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ON THE FUNCTORS ASSOCIATED WITH BEADED OPEN JACOBI

DIAGRAMS

CHRISTINE VESPA

Abstract. Morphisms in the linear category A of Jacobi diagrams in handlebodies give

rise to interesting contravariant functors on the category gr of finitely-generated free groups,

encoding part of the composition structure of the category A. These functors correspond,
via an equivalence of categories given by Powell, to functors given by beaded open Jacobi

diagrams. We study the polynomiality of these functors and whether they are outer functors.

These results are inspired by and generalize previous results obtained by Katada.

1. Introduction

In [HM21], Habiro and Massuyeau extend the Kontsevich integral to construct a functor from
the category of bottom tangles in handlebodies to the linear category A of Jacobi diagrams
in handlebodies. This category has N as objects and for n,m ∈ N, a generator of the vector
space A(n,m) can be represented by a Jacobi diagram whose edges are oriented, such that each
univalent vertex is embedded into the interior of the 1-manifold Xm, consisting of m arcs and
where we have beads coloured with elements of the free group of rank n on edges. For example,
for F3 = 〈x1, x2, x3〉, the following is a non-zero element of A(3, 2):

x−1
2

x−1
1

x3

x1 x1

The definition of the composition in the linear category A is natural from the geometric point
of view. However, it is quite complicated to understand it algebraically and this paper sheds
some light on this.

To study the composition in a category, we can fix an object n in the category and look at
the composition of the morphisms from n with any morphism of the category. In our setting,
this corresponds to studying, for n an object of A, the linear functor A(n,−) : A → K-Mod
where A(−,−) denotes the K-vector space of morphisms in A, for K a field of characteristic
zero. These functors being still too complicated to study, we restrict them to the subcategory
A0 of A which is equivalent, by [HM21, p. 630], to the K-linearization of the opposite of the
category gr of finitely-generated free groups. This gives rise to functors

A(n,−) : grop → K-Mod

encoding the composition of morphisms in A from n with a morphism in the subcategory A0.
The graduation by the degree d of the Jacobi diagrams defines subfunctors of A(n,−):

Ad(n,−) : grop → K-Mod
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2 CHRISTINE VESPA

For n = 0, these functors have been studied by Katada in [Kata, Katb]. Katada shows that
Ad(0,−) is a polynomial functor of degree 2d which is an outer functor: i.e. for all m ∈ N,
the inner automorphisms act trivially on Ad(0,m). She also gives the complete structure of the
functors Ad(0,−) for d ∈ {1, 2, 3} and, for general d, a decomposition of the functor Ad(0,−)
into indecomposables.

The aim of this paper is to study, more generally, the functors Ad(n,−) : grop → K-Mod for
d, n ∈ N.

Our first result shows that the polynomiality of the functors Ad(0,−) is exceptional.

Proposition 1 (Proposition 5.4). For d, n ∈ N, the functor Ad(n,−) : grop → K-Mod is
polynomial iff n = 0.

Using the grop-graduation of A(n,m) introduced by Habiro and Massuyeau in [HM21], we
obtain, in Proposition 6.1, a subfunctor A(n,−)0 of A(n,−), satisfying A(0,−)0 = A(0,−).
The generators of A(n,m)0 are those of A(n,m) which can be represented by a Jacobi diagram
on Xm without beads on Xm (but there may be beads on the Jacobi diagram). For example, for
F3 = 〈x1, x2, x3〉, the following represents a non-zero element of A(3, 2)0:

x−1
1

x3

The graduation by the degree d of the Jacobi diagrams defines a subfunctor Ad(n,−)0 of
A(n,−)0. Considering the subspace of Ad(n,m)0 generated by the Jacobi diagrams having at
least t trivalent vertices, we obtain subfunctors At

d(n,−)0 of Ad(n,−)0 defining a filtration:

(1.1) 0 = A2d
d (n,−)0 ⊂ . . . ⊂ A1

d(n,−)0 ⊂ A0
d(n,−)0 = Ad(n,−)0

corresponding, for n = 0, to the filtration considered by Katada in [Kata].
These functors satisfy the following:

Theorem 2 (Theorem 6.9). For n ∈ N and d ≥ 1, the functor Ad(n,−)0 : grop → K-Mod is
polynomial of degree 2d and the filtration (1.1) corresponds to the polynomial filtration.

However, contrary to the result of Katada, the functors Ad(n,−)0 are rarely outer functors:

Theorem 3 (Theorem 6.13). For d, n ∈ N, the functor Ad(n,−)0 is an outer functor iff n = 0
or d = 0.

We obtain a description of the functor A1(n,−)0 generalizing that of the functor A1(0,−)
given in [Kata, Section 4]. Let a : gr→ K-Mod be the abelianization functor, P2 : gr→ K-Mod
the second Passi functor (see Section 3) and (−)# : F(gr;K)op → F(grop;K) the duality functor,
we have:

Proposition 4. (Proposition 6.12) For n ∈ N, we have a natural equivalence

A1(n,−)0 ' P#
2 ⊗

S2

K[Fn],

where the action of S2 on K[Fn] is given by taking the inverse in Fn: v 7→ v−1 and the action

of S2 on P#
2 is given in Section 3. In particular, we have A1(0,−) ' S2 ◦ a#.

In Section 6.7 we give another proof, based on [PV18], of [Katb, Theorem 10.1], giving a direct
sum decomposition of the functor Ad(0,−) in the category of functors on grop.
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One of the main ingredients of this paper is the use of the equivalence of categories given by
Powell in [Powa]:

α−1 : Fω(grop;K)
'−→ FLie

where Fω(grop;K) is the category of analytic functors on grop and FLie is the category of K-
linear functors from the linear PROP associated with the operad Lie to K-Mod (see Section 2.4 for
further details). It turns out that the polynomial filtration of a functor is easier to understand
in the category FLie than in the category Fω(grop;K) (see [Powa] and Section 2.4). It is also
easier to show that the action of inner automorphisms is trivial in the category FLie (see [Powb]
and Section 2.5). The proofs of the previous results are based on the computation of the functor

α−1(Ad(n,−)0). In Section 6.2, we introduce the K-vector space JFnd (m) which is the quotient
by the AS and the IHX relations, of the K-vector space generated by equivalence classes of open
Jacobi diagrams D whose edges are oriented and labelled by Fn (represented by beads) and

equipped with a bijection {univalent vertices of D} '−→ {1, . . . ,m}. For example, the following

is a non-zero element of JFn2 (3):

x3

x−1
1

1

2 3

The generators of JFnd (m) are called Fn-beaded open Jacobi diagrams. The correspondance
between the AS relation and the antisymmetry relation for Lie algebras and the IHX relation
and the Jacobi relation for Lie algebras implies that this defines a functor JFnd in FLie (see
Proposition 6.6). We have the following:

Theorem 5 (Theorem 6.7). For n, d ∈ N, we have an equivalence of functors in FLie:

α−1(Ad(n,−)0) ' JFnd .

The title of this paper reflects the fact that the functors JFnd are much easier to study than the

functors Ad(n,−)0. A more in-depth study of the functors JFnd will be given in another paper.

Acknowledgement: This work was inspired by Mai Katada’s papers [Kata, Katb], where the
natural appearance of outer polynomial functors intrigued the author of this paper and motivated
her to take an interest in the category of Jacobi diagrams in handlebodies. The author is grateful
to Mai Katada for communicating her papers. The author is also grateful to Geoffrey Powell for
discussions on his papers [Powb, Powa] and helpful comments on the previous versions of the
manuscript.
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Notation. Denote by:
K a field of characteristic 0.
K-Mod the category of K-vector spaces.
For n ≥ 0:

• n = {1, . . . , n};
• Sn is the symmetric group on n letters;
• Xn is the oriented 1-manifold consisting of n arc components;
• Fn = 〈x1, . . . , xn〉 is the free group of rank n. The trivial group is denoted by {1}.

For generalities on Jacobi diagrams we refer the reader to [CDM12, Chapter 5].

2. Functors on grop

2.1. Generalities on gr. Let gr be the category of finitely-generated free groups. This category
is essentially small, with skeleton given by N, where n ∈ N corresponds to the free group Fn of
rank n. For clarity, we will sometimes denote the object n by Fn. The object 0 = F0 = {1} is a
null-object in gr. For n,m objects of gr, we denote by 0 : n→ m the composition n→ 0→ m.
Explicitly, 0 is the homomorphism Fm → Fn sending each generator to 1.

The category gr is a PROP for the symmetric strict monoidal structure given by the free
product.

By Pirashvili’s result [Pir02], the PROP gr is isomorphic to the free symmetric monoidal
category generated by a commutative Hopf monoid. In other words, the morphisms of gr are
generated by the permutations groups in gr(n, n) for n ∈ N and the following homomorphisms:

(1) m1 : 1→ 0 corresponding to F1 → {1};
(2) m2 : 1→ 2 corresponding to F1 → F2 sending the generator x of F1 to x1x2;
(3) m3 : 0→ 1 corresponding to {1} → F1;
(4) m4 : 1→ 1 corresponding to F1 → F1 sending the generator x of F1 to x−1;
(5) m5 : 2 → 1 corresponding to F2 → F1 sending x1 to x and x2 to x (this is the folding

map).

2.2. Generalities on functors on gr and grop. We denote by F(gr;K) (resp. F(grop;K))
the category of functors from gr (resp. grop) to K-Mod. These categories are abelian.
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A functor M : gr → K-Mod (resp. N : grop → K-Mod) is said to be reduced if M(0) = 0
(resp. N(0) = 0).

Let Pn : gr→ K-Mod be the functor K[gr(n,−)]; {Pn, n ∈ N} is a set of projective generators
of the category F(gr;K). By the Yoneda lemma, for F : gr → K-Mod, HomF(gr;K)(Pn, F ) '
F (n).

We denote by P̄1 the reduced part of P1 i.e. P1 ' K ⊕ P̄1. For G a free group P̄1(G) is the
K-vector space underlying the augmentation ideal IG of the K-algebra K[G]. Since P0 = K, we
have HomF(gr;K)(P1, F ) ' F (0)⊕HomF(gr;K)(P̄1, F ), so

(2.1) HomF(gr;K)(P̄1, P̄1) ' P̄1(1) ' IF1.

Composition with vector space duality functor (−)# : K-Mod→ K-Modop gives rise to a pair
of adjoint functors, named the duality functors

(−)# : F(gr;K)op → Func(gr;K-Modop)op
'−→ F(grop;K)

(−)# : F(grop;K)→ Func(grop;K-Modop)
'−→ F(gr;K)op

where the last equivalences are given by the usual equivalence of categories F(grop;K)op '
Func(gr;K-Modop), where Func(gr;K-Modop) is the category of functors from gr to the oppo-
site of K-Mod. The duality functors restrict to an equivalence of categories for functors taking
finite dimensional values.

Let a : gr→ K-Mod be the abelianization functor that sends a free group G to (G/[G,G])⊗
Z
K.

The category of outer functors FOut(grop;K) is the full subcategory of F(grop;K) of functors
F such that, for each n ∈ N, inner automorphisms act trivially on F (n). Outer functors were
introduced in [PV18, Section 10]. Let Ω : F(grop;K)→ FOut(grop;K) be the left adjoint to the
inclusion functor FOut(grop;K) ↪→ F(grop;K). The functor Ω is described explicitly in [PV18,
Definition 11.5].

2.3. Polynomial and analytic functors on grop. Polynomial contravariant functors have
been considered in a general setting in [HPV15, Section 3.1]. Here we recall the definitions for
contravariant functors on gr.

For k ∈ {1, . . . , n}, let in
k̂

: Fn−1 → Fn be the homomorphism given by

in
k̂
(xi) =

{
xi if i < k
xi+1 if i ≥ k

The n-th cross-effect of a functor N : grop → K-Mod is a functor c̃rn(N) : (grop)×n →
K-Mod. Its evaluation on F1 in each variable c̃rn(N)(1, . . . , 1) is equal to the kernel of the
natural homomorphism

N(Fn)
(N(in

1̂
),...,N(inn̂))

−−−−−−−−−−−→
n⊕
k=1

N(Fn−1).

In the examples, it is easier to compute cross-effects using the following equivalent description
using a cokernel instead of a kernel. For k ∈ {1, . . . , n}, let rn

k̂
: Fn → Fn−1 be the homomorphism

given by

rn
k̂

(xi) =

 xi if i < k
1 if i = k
xi−1 if i > k

c̃rn(N)(1, . . . , 1) is isomorphic to the cokernel of the natural homomorphism

n⊕
k=1

N(Fn−1)
(N(rn

1̂
),...,N(rnn̂))

−−−−−−−−−−−→ N(Fn).
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For d ∈ N, a functorN : grop → K-Mod is polynomial of degree at most d if c̃rd+1(N)(1, . . . , 1) =
0. Let Fd(grop;K) be the full subcategory of polynomial functors of degree at most d. The forget-
ful functor Fd(grop;K)→ F(grop;K) has a right adjoint denoted by pd. For N : grop → K-Mod,
the functor pd(N) is the largest subfunctor of N polynomial of degree d. Hence, a functor
N : grop → K-Mod admits a natural filtration, called the polynomial filtration of N :

p0(N) ⊂ p1(N) ⊂ . . . ⊂ pd(N) ⊂ pd+1(N) ⊂ . . . ⊂ N.
A functor N : grop → K-Mod is analytic if it is the colimit of its subfunctors pd(N). Let

Fω(grop;K) denote the full subcategory of F(grop;K) of analytic functors.
For d ∈ N, we have a functor: crd : Fd(grop;K) → K[Sd]-Mod, given on N : grop → K-Mod

by crd(N) = c̃rd(N)(1, . . . , 1) where the action of Sd is given by permuting the factors.
The functor (a#)⊗d : grop → K-Mod is polynomial of degree d. The following Proposition is

the analogue, for contravariant functors, of [PV18, Proposition 6.9].

Proposition 2.1. [Powa, Proposition 7.20] For d ∈ N, the functor crd : Fd(grop;K) →
K[Sd]-Mod has right adjoint given by

M 7→ ((a#)⊗d ⊗M)Sd

where Sd acts diagonally. This functor is exact and ((a#)⊗d⊗M)Sd is semi-simple of polynomial
degree d.

For N : grop → K-Mod there is a natural short exact sequence

0→ pd−1(N)→ pd(N)→ ((a#)⊗d ⊗ crd(pdN))Sd → 0.

2.4. Analytic functors on grop and CatLie-modules. Let CatLie be the linear PROP associ-
ated with the operad Lie [LV12, Section 5.4.1]. Explicitly, CatLie is the K-linear category such
that Ob(CatLie) = N and

CatLie(m,n) =
⊕

f∈Fin(m,n)

n⊗
i=1

Lie(|f−1(i)|)

where Fin is the category of finite sets. Since Lie is reduced (i.e. Lie(0) = 0) the sum can
be taken over the surjections m � n. For m ∈ N, CatLie(m, 1) = Lie(m) and for m < n,
CatLie(m,n) = 0. Since Lie(1) = K, CatLie(m,m) ' K[Sm].

Fix a generator µ ∈ Lie(2). For n ∈ N and i ∈ {1, . . . , n}, let µn+1
i ∈ CatLie(n + 1, n) be

the morphism given by the set map sn+1
i : n + 1→ n defined by sn+1

i (j) = j for j < n+ 1 and

sn+1
i (n+1) = i and taking 1 ∈ Lie(1) for the fibres of cardinal one and µ ∈ Lie(2) for the fiber of

cardinal 2. The K-linear category CatLie is generated (via linear combination and composition)
by the morphisms µn+1

i ∈ CatLie(n+ 1, n) and CatLie(n, n) ' K(Sn) for n ∈ N.
Note that a pointed version of CatLie with a shuffle condition on fibers intervenes in [HV15].
Let FLie be the category of K-linear functors from CatLie to K-Mod. For n ∈ N, CatLie(n,−) :

CatLie→ K-Mod is a linear functor. By the enriched Yoneda lemma, for F : CatLie→ K-Mod
a K-linear functor, we have an isomorphism:

HomFLie(CatLie(n,−), F ) ' F (n).

We deduce that the functors CatLie(n,−), for n ≥ 0, are projective generators of FLie.
For F ∈ FLie and i ∈ N, since CatLie(m,n) = 0 for m < n, F admits a subfunctor F≤i given

by truncation, i.e.

F≤i(n) =

{
F (n) if n ≤ i
0 if n > i

It follows that a functor F ∈ FLie admits a natural filtration:

F≤0 ⊂ F≤1 ⊂ . . . ⊂ F≤d ⊂ F≤d+1 ⊂ . . . ⊂ F.
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In [Powa], Powell gives an equivalence of categories between FLie and Fω(grop;K). In partic-
ular, Powell constructs explicit exact functors:

α : FLie → Fω(grop;K)

α−1 : Fω(grop;K)→ FLie
giving this equivalence. By [Powa, Corollary 8.9], for F ∈ Fω(grop;K) we have an isomorphism:

(2.2) α−1(F )(d) ' c̃rd(pdF )(1, . . . , 1).

The category CatLie is easier to understand than the category grop. For example, we have
CatLie(i, j) = 0 for i < j. It follows that it is easier to work with CatLie-modules than
with functors on grop. In particular, the polynomiality of functors in Fω(grop;K) has an easy
interpretation in CatLie-modules: a functor F ∈ Fω(grop;K) is polynomial of degree equal to
d iff α(F )(d) 6= 0 and α(F )(k) = 0 for k > d. Via the equivalence of categories, the polynomial
filtration of a functor in Fω(grop;K) corresponds to the filtration given by the truncations of
CatLie-modules. More precisely, for N : grop → K-Mod and i ∈ N we have:

(2.3) α−1(pi(N)) = (α−1N)≤i.

To prove Theorem 6.7, we will need the following explicit description of the functor α given
in [Powa, Theorem 9.17]. Let CatAssu be the linear PROP associated with unital associative
algebras; CatAssu is the K-linear category such that Ob(CatAssu) = N and

CatAssu(m,n) =
⊕

f∈Fin(m,n)

n⊗
i=1

Assu(|f−1(i)|)

where Fin is the category of finite sets. More explicitly, a generator of CatAssu(m,n) is repre-
sented by a set map f ∈ Fin(m,n) and an order of the elements of each fiber of f . We denote
by (sn+1

i , i < n+ 1) (resp. (sn+1
i , n+ 1 < i)) the morphism in CatAss(n+ 1, n) given by the set

map sn+1
i : n + 1→ n and the order i < n+ 1 (resp. n+ 1 < i) on the fiber of cardinal 2. The

morphism of operads Lie→ Assu induces a functor CatLie→ CatAssu sending the morphism
µn+1
i ∈ CatLie(n+ 1, n) to (sn+1

i , i < n+ 1)− (sn+1
i , n+ 1 < i) ∈ CatAss(n+ 1, n)

By [Powa, Proposition 9.13] the sets of morphisms in CatAssu define a functor:

CatAssu : (CatLie)op ⊗K[grop]→ K-Mod.

In [Powa, Lemma A.2], the functor CatAssu(i,−) : grop → K-Mod, for i an object of (CatLie)op,
is described explicitly on the generators of gr recalled in Section 2.1. By [Powa, Theorem
9.17], α = CatAssu ⊗

CatLie
−. Let Σ be the category of finite sets and bijections and F(Σ;K)

the category of functors from Σ to K-Mod. The obvious functor Σ → grop induces a functor
F(grop;K) → F(Σ;K). By [Powa, Remark 9.18], for an object F of FLie and d an object of
grop, the functor in F(Σ;K) associated with CatAssu ⊗

CatLie
F is given explicitly by:

(2.4) α(F )(d) '
⊕
i∈N

KFin(i, d) ⊗
Si
F (i).

A K[Sd]-module M defines an object of FLie which is 0 for n 6= d and M on d. Such
CatLie-module will be said atomic and will be denoted by M [d].

For a K[Sd]-module M , by [Powa, Example 9.20], we have:

(2.5) α(M [d]) = (a#)⊗d ⊗
Sd

M.
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This is in the image of the faithful embedding Fω(abop;K) ↪→ Fω(grop;K), where ab is the
category of finitely-generated free abelian groups. The category of analytic functors Fω(abop;K)
is semi-simple. More precisely we have an equivalence of categories:

Fω(abop;K) ' F(Σ;K).

The functor α−1 extends this equivalence of categories in the sense that we have a commutative
diagram:

FLie
α

'
// Fω(grop;K)

F(Σ;K) '
//

?�

OO

Fω(abop;K).
?�

OO

Remark 2.2. For N : grop → K-Mod, by Proposition 2.1 we can consider the graded functor
gr(N) associated with the filtered functor N , obtained by considering the polynomial filtration.
We have gr(N) =

⊕
d∈N

((a#)⊗d⊗ crd(pdN))Sd and α(gr(N)) is the direct sum of atomic functors

associated with the K[Sd]-module crd(pdN) whereas α(N) is not, in general, the direct sum of
atomic functors. This illustrates the fact that, considering the graded associated with a functor,
we lose much of the structure.

2.5. Outer CatLie-modules. In [Powb], Powell gives a characterization of CatLie-modules
corresponding to outer functors via the equivalence of categories given in the previous section.
These CatLie-modules will be called outer CatLie-modules. We briefly recall Powell’s result.

Let τ : FLie → FLie be the shifting functor given by precomposition with − + 1 : CatLie →
CatLie. Let µ : τ → Id be the natural transformation defined as follows: for F ∈ FLie,
µF : τF → F is given by the natural morphisms (µF )n : τF (n) = F (n + 1) → F (n) induced

by
n∑
i=1

µn+1
i ∈ CatLie(n + 1, n). Let FµLie be the full subcategory of FLie of functors such that

µF = 0. By [Powb, Theorem 4.16], under the equivalence of categories Fω(grop;K) ' FLie, the
full subcategory FOutω (grop;K) of Fω(grop;K) is equivalent to FµLie.

Let (−)µ : FLie → FµLie be the functor given by Fµ := coker(µF ). By [Powb, Proposition
2.17], (−)µ is the left adjoint to the inclusion FµLie ↪→ FLie and so corresponds to the functor
Ω : F(grop;K)→ FOut(grop;K) via the equivalence of categories Fω(grop;K) ' FLie.

3. On the second Passi functor P2

The contents of this Section will be used in the proof of Proposition 6.12. As the results of
this Section are of independent interest, we chose to dedicate a separate Section to them. The
reader can skip this section on first reading.

Let P2 : gr → K-Mod be the functor defined by: P2(Fn) = IFn/(IFn)3. The functor P2 is
called the second Passi functor (see [HPV15, Ves18, PV18]). It is the largest quotient of P 1 that
is polynomial of degree 2.

The group S2 acts on P2 by the following way: by (2.1), the element [x−1
1 ] − [1] of IF1

corresponds to a natural transformation σ in EndF(gr;K)(P 1). For G ∈ gr, σG : IG → IG is

given explicitly by: σG([g] − [1]) = [g−1] − [1]. Since σ2 = 1, σ defines an action of S2 on P 1.
By composition with P 1 � P2 we obtain

σ ∈ HomF(gr)(P 1,P2) ' HomF2(gr)(P2,P2)

where the last isomorphism is given by adjunction, so that S2 acts on P2.
In the following lemma we give an explicit description of this action of S2 on P2. Recall that

a(G) ' IG/(IG)2, for G an object of gr.



ON THE FUNCTORS ASSOCIATED WITH BEADED OPEN JACOBI DIAGRAMS 9

Lemma 3.1. The natural transformation σ : P2 → P2 restricts to a natural transformation
σ|a⊗2 : a⊗2 → a⊗2 given by the place permutation. The induced natural transformation σ : a→ a
is given by σ(x) = −x for G an object of gr and x an element in a(G).

Proof. By [Ves18, DPV16], P2 is a generator of Ext1
F(gr)(a, a

⊗2). The non-split short exact
sequence

(3.1) 0 // a⊗2 i // P2
p // a // 0

gives rise, for G an object of gr, to an exact sequence

0 // IG/(IG)2 ⊗ IG/(IG)2 i // IG/(IG)3 p // IG/(IG)2 // 0

For x, y ∈ G we have

σG ◦ i
(
([x]− [1] + (IG)2)⊗ ([y]− [1] + (IG)2)

)
= σG

(
([x]− [1]).([y]− [1]) + (IG)3

)
= σG

(
([xy]− [1])− ([x]− [1])− ([y]− [1]) + (IG)3

)
= ([y−1x−1]− [1])− ([x−1]− [1])− ([y−1]− [1]) + (IG)3

= ([y−1]− [1]).([x−1]− [1]) + (IG)3

= i
(
([y−1]− [1] + (IG)2)⊗ ([x−1]− [1] + (IG)2)

)
We deduce that σ induces natural transformations σ|a⊗2 : a⊗2 → a⊗2 and σ : a→ a.

Since ([y]− [1])([y−1]− [1]) = −([y]− [1])− ([y−1]− [1]) in (IG)2, we have

([y−1]− [1] + (IG)2)⊗ ([x−1]− [1] + (IG)2) = (−([y]− [1]) + (IG)2)⊗ (−([x]− [1]) + (IG)2)

= ([y]− [1] + (IG)2)⊗ ([x]− [1] + (IG)2)

giving the explicit description of σ|a⊗2 .
For that of σ, we have:

p ◦ σG([y]− [1] + (IG)3) = p([y−1]− [1] + (IG)3) = [y−1]− [1] + (IG)2 = −([y]− [1]) + (IG)2.

�

The action of S2 on P2 corresponds to an action of S2 on P#
2 .

In order to describe the functor A1(n,−)0 in Proposition 6.12, we need the following results
on the second Passi functor.

Proposition 3.2. We have a natural equivalence in FLie:

α−1(P#
2 ) ' CatLie(2,−)

hence α−1(P#
2 ) is projective.

Proof. The duality functor and α−1 being exact functors, we deduce from the non-split exact
sequence (3.1), the following non-split exact sequence in FLie:

(3.2) 0 // α−1(a#) // α−1(P#
2 ) // α−1((a⊗2)#) // 0.

By (2.5), α−1(a#) and α−1((a⊗2)#) are atomic functors given by: α−1(a#) = K[1] and α−1((a⊗2)#) =

K[S2][2]. We deduce that α−1(P#
2 ) is non-zero only on 1 and 2 and that

α−1(P#
2 )(1) = K and α−1(P#

2 )(2) = K[S2].

The functor CatLie(2,−) : CatLie→ K-Mod is non-zero only on 1 and 2 and we have:

CatLie(2, 1) ' K and CatLie(2, 2) ' K[S2].
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By the Yoneda lemma:

Hom(CatLie(2,−), α−1(P#
2 )) ' α−1(P#

2 )(2) = K[S2].

Let ν : CatLie(2,−) → α−1(P#
2 ) be the natural transformation corresponding to [Id] by the

previous isomorphism. By naturality of ν, we have:

α−1(P#
2 )(µ2

1) ◦ ν2 = ν1 ◦ CatLie(2,−)(µ2
1).

By construction, ν2 is an isomorphism and, since the short exact sequence (3.2) is non-split,

α−1(P#
2 )(µ2

1) 6= 0. We deduce that ν1 6= 0 and so it is an isomorphism. Consequently, ν is a
natural equivalence.

�

Corollary 3.3. The functor P#
2 is projective in the category of polynomial functors on grop.

Proof. The functor α is an equivalence of categories and, by Proposition 3.2, α−1(P#
2 ) is projec-

tive in CatLie. �

Corollary 3.4. For n ∈ N, we have a natural equivalence:

α−1(P#
2 ⊗

S2

K[Fn]) ' CatLie(2,−) ⊗
S2

K[Fn],

where the action of S2 on K[Fn] is given by taking the inverse in Fn: v 7→ v−1 and the action

of S2 on P#
2 is described in Lemma 3.1.

4. Habiro-Massuyeau’s category

4.1. Definition. In [HM21, Section 4.1], Habiro and Massuyeau consider Jacobi diagrams on
a 1-manifold coloured by elements of a group (see also [GL01, ST04]). In order to avoid the
confusion with the fact that we will also consider Jacobi diagrams where the univalent vertices
are ”coloured” by a set, we replace the terminology used by Habiro and Massuyeau by beaded
Jacobi diagrams (following, for example, [GR04]).

For d ≥ 0, let Xd be the oriented 1-manifold consisting of d arc components. Recall that a
Jacobi diagram D on Xd is a uni-trivalent graph such that each trivalent vertex is oriented, the
set of univalent vertices is embedded into the interior of Xd and each connected component of D
contains at least one univalent vertex. When a Jacobi diagram D on Xd is drawn in the plane,
we draw the 1-manifold Xd with solid lines, the Jacobi diagram part D with dashed lines and
we assume counterclockwise orientation for the trivalent vertices of D.

For G a group, a G-beaded Jacobi diagram on Xd is a Jacobi diagram D on Xd whose graph
edges are oriented and a G-valued function on a finite subset of (Int(Xd) ∪D) \ Vert(D). This
function labels the oriented edges of D and the arcs of Xd, by elements in G. In figures, the
labels are encoded by ”beads” coloured with elements of G.

Two G-beaded Jacobi diagrams on Xd are said to be equivalent if they are related by the
following sequence of local moves (see [HM21, (4.1) and p.618]), where w, x ∈ G:
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∼w x wx ; ∼1 ;

∼w w−1

∼w x wx ; ∼1 ;

∼w

w

w

∼w

w

w

For example, these two G-beaded Jacobi diagrams on X2, where w1, w2, w3 ∈ G, are equiva-
lent:

w1

w3

w3

w2

w2

w1(w2)−1

w1

∼ w1w3

w2w1

w1
−1

w1w2

In particular, each G-beaded Jacobi diagram on Xd is equivalent to a G-beaded Jacobi diagram
of the form:

... ... ...

1 2
...

d

w1 w2 wd

where w1, . . . , wd ∈ G and where we can have beads on the Jacobi diagram represented by the
dashed part in the figure.

In [HM21, Section 4.2] Habiro and Massuyeau define the linear category A of Jacobi diagrams
in handlebodies. This category has N as objects and for n,m ∈ N, A(n,m) is the vector space
generated by the equivalence classes of Fn-beaded Jacobi diagrams on Xm modulo the STU
relation. The composition in the category A is quite complicated and we refer the reader to
[HM21, Section 4.2] for its definition.

By [HM21, Section 4.3], the linear category A admits a symmetric monoidal structure given
on objects by the addition of integers. We denote this monoidal structure by �.

4.2. Two gradings and sub-(semi)-categories. In [HM21, Section 4.4] the authors define
two gradings on the morphisms of A. The first one is a N-grading given by the degree of the
Jacobi diagram: for m,n ∈ N, A(n,m) can be decomposed as a direct sum with respect to the
degree d of the Jacobi diagrams

(4.1) A(n,m) '
⊕
d∈N

Ad(n,m).

This grading is compatible with the composition in the category A giving maps

(4.2) ◦ : Ad′(m,n
′)×Ad(n,m)→ Ad+d′(n, n

′)

for d, d′ ∈ N.
The second grading is a grop-grading: the homotopy class of an (m,n)-Jacobi diagram D on

Xn is the homomorphism h(D) : Fn → Fm that maps each generator xj to the product of the
beads along the jth-oriented component of Xn. We have

(4.3) A(m,n) =
⊕

f∈grop(m,n)

A(m,n)f .
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Note that the identity morphism in A(n, n) is in the homotopy class of the identity homomor-
phism Fn → Fn. This grading is compatible with the composition in the category A.

(4.4) ◦ : A(m,n′)g ×A(n,m)f → A(n, n′)g◦f

for f ∈ grop(n,m) = gr(m,n) and g ∈ grop(m,n′) = gr(n′,m).
Using these gradings we can consider the following subcategory and sub-semicategory of A.

Recall that a semicategory is defined as a category without the condition on the existence of
identity morphisms (see [Mit72, Section 4]).

Taking degree d = 0, by (4.2) we have maps

◦ : A0(m,n′)×A0(n,m)→ A0(n, n′).

Hence A has a subcategory, denoted by A0, such that Obj(A0) = Obj(A) and the morphisms
in A0 are given by Jacobi diagrams of degree 0. By [HM21, p. 630] we have an isomorphism of
linear categories

(4.5) h : A0
'−→ Kgrop.

This isomorphism comes from the fact that A0(n,m) is generated by Fn-beaded empty Jacobi
diagrams on Xm. So we have only beads on the arcs of Xm. Such a choice of beads corresponds
to a homomorphism: Fn → Fm sending xi to the bead on the i-th arc of Xm.

Via the isomorphism h given in (4.5), the generators (m1,m2,m3,m4,m5) of gr recalled in
Section 2.1 correspond to the morphisms (η, µ, ε, S,∆) given in [HM21, (5.28)].

Recall that 0 ∈ grop(n,m) = gr(m,n) is the composition m→ 0→ n in gr. By Section 4.1, a
Fn-beaded Jacobi diagram D on Xm in the homotopy class of 0, is represented by a Fn-beaded
Jacobi diagram without beads on Xm (but there may be beads on D).

By (4.4) we have maps

◦ : A(m,n′)0 ×A(n,m)0 → A(n, n′)0.

We deduce that A has a sub-semicategory, denoted by A(−,−)0, such that Obj(A(−,−)0) =
Obj(A) and the morphisms in A(−,−)0 are given by beaded Jacobi diagrams in the homotopy
class of 0.

5. Projective generators on Habiro-Massuyeau’s category

Let A-Mod be the category of K-linear functors from A to the category K-Mod. For n ∈ N,
A(n,−) : A→ K-Mod is a linear functor. By the enriched Yoneda lemma, for F : A→ K-Mod
a K-linear functor, we have an isomorphism:

HomA-Mod(A(n,−), F ) ' F (n).

We deduce that the functors A(n,−), for n ≥ 0, are projective generators of A-Mod.
Note that, for d ∈ N, Ad(n,−) do not define subfunctors of A(n,−) since the degree of Jacobi

diagrams is not preserved by composition. However, for n ∈ N, by restriction to A0, we have
linear functors A(n,−) : A0'Kgrop → K-Mod and so functors

A(n,−) : grop → K-Mod.

Then, by (4.2), the grading by the degree of the Jacobi diagrams defines subfunctors

Ad(n,−) : grop → K-Mod.

Remark 5.1. In [Kata, Katb], Katada studies the functor A(0,−) : grop → K-Mod and, for d ∈ N,
its subfunctors Ad(0,−) denoted by Ad in [Kata, Katb]. In [Kata], she proves that Ad(0,−) is a
polynomial functor of degree 2d which is an outer functor. She also gives a complete description of
the functor A1(0,−) and the more complicated case of the functor A2(0,−). In [Katb, Theorem
10.1], she gives a direct decomposition of the functor Ad(0,−) for d ≥ 1 (see also Proposition
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6.16 for another proof) and obtains in [Katb, Proposition 10.2] that this is an indecomposable
decomposition.

Remark 5.2. More generally, A(−,−) : Aop×A→ K-Mod is a linear functor and, by restriction,
we have a functor A(−,−) : gr × grop → K-Mod. The study of these bifunctors will be done
elsewhere.

5.1. Generalities on the functors A(n,−) and Ad(n,−). The first result of this section
shows that the functors A(n,−) are connected to each other by injective natural transformations.
Let ε ∈ A0(1, 0) = A(1, 0) be the morphism corresponding, via the isomorphism h of (4.5)
to the morphism m3 given in Section 2.1. For n ≥ 1 we have A(n, 0) ' K[ε�n] ' K and
A(0, 0) = A0(0, 0) = K. So 0 is a terminal object in the K-linear category A. We deduce that,

for n ≥ 1, the functors A(n,−) : grop → K-Mod are not reduced. We denote by A(n,−) the

reduced subfunctor of A(n,−). In particular we have: A(n,−) ' K ⊕A(n,−). Note that 0 is
far from being an initial object in A and that A(0,−) is reduced.

Lemma 5.3. For d, n ∈ N, the precomposition with Idn�ε ∈ A0(n+1, n) gives injective natural
transformations

A(n,−) ↪→ A(n+ 1,−); Ad(n,−) ↪→ Ad(n+ 1,−).

Proof. For n = 0, the injectivity follows from [HM21, Lemma 4.5] and the general case is a
consequence of the generalization of this Lemma given in [HM21, Remark 4.6]. By (4.2) the
composition preserves the degree of the Jacobi diagram. �

In [Kata, Proposition 8.1], Katada proves that the functor Ad(0,−) is polynomial of degree 2d.
The following Proposition shows that the polynomiality of the functors Ad(n,−) is an infrequent
phenomenon.

Proposition 5.4. For d, n ∈ N, the functor Ad(n,−) : grop → K-Mod is polynomial iff n = 0.

The proof of this proposition is based on the following lemmas.

Lemma 5.5. For n ∈ N, we have an isomorphism of functors: A0(n,−) ' Pn. In particular,
A0(0,−) ' K is polynomial of degree 0 and, for n ≥ 1, A0(n,−) is neither polynomial nor
analytic.

Proof. This follows from the isomorphism h : A0
'−→ Kgrop given in (4.5). �

For n ≥ 1, note that A0(0, n) = K[η�n] where η ∈ A0(0, 1) is the morphism defined in [HM21,
Section 5.6, (5.28)] corresponding to m1 (see Section 2.1) via the isomorphism h of (4.5) .

Lemma 5.6. For d ≥ 1 and n ≥ 1 the functor Ad(n,−) : grop → K-Mod is not polynomial.

Proof. We will prove that for k ≥ 2d+ 1, c̃rk(Ad(n,−)) 6= 0.
By Section 2.3, c̃rk(Ad(n,−))(1, . . . , 1) is the cokernel of the following homomorphism:

k⊕
l=1

Ad(n,−)(Fk−1)
(Ad(n,−)(rk

1̂
),...,Ad(n,−)(rk

k̂
))

−−−−−−−−−−−−−−−−−−−→ Ad(n,−)(Fk)

Ad(n,−)(Fk−1) 6= 0 and a generator of Ad(n,−)(Fk−1) is represented by a Fn-beaded Jacobi
diagram D on Xk−1 having 2d vertices. For 1 ≤ i ≤ k, Ad(n,−)(rk

î
)(D) is the Fn-beaded Jacobi

diagram D on Xk obtained from D by inserting the Fn-beaded arc:

1

between the (i− 1)-th and the i-th arc of D. So the following Fn-beaded Jacobi diagram on Xk

is a non-zero element in c̃rk(Ad(n,−))(1, . . . , 1):
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1 2
...

2d−1 2d
...

k

1 6= w ∈ Fn

�

Proof of Proposition 5.4. The case d = 0 follows from Lemma 5.5. For d ≥ 1, if n ≥ 1 the
functor Ad(n,−) is not polynomial by Lemma 5.6. The polynomiality of Ad(0,−) is given by
[Kata, Proposition 8.1] (see also Corollary 6.11).

�

5.2. Filtration of the functors A(n,−) and Ad(n,−). For n,m, t ∈ N, let At(n,m) be the
subspace of A(n,m) generated by Jacobi diagrams having at least t trivalent vertices. Similarly
we define At

d(n,m). We have the following result:

Proposition 5.7. For d,m ∈ N, the functors A(n,−) and Ad(n,−) have a filtration given by
the subfunctors:

At(n,−) ⊂ A(n,−); At
d(n,−) ⊂ Ad(n,−).

Proof. Let D be a generator in At(n,m) and f ∈ grop(m,m′). Via the isomorphism K[grop] '
A0, f corresponds to an element in A0(m,m′). The composition in A is given by a suitable
cabling of the Jacobi diagram of D on the arcs of Xn′ . This operations does not change the
number of trivalent vertices in the Jacobi diagram. �

In [Kata], Katada considers the filtration

0 = A2d−1
d (0,−) ⊂ . . . ⊂ A1

d(0,−) ⊂ A0
d(0,−) = Ad(0,−).

6. The functors A(n,−)0 and beaded open Jacobi diagrams

For d ∈ N and n ≥ 1, by Proposition 5.4, Ad(n,−) is not polynomial. In this section we
introduce a subfunctor of Ad(n,−), which is polynomial and which coincides, for n = 0, with
Ad(0,−).

6.1. Definition of the functors A(n,−)0. The functors A(n,−)0 are defined using the grop-
grading of A which is compatible with the composition in A by (4.4).

We deduce from (4.4) the following Proposition:

Proposition 6.1. For n ∈ N, the grop-grading gives rise to the subfunctor A(n,−)0 : grop →
K-Mod of A(n,−) : grop → K-Mod and the subfunctor Ad(n,−)0 : grop → K-Mod of Ad(n,−) :
grop → K-Mod.

Proof. For g ∈ grop(m,n′) and h ∈ grop(m,n′) we have

0 ◦ g = 0 and h ◦ 0 = 0.

where 0 ∈ grop(n,m) = gr(m,n) is the homomorphism Fm → Fn sending each generator to 1.
�

Remark 6.2. For n,m ∈ N, the generators of A(n,m)0 are those of A(n,m) which can be
represented by an Fn-beaded Jacobi diagrams on Xm, without beads on Xm.

Corollary 6.3. For d, n ∈ N, the precomposition with Idn � ε ∈ A0(n + 1, n) gives injective
natural transformations

A(n,−)0 ↪→ A(n+ 1,−)0; Ad(n,−)0 ↪→ Ad(n+ 1,−)0.
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Note that, for n = 0, we have A(0,−)0 = A(0,−) and Ad(0,−)0 = Ad(0,−).
Similarly to Proposition 5.7 we have the following result:

Proposition 6.4. For d, n ∈ N, the functors A(n,−)0 and Ad(n,−)0 have a filtration given by
the subfunctors:

At(n,−)0 ⊂ A(n,−)0; At
d(n,−)0 ⊂ Ad(n,−)0.

Remark 6.5. We have A0(n,−)0 = K and A0(n,−) ' Pn ' A0(n,−)0 ⊕ Pn.

6.2. The CatLie-modules JFm of Fm-beaded open Jacobi diagrams. Recall that an open
Jacobi diagram is a uni-trivalent graph such that each trivalent vertex is oriented and having
at least one univalent vertex in each connected component. For generalities on open Jacobi
diagrams we refer the reader to [CDM12, Section 5.6].

For Z a set, a Z-labelled open Jacobi diagram is an open Jacobi diagram D and a bijection:

{univalent vertices of D} '−→ Z. Note that in [Kata, p.13], Z-labelled open Jacobi diagrams are
called special Z-coloured open Jacobi diagrams.

For G a group, a G-beaded open Jacobi diagram is an open Jacobi diagram whose graph edges
are oriented and a map from a finite subset of D \ V ert(D) to G which labels oriented edges of
D by elements in G. In figures, the labels are encoded by ”beads” coloured with elements of G.

Two G-beaded open Jacobi diagrams are said to be equivalent if they are related by the
following local moves where w, x ∈ G:

(6.1)

∼w x wx ; ∼1 ; ∼w

w

w

; ∼w w−1

For G a group and Z a set, JG(Z) is the quotient by the AS and the IHX relations, of the
K-vector space generated by equivalence classes of Z-labelled, G-beaded, open Jacobi diagrams.
Let JGd (Z) be the subspace of JG(Z) generated by the Jacobi diagram having 2d vertices.

A generator in CatLie(n,m) can be viewed as a m + n-labelled, F0 = {1}-beaded open Jacobi
diagram. In this case the orientation of the edges can be taken arbitrarily (by the last relation
given in (6.1)).

Proposition 6.6. For d ∈ N, n 7→ JFmd (n) has the structure of a K-linear functor on CatLie

Proof. By the description of the category CatLie given in Section 2.4, it is sufficient to define
JFmd on the generators σ ∈ CatLie(n, n) ' K[Sn] and µni ∈ CatLie(n, n− 1).

Let D be a generator in JFmd (n), that is D is represented by a n-labelled, Fm-beaded, open
Jacobi diagram.

The action of CatLie(n, n) ' K[Sn] on D is given by the permutation of the labels of univalent
vertices.

To define JFmd (µni )(D), consider the open Jacobi diagram D′ obtained from D by gluing the

tree

i n

to the corresponding univalent vertices of D. Edges of D′ inherit an orientation
from D and a labelling in Fm. Colouring the univalent vertex of D′ without label by i, we obtain
a (n− 1)-labelled, Fm-beaded, open Jacobi diagram. The antisymmetry and Jacobi relations in

the operad Lie imply that this construction is well-defined on JFmd (n).
�
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6.3. The correspondence between Ad(n,−)0 and JFnd . We have the following Theorem:

Theorem 6.7. For n, d ∈ N, we have an equivalence of functors in Fω(grop;K):

α(JFnd ) ' Ad(n,−)0.

Proof. By definition, CatAssu ⊗
CatLie

JFnd is the coequalizer of the following diagram:

CatAssu ⊗
Σ
CatLie⊗

Σ
JFnd

L //
R
// CatAssu ⊗

Σ
JFnd

where L is defined using the functor CatAssu : (CatLie)op → Func(K[grop];K-Mod) andR using

the functor JFnd : CatLie → K-Mod. More explicitly, CatAssu ⊗
CatLie

JFnd is the coequalizer of

the following diagram:⊕
k,i∈N

CatAssu(i,−) ⊗
Si
CatLie(k, i) ⊗

Sk
JFnd (k)

L //
R
//
⊕
c∈N

CatAssu(c,−) ⊗
Sc
JFnd (c)

where L is defined using the map CatAssu(i,−)⊗
Si
CatLie(k, i)→ CatAssu(k,−) obtained using

the functor CatLie→ CatAssu and R is defined using the map CatLie(k, i) ⊗
Sk
JFnd (k)→ JFnd (i).

Let J Fnd (c) be the set of c-labelled, Fn-beaded, open Jacobi diagrams. For l ∈ N, we define a
linear map ⊕

c∈N
CatAssu(c, l) ⊗

Sc
K[J Fnd (c)]

fl−→ Ad(n,−)0(l)

as follows: for [α̃] a generator of CatAssu(c, l) represented by a set map α : c → l and a
given order on each of its fiber and D a c-labelled, Fn-beaded, open Jacobi diagram, we define
fl ([α̃]⊗ [D]) as being the Jacobi diagram on Xl obtained by gluing the univalent vertices of D
labeled by the elements of α−1(k) on the k-th component of Xl, respecting the order given on
the fiber α−1(k), for 1 ≤ k ≤ l.

The map fl is well-defined with respect to the AS and IHX relations and so defines a linear
map: ⊕

c∈N
CatAssu(c, l) ⊗

Sc
JFnd (c)

fl−→ Ad(n,−)0(l)

which is compatible with the action of the symmetric group Sl.
By Section 2.1, the PROP gr is generated by the permutations and the homomorphisms mi

for i ∈ {1, 2, 3, 4, 5}. To prove that the linear maps fl define a natural transformation of functors
on grop, it is sufficient to prove the naturality for these five homomorphisms. Using the explicit
description of the functor CatAssu(c,−) : grop → K-Mod, for c ∈ N, given in [Powa, Lemma
A.2] and the definition of the composition in the category A given in [HM21], we obtain that
the maps fl define a natural transformation:⊕

c∈N
CatAssu(c,−) ⊗

Sc
JFnd (c)

f−→ Ad(n,−)0.

For example, for m5 : F2 → F1, the induced map CatAssu(c, 1)→ CatAssu(c, 2) sends a set
map f : c → 1 with an order of c to the sum of all the maps c → 2 obtained by shuffles and
the map Ad(n,−)0(1) → Ad(n,−)0(2) sends a Jacobi diagram on X1 to the sum of the Jacobi
diagrams on X1 and X2 obtained by a shuffle of the univalent vertices. This corresponds in A
to the box notation used to define the composition.

Since CatLie is generated by the morphisms µc+1
i ∈ CatLie(c+1, c), to prove that f ◦L = f ◦R

it is sufficient to prove this relation on these generators. Let [ε] be a generator in CatAssu(c, l)
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represented by a set map ε : c → l and a given order on each of its fiber. We denote by Ei the
ordered fiber of ε(i) by ε: explicitly we have:

Ei = {a1 < . . . < au < i < b1 < . . . < bv}.
We consider the following ordered sets Ei<m+1 = {a1 < . . . < au < i < m + 1 < b1 < . . . < bv}
and Em+1<i = {a1 < . . . < au < m+ 1 < i < b1 < . . . < bv}.

We have:

Ll([ε]⊗ [µc+1
i ]⊗ [D]) = [(ε ◦ sc+1

i , Ei<m+1)]⊗ [D]− [(ε ◦ sc+1
i , Em+1<i)]⊗ [D]

where [(ε ◦ sc+1
i , Ei<m+1)] is the generator in CatAssu(c, l) represented by the set map ε ◦ sc+1

i :
c + 1 → l and the order on the fibers over j, is the same that for ε for j 6= i and is Ei<m+1 for
j = i. The generator [(ε ◦ sc+1

i , Em+1<i)] is defined similarly.
We have:

Rl([ε]⊗ [µc+1
i ]⊗ [D]) = [ε]⊗ i m+1

i

D

By the STU relation we obtain that:

fl ◦ Ll([ε]⊗ [µc+1
i ]⊗ [D]) = fl ◦Rl([ε]⊗ [µc+1

i ]⊗ [D])

and we deduce that fl define a natural transformation

CatAssu ⊗
CatLie

JFnd → Ad(n,−)0.

By the isomorphism given in (2.4), we obtain that this natural transformation is a natural
equivalence. �

Corollary 6.8. For n, d ∈ N, we have an equivalence of functors in Fω(grop;K):

α((JFnd )≤l) ' A2d−l
d (n,−)0.

Proof. Since ((JFnd )≤l)(i) = 0 for i > l, non-zero elements in ((JFnd )≤l)(i) are open Jacobi
diagrams, of degree d, having at most l univalent vertices and so at least 2d− l trivalent vertices.
So, by the equivalence of categories described in Theorem 6.7, the subfunctor (JFnd )≤l of JFnd
corresponds to the subfunctor A2d−l

d (n,−)0 of Ad(n,−)0.
�

For m = 0, since Ad(0,−)0 = Ad(0,−) it follows from Theorem 6.7 that α(J
{1}
d ) = Ad(0,−).

In the rest of this section we will exploit the correspondance given in Theorem 6.7 in order to
study the functors Ad(n,−)0.

6.4. On the polynomial filtration of the functors Ad(n,−)0.

Theorem 6.9. For n ∈ N and d ≥ 1, the functor Ad(n,−)0 : grop → K-Mod is polynomial of
degree 2d and the filtration of Ad(n,−)0 given in Proposition 6.4 corresponds to the polynomial
filtration. In other words

p2d−t(Ad(n,−)0) = At
d(n,−)0.

Proof. Since JFnd (2d+1) = 0 and JFnd (2d) 6= 0, the functor α(JFnd ) ∈ Fω(grop;K) is a polynomial
functor of degree 2d, by Section 2.4.

By (2.3), Theorem 6.7 and Corollary 6.8 we have:

α−1(pi(Ad(n,−)0)) ' (α−1(Ad(n,−))0)≤i ' (JFnd )≤i ' α−1(A2t−i
d (n,−)0).

�



18 CHRISTINE VESPA

Remark 6.10. The polynomiality of the functors Ad(n,−)0 can be proved without using the
equivalence of categories Fω(grop;K) ' FLie, using similar arguments as in the proof of Lemma
5.6. As this seems instructive to us, we give this alternative proof below.

We want to prove that c̃r2d+1(Ad(n,−)0) = 0. By Section 2.3, c̃r2d+1(Ad(n,−)0)(1, . . . , 1) is
the cokernel of the following homomorphism:

2d+1⊕
k=1

Ad(n,−)0(F2d)
(Ad(n,−)0(r2d+1

1̂
),...,Ad(n,−)0(r2d+1

ˆ2d+1
))

−−−−−−−−−−−−−−−−−−−−−−−−−→ Ad(n,−)0(F2d+1)

A generator of Ad(n,−)0(F2d+1) is represented by a Fn-beaded Jacobi diagram D on X2d+1

having 2d vertices and without bead on X2d+1. Since the Jacobi diagram has 2d univalent
vertices, at least one of the (2d+ 1)-arc components of X2d+1 has no univalent vertex. Assume
that this is the case for the k-th arc of X2d+1. Denote by Dk̂ the generator of Ad(n,−)0(F2d)
obtained from D by forgetting the k-th arc of X2d+1, then:

Ad(n,−)0(r2d+1

k̂
)(Dk̂) = D.

We deduce that the cokernel of the previous map is zero.

Since Ad(0,−)0 = Ad(0,−), as a special case we obtain the following result, originally due to
Katada.

Corollary 6.11. [Kata, Proposition 8.1]. For d ≥ 1, the functor Ad(0,−) : grop → K-Mod is
polynomial of degree 2d.

6.5. On the functors A1(n,−)0. Recall that, in Section 3, we define the functor P2 and study
the action of S2 on it.

Proposition 6.12. For n ∈ N, we have a natural equivalence

A1(n,−)0 ' P#
2 ⊗

S2

K[Fn],

where the action of S2 on K[Fn] is given by taking the inverse in Fn: v 7→ v−1 and the action

of S2 on P#
2 is given in Section 3. In particular, we have A1(0,−) ' S2 ◦ a#.

The second part of the statement corresponds to a result of Katada given in [Kata, Section
4].

Proof of Proposition 6.12. By Theorem 6.7, the equivalence of categories α−1 : Fω(grop;K)
'−→

FLie and Corollary 3.4, the statement is equivalent to the existence of a natural equivalence:

JFn1 ' CatLie(2,−) ⊗
S2

K[Fn].

The functor JFn1 : CatLie→ K-Mod is non-zero only on 1 and 2 and we have:

JFn1 (2) = K[
1 2

w
] ' K[Fn];

JFn1 (1) = K[

1

w

]/〈
1

w

+

1

w−1

〉 ' K[Fn]/〈[w] + [w−1]〉;

S2 acts on JFn1 (2) taking the inverse in Fn and JFn1 (µ2
1)([w]) = [w], for w ∈ Fn.

The functor CatLie(2,−) : CatLie→ K-Mod is non-zero only on 1 and 2 and we have:

CatLie(2, 2) ' K[S2] and CatLie(2, 1) ' K[µ2
1];



ON THE FUNCTORS ASSOCIATED WITH BEADED OPEN JACOBI DIAGRAMS 19

and CatLie(2,−)(µ2
1)([τ ]) = −[µ2

1] for τ the generator of S2.

In order to define a natural transformation ρ : CatLie(2,−) ⊗
S2

K[Fn] → JFn1 , we define the

K-linear maps:

• ρ2 : K[S2] ⊗
S2

K[Fn]→ K[Fn] given by ρ2([σ]⊗ [w]) = σ.[w];

• ρ1 : K[µ2
1] ⊗

S2

K[Fn]→ K[Fn]/〈[w] + [w−1]〉 given by ρ1([µ2
1]⊗ [w]) = [w].

Denoting by C the functor CatLie(2,−) ⊗
S2

K[Fn], we have:

ρ2 ◦ C(τ)([τ ]⊗ [w]) = ρ2([τ ◦ τ ]⊗ [w]) = ρ2([Id]⊗ [w]) = [w]

and JFn1 (τ) ◦ ρ2([τ ]⊗ [w]) = JFn1 (τ)(τ.[w]) = JFn1 (τ)([w−1]) = [w]

and
ρ1 ◦ C(µ2

1)([τ ]⊗ [w]) = ρ1(−[µ2
1]⊗ [w]) = −[w]

and JFn1 (µ2
1) ◦ ρ2([τ ]⊗ [w]) = JFn1 (µ2

1)(τ.[w]) = JFn1 (µ2
1)([w−1]) = [w−1] = −[w].

By similar computations on the generators [Id] ⊗ [w], we obtain that ρ1 and ρ2 satisfy the two
relations

ρ2 ◦ C(τ) = JFn1 (τ) ◦ ρ2 and ρ1 ◦ C(µ2
1) = JFn1 (µ2

1) ◦ ρ2

and so define a natural transformation.
Since ρ1 and ρ2 are isomorphisms, ρ is a natural equivalence.
For n = 0, K[F0]/〈[w]+ [w−1]〉 = 0, so the functor CatLie(2,−) ⊗

S2

K[Fn] is the atomic functor

K[2] and by (2.5) we have:

α(JF0
1 ) = α(K[2]) ' (a#)⊗2 ⊗

S2

K ' ((a#)⊗2)S2 ' S2 ◦ a#.

�

6.6. Outer property of the functors Ad(n,−)0. For d ∈ N, in [Kata, Theorem 5.1], Katada
proves that Ad(0,−) is an outer functor, namely inner automorphisms of Fm act trivially on
Ad(0,m). Her proof is based on properties of the composition in the category A, especially
properties of the box operator. In Theorem 6.13, we study the outer property of the functors
Ad(n,−)0 using the equivalence of categories Fω(grop;K) ' FLie. For n = 0, this gives another
proof of Katada’s result.

Theorem 6.13. For d, n ∈ N, the functor Ad(n,−)0 is an outer functor iff n = 0 or d = 0.

By Theorem 6.7 and Section 2.5, Ad(n,−)0 is an outer functor iff JFnd belongs to FµLie.
The proof of this theorem relies on the following result.

Proposition 6.14. The functor JF0

d belongs to FµLie.

Proof. For simplicity, the functor JF0

d is denoted by Jd below.
For k ∈ N, the natural transformation (µJd) : τJd → Jd gives maps

(µJd)k : τJd(k) = Jd(k + 1)→ Jd(k).

• For k ≥ 2d, Jd(k + 1) = 0 so (µJd)k = 0.
• For k = 2d− 1, the generators of Jd(2d) are Jacobi diagrams of the form

D := ...

j1 jd−1

id−1i1

j2

i2 β

2d
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For d = 1, we have

(µJ1)1(D) = (µJ1)1( 1 2 ) =
1

= 0 by the AS relation.

For d > 1, and α ∈ {1, . . . , d− 1}

µ2d
iα (D) =

iα

...

jα β

and µ2d
jα(D) =

jα

...

iα β

Using the AS relation we have µ2d
iα

(D) +µ2d
jα

(D) = 0 and µ2d
β (D) = 0. We deduce that

(µJd)2d−1 = 0.
• For k < 2d− 1. By functoriality of Jd on CatLie, we have morphisms

(6.2) CatLie(k + 2, k + 1)⊗ Jd(k + 2)→ Jd(k + 1)

We will prove that these maps are surjective.
Let D be a generator of Jd(k+1); since k+1 < 2d, D has at least one connected com-

ponent which is not of the form . We can chose one of these connected components
having the form

i

D′

where i ∈ {1, . . . , k + 1} and D′ is a Jacobi diagram. The generator D is obtained by

applying µk+2
i to the generator of Jd(k + 2) obtained from D replacing the previous

connected component by

i k+2

D′

(which could be non-connected). By iteration we obtain that the morphism

CatLie(2d, k + 1)⊗ Jd(2d)→ Jd(k + 1)

is surjective. By the naturality of µJd and the fact that (µJd)2d−1 = 0, we deduce that
(µJd)k = 0.

�

Proof of Theorem 6.13. For d = 0, by (6.5) A0(n,−)0 ' K which is obviously an outer functor.
For n = 0, Ad(0,−)0 is an outer functor by Proposition 6.14.

If n 6= 0 and d ≥ 1, we prove that JFnd does not belong to FµLie. The natural transformation

(µJFnd
) : τJFnd → JFnd gives map

(µJFnd
)2d−1 : τJFnd (2d− 1) = JFnd (2d)→ JFnd (2d− 1).



ON THE FUNCTORS ASSOCIATED WITH BEADED OPEN JACOBI DIAGRAMS 21

Consider the following generator of JFnd (2d)

D :=

d+1 d+2 2d

...

1 2 d

wdw2w1

where w1, . . . , wd ∈ Fn.
For d = 1, we have

(µJFn1
)1(D) = (µJFn1

)1(
1 2

w1
) =

1

w1

.

Since n ≥ 1, for w1 6= 1 ∈ Fn, (µJFn1
)1(D) 6= 0, so JFn1 is not an outer CatLie-module.

For d > 1, (µJFnd
)2d−1(D) is a sum of Jacobi diagrams of the form

...

with a 2d-labelling and beads in Fn on edges. In this sum there are exactly two summands where

the tree is labelled by the set {1, d, d+ 1}:

µ2d
1 (D) =

1 d+2 2d−1

...

2d+1 d d−1

wd−1w2

w1 w−1
d

= -

1 d+2 2d−1

...

2d d+1 d−1

wd−1w2

w−1
d

w1

and

µ2d
d+1(D) =

d+1 d+2 2d−1

...

21 d d−1

wd−1w2

w−1
1 w−1

d

=

1 d+2 2d−1

...

2d d+1 d−1

wd−1w2

w1w
−1
d

w1

where for µ2d
1 (D) we use the AS relation and for µ2d

d+1(D) we use the relation in Fn-beaded Jacobi
diagrams.

For w1 6= 1, µ2d
1 (D) + µ2d

d+1(D) 6= 0. We deduce that, for n ≥ 1, (µJFnd
)2d−1 6= 0 and JFnd is

not an outer CatLie-module.
�

Remark 6.15. We can also show that A1(n,−)0 is not an outer functor by using Proposition
6.12 and [PV18, Example 11.13] where it is proved that the functor P2 is not an outer functor.

6.7. On the functors Ad(0,−). By Section 2.3, we can consider the polynomial filtration of
Ad(0,−) and by Proposition 6.9, p2d−i(Ad(0,−)) = Ai

d(0,−). So, the quotient

p2d−i(Ad(0,−))/p2d−i−1(Ad(0,−)) = Ai
d(0,−)/Ai+1

d (0,−)

corresponds to the functor denoted by Bd,i in [Kata].
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By Corollary 6.8, α−1(Ai
d(0,−)) ' (JF0

d )≤2d−i, so α−1
(
Ai
d(0,−)/Ai+1

d (0,−)
)

is the atomic
functor concentrated in 2d−i, where it is equal to the vector space D2d−i which is the quotient by
AS and IHX relations of the K-vector space generated by the (2d− i)-labelled Jacobi diagrams
of degree d. The symmetric group S2d−i acts on D2d−i by the permutation of the labels of
univalent vertices.

By (2.5) we obtain:

Bd,i ' (a#)⊗2d−i ⊗
S2d−i

D2d−i

corresponding to the description of the functor Bd,i given by Katada in [Kata, (3)].
The decomposition of Bd,0 given by Katada in [Katb, Proposition 7.7] is functorial. In other

words, denoting by Sλ the Schur functor associated with the partition λ ` d, we have, for d ≥ 0:

(6.3) Bd,0 '
⊕
λ`d

S2λ ◦ a#

where, for λ = (λ1, . . . , λl) ` d, 2λ is the partition (2λ1, . . . , 2λl) ` 2d.
By [Ves18, Theorem 4.2], Ext1F(gr;K)(F,S2d ◦ a) = 0, for F a polynomial functor so S2d ◦ a is

an injective object in the category of polynomial functors on gr, so S2d ◦a# is a projective object
in the category of polynomial functors on grop. This allows us to give another proof of [Katb,
Theorem 10.1].

Proposition 6.16. [Katb, Theorem 10.1] For d ∈ N, we have a direct decomposition in F(grop;K):

Ad(0,−) = S2d ◦ a# ⊕Ad(0,−)/S2d ◦ a#.

Proof. By the polynomial filtration and (6.3), we have an epimorphism in F2d(grop;K):

(6.4) p : Ad(0,−) � S2d ◦ a#.

Since S2d ◦ a# is a projective object in F2d(grop;K), the functor HomF2d(grop;K)(S2d ◦ a#,−) :
F2d(grop;K)→ Ab is exact. Hence it sends the epimorphism (6.4) to an epimorphism:

HomF2d(grop;K)(S2d ◦ a#,Ad(0,−)) � HomF2d(grop;K)(S2d ◦ a#,S2d ◦ a#)

We deduce that p has a section s, i.e. a natural transformation s : S2d ◦ a# → Ad(0,−) in
F2d(grop;K) such that p ◦ s = IdS2d◦a# . �

Note that [Katb, Proposition 10.2] proves a stronger result, namely that Ad(0,−)/S2d ◦ a# is
indecomposable.
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