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Morphisms in the linear category A of Jacobi diagrams in handlebodies give rise to interesting contravariant functors on the category gr of finitely-generated free groups, encoding part of the composition structure of the category A. These functors correspond, via an equivalence of categories given by Powell, to functors given by beaded open Jacobi diagrams. We study the polynomiality of these functors and whether they are outer functors. These results are inspired by and generalize previous results obtained by Katada.

A d (n, -) : gr op → K-Mod

Introduction

In [START_REF] Habiro | The Kontsevich integral for bottom tangles in handlebodies[END_REF], Habiro and Massuyeau extend the Kontsevich integral to construct a functor from the category of bottom tangles in handlebodies to the linear category A of Jacobi diagrams in handlebodies. This category has N as objects and for n, m ∈ N, a generator of the vector space A(n, m) can be represented by a Jacobi diagram whose edges are oriented, such that each univalent vertex is embedded into the interior of the 1-manifold X m , consisting of m arcs and where we have beads coloured with elements of the free group of rank n on edges. For example, for F 3 = x 1 , x 2 , x 3 , the following is a non-zero element of A(3, 2):

x -1 2 x -1 1 x3 x1 x1
The definition of the composition in the linear category A is natural from the geometric point of view. However, it is quite complicated to understand it algebraically and this paper sheds some light on this.

To study the composition in a category, we can fix an object n in the category and look at the composition of the morphisms from n with any morphism of the category. In our setting, this corresponds to studying, for n an object of A, the linear functor A(n, -) : A → K-Mod where A(-, -) denotes the K-vector space of morphisms in A, for K a field of characteristic zero. These functors being still too complicated to study, we restrict them to the subcategory A 0 of A which is equivalent, by [START_REF] Habiro | The Kontsevich integral for bottom tangles in handlebodies[END_REF]p. 630], to the K-linearization of the opposite of the category gr of finitely-generated free groups. This gives rise to functors A(n, -) : gr op → K-Mod encoding the composition of morphisms in A from n with a morphism in the subcategory A 0 . The graduation by the degree d of the Jacobi diagrams defines subfunctors of A(n, -):

For n = 0, these functors have been studied by Katada in [Kata, Katb]. Katada shows that A d (0, -) is a polynomial functor of degree 2d which is an outer functor: i.e. for all m ∈ N, the inner automorphisms act trivially on A d (0, m). She also gives the complete structure of the functors A d (0, -) for d ∈ {1, 2, 3} and, for general d, a decomposition of the functor A d (0, -) into indecomposables.

The aim of this paper is to study, more generally, the functors A d (n, -) : gr op → K-Mod for d, n ∈ N.

Our first result shows that the polynomiality of the functors A d (0, -) is exceptional.

Proposition 1 (Proposition 5.4). For d, n ∈ N, the functor A d (n, -) : gr op → K-Mod is polynomial iff n = 0.

Using the gr op -graduation of A(n, m) introduced by Habiro and Massuyeau in [START_REF] Habiro | The Kontsevich integral for bottom tangles in handlebodies[END_REF], we obtain, in Proposition 6.1, a subfunctor A(n, -) 0 of A(n, -), satisfying A(0, -) 0 = A(0, -). The generators of A(n, m) 0 are those of A(n, m) which can be represented by a Jacobi diagram on X m without beads on X m (but there may be beads on the Jacobi diagram). For example, for F 3 = x 1 , x 2 , x 3 , the following represents a non-zero element of A(3, 2) 0 :

x -1 1 x3
The graduation by the degree d of the Jacobi diagrams defines a subfunctor A d (n, -) 0 of A(n, -) 0 . Considering the subspace of A d (n, m) 0 generated by the Jacobi diagrams having at least t trivalent vertices, we obtain subfunctors A t d (n, -) 0 of A d (n, -) 0 defining a filtration:

(1.1)

0 = A 2d d (n, -) 0 ⊂ . . . ⊂ A 1 d (n, -) 0 ⊂ A 0 d (n, -) 0 = A d (n, -) 0
corresponding, for n = 0, to the filtration considered by Katada in [Kata]. These functors satisfy the following:

Theorem 2 (Theorem 6.9). For n ∈ N and d ≥ 1, the functor A d (n, -) 0 : gr op → K-Mod is polynomial of degree 2d and the filtration (1.1) corresponds to the polynomial filtration.

However, contrary to the result of Katada, the functors A d (n, -) 0 are rarely outer functors:

Theorem 3 (Theorem 6.13). For d, n ∈ N, the functor A d (n, -) 0 is an outer functor iff n = 0 or d = 0.

We obtain a description of the functor A 1 (n, -) 0 generalizing that of the functor A 1 (0, -) given in [START_REF] Katada | Actions of automorphism groups of free groups on spaces of Jacobi diagrams[END_REF]Section 4]. Let a : gr → K-Mod be the abelianization functor, P 2 : gr → K-Mod the second Passi functor (see Section 3) and (-) # : F(gr; K) op → F(gr op ; K) the duality functor, we have: Proposition 4. (Proposition 6.12) For n ∈ N, we have a natural equivalence

A 1 (n, -) 0 P # 2 ⊗ S2 K[F n ],
where the action of S 2 on K[F n ] is given by taking the inverse in F n : v → v -1 and the action of S 2 on P # 2 is given in Section 3. In particular, we have A 1 (0, -) S 2 • a # .

In Section 6.7 we give another proof, based on [START_REF] Powell | Higher Hochschild homology and exponential functors[END_REF], of [START_REF]Actions of automorphism groups of free groups on spaces of Jacobi diagrams[END_REF]Theorem 10.1], giving a direct sum decomposition of the functor A d (0, -) in the category of functors on gr op . One of the main ingredients of this paper is the use of the equivalence of categories given by Powell in [Powa]:

α -1 : F ω (gr op ; K) -→ F Lie
where F ω (gr op ; K) is the category of analytic functors on gr op and F Lie is the category of Klinear functors from the linear PROP associated with the operad Lie to K-Mod (see Section 2.4 for further details). It turns out that the polynomial filtration of a functor is easier to understand in the category F Lie than in the category F ω (gr op ; K) (see [Powa] and Section 2.4). It is also easier to show that the action of inner automorphisms is trivial in the category F Lie (see [Powb] and Section 2.5). The proofs of the previous results are based on the computation of the functor α -1 (A d (n, -) 0 ). In Section 6.2, we introduce the K-vector space J Fn d (m) which is the quotient by the AS and the IHX relations, of the K-vector space generated by equivalence classes of open Jacobi diagrams D whose edges are oriented and labelled by F n (represented by beads) and equipped with a bijection {univalent vertices of D} -→ {1, . . . , m}. For example, the following is a non-zero element of J Fn 2 (3):

x3 x -1 1 1 2 3
The generators of J Fn d (m) are called F n -beaded open Jacobi diagrams. The correspondance between the AS relation and the antisymmetry relation for Lie algebras and the IHX relation and the Jacobi relation for Lie algebras implies that this defines a functor J Fn d in F Lie (see Proposition 6.6). We have the following:

Theorem 5 (Theorem 6.7). For n, d ∈ N, we have an equivalence of functors in F Lie :

α -1 (A d (n, -) 0 ) J Fn d .
The title of this paper reflects the fact that the functors J Fn d are much easier to study than the functors A d (n, -) 0 . A more in-depth study of the functors J Fn d will be given in another paper.
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For n ≥ 0:

• n = {1, . . . , n};

• S n is the symmetric group on n letters; • X n is the oriented 1-manifold consisting of n arc components;

• F n = x 1 , . . . , x n is the free group of rank n. The trivial group is denoted by {1}.

For generalities on Jacobi diagrams we refer the reader to [CDM12, Chapter 5].

Functors on gr op

2.1. Generalities on gr. Let gr be the category of finitely-generated free groups. This category is essentially small, with skeleton given by N, where n ∈ N corresponds to the free group F n of rank n. For clarity, we will sometimes denote the object n by F n . The object 0 = F 0 = {1} is a null-object in gr. For n, m objects of gr, we denote by 0 : n → m the composition n → 0 → m. Explicitly, 0 is the homomorphism F m → F n sending each generator to 1. The category gr is a PROP for the symmetric strict monoidal structure given by the free product. By Pirashvili's result [START_REF] Pirashvili | On the PROP corresponding to bialgebras[END_REF], the PROP gr is isomorphic to the free symmetric monoidal category generated by a commutative Hopf monoid. In other words, the morphisms of gr are generated by the permutations groups in gr(n, n) for n ∈ N and the following homomorphisms:

(1)

m 1 : 1 → 0 corresponding to F 1 → {1}; (2) m 2 : 1 → 2 corresponding to F 1 → F 2 sending the generator x of F 1 to x 1 x 2 ; (3) m 3 : 0 → 1 corresponding to {1} → F 1 ; (4) m 4 : 1 → 1 corresponding to F 1 → F 1 sending the generator x of F 1 to x -1 ;
(5) m 5 : 2 → 1 corresponding to F 2 → F 1 sending x 1 to x and x 2 to x (this is the folding map).

2.2. Generalities on functors on gr and gr op . We denote by F(gr; K) (resp. F(gr op ; K)) the category of functors from gr (resp. gr op ) to K-Mod. These categories are abelian.

A functor M : gr → K-Mod (resp. N : gr op → K-Mod) is said to be reduced if M (0) = 0 (resp. N (0) = 0).

Let P n : gr → K-Mod be the functor K[gr(n, -)]; {P n , n ∈ N} is a set of projective generators of the category F(gr; K). By the Yoneda lemma, for F : gr → K-Mod, Hom F (gr;K) (P n , F ) F (n).

We denote by P1 the reduced part of P 1 i.e. P 1 K ⊕ P1 . For G a free group P1 (G) is the K-vector space underlying the augmentation ideal IG of the K-algebra K[G]. Since P 0 = K, we have Hom F (gr;K) (P 1 , F ) F (0) ⊕ Hom F (gr;K) ( P1 , F ), so (2.1) Hom F (gr;K) ( P1 , P1 ) P1 (1) IF 1 .

Composition with vector space duality functor (-) # : K-Mod → K-Mod op gives rise to a pair of adjoint functors, named the duality functors (-) # : F(gr; K) op → F unc(gr; K-Mod op ) op -→ F(gr op ; K) (-) # : F(gr op ; K) → F unc(gr op ; K-Mod op ) -→ F(gr; K) op where the last equivalences are given by the usual equivalence of categories F(gr op ; K) op F unc(gr; K-Mod op ), where F unc(gr; K-Mod op ) is the category of functors from gr to the opposite of K-Mod. The duality functors restrict to an equivalence of categories for functors taking finite dimensional values.

Let a : gr → K-Mod be the abelianization functor that sends a free group

G to (G/[G, G])⊗ Z K.
The category of outer functors F Out (gr op ; K) is the full subcategory of F(gr op ; K) of functors F such that, for each n ∈ N, inner automorphisms act trivially on F (n). Outer functors were introduced in [PV18, Section 10]. Let Ω : F(gr op ; K) → F Out (gr op ; K) be the left adjoint to the inclusion functor F Out (gr op ; K) → F(gr op ; K). The functor Ω is described explicitly in [PV18, Definition 11.5].

2.3.

Polynomial and analytic functors on gr op . Polynomial contravariant functors have been considered in a general setting in [HPV15, Section 3.1]. Here we recall the definitions for contravariant functors on gr.

For k ∈ {1, . . . , n}, let i n k : F n-1 → F n be the homomorphism given by

i n k (x i ) = x i if i < k x i+1 if i ≥ k
The n-th cross-effect of a functor N : gr op → K-Mod is a functor cr n (N ) : (gr op ) ×n → K-Mod. Its evaluation on F 1 in each variable cr n (N )(1, . . . , 1) is equal to the kernel of the natural homomorphism

N (F n ) (N (i n 1 ),...,N (i n n)) -----------→ n k=1 N (F n-1 ).
In the examples, it is easier to compute cross-effects using the following equivalent description using a cokernel instead of a kernel. For k ∈ {1, . . . , n}, let r n k : F n → F n-1 be the homomorphism given by

r n k (x i ) =    x i if i < k 1 if i = k x i-1 if i > k cr n (N )(1, . . . , 1) is isomorphic to the cokernel of the natural homomorphism n k=1 N (F n-1 ) (N (r n 1 ),...,N (r n n )) -----------→ N (F n ).
For d ∈ N, a functor N : gr op → K-Mod is polynomial of degree at most d if cr d+1 (N )(1, . . . , 1) = 0. Let F d (gr op ; K) be the full subcategory of polynomial functors of degree at most d. The forgetful functor F d (gr op ; K) → F(gr op ; K) has a right adjoint denoted by p d . For N : gr op → K-Mod, the functor p d (N ) is the largest subfunctor of N polynomial of degree d. Hence, a functor N : gr op → K-Mod admits a natural filtration, called the polynomial filtration of N :

p 0 (N ) ⊂ p 1 (N ) ⊂ . . . ⊂ p d (N ) ⊂ p d+1 (N ) ⊂ . . . ⊂ N.
A functor N : gr op → K-Mod is analytic if it is the colimit of its subfunctors p d (N ). Let F ω (gr op ; K) denote the full subcategory of F(gr op ; K) of analytic functors.

For d ∈ N, we have a functor:

cr d : F d (gr op ; K) → K[S d ]-Mod, given on N : gr op → K-Mod by cr d (N ) = cr d (N )(1, . . . , 1)
where the action of S d is given by permuting the factors.

The functor (a # ) ⊗d : gr op → K-Mod is polynomial of degree d. The following Proposition is the analogue, for contravariant functors, of [PV18, Proposition 6.9].

Proposition 2.1. [Powa, Proposition 7.20] For d ∈ N, the functor cr d : F d (gr op ; K) → K[S d ]-Mod has right adjoint given by M → ((a # ) ⊗d ⊗ M ) S d
where S d acts diagonally. This functor is exact and ((a # ) ⊗d ⊗M ) S d is semi-simple of polynomial degree d.

For N : gr op → K-Mod there is a natural short exact sequence

0 → p d-1 (N ) → p d (N ) → ((a # ) ⊗d ⊗ cr d (p d N )) S d → 0.
2.4. Analytic functors on gr op and CatLie-modules. Let CatLie be the linear PROP associated with the operad Lie [LV12, Section 5.4.1]. Explicitly, CatLie is the K-linear category such that Ob(CatLie) = N and

CatLie(m, n) = f ∈Fin(m,n) n i=1 Lie(|f -1 (i)|)
where Fin is the category of finite sets. Since Lie is reduced (i.e. Lie(0) = 0) the sum can be taken over the surjections m n. For m ∈ N, CatLie(m, 1) = Lie(m) and for m < n, CatLie(m, n

) = 0. Since Lie(1) = K, CatLie(m, m) K[S m ].
Fix a generator µ ∈ Lie(2). For n ∈ N and i ∈ {1, . . . , n}, let µ n+1 i ∈ CatLie(n + 1, n) be the morphism given by the set map s n+1 i : n + 1 → n defined by s n+1 i (j) = j for j < n + 1 and s n+1 i (n + 1) = i and taking 1 ∈ Lie(1) for the fibres of cardinal one and µ ∈ Lie(2) for the fiber of cardinal 2. The K-linear category CatLie is generated (via linear combination and composition) by the morphisms

µ n+1 i ∈ CatLie(n + 1, n) and CatLie(n, n) K(S n ) for n ∈ N.
Note that a pointed version of CatLie with a shuffle condition on fibers intervenes in [START_REF] Hoffbeck | Leibniz homology of Lie algebras as functor homology[END_REF]. Let F Lie be the category of K-linear functors from CatLie to K-Mod. For n ∈ N, CatLie(n, -) : CatLie → K-Mod is a linear functor. By the enriched Yoneda lemma, for F : CatLie → K-Mod a K-linear functor, we have an isomorphism:

Hom F Lie (CatLie(n, -), F ) F (n).
We deduce that the functors CatLie(n, -), for n ≥ 0, are projective generators of F Lie .

For F ∈ F Lie and i ∈ N, since CatLie(m, n) = 0 for m < n, F admits a subfunctor F ≤i given by truncation, i.e.

F ≤i (n) = F (n) if n ≤ i 0 if n > i It follows that a functor F ∈ F Lie admits a natural filtration: F ≤0 ⊂ F ≤1 ⊂ . . . ⊂ F ≤d ⊂ F ≤d+1 ⊂ . . . ⊂ F.
In [Powa], Powell gives an equivalence of categories between F Lie and F ω (gr op ; K). In particular, Powell constructs explicit exact functors:

α : F Lie → F ω (gr op ; K) α -1 : F ω (gr op ; K) → F Lie
giving this equivalence. By [START_REF] Powell | On analytic contravariant functors on free groups[END_REF]Corollary 8.9], for F ∈ F ω (gr op ; K) we have an isomorphism:

(2.2) α -1 (F )(d) cr d (p d F )(1, . . . , 1).
The category CatLie is easier to understand than the category gr op . For example, we have CatLie(i, j) = 0 for i < j. It follows that it is easier to work with CatLie-modules than with functors on gr op . In particular, the polynomiality of functors in F ω (gr op ; K) has an easy interpretation in CatLie-modules: a functor F ∈ F ω (gr op ; K) is polynomial of degree equal to

d iff α(F )(d) = 0 and α(F )(k) = 0 for k > d.
Via the equivalence of categories, the polynomial filtration of a functor in F ω (gr op ; K) corresponds to the filtration given by the truncations of CatLie-modules. More precisely, for N : gr op → K-Mod and i ∈ N we have:

(2.3) α -1 (p i (N )) = (α -1 N ) ≤i .
To prove Theorem 6.7, we will need the following explicit description of the functor α given in [START_REF] Powell | On analytic contravariant functors on free groups[END_REF]Theorem 9.17]. Let CatAss u be the linear PROP associated with unital associative algebras; CatAss u is the K-linear category such that Ob(CatAss u ) = N and

CatAss u (m, n) = f ∈Fin(m,n) n i=1 Ass u (|f -1 (i)|)
where Fin is the category of finite sets. More explicitly, a generator of CatAss u (m, n) is represented by a set map f ∈ Fin(m, n) and an order of the elements of each fiber of f . We denote by (s n+1 i , i < n + 1) (resp. (s n+1 i , n + 1 < i)) the morphism in CatAss(n + 1, n) given by the set map s n+1 i : n + 1 → n and the order i < n + 1 (resp. n + 1 < i) on the fiber of cardinal 2. The morphism of operads Lie → Ass u induces a functor CatLie → CatAss u sending the morphism [START_REF] Powell | On analytic contravariant functors on free groups[END_REF]Proposition 9.13] the sets of morphisms in CatAss u define a functor:

µ n+1 i ∈ CatLie(n + 1, n) to (s n+1 i , i < n + 1) -(s n+1 i , n + 1 < i) ∈ CatAss(n + 1, n) By
CatAss u : (CatLie) op ⊗ K[gr op ] → K-Mod.
In [Powa, Lemma A.2], the functor CatAss u (i, -) : gr op → K-Mod, for i an object of (CatLie) op , is described explicitly on the generators of gr recalled in Section 2.1. By [START_REF] Powell | On analytic contravariant functors on free groups[END_REF]Theorem 9.17], α = CatAss u ⊗ CatLie -. Let Σ be the category of finite sets and bijections and F(Σ; K) the category of functors from Σ to K-Mod. The obvious functor Σ → gr op induces a functor F(gr op ; K) → F(Σ; K). By [Powa, Remark 9.18], for an object F of F Lie and d an object of gr op , the functor in F(Σ; K) associated with CatAss u ⊗ CatLie F is given explicitly by:

(2.4) α(F )(d) i∈N KFin(i, d) ⊗ Si F (i).
A K[S d ]-module M defines an object of F Lie which is 0 for n = d and M on d. Such CatLie-module will be said atomic and will be denoted by M [d].

For a K[S d ]-module M , by [START_REF] Powell | On analytic contravariant functors on free groups[END_REF]Example 9.20], we have:

(2.5) α(M [d]) = (a # ) ⊗d ⊗ S d M.
This is in the image of the faithful embedding F ω (ab op ; K) → F ω (gr op ; K), where ab is the category of finitely-generated free abelian groups. The category of analytic functors F ω (ab op ; K) is semi-simple. More precisely we have an equivalence of categories:

F ω (ab op ; K) F(Σ; K).
The functor α -1 extends this equivalence of categories in the sense that we have a commutative diagram: 2.5. Outer CatLie-modules. In [Powb], Powell gives a characterization of CatLie-modules corresponding to outer functors via the equivalence of categories given in the previous section. These CatLie-modules will be called outer CatLie-modules. We briefly recall Powell's result. Let τ : F Lie → F Lie be the shifting functor given by precomposition with -+ 1 : CatLie → CatLie. Let µ : τ → Id be the natural transformation defined as follows: for

F Lie α / / F ω (gr op ; K) F(Σ; K) / / ? O O F ω (
F ∈ F Lie , µ F : τ F → F is given by the natural morphisms (µ F ) n : τ F (n) = F (n + 1) → F (n) induced by n i=1 µ n+1 i ∈ CatLie(n + 1, n). Let F µ
Lie be the full subcategory of F Lie of functors such that µ F = 0. By [START_REF] Powell | Outer functors and a general operadic framework[END_REF]Theorem 4.16], under the equivalence of categories F ω (gr op ; K) F Lie , the full subcategory F Out ω (gr op ; K) of F ω (gr op ; K) is equivalent to F µ Lie . Let (-) µ : F Lie → F µ Lie be the functor given by F µ := coker(µ F ). By [Powb, Proposition 2.17], (-) µ is the left adjoint to the inclusion F µ Lie → F Lie and so corresponds to the functor Ω : F(gr op ; K) → F Out (gr op ; K) via the equivalence of categories F ω (gr op ; K) F Lie .

On the second Passi functor P 2

The contents of this Section will be used in the proof of Proposition 6.12. As the results of this Section are of independent interest, we chose to dedicate a separate Section to them. The reader can skip this section on first reading.

Let P 2 : gr → K-Mod be the functor defined by: P

2 (F n ) = IF n /(IF n ) 3 .
The functor P 2 is called the second Passi functor (see [START_REF] Hartl | Polynomial functors from algebras over a setoperad and nonlinear Mackey functors[END_REF][START_REF] Vespa | Extensions between functors from free groups[END_REF][START_REF] Powell | Higher Hochschild homology and exponential functors[END_REF]). It is the largest quotient of P 1 that is polynomial of degree 2.

The group S 2 acts on P 2 by the following way: by (2.1), the element [ where the last isomorphism is given by adjunction, so that S 2 acts on P 2 .

x -1 1 ] -[1] of IF 1 corresponds to a natural transformation σ in End F (gr;K) (P 1 ). For G ∈ gr, σ G : IG → IG is given explicitly by: σ G ([g] -[1]) = [g -1 ] -[1]. Since σ 2 = 1,
In the following lemma we give an explicit description of this action of S 2 on P 2 . Recall that a(G) IG/(IG) 2 , for G an object of gr.

Lemma 3.1. The natural transformation σ : P 2 → P 2 restricts to a natural transformation σ |a ⊗2 : a ⊗2 → a ⊗2 given by the place permutation. The induced natural transformation σ : a → a is given by σ(x) = -x for G an object of gr and x an element in a(G). 

Proof

σ G • i ([x] -[1] + (IG) 2 ) ⊗ ([y] -[1] + (IG) 2 ) = σ G ([x] -[1]).([y] -[1]) + (IG) 3 = σ G ([xy] -[1]) -([x] -[1]) -([y] -[1]) + (IG) 3 = ([y -1 x -1 ] -[1]) -([x -1 ] -[1]) -([y -1 ] -[1]) + (IG) 3 = ([y -1 ] -[1]).([x -1 ] -[1]) + (IG) 3 = i ([y -1 ] -[1] + (IG) 2 ) ⊗ ([x -1 ] -[1] + (IG) 2 )
We deduce that σ induces natural transformations σ |a ⊗2 : a ⊗2 → a ⊗2 and σ : a → a.

Since ([y] -[1])([y -1 ] -[1]) = -([y] -[1]) -([y -1 ] -[1]) in (IG) 2 , we have ([y -1 ] -[1] + (IG) 2 ) ⊗ ([x -1 ] -[1] + (IG) 2 ) = (-([y] -[1]) + (IG) 2 ) ⊗ (-([x] -[1]) + (IG) 2 ) = ([y] -[1] + (IG) 2 ) ⊗ ([x] -[1] + (IG) 2 ) giving the explicit description of σ |a ⊗2 .
For that of σ, we have:

p • σ G ([y] -[1] + (IG) 3 ) = p([y -1 ] -[1] + (IG) 3 ) = [y -1 ] -[1] + (IG) 2 = -([y] -[1]) + (IG) 2 .
The action of S 2 on P 2 corresponds to an action of S 2 on P # 2 . In order to describe the functor A 1 (n, -) 0 in Proposition 6.12, we need the following results on the second Passi functor.

Proposition 3.2. We have a natural equivalence in F Lie :

α -1 (P # 2 ) CatLie(2, -) hence α -1 (P #
2 ) is projective. Proof. The duality functor and α -1 being exact functors, we deduce from the non-split exact sequence (3.1), the following non-split exact sequence in F Lie :

(3.2) 0 / / α -1 (a # ) / / α -1 (P # 2 ) / / α -1 ((a ⊗2 ) # ) / / 0.
By (2.5), α -1 (a # ) and α -1 ((a ⊗2 ) # ) are atomic functors given by: α

-1 (a # ) = K[1] and α -1 ((a ⊗2 ) # ) = K[S 2 ][2]
. We deduce that α -1 (P # 2 ) is non-zero only on 1 and 2 and that

α -1 (P # 2 )(1) = K and α -1 (P # 2 )(2) = K[S 2
]. The functor CatLie(2, -) : CatLie → K-Mod is non-zero only on 1 and 2 and we have:

CatLie(2, 1) K and CatLie(2, 2) K[S 2 ].
By the Yoneda lemma:

Hom(CatLie(2, -), α -1 (P # 2 )) α -1 (P # 2 )(2) = K[S 2 ].
Let ν : CatLie(2, -) → α -1 (P # 2 ) be the natural transformation corresponding to [Id] by the previous isomorphism. By naturality of ν, we have:

α -1 (P # 2 )(µ 2 1 ) • ν 2 = ν 1 • CatLie(2, -)(µ 2 1 ).
By construction, ν 2 is an isomorphism and, since the short exact sequence (3.2) is non-split, α -1 (P # 2 )(µ 2 1 ) = 0. We deduce that ν 1 = 0 and so it is an isomorphism. Consequently, ν is a natural equivalence.

Corollary 3.3. The functor P # 2 is projective in the category of polynomial functors on gr op .

Proof. The functor α is an equivalence of categories and, by Proposition 3.2, α -1 (P # 2 ) is projective in CatLie.

Corollary 3.4. For n ∈ N, we have a natural equivalence:

α -1 (P # 2 ⊗ S2 K[F n ]) CatLie(2, -) ⊗ S2 K[F n ],
where the action of S 2 on K[F n ] is given by taking the inverse in F n : v → v -1 and the action of S 2 on P # 2 is described in Lemma 3.1.

Habiro-Massuyeau's category

4.1. Definition. In [HM21, Section 4.1], Habiro and Massuyeau consider Jacobi diagrams on a 1-manifold coloured by elements of a group (see also [START_REF] Garoufalidis | Homology surgery and invariants of 3-manifolds[END_REF][START_REF] Schneiderman | Whitney towers and the Kontsevich integral[END_REF]). In order to avoid the confusion with the fact that we will also consider Jacobi diagrams where the univalent vertices are "coloured" by a set, we replace the terminology used by Habiro and Massuyeau by beaded Jacobi diagrams (following, for example, [START_REF] Garoufalidis | The loop expansion of the Kontsevich integral, the null-move and S-equivalence[END_REF]). For d ≥ 0, let X d be the oriented 1-manifold consisting of d arc components. Recall that a Jacobi diagram D on X d is a uni-trivalent graph such that each trivalent vertex is oriented, the set of univalent vertices is embedded into the interior of X d and each connected component of D contains at least one univalent vertex. When a Jacobi diagram D on X d is drawn in the plane, we draw the 1-manifold X d with solid lines, the Jacobi diagram part D with dashed lines and we assume counterclockwise orientation for the trivalent vertices of D.

For G a group, a G-beaded Jacobi diagram on X d is a Jacobi diagram D on X d whose graph edges are oriented and a G-valued function on a finite subset of (Int(X d ) ∪ D) \ Vert(D). This function labels the oriented edges of D and the arcs of X d , by elements in G. In figures, the labels are encoded by "beads" coloured with elements of G.

Two G-beaded Jacobi diagrams on X d are said to be equivalent if they are related by the following sequence of local moves (see [HM21, (4.1) and p.618]), where w, x ∈ G: By [HM21, Section 4.3], the linear category A admits a symmetric monoidal structure given on objects by the addition of integers. We denote this monoidal structure by . 4.2. Two gradings and sub-(semi)-categories. In [HM21, Section 4.4] the authors define two gradings on the morphisms of A. The first one is a N-grading given by the degree of the Jacobi diagram: for m, n ∈ N, A(n, m) can be decomposed as a direct sum with respect to the degree d of the Jacobi diagrams (4.1)

A(n, m) d∈N A d (n, m).
This grading is compatible with the composition in the category A giving maps (4.2)

• : A d (m, n ) × A d (n, m) → A d+d (n, n ) for d, d ∈ N.
The second grading is a gr op -grading: the homotopy class of an (m, n)-Jacobi diagram D on X n is the homomorphism h(D) : F n → F m that maps each generator x j to the product of the beads along the j th -oriented component of X n . We have

(4.3) A(m, n) = f ∈gr op (m,n) A(m, n) f .
Note that the identity morphism in A(n, n) is in the homotopy class of the identity homomorphism F n → F n . This grading is compatible with the composition in the category A.

(4.4)

• : A(m, n ) g × A(n, m) f → A(n, n ) g•f
for f ∈ gr op (n, m) = gr(m, n) and g ∈ gr op (m, n ) = gr(n , m).

Using these gradings we can consider the following subcategory and sub-semicategory of A. Recall that a semicategory is defined as a category without the condition on the existence of identity morphisms (see [START_REF] Mitchell | The dominion of Isbell[END_REF]Section 4]).

Taking degree d = 0, by (4.2) we have maps

• : A 0 (m, n ) × A 0 (n, m) → A 0 (n, n ).
Hence A has a subcategory, denoted by A 0 , such that Obj(A 0 ) = Obj(A) and the morphisms in A 0 are given by Jacobi diagrams of degree 0. By [START_REF] Habiro | The Kontsevich integral for bottom tangles in handlebodies[END_REF]p. 630] we have an isomorphism of linear categories (4.5)

h : A 0 -→ Kgr op .
This isomorphism comes from the fact that A 0 (n, m) is generated by F n -beaded empty Jacobi diagrams on X m . So we have only beads on the arcs of X m . Such a choice of beads corresponds to a homomorphism: F n → F m sending x i to the bead on the i-th arc of X m . Via the isomorphism h given in (4.5), the generators (m 1 , m 2 , m 3 , m 4 , m 5 ) of gr recalled in Section 2.1 correspond to the morphisms (η, µ, ε, S, ∆) given in [START_REF] Habiro | The Kontsevich integral for bottom tangles in handlebodies[END_REF](5.28)].

Recall that 0 ∈ gr op (n, m) = gr(m, n) is the composition m → 0 → n in gr. By Section 4.1, a F n -beaded Jacobi diagram D on X m in the homotopy class of 0, is represented by a F n -beaded Jacobi diagram without beads on X m (but there may be beads on D).

By (4.4) we have maps

• : A(m, n ) 0 × A(n, m) 0 → A(n, n ) 0 .
We deduce that A has a sub-semicategory, denoted by A(-, -) 0 , such that Obj(A(-, -) 0 ) = Obj(A) and the morphisms in A(-, -) 0 are given by beaded Jacobi diagrams in the homotopy class of 0.

Projective generators on Habiro-Massuyeau's category

Let A-Mod be the category of K-linear functors from A to the category K-Mod. For n ∈ N, A(n, -) : A → K-Mod is a linear functor. By the enriched Yoneda lemma, for F : A → K-Mod a K-linear functor, we have an isomorphism:

Hom A-Mod (A(n, -), F ) F (n).
We deduce that the functors A(n, -), for n ≥ 0, are projective generators of A-Mod.

Note that, for d ∈ N, A d (n, -) do not define subfunctors of A(n, -) since the degree of Jacobi diagrams is not preserved by composition. However, for n ∈ N, by restriction to A 0 , we have linear functors A(n, -) : A 0 Kgr op → K-Mod and so functors

A(n, -) : gr op → K-Mod.
Then, by (4.2), the grading by the degree of the Jacobi diagrams defines subfunctors

A d (n, -) : gr op → K-Mod.
Remark 5.1. In [Kata, Katb], Katada studies the functor A(0, -) : gr op → K-Mod and, for d ∈ N, its subfunctors A d (0, -) denoted by A d in [Kata, Katb]. In [Kata], she proves that A d (0, -) is a polynomial functor of degree 2d which is an outer functor. She also gives a complete description of the functor A 1 (0, -) and the more complicated case of the functor A 2 (0, -). In [START_REF]Actions of automorphism groups of free groups on spaces of Jacobi diagrams[END_REF]Theorem 10.1], she gives a direct decomposition of the functor A d (0, -) for d ≥ 1 (see also Proposition 6.16 for another proof) and obtains in [START_REF]Actions of automorphism groups of free groups on spaces of Jacobi diagrams[END_REF]Proposition 10.2] that this is an indecomposable decomposition.

Remark 5.2. More generally, A(-, -) : A op × A → K-Mod is a linear functor and, by restriction, we have a functor A(-, -) : gr × gr op → K-Mod. The study of these bifunctors will be done elsewhere.

5.1. Generalities on the functors A(n, -) and A d (n, -). The first result of this section shows that the functors A(n, -) are connected to each other by injective natural transformations. Let ε ∈ A 0 (1, 0) = A(1, 0) be the morphism corresponding, via the isomorphism h of (4.5) to the morphism m 3 given in Section 2.1. For n ≥ 1 we have A(n, 0) K[ε n ] K and A(0, 0) = A 0 (0, 0) = K. So 0 is a terminal object in the K-linear category A. We deduce that, for n ≥ 1, the functors A(n, -) : gr op → K-Mod are not reduced. We denote by A(n, -) the reduced subfunctor of A(n, -). In particular we have: A(n, -) K ⊕ A(n, -). Note that 0 is far from being an initial object in A and that A(0, -) is reduced.

Lemma 5.3. For d, n ∈ N, the precomposition with Id n ε ∈ A 0 (n + 1, n) gives injective natural transformations A(n, -) → A(n + 1, -); A d (n, -) → A d (n + 1, -).
Proof. For n = 0, the injectivity follows from [HM21, Lemma 4.5] and the general case is a consequence of the generalization of this Lemma given in [HM21, Remark 4.6]. By (4.2) the composition preserves the degree of the Jacobi diagram.

In [START_REF] Katada | Actions of automorphism groups of free groups on spaces of Jacobi diagrams[END_REF]Proposition 8.1], Katada proves that the functor A d (0, -) is polynomial of degree 2d. The following Proposition shows that the polynomiality of the functors A d (n, -) is an infrequent phenomenon.

Proposition 5.4. For d, n ∈ N, the functor A d (n, -) :

gr op → K-Mod is polynomial iff n = 0.
The proof of this proposition is based on the following lemmas.

Lemma 5.5. For n ∈ N, we have an isomorphism of functors: A 0 (n, -) P n . In particular, A 0 (0, -)

K is polynomial of degree 0 and, for n ≥ 1, A 0 (n, -) is neither polynomial nor analytic.

Proof. This follows from the isomorphism h : A 0 -→ Kgr op given in (4.5).

For n ≥ 1, note that A 0 (0, n) = K[η n ] where η ∈ A 0 (0, 1) is the morphism defined in [HM21, Section 5.6, (5.28)] corresponding to m 1 (see Section 2.1) via the isomorphism h of (4.5) .

Lemma 5.6. For d ≥ 1 and n ≥ 1 the functor A d (n, -) : gr op → K-Mod is not polynomial.

Proof. We will prove that for k ≥ 2d + 1, cr k (A d (n, -)) = 0. By Section 2.3, cr k (A d (n, -))(1, . . . , 1) is the cokernel of the following homomorphism:

k l=1 A d (n, -)(F k-1 ) (A d (n,-)(r k 1 ),...,A d (n,-)(r k k )) -------------------→ A d (n, -)(F k ) A d (n, -)(F k-1 ) = 0 and a generator of A d (n, -)(F k-1 ) is represented by a F n -beaded Jacobi diagram D on X k-1 having 2d vertices. For 1 ≤ i ≤ k, A d (n, -)(r k î )(D) is the F n -beaded Jacobi diagram D on X k obtained from D by inserting the F n -beaded arc:
1 between the (i -1)-th and the i-th arc of D. So the following F n -beaded Jacobi diagram on X k is a non-zero element in cr k (A d (n, -))(1, . . . , 1):

1 2 ... 2d-1 2d ... k 1 = w ∈ F n
Proof of Proposition 5.4. The case d = 0 follows from Lemma 5.5. For d ≥ 1, if n ≥ 1 the functor A d (n, -) is not polynomial by Lemma 5.6. The polynomiality of A d (0, -) is given by [Kata, Proposition 8.1] (see also Corollary 6.11).

5.2. Filtration of the functors A(n, -) and A d (n, -). For n, m, t ∈ N, let A t (n, m) be the subspace of A(n, m) generated by Jacobi diagrams having at least t trivalent vertices. Similarly we define A t d (n, m). We have the following result: Proposition 5.7. For d, m ∈ N, the functors A(n, -) and A d (n, -) have a filtration given by the subfunctors:

A t (n, -) ⊂ A(n, -); A t d (n, -) ⊂ A d (n, -). Proof.
Let D be a generator in A t (n, m) and f ∈ gr op (m, m ). Via the isomorphism K[gr op ] A 0 , f corresponds to an element in A 0 (m, m ). The composition in A is given by a suitable cabling of the Jacobi diagram of D on the arcs of X n . This operations does not change the number of trivalent vertices in the Jacobi diagram.

In [Kata], Katada considers the filtration

0 = A 2d-1 d (0, -) ⊂ . . . ⊂ A 1 d (0, -) ⊂ A 0 d (0, -) = A d (0, -).

The functors A(n, -) 0 and beaded open Jacobi diagrams

For d ∈ N and n ≥ 1, by Proposition 5.4, A d (n, -) is not polynomial. In this section we introduce a subfunctor of A d (n, -), which is polynomial and which coincides, for n = 0, with A d (0, -).

6.1. Definition of the functors A(n, -) 0 . The functors A(n, -) 0 are defined using the gr opgrading of A which is compatible with the composition in A by (4.4).

We deduce from (4.4) the following Proposition: Proposition 6.1. For n ∈ N, the gr op -grading gives rise to the subfunctor A(n, -) 0 : gr op → K-Mod of A(n, -) : gr op → K-Mod and the subfunctor A d (n, -) 0 : gr op → K-Mod of A d (n, -) :

gr op → K-Mod.
Proof. For g ∈ gr op (m, n ) and h ∈ gr op (m, n ) we have

0 • g = 0 and h • 0 = 0.
where 0 ∈ gr op (n, m) = gr(m, n) is the homomorphism F m → F n sending each generator to 1.

Remark 6.2. For n, m ∈ N, the generators of A(n, m) 0 are those of A(n, m) which can be represented by an F n -beaded Jacobi diagrams on X m , without beads on X m .

Corollary 6.3. For d, n ∈ N, the precomposition with Id n ε ∈ A 0 (n + 1, n) gives injective natural transformations

A(n, -) 0 → A(n + 1, -) 0 ; A d (n, -) 0 → A d (n + 1, -) 0 .
Note that, for n = 0, we have A(0, -) 0 = A(0, -) and A d (0, -) 0 = A d (0, -).

Similarly to Proposition 5.7 we have the following result: Proposition 6.4. For d, n ∈ N, the functors A(n, -) 0 and A d (n, -) 0 have a filtration given by the subfunctors:

A t (n, -) 0 ⊂ A(n, -) 0 ; A t d (n, -) 0 ⊂ A d (n, -) 0 .
Remark 6.5. We have A 0 (n, -) 0 = K and A 0 (n, -) P n A 0 (n, -) 0 ⊕ P n . 

k,i∈N CatAss u (i, -) ⊗ Si CatLie(k, i) ⊗ S k J Fn d (k) L / / R / / c∈N CatAss u (c, -) ⊗ Sc J Fn d (c)
where L is defined using the map CatAss u (i, -) ⊗

Si

CatLie(k, i) → CatAss u (k, -) obtained using the functor CatLie → CatAss u and R is defined using the map CatLie(k, i)

⊗ S k J Fn d (k) → J Fn d (i). Let J Fn d (c) be the set of c-labelled, F n -beaded, open Jacobi diagrams. For l ∈ N, we define a linear map c∈N CatAss u (c, l) ⊗ Sc K[J Fn d (c)] f l -→ A d (n, -) 0 (l)
as follows: for [ α] a generator of CatAss u (c, l) represented by a set map α : c → l and a given order on each of its fiber and D a c-labelled, F n -beaded, open Jacobi diagram, we define

f l ([α] ⊗ [D]
) as being the Jacobi diagram on X l obtained by gluing the univalent vertices of D labeled by the elements of α -1 (k) on the k-th component of X l , respecting the order given on the fiber α -1 (k), for 1 ≤ k ≤ l.

The map f l is well-defined with respect to the AS and IHX relations and so defines a linear map:

c∈N CatAss u (c, l) ⊗ Sc J Fn d (c) f l -→ A d (n, -) 0 (l)
which is compatible with the action of the symmetric group S l . By Section 2.1, the PROP gr is generated by the permutations and the homomorphisms m i for i ∈ {1, 2, 3, 4, 5}. To prove that the linear maps f l define a natural transformation of functors on gr op , it is sufficient to prove the naturality for these five homomorphisms. Using the explicit description of the functor CatAss u (c, -) : gr op → K-Mod, for c ∈ N, given in [Powa, Lemma A.2] and the definition of the composition in the category A given in [START_REF] Habiro | The Kontsevich integral for bottom tangles in handlebodies[END_REF], we obtain that the maps f l define a natural transformation:

c∈N CatAss u (c, -) ⊗ Sc J Fn d (c) f -→ A d (n, -) 0 .
For example, for m 5 : F 2 → F 1 , the induced map CatAss u (c, 1) → CatAss u (c, 2) sends a set map f : c → 1 with an order of c to the sum of all the maps c → 2 obtained by shuffles and the map A d (n, -) 0 (1) → A d (n, -) 0 (2) sends a Jacobi diagram on X 1 to the sum of the Jacobi diagrams on X 1 and X 2 obtained by a shuffle of the univalent vertices. This corresponds in A to the box notation used to define the composition.

Since CatLie is generated by the morphisms µ c+1 i ∈ CatLie(c+1, c), to prove that f •L = f •R it is sufficient to prove this relation on these generators. Let [ε] be a generator in CatAss u (c, l) represented by a set map ε : c → l and a given order on each of its fiber. We denote by E i the ordered fiber of ε(i) by ε: explicitly we have:

E i = {a 1 < . . . < a u < i < b 1 < . . . < b v }.
We consider the following ordered sets

E i<m+1 = {a 1 < . . . < a u < i < m + 1 < b 1 < . . . < b v } and E m+1<i = {a 1 < . . . < a u < m + 1 < i < b 1 < . . . < b v }.
We have:

L l ([ε] ⊗ [µ c+1 i ] ⊗ [D]) = [(ε • s c+1 i , E i<m+1 )] ⊗ [D] -[(ε • s c+1 i , E m+1<i )] ⊗ [D]
where [(ε • s c+1 i , E i<m+1 )] is the generator in CatAss u (c, l) represented by the set map ε • s c+1 i : c + 1 → l and the order on the fibers over j, is the same that for ε for j = i and is E i<m+1 for j = i. The generator [(ε • s c+1 i , E m+1<i )] is defined similarly. We have:

R l ([ε] ⊗ [µ c+1 i ] ⊗ [D]) = [ε] ⊗ i m+1 i D
By the STU relation we obtain that:

f l • L l ([ε] ⊗ [µ c+1 i ] ⊗ [D]) = f l • R l ([ε] ⊗ [µ c+1 i ] ⊗ [D])
and we deduce that f l define a natural transformation

CatAss u ⊗ CatLie J Fn d → A d (n, -) 0 .
By the isomorphism given in (2.4), we obtain that this natural transformation is a natural equivalence.

Corollary 6.8. For n, d ∈ N, we have an equivalence of functors in F ω (gr op ; K):

α((J Fn d ) ≤l ) A 2d-l d (n, -) 0 .
Proof. Since ((J Fn d ) ≤l )(i) = 0 for i > l, non-zero elements in ((J Fn d ) ≤l )(i) are open Jacobi diagrams, of degree d, having at most l univalent vertices and so at least 2d -l trivalent vertices. So, by the equivalence of categories described in Theorem 6.7, the subfunctor (J For m = 0, since A d (0, -) 0 = A d (0, -) it follows from Theorem 6.7 that α(J {1} d ) = A d (0, -). In the rest of this section we will exploit the correspondance given in Theorem 6.7 in order to study the functors A d (n, -) 0 . 6.4. On the polynomial filtration of the functors A d (n, -) 0 . Theorem 6.9. For n ∈ N and d ≥ 1, the functor A d (n, -) 0 : gr op → K-Mod is polynomial of degree 2d and the filtration of A d (n, -) 0 given in Proposition 6.4 corresponds to the polynomial filtration. In other words p 2d-t (A d (n, -) 0 ) = A t d (n, -) 0 . Proof. Since J Fn d (2d+1) = 0 and J Fn d (2d) = 0, the functor α(J Fn d ) ∈ F ω (gr op ; K) is a polynomial functor of degree 2d, by Section 2.4. By (2.3), Theorem 6.7 and Corollary 6.8 we have: We will prove that these maps are surjective.

Let D be a generator of J d (k + 1); since k + 1 < 2d, D has at least one connected component which is not of the form . We can chose one of these connected components having the form is surjective. By the naturality of µ J d and the fact that (µ J d ) 2d-1 = 0, we deduce that (µ J d ) k = 0.

Proof of Theorem 6.13. For d = 0, by (6.5) A 0 (n, -) 0 K which is obviously an outer functor.

For n = 0, A d (0, -) 0 is an outer functor by Proposition 6.14.

If n = 0 and d ≥ 1, we prove that J Fn For w 1 = 1, µ 2d 1 (D) + µ 2d d+1 (D) = 0. We deduce that, for n ≥ 1, (µ J Fn d ) 2d-1 = 0 and J Fn d is not an outer CatLie-module. Remark 6.15. We can also show that A 1 (n, -) 0 is not an outer functor by using Proposition 6.12 and [PV18, Example 11.13] where it is proved that the functor P 2 is not an outer functor. 6.7. On the functors A d (0, -). By Section 2.3, we can consider the polynomial filtration of A d (0, -) and by Proposition 6.9, p 2d-i (A d (0, -)) = A i d (0, -). So, the quotient p 2d-i (A d (0, -))/p 2d-i-1 (A d (0, -)) = A i d (0, -)/A i+1 d (0, -) corresponds to the functor denoted by B d,i in [Kata].

w

  For example, these two G-beaded Jacobi diagrams on X 2 , where w 1 , w 2 , w 3 ∈ G, are equivalent:In particular, each G-beaded Jacobi diagram on X d is equivalent to a G-beaded Jacobi diagram of the form: w 1 , . . . , w d ∈ G and where we can have beads on the Jacobi diagram represented by the dashed part in the figure.In [HM21, Section 4.2] Habiro and Massuyeau define the linear category A of Jacobi diagrams in handlebodies. This category has N as objects and for n, m ∈ N, A(n, m) is the vector space generated by the equivalence classes of F n -beaded Jacobi diagrams on X m modulo the STU relation. The composition in the category A is quite complicated and we refer the reader to [HM21, Section 4.2] for its definition.

6. 2 .For:

 2 The CatLie-modules J Fm of F m -beaded open Jacobi diagrams. Recall that an open Jacobi diagram is a uni-trivalent graph such that each trivalent vertex is oriented and having at least one univalent vertex in each connected component. For generalities on open Jacobi diagrams we refer the reader to [CDM12, Section 5.6]. For Z a set, a Z-labelled open Jacobi diagram is an open Jacobi diagram D and a bijection: {univalent vertices of D} -→ Z. Note that in [Kata, p.13], Z-labelled open Jacobi diagrams are called special Z-coloured open Jacobi diagrams. For G a group, a G-beaded open Jacobi diagram is an open Jacobi diagram whose graph edges are oriented and a map from a finite subset of D \ V ert(D) to G which labels oriented edges of D by elements in G. In figures, the labels are encoded by "beads" coloured with elements of G. Two G-beaded open Jacobi diagrams are said to be equivalent if they are related by the following local moves where w, x ∈ G: G a group and Z a set, J G (Z) is the quotient by the AS and the IHX relations, of the K-vector space generated by equivalence classes of Z-labelled, G-beaded, open Jacobi diagrams. Let J G d (Z) be the subspace of J G (Z) generated by the Jacobi diagram having 2d vertices. A generator in CatLie(n, m) can be viewed as a m + n-labelled, F 0 = {1}-beaded open Jacobi diagram. In this case the orientation of the edges can be taken arbitrarily (by the last relation given in (6.1)). Proposition 6.6. For d ∈ N, n → J Fm d (n) has the structure of a K-linear functor on CatLie Proof. By the description of the category CatLie given in Section 2.4, it is sufficient to define J Fm d on the generators σ ∈ CatLie(n, n) K[S n ] and µ n i ∈ CatLie(n, n -1). Let D be a generator in J Fm d (n), that is D is represented by a n-labelled, F m -beaded, open Jacobi diagram. The action of CatLie(n, n) K[S n ] on D is given by the permutation of the labels of univalent vertices. To define J Fm d (µ n i )(D), consider the open Jacobi diagram D obtained from D by gluing the tree i n to the corresponding univalent vertices of D. Edges of D inherit an orientation from D and a labelling in F m . Colouring the univalent vertex of D without label by i, we obtain a (n -1)-labelled, F m -beaded, open Jacobi diagram. The antisymmetry and Jacobi relations in the operad Lie imply that this construction is well-defined on J Fm d (n). 6.3. The correspondence between A d (n, -) 0 and J Fn d . We have the following Theorem: Theorem 6.7. For n, d ∈ N, we have an equivalence of functors in F ω (gr op ; K): α(J Fn d ) A d (n, -) 0 . Proof. By definition, CatAss u ⊗ CatLie J Fn d is the coequalizer of the following diagram: defined using the functor CatAss u : (CatLie) op → F unc(K[gr op ]; K-Mod) and R using the functor J Fn d CatLie → K-Mod. More explicitly, CatAss u ⊗

  Fn d ) ≤l of J Fn d corresponds to the subfunctor A 2d-l d (n, -) 0 of A d (n, -) 0 .

α - 1

 1 (p i (A d (n, -) 0 )) (α -1 (A d (n, -)) 0 ) ≤i (J Fn d ) ≤i α -1 (A 2t-i d (n, -) 0 ). For d = 1, we have (µ J1 ) 1 (D) = (µ J1 ) 1 ( 1 2 ) = 1 =0 by the AS relation. For d > 1, and α ∈ {1, . . . , d -Using the AS relation we have µ 2d iα (D) + µ 2d jα (D) = 0 and µ 2d β (D) = 0. We deduce that (µ J d ) 2d-1 = 0. • For k < 2d -1. By functoriality of J d on CatLie, we have morphisms (6.2) CatLie(k + 2, k + 1) ⊗ J d (k + 2) → J d (k + 1)

iD

  where i ∈ {1, . . . , k + 1} and D is a Jacobi diagram. The generator D is obtained by applying µ k+2 i to the generator of J d (k + 2) obtained from D replacing the previous connected component by i k+2 D (which could be non-connected). By iteration we obtain that the morphism CatLie(2d, k + 1) ⊗ J d (2d) → J d (k + 1)

)).

  2d-1 : τ J Fn d (2d -1) = J Fn d (2d) → J Fn d (2d -1).Consider the following generator of J Fn d (2d) w 1 , . . . , w d ∈ F n . For d = 1, we have(µ J Fn 1 Since n ≥ 1, for w 1 = 1 ∈ F n , (µ J Fn 1 ) 1 (D) = 0, so J Fn 1 is not an outer CatLie-module. For d > 1, (µ J Fn d ) 2d-1 (D)is a sum of Jacobi diagrams of the form ... with a 2d-labelling and beads in F n on edges. In this sum there are exactly two summands where the tree is labelled by the set {1, d, d + 1}: µ 2d 1 (D) we use the AS relation and for µ 2d d+1 (D) we use the relation in F n -beaded Jacobi diagrams.
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  ab op ; K).Remark 2.2. For N : gr op → K-Mod, by Proposition 2.1 we can consider the graded functor gr(N ) associated with the filtered functor N , obtained by considering the polynomial filtration. We have gr(N ) =

	O O
	?

d∈N

((a # ) ⊗d ⊗ cr d (p d N )) S d and α(gr(N )) is the direct sum of atomic functors associated with the K[S d ]-module cr d (p d N ) whereas α(N ) is not, in general, the direct sum of atomic functors. This illustrates the fact that, considering the graded associated with a functor, we lose much of the structure.

  σ defines an action of S 2 on P 1 . By composition with P 1 P 2 we obtain σ ∈ Hom F (gr) (P 1 , P 2 ) Hom F2(gr) (P 2 , P 2 )

  . By[START_REF] Vespa | Extensions between functors from free groups[END_REF][START_REF] Djament | Cohomologie des foncteurs polynomiaux sur les groupes libres[END_REF], P 2 is a generator of Ext 1 F (gr) (a, a ⊗2 ). The non-split short exact sequence

	(3.1)	0	/ / a ⊗2 i / / P 2	p / / a	/ / 0
	gives rise, for G an object of gr, to an exact sequence	
	0	/ / IG/(IG) 2 ⊗ IG/(IG) 2 i / / IG/(IG) 3 p / / IG/(IG) 2	/ / 0
	For x, y ∈ G we have			
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Remark 6.10. The polynomiality of the functors A d (n, -) 0 can be proved without using the equivalence of categories F ω (gr op ; K) F Lie , using similar arguments as in the proof of Lemma 5.6. As this seems instructive to us, we give this alternative proof below.

We want to prove that cr 2d+1 (A d (n, -) 0 ) = 0. By Section 2.3, cr 2d+1 (A d (n, -) 0 )(1, . . . , 1) is the cokernel of the following homomorphism: -------------------------→ A d (n, -) 0 (F 2d+1 ) A generator of A d (n, -) 0 (F 2d+1 ) is represented by a F n -beaded Jacobi diagram D on X 2d+1 having 2d vertices and without bead on X 2d+1 . Since the Jacobi diagram has 2d univalent vertices, at least one of the (2d + 1)-arc components of X 2d+1 has no univalent vertex. Assume that this is the case for the k-th arc of X 2d+1 . Denote by D k generator of A d (n, -) 0 (F 2d ) obtained from D by forgetting the k-th arc of X 2d+1 , then:

We deduce that the cokernel of the previous map is zero.

Since A d (0, -) 0 = A d (0, -), as a special case we obtain the following result, originally due to Katada.

Corollary 6.11. [Kata, Proposition 8.1]. For d ≥ 1, the functor A d (0, -) : gr op → K-Mod is polynomial of degree 2d. 6.5. On the functors A 1 (n, -) 0 . Recall that, in Section 3, we define the functor P 2 and study the action of S 2 on it. Proposition 6.12. For n ∈ N, we have a natural equivalence

where the action of S 2 on K[F n ] is given by taking the inverse in F n : v → v -1 and the action of S 2 on P # 2 is given in Section 3. In particular, we have A 1 (0, -) S 2 • a # . The second part of the statement corresponds to a result of Katada given in [Kata, Section 4].

Proof of Proposition 6.12. By Theorem 6.7, the equivalence of categories α -1 : F ω (gr op ; K) -→ F Lie and Corollary 3.4, the statement is equivalent to the existence of a natural equivalence:

The functor J Fn 1 : CatLie → K-Mod is non-zero only on 1 and 2 and we have:

S 2 acts on J Fn 1 (2) taking the inverse in F n and J Fn 1 (µ 2 1 )([w]) = [w], for w ∈ F n . The functor CatLie(2, -) : CatLie → K-Mod is non-zero only on 1 and 2 and we have:

for τ the generator of S 2 . In order to define a natural transformation ρ :

1 , we define the K-linear maps:

Denoting by C the functor CatLie(2, -)

we have:

and

. By similar computations on the generators [Id] ⊗ [w], we obtain that ρ 1 and ρ 2 satisfy the two relations

• ρ 2 and so define a natural transformation.

Since ρ 1 and ρ 2 are isomorphisms, ρ is a natural equivalence.

For

and by (2.5) we have:

6.6. Outer property of the functors A d (n, -) 0 . For d ∈ N, in [Kata, Theorem 5.1], Katada proves that A d (0, -) is an outer functor, namely inner automorphisms of F m act trivially on A d (0, m). Her proof is based on properties of the composition in the category A, especially properties of the box operator. In Theorem 6.13, we study the outer property of the functors A d (n, -) 0 using the equivalence of categories F ω (gr op ; K) F Lie . For n = 0, this gives another proof of Katada's result.

Theorem 6.13. For d, n ∈ N, the functor A d (n, -) 0 is an outer functor iff n = 0 or d = 0.

By Theorem 6.7 and Section 2.5, A d (n, -) 0 is an outer functor iff J Fn d belongs to F µ Lie . The proof of this theorem relies on the following result. Proposition 6.14. The functor J F0 d belongs to F µ Lie . Proof. For simplicity, the functor J F0 d is denoted by

is the atomic functor concentrated in 2d-i, where it is equal to the vector space D 2d-i which is the quotient by AS and IHX relations of the K-vector space generated by the (2d -i)-labelled Jacobi diagrams of degree d. The symmetric group S 2d-i acts on D 2d-i by the permutation of the labels of univalent vertices.

By (2.5) we obtain:

corresponding to the description of the functor B d,i given by Katada in [START_REF] Katada | Actions of automorphism groups of free groups on spaces of Jacobi diagrams[END_REF](3)].

The decomposition of B d,0 given by Katada in [Katb, Proposition 7.7] is functorial. In other words, denoting by S λ the Schur functor associated with the partition λ d, we have, for d ≥ 0:

where, for λ = (λ 1 , . . . , λ l ) d, 2λ is the partition (2λ 1 , . . . , 2λ l ) 2d. By [Ves18, Theorem 4.2], Ext 1 F (gr;K) (F, S 2d • a) = 0, for F a polynomial functor so S 2d • a is an injective object in the category of polynomial functors on gr, so S 2d • a # is a projective object in the category of polynomial functors on gr op . This allows us to give another proof of [START_REF]Actions of automorphism groups of free groups on spaces of Jacobi diagrams[END_REF]Theorem 10.1]. Proposition 6.16. [Katb, Theorem 10.1] For d ∈ N, we have a direct decomposition in F(gr op ; K):

Proof. By the polynomial filtration and (6.3), we have an epimorphism in F 2d (gr op ; K): (6.4) p : A d (0, -) S 2d • a # . Since S 2d • a # is a projective object in F 2d (gr op ; K), the functor Hom F 2d (gr op ;K) (S 2d • a # , -) : F 2d (gr op ; K) → Ab is exact. Hence it sends the epimorphism (6.4) to an epimorphism: Hom F 2d (gr op ;K) (S 2d • a # , A d (0, -))

Hom F 2d (gr op ;K) (S 2d • a # , S 2d • a # )

We deduce that p has a section s, i.e. a natural transformation s : S 2d • a # → A d (0, -) in F 2d (gr op ; K) such that p • s = Id S 2d •a # .

Note that [Katb, Proposition 10.2] proves a stronger result, namely that A d (0, -)/S 2d • a # is indecomposable.