scarce due to their very exotic character, reflected in production rates at radioactive beam facilities, making experiments using them currently prohibitive. With the first indications of shape coexistence in the very neutron-rich Ge isotopes at N = 50, the possible bridge between these two regions of deformation and shape coexistence should be addressed in the future.

A considerable number of new results in the Z ≈ 50 region have been obtained over the past decade resulting in a substantial re-interpretation of the structure of many nuclei, foremost that of the Cd isotopes. While the shape-coexisting π(2p -2h) intruder excitations have been known for some time, recent results [261,363] have suggested the presence of multiple shape coexistence with the appearance of triaxial, oblate, and prolate structures. The key spectroscopic data for the 0 + 2 and 0 + 3 states were presented in Figs. 36 (Cd), 42 (Sn), 44 (Te), and 46 (Pd). Generally, the 0 + 2 levels have enhanced decays to the 2 + 1 states, and, where measured, are populated strongly in the ( 3 He,n) reaction. The 0 + 3 levels have enhanced decays to the 2 + 2 levels, and weak E2 transition strength to the 2 + 1 states. As outlined in Sect. 3.5.1, in the Cd isotopes it was suggested that the 0 + 2 and 0 + 3 states had different shapes. The high degree of similarity of the decay properties of the 0 + 2 states in Pd through Te is suggestive of a similar underlying configuration of enhanced deformation based on proton excitations. In Cd, Pd, and Te, the 0 + 3 states generally have enhanced decays to the 2 + 2 states, labelled as the head of a "γ" band, and a very weak decay to the 2 + 1 state, also suggesting a structural similarity. If multiple shape coexistence is firmly established in the Cd isotopes, these similarities of the decay patterns in other nuclei in the region provide strong motivation to explore their shapes as well through, for example, detailed Coulomb-excitation studies.

The Z ≈ 64, N ≈ 90 region continues to present a challenge to understand its structure, but also an opportunity to explore exotic pairing degrees of freedom. While it is clear that there is a rapid change in the shape progressing across N = 90, the question on the nature of the excited states remains open. The traditional interpretation involving shape-coexisting 0 + 3 states and lowlying 0 + 2 β-vibrational states has largely been refuted. Recent work has focused on pairing isomers and the important role of the ν11/2 [505] Nilsson orbital in both the 0 + 2 , often referred to as the "second vacuum", and 0 + 3 states. The apparent absence of the ν11/2[505] ⊗ 0 + 2 coupling in the adjacent odd-mass isotopes is consistent with this interpretation, and this observation emphasizes the importance of configuration-dependent pairing properties that are often overlooked.

The body of evidence concerning shape coexistence at and near Z = 82 seems the most extensive in the entire nuclear chart. Although this region is centered on the neutron mid-shell at N = 104, located far from the line of β stability, the neutron-deficient character of these nuclei allowed for efficient use of fusion-evaporation reactions to study their properties. Unique information on the microscopic character of low-lying 0 + states could also be obtained from α-decay studies. In even-and odd-mass nuclei from Pt (Z = 78) to Po (Z = 84), normal-order structures were observed to be crossed at low excitation energies by a more deformed configuration dominated by 2p-2h excitations across the Z = 82 shell gap. As evidenced by the observed perturbation of energy levels, α-decay hindrance factors and the measured E2 and E0 transition strengths, the two coexisting structures undergo strong mixing. The systematics of the lowest intruder states in Pt, Au, Hg, Tl, Pb, Bi and Po isotopes, presented in Fig. 64, shows that while they display similar parabolic patterns, the exact minima shift from one isotopic chain to another, and the shape of the parabola also changes. This suggests that the microscopic configurations of these intruding structures, while similar, are not identical, involving different orbitals and/or a contribution from excitation of several pairs across the Z = 82 shell gap. This is supported, for example, by the observation that the g factor of the 9/2 -state in 187 Au is different than those measured for its counterparts in N = 108 Tl and Bi isotones, as was shown in Fig. 59. While convincing circumstantial evidence is available for the existence of multiple shapes in this mass region, few examples of direct evidence have been provided to date, such as that obtained from measurements of quadrupole moments or invariant sum-rules from Coulomb excitation. The Hg isotopes provide some of the best data in this regard, but there still remains considerable uncertainty, as the discussion on the extraction of the mixing amplitudes in Sec. A thread that is beginning to emerge in the field, as highlighted above, is that of multiple shape coexistence. While there were suggestions of this for decades, the famous example of 186 Pb was published only 21 years ago. Within the past several years there have been many additional candidates suggested for nuclei possessing multiple shapes. These candidates appear throughout the nuclear chart, to name as examples the Si, Ca, Ni, Zr, Cd, Hg, Pb and Au isotopes, and arise from a combination of experimental observations and theoretical calculations that have reached a highdegree of accuracy in their predictions. Some of the best candidates for multiple shapes are stable, and thus should be amenable for detailed studies. Future priority measurements should include detailed Coulomb-excitation studies to firmly establish the shapes through the use of sum-rule quantities, such as Q 2 and cos 3δ . Experiments that probe the microscopic composition of the states, single-nucleon and especially multi-nucleon transfer, should be pursued. A further key ingredient is the combined approach for structure studies, where coordinated measurements are undertaken that provide required data for precise and reliable level schemes. Highly-sensitive β-decay measurements, for example, can be used to observe very weak, but important in terms of transition probability, decay branches for non-yrast levels. Conversion-electron measurements to extract E0 branches for I → I transitions rely on accurate and precise intensities for the competing M1 and E2 transitions, and the determination of ρ 2 (E0) branches requires level lifetime measurements. These, in turn, provide crucial inputs and stringent constraints to analyses of Coulomb-excitation data.

The shape-coexistence phenomenon in atomic nuclei is one of the most impressive features of the field of nuclear structure, and, in a larger perspective, of a finite many-body quantum system. It is the manifestation of diverse quantum configurations having different spatial organisation competing for the ground-state energy. As stated in the introduction, the presence of shape coexistence permits the study of the contributions to the correlation energy within the same nucleus from different sources, in this case that associated with the quadrupole shape degree of freedom. The correlation energies arise from multiple sources, but chief among them are the pairing energies and the proton-neutron residual quadrupole interaction. Over the last decade, while we have gained much knowledge on shape-coexisting structures, many questions remain, and new regions and opportunities for exploration have opened.
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 2 Figure 2: Shapes calculated with β 2 = 0.35 for γ = 0 • , or prolate (a), and for γ = 60 • , or oblate (b).
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 3 Figure 3: Schematic of the contributions to the energy of a 2p -2h excitation, specifically for those in the Z = 82 region. Figure taken from Ref. [2].
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Figure 5 :

 5 Figure5: Cross sections for the population of states in31 Mg in one-nucleon removal reactions. The bars in the top panel represent the cross sections measured in one-neutron knockout from32 Mg[70], and those in the bottom panel are from one-proton knockout from32 Al[73]. The former favours deformed intruder states, i.e. the ground state and the (3/2 -) and (7/2 -) states at 220 keV and 461 keV, respectively, and the latter the normal-ordered 3/2 + and 5/2 + states at 673 keV and 2015 keV, respectively. Note different cross-section scales used in the two panels.
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 487 Figure 7: Summary of experimental data for nuclei exhibiting shape coexistence in the Mg-Ca region. Red bars indicate that shape-coexisting structures were proposed based on their level energies (e.g., observation of a low-lying 0 + state, or rotational structures with very different moments of inertia), orange bars mean that additional information was obtained from E2 transition probabilities, yellow bars mean that information on E0 transition strengths is known, green bars mean measured cross sections to populate the coexisting configurations in direct reactions, light blue bars indicate that quadrupole moments of both configurations were measured, and dark blue bars correspond to quadrupole invariants. Stable nuclei are indicated with a darker shade.

Figure 10 :

 10 Figure10: Partial level scheme of68 Ni. The transitions are labelled with their B(E2) values in W.u. (rust-coloured arrows) or 10 3 × ρ 2 (E0) values (green-coloured arrows). The levels are organized into deformed bands as assigned in Ref.[142,155] (coloured levels on the left-hand side), and Refs.[142,146,152,[START_REF] Flavigny | [END_REF] (black-coloured levels on the right-hand side) where they were suggested to have significant components of the labelled configurations. The two-neutron transfer cross sections measured[START_REF] Flavigny | [END_REF] for the 0 + 2 and 2 + 1 states were shown to be consistent with ν(g 9/2 ) 2 and lowj neutron-pair structures, respectively.
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 12 Figure 12: Schematic presentation of normal-order (e.g., 0 + 2 in 68 Ni, 0 + 2 in 66 Fe) and intruder configurations (i.e., 0 + 3

Figure 13 :

 13 Figure13: Summary of experimental data for nuclei exhibiting shape coexistence in the Fe-Co-Ni region. Red bars indicate that shape-coexisting structures were proposed based on their level energies (e.g., observation at low excitation energy of presumed 0 + states in even-even nuclei, or isomers in odd-mass ones, or rotational structures with very different moments of inertia), orange bars mean that additional information was obtained from E2 transition strengths, yellow bars mean that information on E0 transition strengths is known, and green bars mean measured cross sections to populate the coexisting configurations in direct reactions. Stable nuclei are indicated with a darker shade.

Figure 14 :

 14 Figure14: Summary of experimental data for nuclei exhibiting shape coexistence in the vicinity of78 Ni. Red bars indicate that shape-coexisting structures were proposed based on their level energies (e.g. observation at low excitation energy of presumed 0 + states in even-even nuclei, or isomers in odd-mass ones, or rotational structures with very different moments of inertia), orange bars mean that additional information was obtained from electromagnetic decay, green bars mean measured cross sections to populate the coexisting configurations in direct reactions, light blue bars indicate that charge radii of both configurations were measured. Stable nuclei are indicated with a darker shade.

82 Figure 15 :

 8215 Figure 15: Summary of experimental data for nuclei exhibiting shape coexistence in the light Sr-Zn region. Red bars indicate that shape-coexisting structures were proposed based on their level energies (e.g., observation of a low-lying 0 + state, or rotational structures with very different moments of inertia), orange bars mean that additional information was obtained from E2 transition probabilities, yellow bars mean that information on E0 transition strengths is known, green bars mean measured cross sections to populate the coexisting configurations in direct reactions, light blue bars indicate that quadrupole moments of both configurations were measured, and dark blue bars correspond to quadrupole invariants. Stable nuclei are indicated with a darker shade.

76 Figure 16 :

 7616 Figure 16: Kinematic moments of inertia for yrast states in68,70,72,74 Se, and the bands built on the 2 + 2 state in68,70 Se. Data are taken from the National Nuclear Data Center database[39].
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80 Figure 17 :

 8017 Figure17: Kinematic moments of inertia, up to spin 10, for yrast states in72,74,76 Kr and74,76,78,80 Sr. Data are taken from the National Nuclear Data Center database[39].

Figure 18 :

 18 Figure 18: The correlation between the R 42 =4 + 1 /2 + 1 excitation-energy ratio and the B(E2; 2 + 1 → 0 + 1 ) values expressed in W.u. and normalized to A, for Kr, Sr, Zr (Z = 36, 38, 40) and Sm, Gd, Dy, Er, Yb isotopes (Z = 62, 64, 66, 68, 70). Figure from Ref. [227].

Figure 20 :

 20 Figure 20: Changes in the mean-square-charge radii, δ r 2 , as a function of the neutron number for the ground states of the Kr-Ru isotopes. An arbitrary displacement of 0.8 fm 2 at N = 52 has been introduced between the isotopic chains. Data are taken from Refs. [234-236].

96 Figure 21 :

 9621 Figure 21: Summary of experimental data for nuclei exhibiting shape coexistence in the A ≈ 100 region. Red bars indicate that shape-coexisting structures were proposed based on their level energies (e.g. observation of a low-lying 0 + state, or rotational structures with very different moments of inertia), orange bars mean that additional information was obtained from E2 transition probabilities, yellow bars mean that information on E0 transition strengths is known, green bars mean measured cross sections to populate the coexisting configurations in direct reactions, light blue bars indicate that quadrupole moments of both configurations were measured, and dark blue bars correspond to quadrupole invariants. Stable nuclei are indicated with a darker shade.

Figure 22 :

 22 Figure 22: Left panel: Systematics of observed 2 + 1 excitation energies in Kr, Sr, Zr, Mo and Ru isotopes as a function of the neutron number. Right panel: Systematics of the B(E2; 2 +1 → 0 + 1 ) values in Weisskopf units, normalized to the mass A, for Kr, Sr, Zr, Mo and Ru isotopes. Data are from the National Nuclear Data Center database [39] and Refs.[237][238][239][240][241][242][243][244]. For98 Zr, the weighted average of the B(E2; 2 + 1 → 0 + 1 ) values from Refs.[237,238] is plotted.

Figure 23 :

 23 Figure 23: Systematics of selected excited states in 50 ≤ N ≤ 62 Zr (left panel) and Sr isotopes (right panel).States belonging to the ground-state bands in isotopes with nearly spherical ground states are denoted with black squares, those built on the deformed ground states with blue triangles, and 0 + 2,3 states with red circles. Data are taken from the National Nuclear Data Center database [39] and Refs.[245,246].

Figure 24 :

 24 Figure 24: Properties of the low-lying states observed in the even-even Zr isotopes. The E2 transitions (rust coloured) are labelled with their B(E2) values in W.u., the E0 transitions (green) with their 10 3 × ρ 2 (E0) values, and the M1 transitions (purple) with their B(M1) values in µ 2N . The levels are colour-coded according to assigned configurations. For98 Zr, dashed gray lines are used to connect the same energy levels in the proposed band structures resulting from the two interpretation scenarios outlined in the text. For 100 Zr, the (2 + ) state at 1196 keV has been alternatively suggested as a member of the 0 + 3 band (blue)[2], or as the head of the γ band (green)[276]. Data are taken from the National Nuclear Data Center database [39] and Refs.[102,237,238,255,276,283].

Figure 25 :

 25 Figure 25: Orbitals relevant for the description of the A = 100 mass region in the spherical shell model. Their ordering follows the calculations of Refs. [237, 255, 293]. The energy spacing is arbitrary (see text for details).

Figure 26 :

 26 Figure 26: Systematics of shape-coexisting states in Zr (red), Y (blue) and Sr (green) isotopes with 56 ≤ N ≤ 63.The horizontally stretched ellipses denote oblate deformation, vertically stretched ones prolate or triaxial, and circles nearly spherical shapes. Filled symbols are used if the deformation was extracted from spectroscopic quadrupole moments measured in laser spectroscopy or Coulomb excitation. Patterned symbols are used if the deformation was deduced from level energies or a comparison with model calculations. The dashed lines connect the levels if there are arguments for their configurations being similar. The arrow between the 1229-keV and 1465-keV states in96 Sr denotes their strong mixing, with the deformed unperturbed configuration resembling that of the ground state in98 Sr (see text for details). The interpretation used for98 Zr is that from Ref.[237]; Fig.24displays an alternative interpretation from Ref.[238].

Figure 28 :

 28 Figure28: Low-lying non-rotational states in the (left) N = 59 isotones97 Sr,99 Zr, and101 Mo and (right) N = 61 isotones99 Sr,101 Zr, and103 Mo. The ellipses denote prolate deformation, and circles nearly spherical shapes. Filled symbols are used if the deformation was extracted from spectroscopic quadrupole moments measured in laser spectroscopy, and patterned symbols if the deformation was deduced from level energies or a comparison with model calculations. The dashed lines connect the levels if there are arguments for their configurations being similar. The states in101 Mo are difficult to classify, as explained in the text.

2 Figure 29 :

 229 Figure 29: Energy systematics of positive-parity excited states in molybdenum isotopes with 50 ≤ N ≤ 68, with ground-state structures denoted with black squares, 0 +2 states and members of the bands built on them with red circles, and the 2 + 2 states (band heads of the K = 2 bands) with green crosses. Data are taken from the National Nuclear Data Center database [39] and Ref.[319].

Figure 30 :

 30 Figure30: Quadrupole invariant quantities Q 2 and cos 3δ determined for the96-100 Mo isotopes. Data are from Refs.[23,256,320].

Figure 31 :

 31 Figure31: Occupancies extracted from results of transfer reactions on targets of98,100 Mo[321] for the πp 1/2 , πg 9/2 , and π f 5/2 orbitals (left) and for the νs 1/2 , νd 5/2 + d 3/2 , νg 7/2 , and νh 11/2 orbitals (right). The proton occupancies have been deduced from the listed vacancies in Ref.[321]. The uncertainties on the total occupancies were estimated to be in the 0.2-0.3 range.

6 Figure 32 :

 632 Figure 32: Observed excitation energies in the even-even Ru isotopes from A = 94 to A = 112 of states assigned to 0 + bands, and the 2 + 2 state.Data taken from the National Nuclear Data Center database [39] and Ref. [254].

117 Figure 33 :

 11733 Figure 33: Summary of experimental data available for nuclei exhibiting shape coexistence in the Pd-Te region.Red bars indicate that shape-coexisting structures were proposed based on their level energies (e.g., observation of a low-lying 0 + state, or rotational structures with very different moments of inertia), orange bars mean that additional information was obtained from E2 transition probabilities, yellow bars mean that information on E0 transition strengths is known, green bars mean measured cross sections to populate the coexisting configurations in direct reactions, light blue bars indicate that quadrupole moments of both configurations were measured, and dark blue bars correspond to quadrupole invariants. Stable nuclei are indicated with a darker shade.

Figure 34 :

 34 Figure 34: Time-of-flight spectra of neutrons emitted following the 108 Pd( 3 He,n) 110 Cd and 110 Pd( 3 He,n) 112 Cd reactions using 25-MeV 3 He beams. Figure reproduced from data in Fielding et al. [338].

Figure 36 :

 36 Figure 36: Properties of the low-lying 0 + states observed in the mid-neutron-shell Cd isotopes. The widths of the arrows are proportional to the B(E2) values (rust colour) and 10 3 × ρ 2 (E0) (green). The transitions are labelled with the absolute B(E2) values in W.u. with uncertainties in parenthesis, or relative B(E2) values in square brackets. The E0 transitions are labeled with their 10 3 × ρ 2 (E0) values, or the X(E0/E2) value for the 0 +3 state in108 Cd relative to the E2 to the 2 + 1 level. The numbers inside boxes attached to the levels are the ratios (in %) of the ( 3 He,n) transfer cross sections to those of the ground state. Quantities contained within the brackets are the Q 2 e 2 b 2 values; those for excited states, especially, should be considered as lower limits. Data are taken from the National Nuclear Data Center database [39] and Refs.[102, 260-262, 338, 353, 361, 363].

6 Figure 37 :

 637 Figure 37: Observed excitation energies in the even-even Cd isotopes of states assigned to 0 + bands, and the 2 +
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Figure 38 :

 38 Figure38: Kinematic moments of inertia of the low-lying states in the (a) ground-state bands and (b) intruder bands of the even-even Cd isotopes. Note the different horizontal scales used in the plots. The moments of inertia for the intruder bands are rather symmetric in their behaviour with respect to the neutron mid-shell, whereas those for the ground-state bands shift towards lower E γ with increasing neutron number reaching a minimum at118 Cd.

Figure 39 :

 39 Figure 39: Summary of the observed decays of the 0 + 2 , 0 + 3 , and 0 + 4 levels in110,112,114 Cd. The widths of the arrows are proportional to the B(E2) values, and the transitions are labeled with the absolute B(E2) values in W.u. with uncertainties in parenthesis, or relative B(E2) values in square brackets. The data show the enhanced decay of the 0 +

Figure 40 :

 40 Figure40: Cross sections for the population of excited 0 + states normalised to those of the ground state. The bars on the left-hand side of the plots represent the ratios observed in the ( 3 He,n) reaction, and those on the right-hand side are for the (p, t) reactions. The insets on the right-hand sides of the plots display a ratio scale expanded to 0.03 (3%) to make the data more clearly observable. Large enhancements for population of excited 0 + states are observed for the ( 3 He,n) reaction, whereas those for the (p, t) reaction rarely exceed a few percent. The data are taken from Refs.[338,[381][382][383][384].

Figure 42 :

 42 Figure 42: Properties of the low-lying 0 + states observed in the mid-neutron-shell Sn isotopes. The widths of the arrows are proportional to the B(E2) (rust colour) and 10 3 × ρ 2 (E0) values (green), and the transitions are labeled with the absolute B(E2) values in W.u. with uncertainties in parenthesis, or relative B(E2) values in square brackets, with a similar convention for the ρ 2 (E0) values. The data show an enhanced decay of the 0 + 2 intruder band heads to the 2 +

Figure 43 :

 43 Figure 43: Observed excitation energies of states assigned to 0 + bands, and the 2 + 2 state in the even-even Te isotopes. Data are taken from the National Nuclear Data Center database [39].

Figure 44 :

 44 Figure44: Properties of the low-lying 0 + states observed in the mid-neutron-shell Te isotopes. The widths of the arrows are proportional to the B(E2) (rust colour) and 10 3 × ρ 2 (E0) values (green). The transitions are labeled with the absolute B(E2) values in W.u. with uncertainties in parenthesis, or relative B(E2) values in square brackets. The E0 transitions are labeled with their 10 3 × ρ 2 (E0) values, or the X(E0/E2) values. The numbers inside boxes attached to the levels are the ratios (in %) of the ( 3 He,n) transfer cross sections to those of the ground state; for122 Te, the value is represented by a horizontal line at the centroid of the observed peak. Data are taken from the National Nuclear Data Center database [39] and Refs.[102,338].

Figure 46 :

 46 Figure 46: Properties of the low-lying 0 + states observed in the mid-neutron-shell Pd isotopes. The widths of the arrows are proportional to the B(E2) (rust colour) and 10 3 × ρ 2 (E0) values (green). The transitions are labeled with the absolute B(E2) values in W.u. with uncertainties in parenthesis, or relative B(E2) values in square brackets. The E0 transitions are labeled with their 10 3 × ρ 2 (E0) values. Data are taken from the National Nuclear Data Center database [39] and Refs. [102, 259, 423].

Figure 47 :

 47 Figure 47: Cross sections for the population of excited 0 +2 states (solid fill) and 0 + 3 states (patterned fill) in N=88,90,92 Nd, Sm, Gd and Dy isotopes, normalised to those of the ground state. The bars on the left-hand side of the plots represent the ratios observed in the (t, p) reactions, and those on the right-hand side are from the (p, t) reactions. The bar for the N = 90 Sm (p, t) cross section ratio for the 0 + 3 state represents an upper limit. Question marks imply that the experiment has not been performed. Data are taken from Refs.[425,427,431,432,[434][435][436][437][438][439].

Figure 48 :

 48 Figure 48: Kinematic moments of inertia of the low-lying states in the ground-state bands and bands built on the 0 + 2

Figure 49 :Figure 50 :

 4950 Figure 49: (Top) Changes in mean-square charge radii, relative to N = 126, as a function of the neutron number for Po (orange triangles), Pb (red circles) and Hg (magenta squares) isotopic chains, normalized to the difference in charge radius between N = 122 and N = 124. The data for Pt are also plotted (blue triangles) with the point for 196 Pt normalised to the value measured for 200 Pb to facilitate direct comparison. Filled symbols denote ground states and open symbols isomeric states. The values are taken from Refs. [234, 468]. (Bottom) Energy systematics of positiveparity excited states in the neutron-deficient even-even mercury isotopes, showing the assumed intruder (red circles) and ground-state bands (black squares). Other known low-lying 0 + states are marked with blue triangles. Data are taken from the National Nuclear Data Center database [39].

Figure 51 :

 51 Figure51: Transitional quadrupole moments for the normal-order (solid lines and filled squares) and intruder (dashed lines and open squares) configurations, obtained by applying the two-band mixing model to the measured B(E2) values under different assumptions. TBM-1[481] assumes that the unperturbed transitional quadrupole moments depend both on spin and A, TBM-3[490] considers a dependence on A, and in TBM-2[492] the unperturbed transitional quadrupole moments were both spin and mass independent. Figure adapted from Ref.[490].

Figure 52 :

 52 Figure 52: Summary of experimental data available for nuclei exhibiting shape coexistence in the light Pt-Po region.Red bars indicate that shape-coexisting structures were proposed based on their level energies (e.g. observation of a low-lying 0 + state, or rotational structures with very different moments of inertia), orange bars mean that additional information was obtained from E2 transition probabilities, yellow bars mean that information on E0 transition strengths is known, green bars mean measured cross sections to populate the coexisting configurations in direct reactions, light blue bars indicate that charge radii of both configurations were measured, and magenta bars denote information from α-particle decay. Stable nuclei are indicated with a darker shade.

12 Figure 53 :

 1253 Figure53: Energy systematics of positive-parity excited states in the neutron-deficient even-even lead isotopes, showing presumed spherical states (black squares), deformed π(2p -2h) configuration (red circles), and deformed π(4p -4h) configuration (blue triangles). Data are taken from the National Nuclear Data Center database[39]. For clarity, some points are slightly offset on the x axis.

196 Figure 54 :

 19654 Figure54: Kinematic moments of inertia for yrast states in186 Hg,188 Pb and190,192,194,196 Po, and the band built on the 0 + 2 state in188 Pb. For clarity, only states up to spin 10 + are plotted. Data are taken from the National Nuclear Data Center database[39].

10 Figure 55 :

 1055 Figure55: Energy systematics of positive-parity excited states in the neutron-deficient even-even polonium isotopes, showing ground-state bands (black squares) and non-yrast states (green circles). Data are taken from the National Nuclear Data Center database [39] and Ref.[522].

188 Figure 56 :

 18856 Figure 56: Kinematic moments of inertia for yrast states up to spin 10 in even-even 174-188 Pt nuclei. Data are taken from the National Nuclear Data Center database [39].

14 Figure 57 :

 1457 Figure57: Energy systematics of positive-parity states in the neutron-deficient even-even platinum isotopes, plotted relative to the energy of the 0 + state of normal-order configuration. Intruder states are marked with red circles and normal-order states with black squares. For clarity, γ bands are not plotted. Data are taken from the National Nuclear Data Center database [39] and Ref.[527].

Figure 61 :

 61 Figure61: Partial level schemes of177 Au and187 Au displaying states associated with coupling of a 1h 11/2 proton hole with 0 + 1 and 0 + 2 states in Hg cores, giving rise to nearly spherical and strongly deformed structures, respectively. Figure taken from Ref.[558].

96 Figure 62 :

 9662 Figure 62: Systematics of the (a) B(E2; 2 + 1 → 0 + 1 ) values and (b) 2 + 1 excitation energies for N = Z nuclei. Data are taken from the National Nuclear Data Center database [39] and Ref. [564].

Figure 63 :

 63 Figure 63: Quadrupole deformation parameter β 2 as a function of the neutron number in the Kr -Ru isotopic chains.The β 2 values are calculated, under assumption of axial symmetry, from the spectroscopic quadrupole moments of the ground states measured with laser spectroscopy, and from the diagonal E2 matrix elements of 2 + 1 states obtained via low-energy Coulomb excitation of even-even nuclei. Unfortunately, quadrupole moments for the ground states of90,92 Rb (I π = 0 -),91,93,95-98 Y (I π = 0 -, 1/2 -) and99,101 Mo (I π = 1/2 + ) cannot be measured and those for94-98,100 Nb have not been measured yet. The spectroscopic quadrupole moments of the 2 + 1 states in88,90,92 Kr,90,92,94 Sr and92,94,96-100 Zr are currently unknown. In94 Mo and98,100 Ru the quadrupole moments of the 2 + 1 states were measured using the reorientation effect with light-ion beams and the analysis of Coulomb-excitation data yielded two alternative solutions, leading to different conclusions on the deformation. These data points are therefore not displayed. Shown schematically are the spherical orbitals at the Fermi level for neutrons. The dashed lines are to guide the eye. For clarity, some points are slightly offset on the horizontal axis.

Figure 64 :

 64 Figure64: Systematics of excitation energies of lowest intruder structures in Pt (Z=78), Au (Z = 79), Hg (Z = 80), Tl (Z = 81), Pb (Z = 82), Bi (Z=83) and Po (Z= 84) isotopes with even neutron number. The energies of πh 9/2 structures in Au isotopes are given relative to the π(s 1/2 ) -1 states, and those of intruder 0 + states in Pt isotopes relative to the normal-order 0 + states.
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Table 1 :

 1 Deformation parameters, β 2 , of ground-state and excited bands in nuclei around40 Ca exhibiting shape coexistence, obtained from experimental B(E2) values, or, in the case of42 Ca, from Q 2 invariant quantities. Dominant configurations ascribed to the deformed structures are also given, as well as bandhead energies. When two uncertainties are listed, the first one is statistical and the second one systematic. Q t deduced from the decay of the12 + , 14 + and 16 + states b Q t deduced from the decay of the 6 + , 8 + and 10 + states c Different assumptions in the analysis lead to higher Q t values evolution with N and Z without systematic measurements of g factors, spectroscopic quadrupole moments and E0 and E2 transition strengths.

		ground-state band		deformed structure	
	isotope	β 2	β 2		dominant	bandhead
					configuration energy [MeV]
	40 Ca	0.12(1)[99]	0.59 +0.14 -0.11 [91] 0.59 +0.11 -0.07 ±0.06 a [98]	8p -8h	5.2
			0.40±0.02±0.05 b [98]		
			0.27 ± 0.05 [91]	4p -4h	3.4
	42 Ca 36 Ar	0.23(1)[99] 0.20(1)[99]	0.43(4) (0 + 2 ) [97] 0.45(4) (2 + 2 ) [97] 0.46±0.03 [92]	6p -4h 4p -8h	1.8 4.3
	38 Ar	0.135(5)[99]	0.42 +0.11 -0.08	c [93]	4p -6h	3.4
			>0.68 [93]	4p -6h	4.7
	40 Ar 44 Ti	0.21(1)[99] 0.28(3)[99]	0.53 +0.20 -0.13 ± 0.06 [94] -	4p -4h 8p -4h	2.1 1.9 [95]
	35 Cl	0.12(2)[96]	0.34(2)[96]	3p -3h	6.6

a

Table 2 :

 2 

	ρ 2 (E0; 0 + 2 → 0 + 1 ) transition strengths (taken from Ref. [102]) and spectroscopic quadrupole moments of the 1 states in nuclei around 40 Ca (from Ref. [97] for 42 Ca and evaluated values from Ref. [39] elsewhere). The latter 2 + are also normalised to the Q s (2 + 1 ) values calculated from the experimental B(E2; 2 + 1 → 0 + 1 ) values assuming axial rotor model, i.e., using Eq. 12 (Q s (2 + 1 ) rot ). Mixing angles of the 0 + states are also given, which are deduced from the ρ 2 (E0; 0 + 2 → 0 + 1 ) values assuming the β 2 deformation parameters for the deformed structure listed in Tab. 1.
	isotope Q s (2 + 1 ) [eb] Q s (2 + 1 )/Q s (2 + 1 ) rot 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) cos 2 θ 0 40 Ca --25.6(7) 0.70(18)
	42 Ca	-0.12 +0.07 -0.02	0.66 +0.38 -0.11	140(12)	0.77(6) 0.83(6) 1
	44 Ca	-0.14(7)	0.70(35)	140(50)	-
	36 Ar	+0.11(6)	0.7(4)	-	-
	38 Ar 40 Ar	-+0.01(4)	-0.06(24)	18(3) -	0.97 +0.02 -0.04 -
	1 Value obtained taking into account the γ deformation of the 0 + 2 state deduced from the quadrupole invariant [97].

Table 3 :

 3 Measured B(λµ; I i → g.s.) values in odd-mass Co isotopes. The corresponding B(E2; 2 + 1 → 0 + 1 ) values in the even-even Ni cores are also given.

	Nucleus	I i	I f	Excitation energy B(E2; I i → I f ) [W.u.] B(M1; I i → I f ) [W.u.]
				[keV]	(assuming pure E2)	(assuming pure M1)
	63 Co	(3/2 -)	7/2 -	995	3.7(4) [177]	-
		(9/2 -)	7/2 -	1383	12(5) [177]	0.013(4) [177]
		(11/2 -)	7/2 -	1674	4(1) [168, 179]	-
	64 Ni	2 +	0 +	1345	9.04(28)	-
	65 Co	(3/2 -)	7/2 -	882	17(16) [178]	-
		(9/2 -, 11/2 -) 7/2 -	1642	-	-
		(9/2 -, 11/2 -) 7/2 -	1479	6(2) [179]	-
	66 Ni	2 +	0 +	1424.8	7.6(13)	-

  ). FigurefromRef.[227].Figure19: Ground-state spin-parity assignments resulting from laser spectroscopy in odd-mass N∼Z nuclei, and proposed Nilsson configurations. The shape indicated next to the configuration is deduced from the measured groundstate Q s value[231].
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  Zr. P. Singh et al.[237] postulate a second, more deformed structure to be built on the 0 + 3 level at 1436 keV, consisting of the 2 + 2 state at 1590 keV, the 4 + 1 level at 1843 keV, and the 6 + 1 level at 2491 keV. With their measured lifetimes[237], values of β 2 ≈ 0.25 and β 2 ≈ 0.29 are deduced for the 4 + 1 and 6 + 1 states, respectively. In contrast, Ref.[238] reports much longer lifetimes generally, resulting in significantly smaller B(E2) values, most notably of the B(E2; 4 + 1 → 2 + 2 ) value of 38 +26
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  + 1 excited states above the 12 + 1 154-ns isomer. They translate into transitional quadrupole moments significantly lower than those observed for lower-spin states (2.7(3) eb and 1.2(2) eb, respectively, compared to ≈ 3-5 eb and ≈ 6-10 eb for the two structures observed at low spin, see Figs. 51
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  Figure59:(Top) Changes in mean-square charge radii, relative to N=126, as a function of the neutron number for Tl (magenta squares) and Bi (orange triangles) isotopic chains, normalized to the difference in charge radius between N=122 and N=124, and compared to the data for Pb (gray dotted line). The data for Au isotopes are also plotted (blue triangles), with the point for197 Au normalised to the value measured for200 Pb to facilitate direct comparison. Filled symbols denote ground states and open symbols isomeric states. For clarity, only the values for odd-mass Tl and Bi isotopes are plotted, and they are slightly shifted on the horizontal axis. The values are taken from Refs. [234, 541, 542]. (Bottom) g factors for 9/2 - 1 states in Bi (orange), Tl (magenta) and Au (blue). For clarity, values for Tl and Bi isotopes are slightly shifted on the horizontal axis. Data are from Refs. [542-545] and references therein.
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  Figure60: Transitional quadrupole moments Q t calculated from lifetimes measured for185,187 Au,186,188 Hg,187,189 Tl and188 Pb (N = 106, 108), revealing a variety of structures differing in deformation. For odd-mass nuclei, full symbols denote h 9/2 states, while open symbols are used for i 13/2 structures. The points are labeled with the spin and parity of the de-exciting state. Data are from Refs.[481,490,515,549,[553][554][555]. Level scheme of the states associated with 1h 11/2 proton-hole configuration in177 Au deduced in the present work compared with the analogous spherical and deformed configurations in the heavier isotope187 Au. Level excitation energies are stated relative to the 11/2 - state. The decay paths from the deformed structures to their respective 11/2 -states are different in the two isotopes.

	(29/2 ) -	Strongly Deformed												
		567	290		(27/2 ) -											
	(25/2 ) -)	530	271 277	548	(23/2 ) -											
	(21/2 ) -) (13/2 ) (17/2 ) -) -	479 424	172 203 221 749 259 247 232	375 506 453	(11/2 ) -(15/2 ) -(19/2 ) -	396	599	525 1395	871	(15/2 ) -(19/2 ) -Weakly Deformed 521 1252 228 400 727	(13/2 ) -(17/2 ) -	1092 525	Weakly deformed 1181 (17/2 ) -732 449 (13/2 ) -643	(19/2 ) -(15/2 ) -	963	Strongly Deformed 963 (13/2 ) -657 (11/2 ) 208 306 -
								0	525	(11/2 ) -	521		525	0	449	(11/2 ) -	657 E0
								177 Au 98					187 Au 108
	FIG. 2.														
	[eb]	10													
	t Q															
			8													
			6													
			4													
			2		prolate spherical		oblate intraband						
			0													
					Au											

The principal-axis frame here is analogous to that described for the inertia tensor in mechanics such that the products of inertia vanish, leaving only the moments about the principal axis directions.

The language of quasiparticles is appropriate for nuclei in the so-called superfluid or superconducting regime, where the pairing matrix elements exceed the spacing of the single-particle energy levels, as is typical for deformed nuclei. In contrast, the mh or mp terminology is better suited for nuclei in the "normal" phase, where the single particle spacing greatly exceeds the pairing matrix elements, which is the case near closed shells or in light nuclei. The pairing phase may be different for neutrons and protons, depending on the density of states near the Fermi level.

Ge would rather correspond to two deformed configurations, a prolate and an oblate one. Interestingly, the 10 3 × ρ 2 (E0; 0 + 2 → 0 + 1 ) values measured for70,72 Ge are rather similar (5.2(4) and 9.18(2), respectively[102]), which suggests that if the mixing in70 Ge is indeed much lower than

state is more deformed[211]. The intense 2 + 2 → 2 + 1 transition of 75(5) W.u.[211] suggests that the two configurations may strongly mix, in line with the observed evolution of the moments of inertia. On the other hand, the integrated cross section to populate the 0 + 2 state in72 Se via the (t, p)

states were observed in the two-neutron pickup reactions populating the N = 88 nuclei. Similarly,

The pairing isomers are states constructed from a subset of Nilsson orbitals that are described as "oblate" (i.e. those with negative intrinsic quadrupole moments) which have pairing matrix elements G oo amongst themselves that are approximately equal to the prolate-orbital pairing matrix elements G pp , but for which the oblate-prolate pairing matrix elements G op are very small. This results in an approximate decoupling of the subsets of single-particle states, and one can construct, in effect, two ground states. Depending on the relative distribution of oblate and prolate orbitals around the Fermi level, the usual BCS-like ground state coexists with an excited state with a distorted V 2 distribution of orbitals. In some extreme cases, the excited state can take the form of the ground state of the A -2 system with the existence of two real particles (i.e., V 2 i ≈ 1).

-10 -8 -6 -4 -2 -

Hg, with a nearly maximum mixing strength (51%) for the 2 + 1 state in the mid-shell184 Hg nu-

[180][181][182][183][184][185][186][187][188] Hg, the analysis of Ref.[481] shows that their mixing decreases with spin and it no longer

states in Pb becomes more probable when going toward N = 104. This trend persists for lighter

Pb[512],182 Pb[513] and184 Pb[514] nuclei. The moments of inertia of these band structures
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reached [394]. A similar result was found for 112 Sn, where the intruder band was observed to spin-parity 26 + by Ganguly et al. [398]. From lifetime measurements via DSAM, the transitional quadrupole moments were used to deduce the deformation of β 2 0.18 for states with I ≥ 12 . Recoil-distance Doppler-shift (RDDS) measurements in 114 Sn [395], where the intruder band based on the 0 + 2 state was observed to spin 30 , determined the lifetimes for the deformed states up to spin (26 + ), and a transitional quadrupole moment of Q t = 3.50 (7) eb was deduced for states below the backbend at spin 12 + , referred to as the intruder-g band. Assuming an axiallysymmetric rotor model, the deformation parameter β 2 = 0.26 was determined.

Lifetimes of low-spin states in 112,114 

W.u., and 97(5) W.u., respectively [397]. The above B(E2;

values are in approximate agreement with results from a measurement [399] of the 4 + 2 lifetime in 116 Sn, performed with the fast-timing technique, that leads to B(E2; 13) W.u. The new results for 114 Sn raised a possibility that the 0 + 3 level should be considered as the intruder band head; however, IBM calculations of Ref. [397] suggested that the 0 + 2 and 0 + 3 states were highly mixed, which prevented a definitive assignment. The 0 + intruder band head in 116 Sn was re-assigned by Pore et al. [263] as the 0 + 3 state rather than the 0 + 2 level, based on the observation of the previously postulated [400], but unobserved, 85-keV 2 + 2 → 0 + 3 γ ray. The branching ratio of this transition was significantly revised with respect to the previous estimate [400], leading to B(E2; 2 + 2 → 0 + 3 ) = 99.7(84) W.u., much greater than B(E2; 2 + 2 → 0 + 2 ) = 44(5) W.u. in this nucleus. Using a two-state mixing model introduced in Sec. 2.5, these B(E2) values can be reproduced assuming a sin 2 θ 0 = 0.31 admixture of the normal-order wave function in the 0 + 3 state. Finally, it should also be noted that a recent high-statistics β-decay study [401] of 118 In found no evidence to support the reassignment of the natures of the 0 + 2 and 0 + 3 states in 118 Sn. These recent studies indicate that the structure of the shape-coexisting states in the Sn isotopes is more complicated than previously assumed. Figure 42 displays the properties of the 0 + 2 and 0 + 3 states in the Sn isotopes. Strong similarities across many of the Sn isotopes can be observed with regard to the 0 + 2 states ( 124 Sn appears as a possible exception); strong two-proton transfer populations, weak two-neutron transfer populations, the appearance of rotational-like bands built upon them, and enhanced E2 transition rates to the 2 + 1 state. Where measured, the 0 + 3 states decay via a favoured E0 transition to the 0 + 2 state rather than to the ground state, which indicates clearly shape changes and mixing of the 0 + 2 and 0 + 3 states. In some cases, such as recently argued in 114,116 Sn [263,397], the two excited 0 + states may be so strongly mixed that assigning their character becomes difficult. The energy systematics presented in Fig. 41 uses the "traditional" assignments of the 0 + 2 states as the shape-coexisting band heads.

Te isotopes

Shape-coexisting states at low spin in the Te isotopes have been difficult to identify, primarily because the detailed spectroscopy has not been performed to the same extent as in the Cd or Sn isotopes. The experimental information on the even-even Te isotopes was summarized by Rikovska et al. [403], and through a comparison with IBM2 calculations it was argued, based on energies and the few known transition rates, that intruder states existed in their low-lying level schemes. Recent studies have begun to observe the key in-band γ-ray transitions. In 118 Te, a study using the 115 Sn(α, nγ) reaction [264] firmly established the spin-parity of 2 + for the 1482-keV level, and measured its lifetime that permitted the determination of B(E2; 2 + 2 → 0 + 2 ) = 60 +30 -17 W.u. Thus, evidence was provided supporting the 1482-keV 2 + level as a member of a band built on the 957-keV 0 + 2 state. The 1976-keV 4 + and 2517-keV 6 + states were also tentatively assigned to the 0 + 2 band, but their in-band decays have yet to be observed The study of 120 Te, performed by Vanhoy et al. [404], employed the 118 Sn(α, 2nγ) reaction, as well as the β decay of 120 I, and postulated an intruder band with the 1103-keV 0 + 2 , 1535-keV 2 + 3 , 1924-keV 4 + 3 , and the 2520-keV 6 + 3 levels, with the assignments for the two latter states rather speculative due to the lack of observed in-band transitions. 122 Te has been studied using both the (n, n γ) reaction, where lifetimes or limits for many low-spin states were established [405], and the 119 Sn(α, nγ) reaction [406]. The lifetime of the 2 + 3 level at 1752 keV was extracted [405], leading to B(E2; 2 + 3 → 0 + 2 ) = 194 +26 -24 W.u. The degree of collectivity implied by the B(E2; 2 + 3 → 0 + 2 ) value is difficult to understand in view of the corresponding B(E2) values in the region. Hicks et al. [405] suggested the 4 + intruder-band member was the state at 2041 keV, but we note that its energy is somewhat lower than would be expected from the 2 + 3 → 0 + 2 energy spacing; the (4 + 4 ) level at 2448-keV may be a more suitable candidate, but the lack of observation of in-band transitions hampers firm conclusions.

For 124 Te, detailed spectroscopy was performed by von Egidy et al. [407] using the (n, γ)