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Abstract

Rapid developments in the emerging field of stretchable and conformable photonics neces-

sitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries.

Here, we introduce the concept of conformal boundary optics: a design theory that determines

the optical response for designer input and output fields at such interfaces. Given any object,

we can realise coatings to achieve exotic effects like optical illusions and anomalous diffrac-

tion behaviour. This approach is relevant to a broad range of applications from conventional

refractive optics to the design of the next-generation of wearable optical components. This

concept can be generalized to other fields of research where designer interfaces with nontrivial

geometries are encountered.

1 Introduction

In a bulk medium, a wave (e.g., optical, sound, seismic) accumulates phase gradually and prop-

agates without experiencing abrupt variations. At the boundary with another material, however,

the wave can experience large -although physically admissible- discontinuities in its reflected and

transmitted fields [1,2], as dictated by the boundary conditions of the system. The behavior of

optical waves at interfaces plays a leading role in many industries: for example, in the hydrocar-

bon industry, where reverse seismic refraction is used to map petroleum reserves deep inside the
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soil of the planet [3]. In optics, reflection and refraction at interfaces are central to the design

of optical components (e.g., mirrors, windows, waveplates, and lenses) [7]. Recently, several un-

expected interfacial optical effects of practical interests have been demonstrated. These include

anomalous reflection and refraction [8-13], giant spin-Hall effect [14], flat lensing [15], controlled

Cherenkov surface plasmon emission [16], holography [17-18] and surface cloaking [20]. Here, we

introduce the concept of conformal boundary optics, an analytical method based on novel, first-

principle derivations that allows us to engineer transmission (Et) and reflection (Eref ) at will

for any interface geometry and any given incident wave (Einc). By resolving the boundary con-

ditions between two materials at an interface of arbitrary geometry, this method addresses recent

developments in nanophotonics with the general technique of differential geometry and coordinates

transformation. Unlike transformation optics, our approach deals directly with abrupt changes in

the fields, and therefore acts at the level of the boundary conditions of the electromagnetic fields.

Whereas transformation optics determines bulk optical properties by exploiting the relationship

between a given coordinate system and the coordinate system that conforms to the travel of light

[21-32], the proposed concept determines the optical properties of a metasurface of arbitrary geom-

etry by exploiting the relationship between a given ambient coordinate system and the coordinate

system that conforms to the geometry of the boundary. While a powerful concept in itself, the

mathematical derivation associated with its analytical formulation which we present in detail in

the supplementary information is highly non-trivial since it cannot be generalized from existing

boundary conditions for generic surface geometries. This concept provides a wide range of new

design opportunities, for example, to hide objects behind an optical curtain, to create optical il-

lusions by reflecting virtual images, or to suppress the diffraction generally occurring during light

scattering at corrugated interfaces (Fig. 1a). This concept can address basic theoretical problems

in electromagnetisms such as conventional transmission and reflection at flat, arbitrary shaped

interfaces and metasurfaces.
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Figure 1: The surface susceptibility of an interface that conforms to an object can be designed
to produce an arbitrary, user-specified response. In a, a cat is visually transmogrified into a rat
as an incident light Einc is converted at the object interface to produce a user-specified virtual
holographic image Eref in the far-field. This way, the actual geometry of the object no longer
restricts the properties of the reflected light. Our proposed concept exploits the relationship
between a given ambient coordinate system (b) and the coordinate system that conforms to the
geometry of the boundary (c). χe,m and χ

′

e,m denote the optical response of the interface quantities
called surface susceptibilities tensors in these coordinate systems respectively.

The transmission and reflection of waves with ultrathin interfaces (δ << λ) has been recently

demonstrated in various experiments reviewed by refs. [9,12, 13]. Abrupt modifications of the fields

across an interface are engineered by depositing an array of sub-wavelength resonators specifically

tailored to address local amplitude, phase and polarization changes in the light traversing the

interface. Several examples have been reported on the control of the radiation patterns of thermal,

acoustic, seismic and electromagnetic waves, indicating that these are probably the most suitable

tools for engineering the discontinuities at will. This technique which has been dubbed metasurface

physics and has given rise to a broad range of applications across physics, chemistry, biology

and materials science is considered to be one of the most promising and disruptive emerging

technologies of recent times. Metasurfaces introduce abrupt space-dependent optical responses

which are generally not achievable using homogeneous surface treatment or traditional surface

coating technology. The concept of conformal boundary optics pushes the limits of metasurface

physics beyond the design of simple planar interfaces. This has interesting applications, accounting

for phenomena as diverse as the engineering of modal field distributions of optical resonators

with various shapes, and the creation of optical illusions, which are required in cloaking, virtual

imaging, and kinoform holography . It is well-understood that the far-field image of an object is
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the result of light reflected or transmitted from its surface. By choosing the appropriate boundary

conditions, therefore, one can modify the reflection and transmission of light to produce various

kinds of unexpected optical effects. For user-specified incident, transmitted and reflected fields,

and a given surface geometry represented by coordinate system (u, v, n), one can determine the

required surface susceptibility tensors χe,d,m,b using our concept. This technique accommodates

any choice of ambient coordinate system, which happens to be Cartesian in Fig. 1b and 1c

where the electromagnetic fields before and after the interface are denoted E±(x,y,z). Notably,

the technique yields surface susceptibilities in the coordinate system of the interface, which is

necessary when the optical components are manufactured. To date, a rigorous expression of the

electromagnetic boundary conditions at designer interfaces has been proposed only for planar

interfaces where the electromagnetic fields are defined using a Cartesian coordinate system [35-

45]. These equations are known as the generalized sheet transition conditions (GSTCs). From a

physical point of view, discontinuities in electromagnetic fields across any regular surface depend

upon the constitutive parameters of the interface: namely, surface charge density , the current

density j, the induced dipole moments at the interface and the optical response of the surrounding

media. This requires (ρ, j) and the fields E,H,p and m in the Maxwells equations to be expressed

in the sense of distributions, whereE,H are respectively the electric and magnetic fields, and p and

m respectively represent the surface electric and magnetic induced currents derived by averaging

the local fields of the electric and magnetic induced dipole moments in the plane z = 0. In a

planar configuration, writing each variable as ζ(z) = {ζ(z)}+
∑N

(k=0) ζkδ
(k)(z) , with the function

ζ(z) discontinuous at z = 0, it is possible to derive a set of generalized sheet transition conditions

(GSTCs) for the electromagnetic fields [35-37]. Boundary conditions have also been derived for

spherical and cylindrical geometries (see for example [46,47]) after adopting spherical or cylindrical

coordinate systems. However, these derivation is possible only because the ambient coordinate

system are chosen to conform to the interface (e.g., a spherical/cylindrical coordinate system for a

spherical/cylindrical interface), a method that becomes very restrictive when the interface contains

arbitrary contours. Obtaining the electromagnetic boundary conditions at a nonplanar interface

(Fig. 2) is highly non-trivial because the GSTCs apply only to interfaces whose local coordinate

systems are Cartesian.
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Figure 2: a), a 2D planar metasurface of sub-wavelength thickness δ << λ can transmit any
incident optical field at a specific angle by imposing a gradient of phase discontinuity. For planar
interfaces, GSTC boundary conditions readily apply and the surface susceptibility tensors can be
calculated. b) The local coordinate system of the surface follows its local curvature, and therefore
it changes with the position along the interface. Boundary conditions of the fields are obtained in
the coordinate system of the interface, and are therefore position dependent. To produce an effect
equivalent to that in b, the surface susceptibilities of the optical interface have to be engineered to
account for the effect of the physical distortion. The dashed blue lines denote the equiphase fronts
of the electromagnetic fields.

One cannot generalize the existing GSTC boundary expressions to a non-Cartesian coordinate

system because it is unclear if the components are covariant or contravariant. In the Cartesian

coordinate system of GSTCs, the tangent-cotangent isomorphism is the identity, meaning that

there is no difference between the covariant and contravariant components. This is not true for

coordinate systems in general. Considering a volumetric boundary of sub-wavelength thickness as

elucidated in the supplementary materials – we treat S as a free-standing interface (same media on

both sides) and define (u, v) to be the coordinate system that conforms to it. This approximation

is valid for optical metasurfaces of subwavelength thicknesses. As such, the treatment of general,

non-planar surfaces necessitates novel first-principle derivations starting from the integral forms

of Maxwells equations.In the following, we will use the language of differential geometry to derive

these electromagnetic boundary conditions. Details of the mathematical procedure are given in

section 2. There we will give the boundary conditions in the surface coordinates, and then derive

the relations between the surface susceptibilities and the desired fields’ coordinate system. We

show that the electromagnetic boundary conditions we obtain reduce to the generalised sheet

transition conditions (GSTCs) [35-42] in the case of planar surface. Finally, in section 3, we

illustrate the power and robustness of this technique with two examples: a steering interface that

reflects incident light as though from a planar surface, and the anomalous diffraction of light at a

curved transmission interface.
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2 Generalized boundary conditions for surfaces of arbitrary

geometries

2.1 Definitions and notation

Conventional theories treat the metasurface S as a 2-dimensional manifold (2-manifold). Here, how-

ever, we will model S to be a 3-manifold (see figure 3(a)), with sub-wavelength thickness “δ � λ”,

which may vary across S [36]. Strictly speaking, all physical objects are 3-dimensional, and 2-

manifolds represent their boundaries. The boundaries of S are disjointed surfaces ∂S+ and ∂S−,

having normals pointing outwards of S. Define ∂S = ∂S+ ∪ ∂S−. Next we define two disjointed

3-manifoldsM+ andM−, and let each of them have boundary ∂M+ and ∂M− respectively. The

boundaries ∂M± have normals pointing outwards ofM± (throughout the text, the superscript ±,

for example M±, means for both M+ and M− respectively). We then identify ∂M± with ∂S±

and glue the three manifolds together to form a single manifold M =M+ ∪ S ∪M−. This way,

for every point r on the boundaries, r can be thought of as a point on ∂M± or ∂S±. M forms the

entire space we are concerned with, with M± being the ambient medium. The normal of ∂M± is

pointing in the opposite direction of the normal of ∂S±. Note that an attempt to write boundary

conditions by assuming instead of a sharp surface a layer of finite thickness separating each domain

by two surfaces has previously been discussed in [29].
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Figure 3: Schematic describing the mathematical method used to rewrite the electromagnetic field
discontinuities in the language of differential geometry. (a) We define three disjointed 3-manifolds
(3 dimensional manifolds) M+, M− and S. We identify the boundaries of M± with the boundaries
of S to form a single manifold M = M+ ∪ S ∪M−. S has sub-wavelength thickness “δ � λ”. N
is the unit vector field normal to S. To derive the boundary conditions from Maxwell’s integral
equations, we consider an Amperian loop in (b) and a Gaussian pillbox in (d). In (c), γ± and γ|S
is defined such that γ = γ± ∪ γ|S , and γS

±
is defined such that γS

± ∪ γ|S = γS forms a close loop

inside S. In (e), ∂K± = ∂K ∩M±, each having outward pointing unit normals N±K . Define ∂kS
±

such that together with ∂K ∩S form a Gaussian pillbox inside S; let NSK be the outward pointing
unit normal of this Gaussian pillbox.

For any field V (throughout the text, field will always means the vector field, unless otherwise

stated) defined in M, denote V ± = V |M± , the restriction of the field V to M±, and V S = V |S ,

the restriction of the field V to S. For any r ∈ S, let

V |+−(r) = lim
r+→∂M+

V +(r+)− lim
r−→∂M−

V −(r−),

V av(r) =
1

2
[ lim
r+→∂M+

V +(r+) + lim
r−→∂M−

V −(r−)],

(1)

where r+ ∈ M+ and r− ∈ M− are such that the line through r+, r, r− is always perpendicular

to the boundary of S. We assume that all the fields are smooth in each of the manifolds, but the

fields are undefined at the boundaries.

Here we will assume that the field distribution across the region of the interface to be constant.

There are two reasons for doing so. Firstly, because the optical metasurfaces is of subwavelength

thickness δ << λ, it allows us, in good approximation, to use the method of homogenisation and

model the metasurface with uniform quantities, that is the effective (average) surface susceptibil-

ities [43, 42]. Secondly, by taking the surface field distributions to be constant, the derivative of

the fields in the direction normal to the surface will be zero, which allows us, in the special case

of planar metasurface in free-space, to recover the usual expression of generalised sheet transition

condition (GSTC) (see equations (42)-(45)). The homogenised fields in the metasurface is therefore
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given by the relation.

ES = χe(E
av),

DS = χd(D
av),

HS = χm(Hav),

BS = χb(B
av),

(2)

where χe, χd, χm, and χb are the susceptibilities accounting for the discontinuity in the fields. In

the following, we define the surface susceptibilities in terms of the discontinuity of the fields across

the surface by considering the proportionality between the homogenized electric field within the

surface ES and the averaged value of the fields on either side of the interface Eav. In the case

where the metasurface is in a medium on both sides shares the same permittivity and permeability,

then χe = χd, and χm = χb. Note that in general χa, a = e, d,m, b are mixed tensor fields. In this

paper, we will consider only metasurfaces with linear response, meaning that χa are first tensor

fields of type (1, 1).

For any r ∈ S, we say that a vector V at r, i.e. V (r) ∈ TrM, is tangent to S if V points in the

direction parallel to ∂S± at r, and V is normal to S if it points in the same direction to the normal

of ∂S+, which is in the opposite direction as the normal of ∂S−. Let N be the unit smooth vector

field defined on S such that it is normal to S everywhere (see figure 3(a)). We are now ready to

derive the boundary conditions from Maxwell’s equations.

2.2 Faraday’s and Ampere-Maxwell’s boundary conditions

In this section, we derive the boundary conditions for Faraday’s and Ampere-Maxwell’s law. Let

A ⊂M be a compact smooth surface (2-submanifold) such that has non-empty intersections with

all the three manifolds (see figure 3(b)). Assume that A is small enough to be approximated by

a (flat) rectangle. Define NA to be a unit smooth vector field on A everywhere normal to the

surface A. We position A such that NA is tangent to S. Let γ (usually denoted at ds) be a

parameterised closed curve tracing out ∂A the boundary of A, in the positive direction induced

by NA (the right-hand rule). Let γ± = γ|M± and define γS
±

on A ∩ ∂S± such that γS
±

and γ|S

form a close loop γS inside S. Note that γS
+

is in the opposite direction as γS
−

. Let lA be the

unit vector field defined on ∂A such that it points in the direction of γ. Define l±A, lS
±

A and lSA

analogously. Finally, let α (usually denoted as dA) be the metric area element on A. Given any

vector fields V and W , denote V ·W to be the (point-by-point) inner product of V and W .
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Using Faraday’s induction law, we have

−
∫
A

NA ·
∂B

∂t
α =

∫
∂A

lA ·E γ

=

∫
∂A∩M+

l+A ·E
+γ+ +

∫
∂A∩M−

l−A ·E
−γ− +

∫
∂A∩S

lSA ·ESγS .
(3)

By Eq. (2) and the fact that γS
+

and γS
−

are in the opposite direction,

∫
A∩∂S+

lS
+

A ·ESγS
+

= −
∫
A∩∂S−

lS
−

A ·ESγS
−
. (4)

Therefore, we have

∫
∂A∩S

lSA ·ESγS =

∫
∂A∩S

lSA ·ESγS +

∫
A∩∂S+

lS
+

A ·ESγS
+

+

∫
A∩∂S−

lS
−

A · ESγS
−

=

∫
∂(A∩S)

lSA ·ESγS

=

∫
A∩S

NA · curlESα,

(5)

where we used Stoke’s theorem in the last equality, noting that ES is smooth and compactly sup-

ported in A ∩ S.

Now shrink A such that ∂A ∩M± → ∂M±. Then in the limit, Eq. (3) becomes

−
∫
A∩S

NA ·
∂BS

∂t
α = −

∫
A

NA ·
∂B

∂t
α

=

∫
A∩∂M+

l+A ·E
+γ+ +

∫
A∩∂M−

l−A ·E
−γ− +

∫
A∩S

NA · curlESα

=

∫
A∩∂S+

lA ·E|+−γ +

∫
A∩S

NA · curlESα.

(6)

The last equality holds because we identified ∂M± with ∂S±, and because ES is constant across

the depth of S, and γ+ is just the opposite direction of γ−.

Again using the assumption that the fields are constant across the surface, we obtain

∫
A∩S

NA ·
∂BS

∂t
α = δ

∫
A∩∂S+

NA ·
∂BS

∂t
γ,∫

A∩S
NA · curlESα = δ

∫
A∩∂S+

NA · curlESγ.
(7)
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Finally, allowing the vector fields in S absorb the length δ, we obtain

lA ·E|+− + NA · curlES = −NA ·
∂BS

∂t
. (8)

Note that after absorbing δ, the field ES , etc, no longer have the dimensions of the fields, but

those of field multiplied by distance. Observe that for any vector field X tangent to S, one can

check that Y = X ×N is also tangent to S, and satisfies the right hand rule with X [34]. Then

(8) can be written as

−Y ·E|+− = X · ∂B
S

∂t
+ X · curlES . (9)

Using the same derivation for the Ampere-Maxwell law, assuming the absence of free surface

current, we obtain

−Y ·H|+− = X · curlHS −X · ∂D
S

∂t
. (10)

Note that X and Y , which are vector fields that are tangential to S at every point, are not constant

in general due to the curvature of S.

2.3 Gauss’s electric and magnetic boundary conditions

To derive the boundary conditions for Gauss’s electric and magnetic law, consider a compact

3-submanifold K ⊂ M such that it has non-empty intersection with all three manifolds (see

figure 3(c)). Assume K is small enough such that it can be approximated by a pill box. Let

∂K± = ∂K ∩M± and define ∂KS
±

such that ∂KS
±

and ∂K ∩S form the boundary of K ∩S. Let

NK be a outward pointing unit normal vector field defined on ∂K the boundary of K. Likewise

we will let N±K = NK |M± , and let NSK to be a unit normal outward pointing vector field defined

on ∂(K ∩S). Observe that NSK |S\∂S = NK |S\∂S . Let α be the metric area element on ∂K induce

by NK , and αS be the metric area element defined on ∂(K ∩ S) induced by NSK . Define α± and

αS
±

analogously. Finally, let dV be the metric volume element.

By Gauss’s law,

∫
K

ρ dV =

∫
∂K

NK ·D α

=

∫
∂K+

N+
K ·D

+α+ +

∫
∂K−

N−K ·D
−α− +

∫
∂K∩S

NSK ·DSαS .
(11)

Using the identities given in (2), and because we are approximating K by a pill box, NS
+

K = −NS−K ,
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we get

∫
∂K∩S

NSK ·DSαS =

∫
∂K∩S

NSK ·DSαS +

∫
∂KS+

NS
+

K ·DSαS
+

+

∫
∂KS−

NS
−

K ·DSαS
−

=

∫
∂(K∩S)

NSK ·DSαS =

∫
K∩S

divDSαS ,

(12)

where in the last equality we used the fact that DS is smooth and compactly supported in K ∩S.

Now we will shrink K such that ∂K± → ∂M±, then in the limit, Eq. (11) becomes

∫
K∩S

ρ dV =

∫
k

ρ dV =

∫
∂K+

N+
K ·D

+α+ +

∫
∂K−

N−K ·D
−α− +

∫
K∩S

divDSαS

=

∫
K∩M+

N+
K ·D

+α+

∫
K∩M−

N−K ·D
−α− +

∫
K∩S

divDSαS

=

∫
K∩∂S+

N+
K ·D|

+
−α

+ +

∫
K∩S

divDSαS ,

(13)

where the last equality follows from the argument used in Eq. (6).

Again using the identities in (2), we obtain

N+
K ·D|

+
− + divDS = ρS . (14)

Observe that N+
K = N |K . Since K can be positioned anywhere along S, we obtain

N ·D|+− + divDS = ρS . (15)

Using a similar argument for Gauss’s law for magnetism, we have

N ·B|+− + divBS = 0. (16)

Once again, because of the curvature of S, N is not constant in general. In the next section, we

will derive the expression of Eq. (9), (10), (15), and (16) in the coordinates of S.

2.4 Electromagnetic boundary conditions in local coordinates

Section 2.2 and 2.3 was necessary to express an abstract version of the boundary conditions. To

be useful, these equations have to be written in some local coordinates. Therefore we now think

of M as being a subset of a 3-dimensional Euclidean space, meaning M⊂ R3, equipped with the

standard Cartesian coordinates (x, y, z). Throughout this paper, we use the Cartesian coordinate
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as the global ambient coordinate. It is possible to derive the expressions in other well known

coordinate system like spherical or cylindrical. Because of (2), we may treat S as a 2-submanifold

ofM. Let n :M→ R be a smooth function such that the surface S is a level set of n, meaning that

there is a r0 ∈ R such that S = n−1(r0). We assume that n is injective with respect to z. Then by

the implicit function theorem [33], there exists a smooth function f : R2 ∩M → R, f(x, y) = z,

such that S is the graph of f (for a closed surface, one may choose the ambient coordinates to be

the spherical coordinate, (r, φ, θ), and let n be injective with respect to the coordinate r. Then

define f(φ, θ) = r to be the graph of S). We will now derive the expression of N . Since S is a

level set of n, then the gradient of n, ∇n = ∂n
∂xex + ∂n

∂xey + ∂n
∂z ez, is a vector field normal to the

surface S [33]. So by definition of N being the unit vector field normal to S, N = ∇n
|∇n| , where | · |

is the Euclidean norm. Letting (u, v) be the coordinates system on S, then the coordinates chart

of S is x(u, v) = u, y(u, v) = v, z(u, v) = f(u, v). Therefore eu, ev, and en = N forms a frame for

the space of vector fields on S, where

eu =
∂x

∂u
ex +

∂y

∂u
ey +

∂z

∂u
ez = ex +

∂f

∂u
ez,

ev =
∂x

∂v
ex +

∂y

∂v
ey +

∂z

∂v
ez = ey +

∂f

∂v
ez,

en =
1

|∇n|
(
∂n

∂x
ex +

∂n

∂y
ey +

∂n

∂z
ez).

(17)

The Riemannian metric tensor and inverse Riemannian metric tensor on S induced by the Euclidean

norm is given by

(gSij) =


eu · eu eu · ev eu · en

ev · eu ev · ev ev · en

en · eu en · ev en · en

 =


1 +

(
∂f
∂u

)2
∂f
∂u

∂f
∂v 0

∂f
∂v

∂f
∂u 1 +

(
∂f
∂v

)2

0

0 0 1

 ,

(gijS ) = (gSij)
−1 =

1

gS


1 +

(
∂f
∂v

)2

−∂f∂u
∂f
∂v 0

−∂f∂v
∂f
∂u 1 +

(
∂f
∂u

)2

0

0 0 1

 ,

(18)

respectively, where i, j = u, v, n and gS := det(gSij) = 1 +
(
∂f
∂u

)2

+
(
∂f
∂v

)2

.

Defining Xu to be guiS ei, i = u, v, n, one can check that Y u = Xu×N = −1√
gS

ev. Similarly, letting

Xv = gviS ei, i = u, v, n, then Y v = 1√
gS

eu. Given any vector field V , we have Xu · V = V u,

Y u · V = −1√
gS
Vv, X

v · V = V v, and Y v · V = 1√
gS
Vu.
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We will now obtain the expression of curl in local coordinates. In general, it is given by [33, 34]

curl V =
[ijk]√
gS
∂jVkei, (19)

where ∂j denotes differentiating with respect to the j = u, v, n coordinate , and

[ijk] =


1 if (i, j, k) is an even permutation of (u, v, n),

−1 if (i, j, k) is an odd permutation of (u, v, n),

0 otherwise.

(20)

Now because we assume the fields are constant across the depth of the metasurface, differentiating

the fields in S in the direction normal to S will be zero. So

Xu · curl V S =
1√
gS

∂V Sn
∂v

, and Xv · curl V S = − 1√
gS

∂V Sn
∂u

. (21)

Applying all the discussion thus far to (9) and (10), using the fact that for a metasurface with

linear response we have ES
i

= χije E
av
j , DS

i
= χijd D

av
j , HS

i
= χijmH

av
j , and BS

i
= χijb B

av
j for

i, j = u, v, n, we obtain

1√
gS
Ev|+− =

1√
gS

∂

∂v
(χnke Eav

k ) +
∂

∂t
(χukb Bav

k ),

−1√
gS
Eu|+− =

−1√
gS

∂

∂u
(χnke Eav

k ) +
∂

∂t
(χvkb B

av
k ),

(22)

and

1√
gS
Hv|+− =

1√
gS

∂

∂v
(χnkm Hav

k )− ∂

∂t
(χukd Dav

k ),

−1√
gS
Hu|+− =

−1√
gS

∂

∂u
(χnkm Hav

k )− ∂

∂t
(χvkd D

av
k ),

(23)

for k = u, v, n, and using Einstein’s summation notation.

Now using (15) and (16), the definition of div [33], and the same arguments as above, assuming

the absence of free electron, we have

Dn|+− +
1√
gS
∂i(
√
gSχikd D

av
k ) = 0, (24)

Bn|+− +
1√
gS
∂i(
√
gSχikb B

av
k ) = 0, (25)
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for i = u, v, k = u, v, n.

Summarising all the results above, and denoting ∂t = ∂
∂t ,

[ij]√
gS
Ej |+−ei =

[ij]√
gS
∂j(χ

nk
e Eav

k )ei + ∂t(χ
ik
b B

av
k )ei, (26)

[ij]√
gS
Hj |+−ei =

[ij]√
gS
∂j(χ

nk
m Hav

k )ei − ∂t(χikd Dav
k )ei, (27)

Dn|+− +
1√
gS
∂i(
√
gSχikd D

av
k ) = 0, (28)

Bn|+− +
1√
gS
∂i(
√
gSχikb B

av
k ) = 0, (29)

for i, j = u, v, k = u, v, n, and

[ij] =


1 if i = u and j = v,

−1 if i = v and j = u,

0 otherwise.

(30)

2.5 Electromagnetic boundary conditions in global coordinates

The formulation in the previous section gives us the relations between the susceptibilities and the

specified fields on both sides of the surface in the surface coordinates. However, the fields are

usually given in a global coordinate system, say the Cartesian. Thus we need to find the relation

between the susceptibilities expressed in surface coordinates, to the fields expressed in the global

coordinates. However in manufacturing the metasurface, the susceptibilities need to be in terms

of the coordinates system on S. Therefore, after computing the expressions in the global frame

decomposition, the susceptibilities will need to be transformed back.

Given a vector V on S, the change in the components of the covector field is given by

Vu = V · eu = V · (ex +
∂f

∂u
ez) = Vx +

∂f

∂u
Vz,

Vv = V · ev = V · (ey +
∂f

∂v
ez) = Vy +

∂f

∂v
Vz,

Vn = V · en =
1

|∇n|
(
∂n

∂x
Vx +

∂n

∂y
Vy +

∂n

∂z
Vz).

(31)
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The above can be succinctly expressed as Vi = Λi
′

i Vi′ , where i = u, v, n, i′ = x, y, z, and

(Λi
′

i ) =


1 0 1

|∇n|
∂n
∂x

0 1 1
|∇n|

∂n
∂y

∂f
∂u

∂f
∂v

1
|∇n|

∂n
∂z

 . (32)

Making the transformation, (26), (27), (28), and (29) become

[ij]√
gS

Λk
′

j Ek′ |+−ei =
[ij]√
gS
∂j(χ

nk
e Λk

′

k E
av
k′ )ei + ∂t(χ

ik
b Λk

′

k B
av
k′ )ei, (33)

[ij]√
gS

Λk
′

j Hk′ |+−ei =
[ij]√
gS
∂j(χ

nk
m Λk

′

k H
av
k′ )ei − ∂t(χikd Λk

′

k D
av
k′ )ei, (34)

Λk
′

n Dk′ |+− +
1√
gS
∂i(
√
gSχikd Λk

′

k D
av
k′ ) = 0, (35)

Λk
′

n Bk′ |+− +
1√
gS
∂i(
√
gSχikb Λk

′

k B
av
k′ ) = 0, (36)

where i, j = u, v, k = u, v, n, and k′ = x, y, z. To aid in the calculation, we shall define the virtual

susceptibilities to be

χik
′

a =


√
gSχika Λk

′

k for i = u, v, k′ = x, y, z,

χika Λk
′

k for i = n, k′ = x, y, z,
(37)

for a = e, d,m, b, k = u, v, n. Multiplying (33) and (34) throughout by
√
gS , using (37), we get

[ij]Λk
′

j Ek′ |+−ei = [ij]∂j(χ
nk′

e Eav
k′ )ei + ∂t(χ

ik′

b Bav
k′ )ei, (38)

[ij]Λk
′

j Hk′ |+−ei = [ij]∂j(χ
nk′

m Hav
k′ )ei − ∂t(χik

′

d Dav
k′ )ei, (39)

Λk
′

n Dk′ |+− +
√
gS∂i(χ

ik′

d Dav
k′ ) = 0, (40)

Λk
′

n Bk′ |+− +
√
gS∂i(χ

ik′

b Bav
k′ ) = 0. (41)

The set of equations (37 and 38-41) is thus a powerful means of obtaining the analytical suscep-

tibilities of metasurfaces that are non-planar or are required to be wearable, conformable and/or

stretchable. To the best of our knowledge, the findings summarized in (38-41) represent the first

time that electromagnetic boundary conditions have been obtained for interfaces of arbitrary ge-

ometries.

Observe that for a flat surface S, with the permittivity and permeability equal on both sides, we

have x = u, y = v, z = n = 0, Λj
′

j = δj
′

j ,
√
gS = 1, χe = χd and χm = χb. Then (38), (39), (40),
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and (41) reduce to

[ij]Ej |+−ei = [ij]∂j(χ
zk
e E

av
k )ei + µ∂t(χ

ik
mH

av
k )ei, (42)

[ij]Hj |+−ei = [ij]∂j(χ
zk
mH

av
k )ei − ε∂t(χike Eav

k )ei, (43)

Dz|+− + ∂i(χ
ik
e D

av
k ) = 0, (44)

Bz|+− + ∂i(χ
ik
mB

av
k ) = 0, (45)

for i, j = x, y, k = x, y, z, ε and µ is the permittivty and permeability of the ambient medium

respectively. Note that for this case, our definitions of susceptibiltiies do reduce to the more con-

ventional definition of the proportionality between the polarization/magnetization and the average

local field, as previously reported in [36]. In the following section, we illustrate the versatility of

this technique with two examples. In the first example, we analytically obtain the surface sus-

ceptibility of a any reflecting interface. In the second example, we analytically obtain surface

susceptibilities that suppress the effect of diffraction at corrugated interfaces, thereby redirecting

light along unconventional directions.

3 Examples and Applications

In all the examples we are considering, we take the ambient medium to be free-space. This gives

us χd = χe, χb = χm, Dav = ε0E
av, and Bav = µ0H

av. Expressing the transformation (37) in

matrix form, we have for a = e,m,

(χik
′

a ) =
√
gS


χuua χuva χuna

χvua χvva χvna
χnu
a√
gS

χnv
a√
gS

χnn
a√
gS




1 0 ∂f
∂u

0 1 ∂f
∂v

1
|∇n|

∂n
∂x

1
|∇n|

∂n
∂y

1
|∇n|

∂n
∂z

 . (46)

Then we can obtain χija , a = e,m, i, j = u, v, n via


χuua χuva χuna

χvua χvva χvna
χnu
a√
gS

χnv
a√
gS

χnn
a√
gS

 =
1

γ


χuxa χuya χuza

χvxa χvya χvza

χnxa χnya χnza



∂n
∂z −

∂f
∂v

∂n
∂y

∂f
∂u

∂n
∂y −|∇n|∂f∂u

∂f
∂v

∂n
∂x

∂n
∂z −

∂f
∂u

∂n
∂x −|∇n|∂f∂v

−∂n∂x −∂n∂y |∇n|

 , (47)

where γ =
√
gS(∂n∂z −

∂n
∂x

∂f
∂u −

∂n
∂y

∂f
∂v ).

In all the examples we consider, we assume that χnxa = χnya = χnza = 0 for a = e,m. This implies

that for a = e,m, χnua = χnva = χnna = 0. Assuming an ambient medium of free space, and a time
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dependent given by eiωt, (38) and (39) are given in matrix form as

 0 1 ∂f
∂v

−1 0 −∂f∂u



Ex|+−

Ey|+−

Ez|+−

 = iωµ0

χuxm χuym χuzm

χvxm χvym χvzm



Hav
x

Hav
y

Hav
z

 ,

 0 1 ∂f
∂v

−1 0 −∂f∂u



Hx|+−

Hy|+−

Hz|+−

 = −iωε0

χuxe χuye χuze

χvxe χvye χvze



Eav
x

Eav
y

Eav
z

 ,

(48)

where i is the square root of −1.
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Figure 4: Mirror surface cloak described by f(u, v) = cosu+cosv reflects an incident plane wave at
an angle of θ with respect to the z-axis to form a plane wave propagating at the same angle θ for all
orientation of the surface. b, the relation between the angle of the incoming and outgoing waves can
be imposed at the interface by considering the condition that the difference between the propagation
phase shift of two light rays of the incident wavefront (∆φi), impinging on the surface at points
separated by a distance (∆u,∆v), and the propagation phase shift after the interface (∆φt) is
exactly compensated by the phase shift introduced at the interface at those points. However,
local phase retardations are not the only physical quantities to take into consideration. Because
the orientation of the surface specifically, the orientation of the unit vector field N normal to
S changes as one moves across it, the induced dipole moments at the surface are excited and
radiate differently depending on the location. To account for the aforementioned changes in phase,
amplitude and polarization, susceptibility tensors are calculated from Eq. 37 and 38-41. c and
d respectively show a conventional and an anomalous grating. Light incident on a metasurface-
grating (d) can blaze the diffraction towards a single order (black curves in e and f) but it can
also refract light at any other user-specified angle (red curves in e and f). Solid (dashed) curves
represent the imaginary (real) part of the susceptibility tensors. g shows the calculation of the real
part of the electric fields for free-standing metasurfaces in air, that is, when the refractive indices
on either side of the boundary are set to be equal.
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3.1 Steering interface

In our first example, we investigate a unidirectional steering interface -also called ”carpet cloak”, a

subject inspired by the works of Estakhri and Alù [20]- to achieve a unidirectional mirror reflection.

Let S = n−1(0), where n(x, y, z) = z − cos(x) − cos(y), for x, y such that cos(x) + cos(y) > 0.

If we define f(u, v) = cos(u) + cos(v), one can see that S is the graph of f [see firgure 4]. Since

there will be no transmission, for any field V = E,H, we have V + = 0, and V − = V inc + V ref .

Let θ ∈ (0, π2 ) be the angle between incident (and reflected) plane wave and the z-axis on the x, z

plane. In order for the metasurface to be independent of the polarisation of the incident fields, we

need to compute the susceptibilities using two orthogonally polarised plane wave for a given θ.

Polarisation 1:

Einc =


0

1

0

ATEξ
inc, Eref =


0

1

0

ATEξ
ref ,

Hinc =


− cos(θ)

0

sin(θ)

 ATE
η

ξinc, Href =


cos(θ)

0

sin(θ)

 ATE
η

ξref ,

(49)

Polarisation 2:

E′inc =


cos(θ)

0

− sin(θ)

ATMξ
inc, E′ref =


− cos(θ)

0

− sin(θ)

ATMξ
ref ,

H ′inc =


0

1

0

 ATM
η

ξinc, H ′ref =


0

1

0

 ATM
η

ξref ,

(50)

where ξinc = ei(ωt−k0(x sin(θ)+z cos(θ))), ξref = ei(ωt−k0(x sin(θ)−z cos(θ))), η =
√

µ0

ε0
, and Am, Ae are

constants.

Since our equations are still underdetermined, we may further assume that for a = e,m, χuza =

χvza = 0. Note that this does not imply that χuna = 0 nor χvna = 0. Given the above assumptions,
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the relation between the virtual susceptibilities and the fields are given by

χuxe =
i

ωε0

(
Eav
y (H ′y|+− + ∂f

∂vH
′
z|+−)− E′av

y (Hy|+− + ∂f
∂vHz|+−)

E′av
x E

av
y − Eavx E′av

y

)
,

χuye =
i

ωε0

(
E′

av
x (Hy|+− + ∂f

∂vHz|+−)− Eav
x (H ′y|+− + ∂f

∂vH
′
z|+−)

E′av
x E

av
y − Eav

x E
′av
y

)
,

χvxe =
i

ωε0

(
E′

av
y (Hx|+− + ∂f

∂uHz|+−)− Eav
y (H ′x|+− + ∂f

∂uH
′
z|+−)

E′av
x E

av
y − Eavx E′av

y

)
,

χvye =
i

ωε0

(
Eav
x (H ′x|+− + ∂f

∂uH
′
z|+−)− E′av

x (Hx|+− + ∂f
∂uHz|+−)

E′av
x E

av
y − Eav

x E
′av
y

)
,

χuxm =
i

ωµ0

(
H ′

av
y (Ey|+− + ∂f

∂vEz|
+
−)−Hav

y (E′y|+− + ∂f
∂vE

′
z|+−)

H ′av
x H

av
y −Hav

x H
′av
y

)
,

χuym =
i

ωµ0

(
Hav
x (E′y|+− + ∂f

∂vE
′
z|+−)−H ′av

x (Ey|+− + ∂f
∂vEz|

+
−)

H ′av
x H

av
y −Hav

x H
′av
y

)
,

χvxm =
i

ωµ0

(
Hav
y (E′x|+− + ∂f

∂uE
′
z|+−)−H ′av

y (Ex|+− + ∂f
∂uEz|

+
−)

H ′av
x H

av
y −Hav

x H
′av
y

)
,

χvym =
i

ωµ0

(
H ′

av
x (Ex|+− + ∂f

∂uEz|
+
−)−Hav

x (E′x|+− + ∂f
∂uE

′
z|+−)

H ′av
x H

av
y −Hav

x H
′av
y

)
,

(51)

which for a flat surface (∂f∂u = ∂f
∂v = 0), are exactly those derived in [??]. Therefore using (47), we

obtain the actual susceptibilities,

χuua =
1

γ
(χuxa (

∂n

∂z
− ∂f

∂v

∂n

∂y
) + χuya (

∂f

∂v

∂n

∂x
)),

χuva =
1

γ
(χuxa (

∂n

∂y

∂f

∂u
) + χuya (

∂n

∂z
− ∂f

∂u

∂n

∂x
)),

χuna =
−1

γ
(χuxa (|∇n|∂f

∂u
) + χuya (|∇n|∂f

∂v
)),

χvua =
1

γ
(χvxa (

∂n

∂z
− ∂f

∂v

∂n

∂y
) + χvya (

∂f

∂v

∂n

∂x
)),

χvva =
1

γ
(χvxa (

∂n

∂y

∂f

∂u
) + χvya (

∂n

∂z
− ∂f

∂u

∂n

∂x
)),

χvna =
−1

γ
(χvxa (|∇n|∂f

∂u
) + χvya (|∇n|∂f

∂v
)),

(52)

for a = e,m. Substituting the values given above, we obtain

χuxe = χuxm =
2ic

ω cos(θ)

(
ξinc + ξref

ξref − ξinc

)
, χuye = χuym =

2ic

ω
sin(θ) sin(v), χvxe = χvxm = 0,

χvye = χvym =
2ic

ω

(
cos(θ)(ξref − ξinc)− sin(u) sin(θ)(ξinc + ξref )

ξinc + ξref

)
,

(53)
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which give us

χuua =
2ic

ωγ

(
1 + sin2(v)

cos(θ)

(
ξinc + ξref

ξref − ξinc

)
− sin(θ) sin(u) sin2(v)

)
,

χuva =
2ic

ωγ
sin(v)

(
sin(θ)(1 + sin2(u))− sin(u)

cos(θ)

(
ξinc + ξref

ξref − ξinc

))
,

χuna =
2ic

|∇n|2ω

(
sin(u)

cos(θ)

(
ξinc + ξref

ξref − ξinc

)
+ sin(θ) sin2(v)

)
,

χvua =
2ic

ωγ
sin(v) sin(u)

(
sin(u) sin(θ)− cos(θ)

(
ξref − ξinc

ξinc + ξref

))
,

χvva =
2ic

γω
(1 + sin2(u))

(
cos(θ)

(
ξref − ξinc

ξinc + ξref

)
− sin(u) sin(θ)

)
,

χvna =
2ic

|∇n|2ω

(
cos(θ)

(
ξref − ξinc

ξinc + ξref

)
− sin(u) sin(θ)

)
,

(54)

for a = e,m, where γ = (1+sin2(u)+sin2(v))
3
2 , |∇n|2 = 1+sin2(u)+sin2(v), and we may factorize

out the expressions eiωt, and take ξinc = e−ik0 cos(θ)(cos(u)+cos(v)) and ξref = eik0 cos(θ)(cos(u)+cos(v)).

Observe that the susceptibilities depended on the angle θ, meaning that with all the assumptions

above, we are only able to implement cloaking for a single direction θ.

Although a mantle cloak designed with this technique hides an object by mimicking the reflection

from the ground, our technique can in principle be used to create true optical illusions, in which

the image of an object is replaced by the virtual holographic image of another [19]. Consider a

detector with coordinates (ξ, η), and let g(ξ, η) be the graph of the detector. Let Eobsk′ (ξ, η) and

Erefk′ (u, v), for k′ = x, y, z, be the electric field of the virtual image at the detector plane and the

electric fields reflected from the surface S respectively. The relationship between the two electric

fields is given by the first Rayleigh-Somerfield integral as

Eobsk′ (ξ, η) = − 1

2π

∫
S
Erefk′ (u, v)(∇(

eikR

R
) · ∇n
|∇n|

)dudv, (55)

where R = ((u− ξ)2 + (v− η)2 + (f(u, v)− g(ξ, η))2)
1
2 . Using the approximation ∇( e

ikR

R ) ≈ ikeikR

R2 ,

the above expression can be simplified to become

Eobsk′ (ξ, η) =
1

iλ

∫
S
Erefk′ (u, v)

eikR

|∇n|R2

∇n ·

u− ξ

v − η

f − g


 dudv

=
1

iλ

∫
S
Erefk′ (u, v)

eikR

|∇n|R2

(
∂n

∂x
(u− ξ) +

∂n

∂y
(v − η) +

∂n

∂z
(f(u, v)− g(ξ, η))

)
dudv

(56)
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After obtaining Erefk′ analytically, or by numerical methods in general, we are able to calculate

Href
k′ using Maxwell’s equations. Therefore given any incident fields Einck′ and Hinc

k′ , using the

recipe prescribed above, we are able to compute the susceptibilities needed to create the virtual

image at the detector plane.

3.2 Curved transmission metasurface

In our second example, we design a reflection-less optical interface [48] defined by a periodic

structure of period Γ greater than the wavelength of the light, (Γ > Λ0. Considering light incident

at an angle θi from a lossless dielectric of refractive index ni, as in Fig. 4b, conventional diffraction

in Fig 4.c should create plane waves at angles θt given by the grating formula:

mλ0 = Γ(ni sin θi − sinθt) (57)

However, by depositing a metasurface conformable to the periodically undulating interface, one

can tailor the diffracted light. As shown in Fig. 4b, the interface has to delay the incoming fields

such that the transmitted light from each point along the interface constructively interferes along

the user preferred direction, creating plane waves that travel along the angle θt. We consider a

sinusoidal surface such that it diffracts normally incident fields at a specified angle. Let S = n−1(0),

where n(x, y, z) = z − sin( 2πx
Γ ) for some Γ > λ. Defining f(u, v) = sin( 2πu

Γ ), then S is the graph

of f . Now given a incoming polarised plane wave

E− =


0

1

0

Aξ−, H− =


−1

0

0

 A

η
ξ−, (58)

where ξ− = ei(ωt−k0z) and A is a constant, assuming no reflection, we want it such that the fields

leaving S are given by (see figure ??)

E+ =


0

1

0

Aξ+, H+ =


− cos(θ)

0

sin(θ)

 A

η
ξ+, (59)
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where ξ+ = ei(ωt−k0(x sin(θ)+z cos(θ))), θ ∈ (0, π2 ) is the angle between the exiting plane wave and

the z-axis, on the x, z plane.Using Eq. (48), we have

 0 1 0

−1 0 − 2π
Γ cos( 2πu

Γ )




0

A(ξ+ − ξ−)

0

 = iωµ0

χuxm χuym χuzm

χvxm χvym χvzm



− A

2η (ξ− + ξ+ cos(θ))

0

A
2η ξ

+ sin(θ)

 ,

 0 1 0

−1 0 − 2π
Γ cos( 2πu

Γ )



A
η (ξ− − ξ+ cos(θ))

0

A
η ξ

+ sin(θ)

 = −iωε0

χuxe χuye χuze

χvxe χvye χvze




0

A
2 (ξ− + ξ+)

0

 .

(60)

From the above, we may assume χuym = χvym = χuxe = χuye = χuze = χvxe = χvze = 0. Further, we

may assume χvzm = 1 and χuzm = 0 to simplify the equations. Then we end up with

χuxm =
2c

iω

(
ξ− − ξ+

ξ− + ξ+ cos(θ)

)
, χvxm =

ξ+ sin θ

ξ− + ξ+ cos θ
,

χvye =
2c

iω

(
ξ− + ξ+( 2π

Γ cos( 2πu
Γ ) sin(θ)− cos(θ))

ξ+ + ξ−

)
,

(61)

where we may take ξ− = e−ik0 sin(u) and ξ+ = e−ik0(u sin(θ)+sin(u) cos(θ)). Thus using (47), we have

χuum =
2c

iω(1 + ( 2π
Γ cos( 2πu

Γ ))2)3/2

(
ξ− − ξ+

ξ− + ξ+ cos(θ)

)
,

χunm =
2c cos(u)

iω(1 + ( 2π
Γ cos( 2πu

Γ ))2)

(
ξ+ − ξ−

ξ− + ξ+ cos(θ)

)
,

χvnm =
1

1 + ( 2π
Γ cos( 2πu

Γ ))2

(
ξ+ sin θ

(1 + ( 2π
Γ cos( 2πu

Γ ))2)1/2(ξ− + ξ+ cos θ)
− 1

)
,

χvve =
2c

iω
√

1 + ( 2π
Γ cos( 2πu

Γ ))2

(
ξ− + ξ+( 2π

Γ cos( 2πu
Γ ) sin(θ)− cos(θ))

ξ+ + ξ−

)
,

(62)

and the rest of the components of the susceptibilities are zero.

Next, we show that given the surface susceptibilities in (61), using the same incoming fields E−

and H−, we are indeed able to obtain the transmitted fields E+ and H+. Let A = 1, and we

will work in the (ex, ey, ez) frame, but use (u, v) for the coordinates since all the points lies on the
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surface S. Because we are assuming a plane wave, the transmitted fields can be written as

E+ =


Ex

Ey

Ez

 ξ′
+
, H+ =


Hx

Hy

Hz

 =


kyEz − Eykz

kzEx − kxEz

kxEy − kyEx

 ξ′
+

ωµ0
, (63)

where we may take ξ′
+

= ei(kxu+kyv+kz sin(u)). We need to find the above 6 unknowns using

 0 1 0

−1 0 − 2π
Γ cos( 2πu

Γ )




Exξ
′+

Eyξ
′+ − ξ−

Ezξ
′+

 = iωµ0

χuxm 0 0

χvxm 0 χvzm




1
2 (Hx − ξ−

η )

Hy

2

Hz

2

 ,

 0 1 0

−1 0 − 2π
Γ cos( 2πu

Γ )



Hx + ξ−

η

Hy

Hz

 = −iωε0

0 0 0

0 χvye 0




Exξ
′+

2

Eyξ
′++ξ−

2

Ezξ
′2

2

 .

(64)

From the above we obtain Hy = 0, implying that kxEz = kzEx. Since kz 6= 0, then Ez = kz
kx
Ex.

After some simple manipulation, we obtain

−Exξ′
+

(1 +
kz
kx

2π

Γ
cos(

2πu

Γ
)) =

χvxm
χuxm

(Eyξ
′+ − ξ−) +

iξ′
+

2
(kxEy − kyEx), (65)

which gives us

Ex(
iky
2
− 1) =

χvxm
ξ′+χuxm

(Eyξ
′+ − ξ−)− Ex

kz
kx

2π

Γ
cos(

2πu

Γ
) +

ikx
2
Ey. (66)

Notice that the left hand side is a constant, but the right hand side is a function of u. And since

ky must be a real number, necessarily Ex = 0, thus Ez = 0. Now since we are assuming no lost or

gain in amplitude, then |E+| = 1, giving us Ey = 1. Similarly 1
η = |H+| =

√
k2z+k2x
ωµ0

implies that

ky = 0.

Next using the remaining information from (64), substituting what we have from above, we have

the following equations

ξ− − ξ′+ =

(
ξ− − ξ+

ξ− + ξ+ cos θ

)(
ξ− +

kzξ
′+

k0

)
,

− ξ
′+kz
k0

+ ξ− + ξ′+kx
k0

2π
Γ cos( 2πu

Γ )

ξ′+ + ξ−
=
ξ− + ξ+( 2π

Γ cos( 2πu
Γ ) sin θ − cos θ)

ξ− + ξ+
,

(67)
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giving us 2 equations

ξ− − ξ′+

ξ− + kzξ′+

k0

=
ξ− − ξ+

ξ− + ξ+ cos θ
,

ξ− + ξ′
+

(kxk0
2π
Γ cos( 2πu

Γ )− kz
k0

)

ξ′+ + ξ−
=
ξ− + ξ+( 2π

Γ cos( 2πu
Γ ) sin θ − cos θ)

ξ+ + ξ−
,

(68)

with 2 unknowns kz and kx. Therefore the unique solution given by kx
k0

= sin θ and kz
k0

= cos θ

satisfy the equations. With that, we indeed recover the given transmitted fields given above.

4 Discussions

Our use of coordinate transformations to control abrupt changes of light at interfaces is comple-

mentary to and distinct from – the technique of transformation optics, which uses coordinate

transformations to control the propagation of light in bulk media. Whereas transformation optics

uses a coordinate system that conforms to the direction of light propagation, the concept of con-

formal boundary optics uses a coordinate system that conforms to the geometry of the interface.

With the advent of transformation optics and metamaterials, many creative ways to manipulate

light have been proposed that involve negative refraction, hyperlensing, cloaking and backward

Cherenkov emission [45-49]. Transformation optics has also been used to redirect the propagation

of surface electromagnetic waves [25-28], and to suppress the surface wave scattering losses [50].

New and interesting optical effects are expected with the added control of fields at interfaces of

metamaterials with arbitrary geometries (Fig.5).

Figure 5: Combining the use of conformal boundary optics and transformation optics can be usefull
to achieve complete, geometry-independent control over the behavior of light at interfaces and in
bulk media.

The concept of conformal boundary optics has important implications even in the realm of con-
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ventional optics, where the surface susceptibility tensors are zero. In this case, the metasurface

becomes a simple interfaces and χm = χe = 0.Considering the Equ.42-45 and dropping the as-

sumption of having no free surface charge and current, then we recover the usual electromagnetic

boundary conditions for nonplanar surfaces:

[ij]Λk
′

j Ek′ |+−ei = 0, (69)

[ij]Λk
′

j Hk′ |+−ei = J iSei, (70)

Λk
′

n Dk′ |+− = ρS , (71)

Λk
′

n Bk′ |+− = 0, (72)

where JS is the surface free current, and ρS is the surface charge density.

In many optics textbooks, the boundary conditions are derived by considering an Amperian loop

and a Gaussian pillbox at an interface, often graphically represented – for aesthetical reasons –

as a nonplanar surface. This, however, can be misleading because these conditions are originally

derived in the coordinate system that conforms to the interface whereas the electromagnetic fields

are expressed in the ambient – typically Cartesian, spherical or cylindrical – coordinate system.

Because the surface normal of the nonplanar interface is changing, the boundary conditions vary

depending on the position along the interface. This observation shows that our approach is al-

ready significant for conventional interfaces that involve only regular dielectric materials. Prior to

this work, boundary conditions existed only for cases where the interface – which the coordinate

system conforms to has a basic geometry e.g., Cartesian, cylindrical, spherical. We believe that

the approach discussed in this paper constitutes a first step towards the development of a general

theory for waves in systems containing interfaces with complex geometries. Surface susceptibil-

ity tensors have to be considered as intermediate tool to predict the electromagnetic behavior at

a given optical interface. Experimentally, however, susceptibilities are realized by averaging the

overall contribution of subwavelength unit cells or scatterers, each individually designed to have

a specific optical response. It is therefore important to discuss the feasibility of designing and

fabricating nanostructures with scattering properties that, in practice, can realize the synthesized

susceptibilities. In practice, the susceptibility of arrays of identical scatterers can be computed

numerically or obtained experimentally. In the numerical approach, this is done by discretizing

the interface according to a two dimensional array of unit cells [8] for which the electromagnetic

response, including phase, amplitude and polarization, are essentially obtained after performing a

series of full electromagnetic wave simulations. In some cases, the design and the physical realiza-

tion of the scattering particles might be difficult and even impossible to realize experimentally [45].
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However, as has been pointed out in [45], obtaining the surface susceptibility tensor is generally

an under-determined problem due to the large number of degrees of freedom involved. This gives

one the flexibility to choose susceptibility tensors that are experimentally realizable. We note that

to date, there exists no theoretical tool that directly connects shape and materials properties of

nanostructures with macroscopic values of metasurfaces, and this remains an interesting topic of

future research. The connection between the near-field local polarization response of individual

scatterer with the overall surface susceptibility tensor might be achieved by considering multipole-

moments decomposition and near-field to far field transformation[55,56]. A recently published

paper shows that it is in principle possible to experimentally realize a carpet cloak metasurface to

hide an arbitrarily shaped object [57]. Given the height of a 3D object with respect to a reference

plane, the authors designed the interface phase response point-by-point to address the phase of

the reflected wavefront at the interface. The concept of conformal boundary optics presented in

our work goes far beyond a method that considers only phase retardation of reflected fields. With

this method, one can design the optical response at any object to produce any output beam both

for the reflection and/or transmission. The susceptibilities obtained from our conformal boundary

method are complex in general. Complex surface impedances, admittances and susceptibilities

have been reported previously [35, 42-46] and this may indicate that the interface has some sort

of spatially varying loss and/or gain mechanism to achieve the desired optical effect. However,

the actual presence of gain and/or loss at interfaces can only be confirmed after taking all terms

of the susceptibilities into account, as compensation can produce a real response [45]. It is worth

pointing out that conformal boundary optics applies only to smooth interface, i.e. for which the

surface is a level set meaning that it can be parametrized by an analytical expression.

We have introduced the concept of conformal boundary optics, a versatile design theory that en-

ables metasurfaces of arbitrary geometries to find even greater applications in the emerging fields

of stretchable, camouflage photonics and augmented reality. This strategy will certainly help to

design macroscopic electromagnetic parameters of arbitrary interfaces. However, further funda-

mental works are needed to connect macroscopic quantities with the microscopic optical response

of nanoscale objects. Controlling light at curved geometries will find widespread industrial appli-

cations, for example, in the design of the next generation of contact lenses and flexible, stretchable

optical surfaces. One can also realise unusually-shaped optical cavities that support designer res-

onant modes. By allowing us to transcend the limitations imposed by physical geometries, this

concept has fundamental implications for the way in which we understand and structure light in

systems of arbitrary geometries.
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