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ABSTRACT
Hidden Markov models are probabilistic graphical models based on hidden and observed ran-
dom variables. They are popular to address classification tasks for time series applications such
as part-of-speech tagging, image segmentation, genetic sequence analysis. We focus on direct
extensions of these models, the pairwise and triplet Markov models. These models aim at relax-
ing the assumptions underlying the hidden Markov chain by extending the direct dependencies
of the involved random variables or by considering the addition of a third latent process. While
these extensions define interesting modeling capabilities that have been little explored so far,
they also raise new problems such as defining the nature of their core probability distributions
and their parameterization. Once the model is fixed, the unsupervised classification task (i.e.
the estimation of the parameters and next of the hidden random variables) is a critical problem.
We address these challenges in this paper. We first show that it is possible to embed recent deep
neural networks in these models in order to exploit their full modeling power; we also consider
a continuous latent process in triplet Markov chains which aims at estimating the nature of the
joint distributions of the hidden and observed random variables, in addition to their parameters.
For each model that we introduce, we propose an original Bayesian unsupervised estimation
method which can take into account the interpretability of the hidden random variables in terms
of signal processing classification. Through unsupervised classification problems on synthetic
and real data, we show that the new models outperform hidden Markov chains and their classical
extensions usually considered in the literature.

1. Introduction
LetxxxK = (x0, x1,… , xK ), xk ∈ ℝdx ,ℎℎℎK = (ℎ0, ℎ1,… , ℎK ), ℎk ∈ Ω = {!1,… , !C} andzzzK = (z0, z1,… , zK ),

zk ∈ ℝdz , be three sequences of observed, hidden and auxiliary latent random variables (r.v.) of length K + 1,
respectively. As far as notations are concerned, we do not distinguish r.v. and their realizations. By hidden, we mean
that ℎk is an unobserved r.v. that we wish to estimate from xxxK . It represents an interpretable class associated to xkcontrary to zk which is an intermediate auxiliary latent r.v. and which may depend on (xxxK ,ℎℎℎK ). The mathematical
expectation of f (x) under the distribution p(x) is denoted as Ep(x)(f (x)). Finally, for k′ > k, we note the sequence
xxxk∶k′ = (xk,… , xk′ ); note that when the sequence is considered from the beginning, we have xxxk = xxx0∶k.
1.1. Unsupervised Bayesian classification in hidden Markov models

The estimation of ℎk from xxxK , for all k, 0 ≤ k ≤ K , relies on the unknown posterior distribution p(ℎk|xxxK ) andinvolves several challenges. The first one consists in modeling the unknown joint distribution of (ℎℎℎK , xxxK ) by a relevantparametric distribution p���(ℎℎℎK , xxxK ). It can coincide with the marginal distribution of a distribution in augmented
dimension p���(ℎℎℎK , zzzK , xxxK ) through the introduction of an auxiliary process zzzK . Once a class of distributions p��� hasbeen chosen, the objective is to estimate the parameter ��� from a realization xxxK in an unsupervised way, that is to say
without observingℎℎℎK and zzzK . A popular estimate is the Maximum-Likelihood (ML) estimate �̂��ML = argmax��� p���(xxxK )
due to its statistical properties [White, 1982, Douc and Moulines, 2012]. Even if �̂��ML is generally not computable,
several computational methods have been proposed to approximate it [Dempster et al., 1977, Balakrishnan et al., 2017].
Finally, for a given estimate �̂��, it remains to compute or approximate the posterior distribution p�̂��(ℎk|xxxK ) and to deduce,for example, the Maximum A Posteriori (MAP) estimates defined as argmaxℎk∈Ω p�̂��(ℎk|xxxK ), for all k. Again, and
according to the distribution p���(ℎℎℎK , xxxK ), the MAP estimates can be computed either exactly or approximately. In
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summary, the distribution p��� should properly describe the r.v. introduced for a given application (i.e. the relations
between the hidden and observed r.v. described by the model are realistic) t should also enable us to compute or
approximate the desired estimates at a reasonable computational cost. An additional challenge in our case is that the
estimated r.v. ℎk, associated to the final model, has to be interpretable in terms of signal processing classification, even
if when we only have xxxK at our disposal to compute these estimates.

When we deal with sequential data (e.g. text, video, music, protein sequences, images) a popular model is the
Hidden Markov Chain (HMC) [Rabiner, 1989]. In a HMC, the sequence ℎℎℎK is a Markov chain and given ℎℎℎK , theobservations xk are independent and only depend on the corresponding ℎk. In other words, p���(ℎℎℎK , xxxK ) satisfies

p���(ℎℎℎK , xxxK ) = p���(ℎ0)
K
∏

k=1
p���(ℎk|ℎk−1)

K
∏

k=0
p���(xk|ℎk), (1)

where p���(ℎk|ℎk−1) and p���(xk|ℎk) are the distributions representing the transitions of the Markov chain ℎℎℎK and the
relations between the observation and the class, respectively. Because ℎk is discrete, the computation of the associated
posterior distribution p���(ℎk|xxxK ) can be done with the Forward-Backward algorithm [Rabiner, 1989]. More precisely,
in some particular HMCmodels (if p���(xk|ℎk) is a Gaussian mixture, for example), it is possible to approximate the ML
estimate of ��� with the Baum-Welch algorithm [Rabiner, 1989], an adaptation of the Expectation-Maximation (EM)
algorithm [Dempster et al., 1977] for sequential data.

These models and their associated inference algorithms have been extended in multiple directions. In particular,
the Pairwise Markov Chain (PMC) model is a direct generalization of (1) where we only assume that the pair (ℎℎℎK , xxxK )is Markovian [Pieczynski, 2003, Le Cam et al., 2008, Morales and Petetin, 2021],

p���(ℎℎℎK , xxxK ) = p���(ℎ0, x0)
K
∏

k=1
p���(ℎk, xk|ℎk−1, xk−1). (2)

In such a model, ℎℎℎK is not necessarily a Markov chain and the observations can now be dependent given ℎℎℎK . Finally,PMC models can, in turn, be generalized to Triplet Markov Chain (TMC) models [Pieczynski, 2002, Pieczynski and
Desbouvries, 2005] by adding a third latent process zzzK and assuming that the triplet (ℎℎℎK , zzzK , xxxK ) is Markovian,

p���(ℎℎℎK , zzzK , xxxK ) = p���(ℎ0, z0, x0)
K
∏

k=1
p���(ℎk, zk, xk|ℎk−1, zk−1, xk−1). (3)

In the case where ℎℎℎK is discrete, such models have been mainly used with a discrete latent process zzzK [Gorynin et al.,
2018, Lanchantin et al., 2008, Pieczynski, 2007], whereas a continuous latent process has been used when ℎℎℎK is also
continuous [Lehmann and Pieczynski, 2020].

Models (2) and (3) provide interesting extensions of (1); however, these generalizations involve several issues that
we address in this paper. From a modeling point of view, the choice of the transitions distributions is a thorny problem.
For example, in (2), the choice of p���(ℎk, xk|ℎk−1, xk−1) and so that of p���(ℎk|ℎk−1, xk−1) is not obvious because of therelation between ℎk and xk−1. In addition, the interpretability of ℎk, which may be valid in a HMC, is not necessarily
satisfied when we introduce the generalization (2) because the observation xk not only depends on ℎk but also on ℎk−1.Consequently, and up to our best knowledge, the direct application of these extensions for unsupervised estimation
(i.e. the joint estimation of ��� and of ℎk from xxxK ) has been restricted to a subclass of PMC and TMC models which
rely on additional assumptions. First, it has been assumed that (ℎℎℎK , xxxK ) (resp. (ℎℎℎK , zzzK , xxxK ), where zk is discrete) isa stationary process [Pieczynski, 2003, Gorynin et al., 2018]; so the distribution p���(ℎℎℎK , xxxK ) (resp. p���(ℎℎℎK , zzzK , xxxK ))is directly described by the initial distribution p���(ℎℎℎ0∶1, xxx0∶1) = p���(ℎℎℎ0∶1)p���(xxx0∶1|ℎℎℎ0∶1) (resp. p���(ℎℎℎ0∶1, zzz0∶1, xxx0∶1) =
p���(ℎℎℎ0∶1, zzz0∶1)p���(xxx0∶1|ℎℎℎ0∶1, zzz0∶1)). These distributions coincide with a discrete distribution onΩ×Ω and a conditional
continuous one on ℝdx × ℝdx , respectively; they are thus easier to model in the sense that the conditioning does not
depend on a continuous r.v. Next, by choosing a classical distribution for the conditional distributions of the observa-
tions (xxx0∶1) (e.g. a Gaussian one whose parameters depend onℎℎℎ0∶1), they can be easily estimated by popular estimation
algorithms [Gorynin et al., 2018]. Finally, it has been observed that under these assumptions, the interpretability of
the hidden r.v. ℎk has been kept as long as it is satisfied in the underlying HMC model. However, the stationarity
assumption is restrictive in practice, the models introduced in this study do not require such hypothesis.
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1.2. Classification algorithms based on deep neural networks
In parallel, classification algorithms based on (deep) neural networks (DNNs) have known a regain of interest

during the last years. This ismainly due to their great performances for several applications such that speech recognition
[Deng et al., 2013, Chan et al., 2016, Abdel-Hamid et al., 2013], image recognition [Fu et al., 2017, Traore et al., 2018,
Zheng et al., 2017], natural language processing [Collobert and Weston, 2008, Goldberg, 2017]. Mathematically, a
DNN is a parameterized vector-valued function f���(x), x ∈ ℝdx , built as the sequential and alternate composition of
a linear function and a non linear one. If vector x′ represents the input of a given hidden layer, the scalar output of a
given neuron is computed as �(wx′ + b), where � is a non linear activation function such as the sigmoid, the ReLU, or
the hyberbolic tangent. The parameter ��� of a DNN consists of the weights and the biases which characterize the linear
transformations. A major interest of this construction is twofold. First, DNNs can be seen as universal approximators
in the sense that f���(x) can theoretically approximate any vector-valued function f (x), under some assumptions [Hornik
et al., 1989, Pinkus, 1999]. For a classification problem of an observation x, f���(x) aims at approximating directly the
posterior distribution p(ℎ|x), for all ℎ ∈ Ω.

The estimation of ��� relies on the observation that the gradient of f��� w.r.t. ��� can be exactly computed with the
backpropagation algorithm [Rumelhart et al., 1986]. Provided that we have at our disposal a labeled training dataset
� = {(x(i), ℎ(i))}ni=1, it is possible to minimize a cost function (�) (typically the negative log-likelihood) with a
gradient descent approach [Ruder, 2016]. Contrary to the approach described in Section 1.1, note that, this approach
does not model the joint probability distribution of the observations and the hidden r.v. and relies on a labeled dataset
to estimate the function f��� .
1.3. Contributions of this paper

As we have just seen, PMCs and TMCs have been used under several assumptions which may limit their modeling
power. On the other hand, DNNs provide universal approximators but their direct use is limited to supervised classi-
fication and do not model a distribution on the observations. The aim of this paper is to propose a general framework
for unsupervised signal classification which takes advantage of both of the approaches described above.

Our approach is based on the combination of the probabilistic graphical models described in Section 1.1 and
on the DNNs described in Section 1.2. In terms of modeling, this approach has several advantages. First, a direct
consequence is that (2)-(3) do not require any additional assumption on the involved distributions. Next, we are able
to propose powerful probabilistic PMC or TMC models in the sense that their associated conditional distributions
are now parameterized by universal approximators (DNNs) in the spirit of the Variational Auto-Encoders (VAEs)
[Kingma and Welling, 2014]. However, while VAEs and their extensions [Chung et al., 2015, Gregor et al., 2015]
aim at building powerful generative models (i.e. an expressive probability distribution p���(xxxK ) on the observations),
our objective is to propose an expressive joint distribution p���(ℎℎℎK , xxxK ) under the constraint that ℎℎℎK is an interpretable
hidden process. Next, a main advantage of embedding the DNN framework into a probabilistic framework is that it is
possible to derive unsupervised Bayesian estimation algorithms to jointly estimate ��� and ℎk, for all k. The counterpartof this generalization is that the resulting models can be highly parameterized in such a way that the final estimated
models can suffer from a lack of interpretability as compared to the simple HMC (1) (i.e. the estimated r.v. ℎk cannotbe interpreted as a physical class associated to xk). Thus, starting from a simple but interpretable model, we include
this constraint in our parameterized models and their associated Bayesian inference algorithms. Our models are based
on the declination of the general TMCs (3) in three versions and aim at modeling different kinds of problems:

• first, we consider a model in which we directly parameterize the joint distribution p���(ℎℎℎK , xxxK ) of a PMC (i.e. we
consider a TMC (3) without any latent process zzzK ). In this model, we introduce a general parameterized frame-
workwhich next enables us to useDNNs as a parameterization of the transition distribution p���(ℎk, xk|ℎk−1, xk−1)in (2). While we show that it is possible to adapt existing Bayesian inference algorithms, we propose and ad-hoc
procedure based on a pretraining of DNNs which aims at transforming a simple and interpretable model such as
(1) into a complex probabilistic architecture while keeping this interpretability constraint;

• in our second version of TMCs, we reintroduce a continuous latent process zzzK . The aim of this continuous pro-
cess is to learn the nature of the distribution of (ℎℎℎK , xxxK ); even if the distributions underlying p(ℎℎℎK , zzzK , xxxK ) aresimple distributions (e.g. Gaussian distributions for the continuous r.v.), the implicit marginal one p���(ℎℎℎK , xxxK ) =
∫ p(ℎℎℎK , zzzK , xxxK )dzzzK can become complex andmore relevant than a direct parameterization of p���(ℎℎℎK , xxxK ). How-ever, due to the continuous nature of the latent process, the distributions of interest cannot be computed exactly;
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thus, we modify the variational Bayesian inference framework [Michael et al., 1999] in order to propose a pa-
rameter estimation algorithm which takes into account the interpretability constraint of ℎℎℎK but also the different
roles ofℎℎℎK and zzzK ; we finally propose a Sequential Monte Carlo (SMC) algorithm [Doucet and Johansen, 2009]
based on the previous variational framework to obtain the final estimates of ℎk;

• in our last version of the TMC model, we propose an alternative use of the latent process zzzK ; here, our objectiveis to introduce an explicit long dependency on the observations to model the joint process (ℎℎℎK , xxxK ). To that
end, the latent process zzzK becomes deterministic given the observations xxxK . The resulting TMC model can be
interpreted as the combination of the PMCmodel (2) with a Recurrent Neural Network (RNN) [Rumelhart et al.,
1986, Mikolov et al., 2015] in which the distributions of interest can be computed exactly, while preserving the
interpretability of ℎk.

For each model, we perform simulations to evaluate to what extent our new generalized models lead to a better estima-
tion of the hidden states ℎk. Most of the simulations on synthetic and real data are run in the context of unsupervised
image segmentation; here, the objective is to estimate the original class ℎk (e.g. black or white) associated to each pixel
xk of a noisy image xxxK . We show that our deep parameterizations and the training procedure that we propose always
improve the segmentation accuracy. The results then pave the way towards a new and robust approach for unsupervised
signal processing with general hidden Markov models.

The paper is organized as follows. In Section 2, we introduce a general parameterization framework for PMC
models; we next review the associated Bayesian inference algorithms and we propose a particular estimation algorithm
in the case where the parameterizations rely on DNNs. In Section 3, we propose a TMC model with continuous latent
r.v. also based on a general parameterization and we review the variational Bayesian inference framework to propose
an estimation algorithm adapted to the interpretability constraint. A deep parameterization is also proposed for these
models. Finally, we show in Section 4 that it is possible to consider a deterministic latent process zzzK to introduce long
term dependencies between the r.v. (ℎk, xk) and all the past observations. We show that the particular structure of zzzKleads to a direct adaptation of the algorithms derived in Section 2.

2. General Pairwise Markov Chains
In this section, we do not consider any auxiliary latent process zzzK and we focus on the PMC model described by

(2). The classical HMC (1) is a particular instance of this model. To see this, the transition distribution in (2), can be
factorized as

p���(ℎk, xk|ℎk−1, xk−1) = p���(ℎk|ℎk−1, xk−1)p���(xk|ℎℎℎk−1∶k, xk−1). (4)
From (4), we deduce two particular instances of the PMC model; the semi PMC (SPMC), where the observation xkdoes not depend on ℎk−1, given (ℎℎℎk−1∶k, xk−1), i.e.

p���(ℎk, xk|ℎk−1, xk−1) = p���(ℎk|ℎk−1, xk−1)p���(xk|ℎk, xk−1); (5)
and the HMC (1), in which (ℎk, xk) becomes, in addition, independent of xk−1 given ℎk−1,

p���(ℎk, xk|ℎk−1, xk−1) = p���(ℎk|ℎk−1)p(xk|ℎk). (6)
Fig. 1 depicts the graphical representation of the HMM (Fig. 1a), SPMC (Fig. 1b) and PMC (Fig. 1c).

(a) HMC (b) SPMC (c) PMC
Figure 1: Graphical representations of the HMC, SPMC and PMC models. The white circles (resp. gray squares) represent
the hidden (resp. observed) r.v. ℎk (resp. xk).
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2.1. Bayesian inference for general parameterizations of PMCs
We now introduce a general parameterization of the distribution p���(ℎk, xk|ℎk−1, xk−1) underlying PMCs (2). We

next show that it remains possible to compute approximately the ML estimate of ��� and to compute exactly the posterior
distribution of ℎk, for all k. A main advantage of directly parameterizing (4) is that the model does not rely on any
stationary assumption contrary to the PMCmodels in [Derrode and Pieczynski, 2004, 2013, Boudaren and Pieczynski,
2016]. We finally introduce DNNs as particular parameterizations and we derive a procedure to estimate the parameters
of the networks which takes into account the interpretability constraint related to ℎk.
2.1.1. A general parameterization

Let f���(ℎk−1, xk−1) and g���(ℎℎℎk−1∶k, xk−1) be two vector-valued functions of (ℎk−1, xk−1) and of (ℎℎℎk−1∶k, xk−1), re-spectively. f��� and g��� are assumed to be differentiable w.r.t. ���. Let also �(ℎ; v) (resp. �(x; v′)) be a probability
distribution on Ω (resp. a probability density function (pdf) on ℝdx ) whose parameters are given by a vector v (resp.
v′) and which is differentiable w.r.t. v (resp. v′). Then we parameterize the conditional distributions in (4) as

p���(ℎk|ℎk−1, xk−1) = �(ℎk; f���(ℎk−1, xk−1)), (7)
p���(xk|ℎℎℎk−1∶k, xk−1) = �(xk; g���(ℎℎℎk−1∶k, xk−1)). (8)

In other words, f��� (resp. g���) describes the parameters of the (conditional) distribution � (resp. �).
As an illustrative example, let us show that this general parameterization includes the classical HMC with inde-

pendent Gaussian noise (HMC-IN). For the sake of clarity, let us assume that Ω = {!1, !2} and xk ∈ ℝ. We denote
 (x;m; �2) the Gaussian distribution with mean m and variance �2 taken at point x, Ber(ℎ; v) the Bernoulli distribu-
tion with parameter v such that Ber(!1; v) = v and sigm(z) = 1∕(1 + exp(−z)) ∈ [0, 1] the sigmoid function. Then
the HMC-IN model can be described as

f���(ℎk−1, xk−1) = sigm
(

bℎk−1
)

, (9)
g���(ℎℎℎk−1∶k, xk−1) =

[

dℎk ; �ℎk
] , (10)

�(ℎ; v) = Ber(ℎ, v), (11)
�
(

x; v′ =
[

v′1; v
′
2
])

= 
(

x; v′1; (v
′
2)
2) , (12)

Indeed, (9)-(10) only depend on ℎk−1 and on ℎk, respectively, so we have p���(ℎk = !1|ℎk−1 = !i) = sigm(b!i ) and
p���(xk|ℎk = !j) =  (xk; d!j ; �

2
!j
). Finally, ��� = (b!i , d!j , �!j |(!i, !j) ∈ Ω × Ω). As a further illustrative example,

it is possible to start from this particular parameterization of HMCs to derive a linear and Gaussian PMC model in
which we introduce dependencies on xk−1 and ℎk−1. In this case, � and � are unchanged but f��� and g��� now read

f���(ℎk−1, xk−1) = sigm
(

aℎk−1xk−1 + bℎk−1
)

, (13)
g���(ℎℎℎk−1∶k, xk−1) =

[

cℎk−1,ℎkxk−1 + dℎk−1,ℎk ; �ℎk,ℎk−1
] . (14)

The set of parameters is now given by ��� = (a!i , b!i , c!j ,!i , d!j ,!i , �!j ,!i |(!j , !i) ∈ Ω×Ω). As we will see later, thesemodels play a critical role in the construction of parameterization based on DNNs. Indeed, despite their simple form,
they generally provide an interpretable classification.

We now show that under this framework it is possible to derive an unsupervised estimation algorithm which ap-
proximates the ML estimate of ��� and which computes exactly the posterior distributions p���(ℎk|xxxK ), whatever theparameterization chosen above.
2.1.2. Estimation of ���

Using the differentiability assumptions on f��� , g��� , � and �, we can propose a gradient ascent method on the likeli-
hood p���(xxxK ) to approximate the ML estimate of ���. This gradient ascent method is based on the sequential computation
of ����,k(ℎk) = p���(ℎk, xxxk), for all k, 0 ≤ k ≤ K , from which we deduce the likelihood

p���(xxxK ) =
∑

ℎK

����,K (ℎK ). (15)
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Based on the Markovian property of (2) and on the general parameterization (7)-(8), the coefficients ����,K (ℎK ) can be
computed recursively from [Pieczynski, 2003]

����,k(ℎk) =
∑

ℎk−1

����,k−1(ℎk−1)�(ℎk; f���(ℎk−1, xk−1))�(xk; g���(ℎℎℎk−1∶k, xk−1)). (16)

Consequently, the gradient of the likelihood p���(xxxK ) (or equivalently that of the log-likelihood) w.r.t. ��� can be computed
sequentially by using the decomposition of ����,k in (16). The estimation of ��� can thus be deduced from an iterative
gradient ascent method based on a learning rate � and, for example, on the update

���(j+1) = ���(j) + �∇��� log p���(xxxK )
|

|

|���=���(j)
. (17)

The unsupervised estimation of ��� is summarized in Alg. 1.
Remark 1. Generally, the parameter estimation procedure for a probabilistic model with hidden r.v. is based on the
EM algorithm [Dempster et al., 1977]. It relies on the computation of Q(���,���(j)) = Ep���(j) (ℎℎℎK |xxxK )

(

log p���(ℎℎℎK , xxxK )
)

followed by the maximization of Q(���,���(j)) w.r.t. ���. However, for general parameterizations (7)-(8), the maximization
step cannot be computed analytically. In this case, it is possible to use a gradient-EM approach to replace the max-
imization step, but it is then strictly equivalent and computationally more demanding than computing the gradient of
the log-likelihood [Xu and Jordan, 1996, Balakrishnan et al., 2017] as we propose in (17). Finally, for particular
parameterizations for which the maximization step is computable, the comparison between these two approaches is an
open question and is out of scope of this paper.

2.1.3. Estimation of ℎkOnce we have obtained an estimate ���∗ of ���, it remains to compute p���∗ (ℎk|xxxK ), for all k. Again, this can be done
by using the Markovian property of (2) and by introducing the backward coefficients ����∗,k(ℎk) = p���∗ (xxxk+1∶K |ℎk, xk),for all k, with ����∗,K (ℎK ) = 1 [Pieczynski, 2003]. They can be computed sequentially from

����∗,k−1(ℎk−1) =
∑

ℎk

����∗,k(ℎk)�(ℎk; f���∗ (ℎk−1, xk−1))�(xk; g���∗ (ℎℎℎk−1∶k, xk−1)); (18)

we deduce
p���∗ (ℎℎℎk−1∶k|xxxK ) ∝ ����∗,k−1(ℎk−1) × ����∗,k(ℎk) × �(ℎk; f���∗ (ℎk−1, xk−1)) × �(xk; g���∗ (ℎℎℎk−1∶k, xk−1)), (19)

p���∗ (ℎk|xxxK ) =
∑

ℎk−1

p���∗ (ℎℎℎk−1∶k|xxxK ). (20)

The computation of the MAP estimate of ℎk is summarized in Alg. 2.

Input: A realization xxxK , a learning rate �, an initial set of parameters ���(0)
Result: ���∗, a set of estimated parameters

1 j = 0
2 while convergence of log p���(j) (xxxK ) is not attained do
3 Compute log ����(j),k(ℎk) and ∇��� log ����(j),k(ℎk)||

|���=���(j)
, for all ℎk ∈ Ω, for all 0 ≤ k ≤ K , with (16)

4 Compute log p���(j) (xxxK ) and ∇��� log p���(j) (xxxK )||
|���=���(j)

, with (15)
5 Set ���(j+1) = ���(j) + �∇��� log p���(xxxK )||

|���=���(j)
6 j ← j + 1
7 end
8 ���∗ ← ���(j)

Algorithm 1: Unsupervised estimation of ��� in general PMC models.
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Input: A realization xxxK , a set of estimated parameters ���∗
Result: ℎ̂ℎℎK , the estimated hidden r.v.

1 Compute ����∗,k(ℎk), for all ℎk ∈ Ω, for all 0 ≤ k ≤ K , with (16)
2 Compute ����∗,k(ℎk), for all ℎk ∈ Ω, for all 0 ≤ k ≤ K , with (18)
3 Compute p���∗ (ℎℎℎk−1∶k|xxxK ), for all ℎℎℎk−1∶k ∈ Ω × Ω, for all 0 ≤ k ≤ K , with (19)
4 Compute ℎ̂k = argmax p���∗ (ℎk|xxxK ), for all 0 ≤ k ≤ K , with (20)

Algorithm 2: Unsupervised estimation of ℎk in general PMC models.

2.2. Deep-PMC models
We now introduce a particular parameterization f��� and g��� of the distributions � and �, respectively. The rationaleis as follows. Since DNNs can theoretically approximate any function which satisfies reasonable assumptions [Pinkus,

1999], our objective is to use them to approximate any parameterization of � and �. So, from now onwards, f��� and
g��� are the outputs of two DNNs with (ℎk−1, xk−1) and (ℎℎℎk−1∶k, xk−1) as inputs, respectively. ��� now consists of the
parameters of these DNNs (weights and biases). Note that a unique DNN is used for f��� (resp. g���) overtime.

Since f��� and g��� are differentiable w.r.t. ��� and their gradients are computable from the backpropagation algorithm
[Rumelhart et al., 1986], Alg. 1 can be directly applied to estimate ���. However, due to the large number of parameters
of these architectures, some problems tend to appear in practice. In particular, a random initialization of ��� can lead
to convergence issues for the optimization of log p���(xxxK ). More importantly, the final r.v. ℎk learnt by such a model
may no longer be interpretable, i.e. it is not ensured that ℎk coincides with the original class associated to xk. In otherwords, a direct application of Alg. 1 tends to return a final model which gives poorer results than the simple models
described in Section 2.1.1 in terms of classification.

We introduce a two-step solution based on a constrained output layer and next on a pretraining which aims at
initializing properly ���. This solution relies on a simple model such as the linear and Gaussian PMC described in
Section 2.1.1 where the linear functions f��� and g��� in (13)-(14) can be seen as the output layer of an elementary DNN
with no hidden layer. Rather than directly training the DNN associated to f��� and g��� , we first estimate the linear PMC
model (13)-(14) with Alg. 1 before adding intermediate layers.These layers are next pretrained from the classification
obtained with the elementary model, and are finally finely trained with our ML approach.
2.2.1. Constrained output layer

Themain idea of our constrained training step is tomake coincide a subset of��� with the parameters of an elementary
linear (equivalently a non deep) PMC model (13)-(14) which is assumed to provide an interpretable classification. In
other words, we first estimate an elementary linear PMC model with Alg. 1 and we denote the set of associated
parameters ���f r , in the sense that these parameters are next frozen and will not be further updated. We next consider
this linear layer as the output layer of a DNN where the other parameters are denoted ���ufr , and which are unfrozen in
the sense that they have not been estimated yet. Fig. 2 describes an example of a constrained DNN architecture for the
function f��� when Ω = {!1, !2} and ℝdx = ℝ, without loss of generality.
2.2.2. Pretraining by backpropagation

It remains to estimate the parameters ���ufr of the intermediate hidden layers. The idea is to initialize them in a such
way that the initial deep PMC coincides with the elementary one; in other words, and due to the previous step, the output
of the newly added hidden layers aims at coinciding with the identity function after the pretraining. After initializing
randomly ���ufr , our pretraining step aims at minimizing cost functions Cf��� and Cg��� which involve the pre-classification
ℎ̂ℎℎ
pre
K . Typically, the cost function Cf��� is the averaged overtime cross-entropy between the output of the DNN f��� and
ℎ̂prek and Cg��� is the mean square error between the output of g��� and the parameters of the elementary linear models
associated to ℎ̂ℎℎprek−1∶k (see (14)). The minimization of these cost functions w.r.t. ���ufr is done with the backpropagation
algorithm. Finally, once ���ufr has been properly initialized, it is fine-tuned with Alg. 1 which approximates the ML
estimate of ���. Alg. 3 summarizes the two estimation steps specific to the DNN parameterization.
Remark 2. In order to estimate the parameters of our deep PMC, we have used a reverse approach w.r.t. the pretrain-
ing approaches proposed at the beginning of 2010s to help supervised learning in DNN [Erhan et al., 2010]. Indeed,
due to the large number of parameters in these architectures, [Mohamed et al., 2012, Glorot and Bengio, 2010, Hinton
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Σ = f���(ℎk−1, xk−1, ℎk−1xk−1) = sigm(1l31 + 2l
3
2 + 3l

3
3 + �),

where the last layer parameters {1, 2, 3, �} are frozen to:

1 = b!2 − b!1 , 2 = a!2 − a!1 , 3 = a!1 and � = b!1 .

Figure 2: DNN architecture with constrained output layer for f��� with two hidden layers. The parameters ���f r are related
to the output layer which computes the function f��� of the linear PMC model (13). Due to the one-hot encoding of the
discrete r.v. ℎk−1 (ℎk−1 = !1 ↔ ℎk−1 = 0 and ℎk−1 = !2 ↔ ℎk−1 = 1), this parameterization is equivalent to that of (13) up
to the given correspondence between ���f r = (1, 2, 3, �) and (a!1 , a!2 , b!1 , b!2 ). Linear activation functions are used in the
last hidden layer in red.

et al., 2012] have suggested to first pretrain in an unsupervised way a DNN from a generative probabilistic model which
shares common parameters with the original DNN (e.g. a Deep Belief Network). The backpropagation algorithm for
supervised estimation is next initialized with the (approximated) ML estimate of this probabilistic model. Here, we
have started to pretrain our architecture in a supervised way with a pre-classification and next embedded it in our
original probabilistic model in which we compute an approximation of the ML estimate.

Input: xxxK , the observation
Result: ̂ℎℎℎK , the final classification/* Linear model: initialization of the ouput layer of f��� and g��� (§ 2.2.1) */

1 Initialize randomly ���(0)fr
2 Estimate ���∗fr using Alg. 1 with ���(0)fr
3 Estimate ℎ̂ℎℎpreK using Alg. 2 with ���∗fr/* Pretraining of ���ufr (§ 2.2.2) */
4 ���(0)ufr ← Backprop(ℎ̂ℎℎ

pre
K , xxxK , ���∗fr ,f��� ,g��� )/* Complete deep model: fine-tuning */

5 Compute ���∗ufr using Alg. 1 with (���∗fr , ���(0)ufr) (���∗fr is not updated)
6 Compute ℎ̂ℎℎK using Alg. 2 with (���∗fr , ���∗ufr)

Algorithm 3: A general estimation algorithm for deep parameterization of PMC models.

2.3. Simulations
We illustrate the gain of our general parameterization w.r.t. an elementary HMC-IN by considering a problem of

unsupervised binary image segmentation (so Ω = {!1, !2}) from noisy observations. We consider the cattle-type
images of the Binary Shape Database1. The images are transformed into a 1-D signal xxxK with a Hilbert-Peano filling
curve [Sagan, 2012]. They are next blurred with a noise which exhibits non-linearities to highlight the ability of
the generalized PMC models to learn such a signal corruption2. More precisely, we generate an artificial noise by

1http://vision.lems.brown.edu/content/available-software-and-databases
2The code to reproduce the experiments is available at https://github.com/HGangloff/deep_hidden_markov_models/
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generating xk according to
xk|ℎk, xk−1 ∼

(

sin(aℎk + xk−1); �
2
)

, (21)
where a!1 = 0, �2 = 0.25 and a!2 is a varying parameter.

We next focus on two kinds of parameterizations of distributions � and � which coincide with (11)-(12). Each
parameterization is applied to the SPMC and PMC models (see Fig. 1). First, we consider a linear parameterization
(SPMC and PMC) based on (11)-(14). The second parameterization is a deep one (D-SPMC and D-PMC) and relies
on one (unfrozen) hidden layer with 100 neurons and the ReLU activation function. For this architecture, we apply the
training constraints discussed in Paragraph 2.2.

In Fig. 3a, we display the averaged error rates for each model over all the selected images as a function of a!2 .Fig. 3b displays the results of the classifications for a particular image of the database. As it can be observed, although
the same Gaussian distribution � is used both models, the general PMC framework that we introduced leads to a great
improvement of the elementary HMC model. Next, the deep parameterized models (D-PMC and D-SPMC) are the
most accurate models and are able to capture the complexity by improving the results of their non-deep counterpart.
More importantly, note that the gain obtained with our D-PMC and D-SPMC models does not require any further
modeling effort in the sense that they are a particular parameterization in our general framework.
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(a) Error rate from the unsupervised segmentations with a noise described by (21). Results are averaged on all the cattle-type images
from the database.

ℎℎℎ xxx HMC-IN SPMC PMC D-SPMC D-PMC

17.6% 13.3% 13.5% 4.2% 5.8%

(b) Selected classifications for a!2 = 0.4 (signaled by the red vertical line in Fig. 3a). Error rates appear below the images.
Figure 3: Unsupervised image segmentation with PMC models.

3. General Triplet Markov Chains
Our previous PMC models rely on a general parameterization of the two distributions � and �. However, the

choice of these distributions is not obvious in practice and has an impact on the performance of the classification.
The goal of this section is to implicitly estimate these distributions in addition to their parameters by the introduction
of a third latent auxiliary process zzzK which aims at complexifying the distribution p���(ℎℎℎK , xxxK ). The rationale behindthis auxiliary process is the following [Bayer and Osendorfer, 2014]. Assume that a r.v. x ∈ ℝ follows an unknown
distribution p(x) while z ∈ ℝ follows an elementary one p(z) (e.g. the Gaussian distribution). Denoting FX (resp.
FZ ) the cumulative density function of x (resp. of z) and observing that the r.v. FX(x) and FZ (z) both follow the
uniform distribution on the unit interval, then the r.v. F−1X (FZ (z)) admits p(x) as pdf. In other words, whatever the
H Gangloff et al.: Preprint submitted to Elsevier Page 9 of 26
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distribution of z, it is possible to model an unknown distribution p(x) via an auxiliary r.v. z and a joint distribution
p(x, z) = p(z)p(x|z), provided p(x|z) is well chosen and close to �F−1X (FZ (z))

(x).
As we have just seen, the introduction of a continuous latent process zzzK is interesting from a modeling point of

view but makes Alg. 1 and 2 uncomputable. Indeed, a direct application would involve the computation of intractable
integrals in (16) and (18) w.r.t. zk. Consequently, p���(xxxK ) and p���(ℎk|xxxK ) are no longer exactly computable. In order
to estimate ��� and ℎk, we derive a new estimation algorithm based on variational Bayesian inference which consists
in maximizing a lower bound of the likelihood p���(xxxK ). After reviewing the principle of variational inference and
introducing its extension to TMCs, we propose a general parameterization of these models as well as a parameter
estimation algorithm. Our algorithm relies on the optimization of an objective function deduced from the variational
inference framework but it also enforces the interpretability of ℎℎℎK by modifying the classical lower bound used in
variational inference.
3.1. Variational Bayesian inference: principle and application to TMCs

For the sake of clarity, let us now denote the triplet tk = (ℎk, zk, xk). From a mathematical point of view, the TMC
(3) can be seen as a PMC (2) in augmented dimension, i.e. a PMC where (ℎℎℎK , zzzK ) plays the role of the hidden process.If zzzK were a discrete process, it would be possible to apply directly the Bayesian inference framework developed in
Section 2.1; however, the continuous nature of zk involves intractable integrals to compute sequentially the equivalent
of (16), i.e.,

p���(ℎk, zk, xxxk) = ∫
∑

ℎk−1

p���(tk|tk−1)p���(ℎk−1, zk−1, xxxk−1)dzk−1, (22)

and therefore p���(xxxK ). To overcome this issue, we briefly review the general principle of variational Bayesian inference.
Let q'''(ℎℎℎK , zzzK |xxxK ) be a variational distribution parameterized by a set of parameters '''. Observing that the

Kullback-Leibler Divergence (KLD) between q'''(ℎℎℎK , zzzK |xxxK ) and p���(ℎℎℎK , zzzK |xxxK ) is positive,

DKL
(

q'''(ℎℎℎK , zzzK |xxxK )||p���(ℎℎℎK , zzzK |xxxK )
)

=
∑

ℎℎℎK
∫ q'''(ℎℎℎK , zzzK |xxxK ) log

(q'''(ℎℎℎK , zzzK |xxxK )
p���(ℎℎℎK , zzzK |xxxK )

)

dzzzK ≥ 0, (23)

we deduce

log p���(xxxK ) ≥
∑

ℎℎℎK
∫ q'''(ℎℎℎK , zzzK |xxxK ) log

(

p���(ℎℎℎK , zzzK , xxxK )
q'''(ℎℎℎK , zzzK |xxxK )

)

dzzzK = F (���,'''). (24)

Equality holds if q'''(ℎℎℎK , zzzK |xxxK ) = p���(ℎℎℎK , zzzK |xxxK ). When the posterior distribution p���(ℎℎℎK , zzzK |xxxK ) is computable, the
alternating maximization w.r.t. ��� and q''' of the so-called Evidence Lower Bound (ELBO), F (���,'''), coincides with the
EM algorithm [Tzikas et al., 2008]. However, here, p���(ℎℎℎK , zzzK |xxxK ) is not computable because zzzK is continuous. In
this case, variational inference consists in maximizing F (���,''') w.r.t. (���,''') for a given class of distributions q'''. Thechoice of the variational distribution q'''(ℎℎℎK , zzzK |xxxK ) is critical; q'''(ℎℎℎK , zzzK |xxxK ) should be close to p���(ℎℎℎK , zzzK |xxxK ) butshould also be chosen in a such way that the associated ELBO can be exactly computed or easily approximated while
remaining differentiable w.r.t. (���,'''). In the context of TMCs with a discrete and continuous latent process, Prop. 1
exploits the observation that

p���(ℎℎℎK |zzzK , xxxK ) = p���(ℎK |zzzK , xxxK )
K
∏

k=1
p���(ℎk−1|ℎk, zzzK , xxxK ) (25)

is computable (see App. A.1) and shows that it is optimal (in the sense of the value of the ELBO) to restrict the choice
of q'''(ℎℎℎK , zzzK |xxxK ) to that of q'''(zzzK |xxxK ).
Proposition 1. Let us denote F (���,'''), resp. F opt(���,'''), the ELBO when the variational distribution q'''(ℎℎℎK , zzzK |xxxK ) =
q'''(zzzK |xxxK )q'''(ℎℎℎK |zzzK , xxxK ), resp. q

opt
''' (ℎℎℎK , zzzK |xxxK ) = q'''(zzzK |xxxK )p���(ℎℎℎK |zzzK , xxxK ), is used. Then for any (���,'''), we have

log p���(xxxK ) ≥ F opt(���,''') ≥ F (���,'''), (26)
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where

F opt(���,''') = F opt0 (���,''') +
K
∑

k=1
F optk−1,k(���,''') + F

opt
K (���,'''), (27)

and where

F opt0 (���,''') = ∫
∑

ℎ0

q'''(zzzK |xxxK )p���(ℎ0|zzzK , xxxK ) log p���(t0)dzzzK , (28)

F optk−1,k(���,''') = ∫
∑

ℎℎℎk−1∶k

q'''(zzzK |xxxK )p���(ℎℎℎk−1∶k|zzzK , xxxK ) log
(

p���(tk|tk−1)
p���(ℎk−1|ℎk, zzzK , xxxK )q'''(zzzK |xxxK )

)

dzzzK , (29)

F optK (���,''') = −∫
∑

ℎK

q'''(zzzK |xxxK )p���(ℎK |zzzK , xxxK ) log p���(ℎK |zzzK , xxxk)dzzzK . (30)

A proof of Prop. 1 is given in App. A.1. The practical computation of these integrals will be described later with the
modified objective function.
3.2. An estimation algorithm for TMCs with general parameterization

Following the approach that we have developed for PMC models, we extend our general parameterization frame-
work to the distributions of TMC models,

p���(tk|tk−1) = p���(zk|tk−1)p���(ℎk|zk, tk−1)p���(xk|ℎk, zk, tk−1). (31)
We next propose a general estimation method based on a variational distribution q'''(zzzK |xxxK ), for estimating ��� and
p���(ℎk|xxxK ), for all k, which takes into account the interpretability constraint.
3.2.1. A general parameterization of TMCs

As a direct extension of Section 2.1.1, functions f��� and g��� can now depend on zzzk−1∶k; we also introduce a new
parameterized and differentiable function s��� which depends on tk−1, and a conditional distribution & on ℝdz . We thus
parameterize the distributions in (31) as

p���(zk|tk−1) = &
(

zk; s���(tk−1)
) , (32)

p���(ℎk|zk, tk−1) = �
(

ℎk; f���(zk, tk−1)
) , (33)

p���(xk|ℎk, zk, tk−1) = �
(

xk; g���(ℎk, zk, tk−1)
) . (34)

Remark that if s��� does not depend on tk−1, and if f��� and g��� are independent of zzzk−1∶k, the distribution p���(ℎℎℎK , xxxK )coincides with that of a PMC built from (7)-(8).
3.2.2. Joint estimation of ��� and '''

Classical variational inference algorithms aim at maximizing the ELBO (27) when the objective is to estimate the
parameters of a generative model, i.e. a model in which we do not focus on the interpretability of the hidden r.v. but
rather on the modeling power of the distribution p���(xxxK ). Consequently, in our case, a direct maximization of (27) does
not guarantee the interpretability of the r.v. ℎℎℎK . The problem is all the more critical that our hidden process is split into
an interpretable one, ℎℎℎK , and an auxiliary one, zzzK . To that end, we propose an adaptation and an interpretation to thesequential case of two techniques introduced in the machine learning community [Higgins et al., 2017, Kingma et al.,
2014]. The first one relies on a reinterpretation of the ELBO (27) as the sum of a reconstruction and a KLD terms;
this last one is next penalized. The second technique consists in adding a penalizing term to the resulting ELBO which
aims at strengthening the distinct role of ℎℎℎK and of zzzK and exploiting the result of previous classifications obtained
with an available model.
The �-ELBO - We first start with an alternative decomposition of the ELBO (27).

H Gangloff et al.: Preprint submitted to Elsevier Page 11 of 26



Deep parameterizations of Pairwise and Triplet Markov Chains

Corollary 1. Let us factorize p���(ℎℎℎK , zzzK , xxxK ) = p���(ℎℎℎK , zzzK |xxxK )p̃���(xxxK |ℎℎℎK , zzzK ) with

p̃���(xxxK |ℎℎℎK , zzzK ) = p���(x0|ℎ0, z0)
K
∏

k=1
�
(

xk; g���(ℎk, zk, tk−1)
)

, (35)

p���(ℎℎℎK , zzzK |xxxK ) = p���(ℎ0, z0)
K
∏

k=1
&
(

zk; s���(tk−1)
)

�
(

ℎk; f���(zk, tk−1)
)

. (36)

Then
F opt(���,''') = 1(���,''') + 2(���,'''), (37)

where

1(���,''') = Eqopt''' (ℎℎℎK ,zzzK |xxxK )
(

log p̃���(xxxK |ℎℎℎK , zzzK )
)

, (38)
2(���,''') = −DKL

(

qopt''' (ℎℎℎK , zzzK |xxxK )||p���(ℎℎℎK , zzzK |xxxK )
)

. (39)
Let us comment on this result. First, this decomposition can be seen as a generalization to the sequential case of the

decomposition proposed for the �-VAE in [Higgins et al., 2017]. Indeed, F opt involves the sum of i) a reconstruction
term 1 between qopt''' and p̃��� which measures the ability to reconstruct observations xxxK according to the conditional
likelihood p̃��� from the latent r.v. (ℎℎℎK , zzzK ) distributed according to qopt''' ; ii) a KLD term 2 between the variational
distribution and the conditional prior p��� . However, contrary to the static case [Higgins et al., 2017], our decomposition
involves p̃���(xxxK |ℎℎℎK , zzzK ) and p���(ℎℎℎK , zzzK |xxxK ) rather than p���(xxxK |ℎℎℎK , zzzK ) and p���(ℎℎℎK , zzzK ), respectively. Indeed, exceptif K = 0, the latter two distributions are no longer computable, which makes the classical ELBO decomposition
impractical.

The idea underlying our �-ELBO is to penalize the KLD term 2(���,'''). To understand why, let us detail the
expression of 1(���,''') and of 2(���,'''). First, using (35) and (34), 1(���,''') reads

1(���,''') =Eqopt''' (ℎ0,z0|xxxK )
(

log p���(xk|ℎ0, z0)
)

+
K
∑

k=1
Eqopt''' (ℎk,zk|ℎℎℎk−1,zzzk−1,xxxK )

(

log p���(xk|ℎk, zk, tk−1)
)

. (40)

Following this decomposition, it can be seen that at each time step k, the maximization of (40) encourages the model
to interpret the latent r.v. (ℎk, zk) as those which explain the best the observation xk given the past. On the other hand,using (36) and (32)-(33), the maximization of

2(���,''') = −DKL
(

qopt''' (ℎ0, z0|xxxK )||p���(z0, ℎ0)
)

−
K
∑

k=1
DKL

(

qopt''' (ℎk, zk|ℎℎℎk−1, zzzk−1, xxxK )||p���(ℎk, zk|tk−1)
)

(41)

tends to push the posterior variational distribution at each time step to be close to the conditional prior distribution
p���(ℎk, zk|tk−1). As in [Higgins et al., 2017], we penalize 2(���,''') via the introduction of a scalar �1. Since a part ofthe latent r.v. has to be interpretable, and that the interpretability of hidden r.v. is not conditioned by the observations,
the interest of this term is to force the posterior distribution qopt''' to take into account the prior term at each time step. In
other words, this penalization term aims at limiting the impact of the observations on the interpretability of the hidden
r.v., particularly in problems where xk is a very noisy version of ℎk.
Cross-entropy penalization - We finally complete our objective function to guide the estimation process into distin-
guishing the role ofℎℎℎK and ofzzzK in order to obtain better interpretable estimations ofℎk. We assume that we have at our
disposal a pre-classification ℎℎℎpreK . Next, introduce the KLD between the empirical distribution deduced from this pre-
classification, pemp(ℎℎℎK ) = �ℎℎℎpreK

(ℎℎℎK ), and the marginal variational distribution q'''(ℎℎℎK |xxxK ) = ∫ qopt''' (ℎℎℎK , zzzK |xxxK )dzzzK
which aims itself at approximating the true posterior distribution p���(ℎℎℎK |xxxK ). Thus, the objective is to push the
variational distribution q''' to take into account the interpretable labels obtained from an already interpretable pre-
classification through the negative cross-entropy

3(���,''') = Epemp(ℎℎℎK )
(

log q'''(ℎℎℎK |xxxK )
)

= log q'''(ℎℎℎ
pre
K |xxxK ), (42)
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see for example [Kingma et al., 2014, Klys et al., 2018, Kumar et al., 2021]. This additional term is next penalized by
a scalar �2 which controls the proximity of the pre-classification with the variational posterior distribution.

Finally, we obtain a new objective function
(���,''') = 1(���,''') + �12(���,''') + �23(���,'''), (43)

where 1(���,'''), 2(���,''') and 3(���,''') are defined in (38), (39) and (42), respectively. If we set �1 = 1 and �2 = 0,
then (���,''') coincides with the ELBO F opt(���,''') in (37).
Monte Carlo approximation - It remains to compute and optimize (43) in practice. 1(���,''') and 2(���,''') co-
incide with mathematical expectations according to qopt''' (ℎℎℎK , zzzK |xxxK ) = q'''(zzzK |xxxK )p���(ℎℎℎK |zzzK , xxxK ). Using expres-
sions (40)-(41), expectations according to p���(ℎℎℎK |xxxK , zzzK ) are exactly computable. So 1(���,''') and 2(���,''') relyon the approximate computation of expectations according to q'''(zzzK |xxxK ). It can be also noted that q'''(ℎℎℎK |xxxK ) =
Eq'''(zzzK |xxxK )(p���(ℎℎℎK |zzzK , xxxK )), so 3(���,''') also relies on an expectation according to same distribution q'''(zzzK |xxxK ) as
1(���,''') and 2(���,''').

Consequently, Monte Carlo (MC) estimates based on i.i.d. samples zzz(n)K ∼ q'''(zzzK |xxxK ) are natural estimates of
1(���,'''), 2(���,''') and 3(���,'''). However, since our objective is also to maximize (���,''') w.r.t. (���,'''), the MC
approximation ̂(���,''') of (���,''') should remain differentiable w.r.t (���,'''). To that end, we include the following
constraints on the choice of the variational distribution q'''(zzzK |xxxK ) = q'''(z0|xxxK )

∏K
k=1 q'''(zk|zzzk−1, xxxK ). First, we

set conditional distributions q'''(zk|zzzk−1, xxxK ) in order to obtain samples according to q'''(zzzK |xxxK ) sequentially. Next,
q'''(zk|zzzk−1, xxxK ) is chosen such that it is possible to reparameterize a final sample zzz(n)K as a differentiable function of'''
and of a random sample ���K independent of '''. More precisely, the final sample zzz(n)K can be written as

zzz(n)K =  
(

''',���(n)K
)

, (44)

where ���(n)K is a sequence of random samples which does not depend on''' and  is a differentiable function w.r.t. '''. As
an illustratrive example, a sample z(n) according to Gaussian distribution with mean �1 and standard deviation �2 canbe reparameterized as a differentiable function of (�1, �2) via z(n) = �1+�2�(n), where �(n) ∼ (0, 1). This sampling
technique is referred to as the reparameterization trick [Kingma and Welling, 2014].

Finally, we obtain the following estimate of (���,''') in (43) given by
̂(���,''') = ̂1(���,''') + ̂2(���,''') + ̂3(���,'''), (45)

where

̂1(���,''') =
1
N

N
∑

n=1
Ep���(ℎℎℎK |zzz(n)K ,xxxK )

(

log p̃���(xxxK |ℎℎℎK , zzz
(n)
K )

)

, (46)

̂2(���,''') =
1
N

N
∑

n=1
Ep���(ℎℎℎK |zzz(n)K ,xxxK )

(

log

(

p���(ℎℎℎK , zzz
(n)
K |xxxK )

p���(ℎℎℎK |zzz
(n)
K , xxxK )q'''(zzz

(n)
K |xxxK )

))

, (47)

̂3(���,''') = log

(

1
N

N
∑

n=1
p���(ℎ

pre
K |zzz(n)K , xxxK )

K
∏

k=1
p���(ℎ

pre
k−1|ℎ

pre
k , zzz(n)K , xxxK )

)

, (48)

where the remaining expectations are computed from (25) and from (35)-(36) and where samples zzz(n)K satisfy (44). The
complete estimation algorithm is described in Alg. 4.
3.2.3. Estimation of ℎkOnce we have obtained an estimate ���∗ of ���, we focus on the computation of p���∗ (ℎk|xxxK ),

p���∗ (ℎk|xxxK ) = ∫zzzK
p���∗ (ℎk|zzzK , xxxK )p���∗ (zzzK |xxxK )dzzzK , (50)
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Input: xxxK , the data; �, the learning rate;N the number of samples
Result: (���∗,'''∗), sets of estimated parameters

1 Initialize (���(0),'''(0))
2 t← 0
3 while convergence is not attained do
4 Sample z(n)0 ∼ q'''(t) (z0|xxxK ), for all 1 ≤ n ≤ N
5 Sample z(n)k ∼ q'''(t) (zk|zzz

(n)
k−1, xxxK ), for all 1 ≤ n ≤ N , for all 1 ≤ k ≤ K

6 Compute p���(ℎk−1|ℎk, zzz(n)K , xxxK ), for all ℎℎℎk−1∶k ∈ Ω × Ω, for all 1 ≤ n ≤ N , for all 1 ≤ k ≤ K
7 Evaluate the loss ̂(���(t),'''(t)) from (45)-(48)
8 Compute the derivative of the loss function ∇(���,''')̂(���,''') from (45)-(48)
9 Update the parameters with gradient ascent

10
(

���(t+1)
'''(t+1)

)

=
(

���(t)
'''(t)

)

+ �∇(���,''')̂(���,''')
|

|

|(���(t),'''(t))
(49)

t ← t + 1
11 end
12 ���∗ ← ���(t)

13 '''∗ ← '''(t)

Algorithm 4: Parameter estimation in general TMCs.

where p���∗ (ℎk|zzzK , xxxK ) is computable from a direct extension of (16) and (18)-(20) (see the proof of Prop. 1). Since (50)
is intractable, we propose an MC estimate p̂���(ℎk|xxxK ) deduced from the sequential importance resampling mechanism
[Doucet et al., 2001] and based on the observation that p���∗ (zzzK |xxxK ) ∝ p���∗ (xxxK , zzzK ) is known up to a constant. Indeed,
p���∗ (xxxK , zzzK ) can also be computed from a direct extension of (15)-(16). We thus introduce the estimated variational
distribution q'''∗ (zzzK |xxxK ) = q'''∗ (z0|xxxK )

∏K
k=1 q'''∗ (zk|zzzk−1, xxxK ) as importance distribution due to its proximity with

p���∗ (zzzK |xxxK ). Finally, rewriting (50) as

p���∗ (ℎk|xxxK ) =
Eq'''∗ (zzzK |xxxK )

(

p���∗ (ℎk|zzzK ,xxxK )p���∗ (zzzK ,xxxK )
q'''∗ (zzzK |xxxK )

)

Eq'''∗ (zzzK |xxxK )
(

p���∗ (xxxK )
q'''∗ (zzzK |xxxK )

) , (51)

we compute the sequential MC sampler [Doucet and Johansen, 2009] presented in Alg. 5 consisting of the sequen-
tial application of three elementary steps (sampling, weighting and resampling). Note that any improvement of this
sequential MC algorithm can be used [Fearnhead et al., 2010].
3.3. Deep-TMC models

Let us now focus on the particular case where functions s��� , f��� and g��� are parameterized with a DNN. We adapt
the two-step procedure described in Section 2.2. The main difference with Section 2.2 is that the input of our DNN
can now depend on the latent r.v. zk; in addition, due to the variational inference framework that we have proposed in
the previous section, we also consider that the conditional variational distribution q'''(zk|zzzk−1, xxxK ) at the core of ourestimation algorithm is parameterized by a DNN.
3.3.1. Constrained Ouput Layer

The first step is a direct adaptation of Section 2.2.1 and relies on the preliminary estimation of a non deep TMC
model. More precisely, Alg. 5 is applied to estimate the parameter of a linear TMC model (i.e. a TMC which is a
direct extension of (13)-(14) or equivalently a deep TMC model with no hidden layer). Note that since zzzK does not
need to be interpretable, q'''(zk|zzzk−1, xxxK ) are already parameterized by a DNN in the linear TMC models. Next, the
DNNs, which parameterize s��� , f��� and g��� , are built according to the same scheme of Fig. 2, except that the input and
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Input: xxxK , the observation; a set of parameters (���∗,'''∗);N , the number of samples
Result: ̂ℎℎℎK the final classification

1 Sample z(n)0 ∼ q'''∗ (z0|xxxK ), compute w(n)0 =
p���∗ (z

(n)
0 ,x0)

q'''∗ (z0|xxxK )
andW (n)

0 = w(n)0 ∕
∑N
n=1w

(n)
0 , for all 1 ≤ n ≤ N

2 for k← 1 to K do
3 Sample z(n)k ∼ q'''∗ (zk|zzzk−1, xxxK ), for all 1 ≤ n ≤ N

4 Compute w(n)k = w(n)k−1
p���∗ (zzz

(n)
k ,xxxk)

p���∗ (zzz
(n)
k−1,xxxk−1)q'''∗ (z

(n)
k |zzz(n)k−1,xxxK )

, for all 1 ≤ n ≤ N

5 ComputeW (n)
k = w(n)k ∕

∑N
n=1w

(n)
k , for all 1 ≤ n ≤ N

6 if Resampling then
7 Sample l(n) ∼ p(l = j) = W (j)

k , for all 1 ≤ n ≤ N

8 Set zzz(n)k = zzz(l
(n))

k andW (n)
k = 1∕N for all 1 ≤ n ≤ N

9 end
10 end
11 Compute p���∗ (ℎℎℎk−1∶k|zzz(n)K , xxxK ), for all ℎℎℎk−1∶k ∈ Ω × Ω, for all 1 ≤ k ≤ K , using the extension of (19)
12 Compute p̂���∗ (ℎk|xxxK ) = ∑N

n=1W
(n)
k p���∗ (ℎk|zzz

(n)
K , xxxK ), for all ℎk ∈ Ω, for all 1 ≤ k ≤ K

13 ℎ̂k = argmax p̂���∗ (ℎk|xxxK ), for all 1 ≤ k ≤ K
Algorithm 5: A Sequential Monte Carlo algorithm for Bayesian classification in general TMC.

the hidden layer before the output also consists of zk−1 or of zzzk−1∶k. We thus obtain a set of frozen and unfrozen
parameters.
3.3.2. Pretraining of the unfrozen parameters

The next step consists in pretraining the unfrozen parameters of the intermediate hidden layers in order to mimic
the estimated linear TMC. We use the same approach as the one developed in Section 2.2.2 which relies on a pre-
classification ℎ̂ℎℎpreK , but we now take into account the fact that zk is not observed. Since the objective of the r.v. zkis to encode the corresponding observation xk through the DNN related to q''', we first sample zzzK according to the
previously estimated variational distribution q'''(zzzK |xxxK ); we next use the components zzzk−1∶k or zk as inputs of the
DNNs s��� , f��� and g��� . Finally, as in Paragraph 2.2.2, we apply the backpropagation algorithm in order to minimize an
adapted cost function w.r.t. ���ufr which depends on ℎ̂ℎℎpreK . Fig. 4 summarizes our pretraining procedure for function f���and the final estimation procedure is describred in Alg. 6.

xxxK

zzzk−1

q''' layers
(''') r.t.

zzzk−1∶k

ℎk−1

xk−1

f��� layers
(���ufr , ���f r)

Σ

Figure 4: Graphical and condensed representation of the parameterization of f��� in the D-TMC models. r.t. stands for
reparameterization trick. The dashed arrows represent the fact that some variables are copied. For clarity, we do not
represent the block f��� which is similar to Fig. 2, up to the introduction of zzzk−1∶k.

3.4. Simulations
We continue to illustrate the performance of our models with the same binary image segmentation problem as

Section 2.3. Since Section 2.3 was devoted to the evaluation of deep parameterizations, we focus our experiments on
the relevance of the latent process zzzK . To that end, we focus on a particular TMC model in which the role of the latent
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Input: xxxK , the observation; q''' a class of variational distribution
Result: ℎ̂ℎℎK the final classification
/* Initialization of the output layer of s��� , f��� and g��� */

1 Estimate (���∗fr , '̃'') and ℎ̂ℎℎ
pre
K with Alg. 4-5, using the related non-deep TMC model

/* Pretraining of ���ufr */
2 ���(0)ufr ← Backprop(ℎ̂ℎℎ

pre
K , xxxK , ���∗fr , '̃'',s��� ,f��� ,g��� )/* Fine-tuning of the complete model */

3 Compute (���∗ufr ,'''∗) with Lines 2-13 of Alg. 4
4 Compute ℎ̂ℎℎK with Alg. 5

Algorithm 6: A general estimation algorithm for deep parameterizations of TMC models

process zzzK is to complexify the conditional distribution � of the noise but not �. We first present the particular model
and next the results.
3.4.1. The Minimal TMCs

In order to highlight the role of zzzK w.r.t. the other characteristics of our models, we introduce the Minimal TMC
(MTMC) model which exhibits a reduced number of direct dependencies. In this model, zzzK is an independent process
and given zzzK , (ℎℎℎK , xxxK ) is a HMCwhere only the observations depend on zzzk; in other words, s��� in (32) does not dependon tk−1, f��� in (33) only depends on (ℎk−1) and g��� in (34) only depends on (zk, ℎk). The joint distribution of tttK can be
rewritten as

p���(tttK ) =
K
∏

k=0
&(zk; s���)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
p���(zzzK )

p���(ℎ0)
K
∏

k=1
�(ℎk; f���(ℎk−1))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
p���(ℎℎℎK |zzzK )=p���(ℎℎℎK )

K
∏

k=0
�(xk; g���(zk, ℎk)),

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
p���(xxxK |ℎℎℎK ,zzzK )

(52)

With this model, the latent process zzzK affects the conditional distribution of the observations.
We next consider three instances of MTMCs. The first one is the continuous linear MTMC in which zk ∈ ℝ are

distributed according to standard normal distribution (so & is the Gaussian distribution and s��� = [0; 1]), f��� , g��� , �and � coincide with our first illustrative example in Section 2.1.1, see (9)-(10), up to the dependency in zk. We also
consider a deep version of the MTMC (D-MTMC) in which g��� is parameterized by a DNN (with one hidden layer
of 100 neurons and ReLU activation function). For both continuous versions of the MTMC, we use the variational
distribution

q'''(zzzK |xxxK ) =
K
∏

k=1
q'''(zk|zk−1, xk) =

K
∏

k=1
 (zk; �'''(zk−1, xk)). (53)

where �'''(zk−1, xk) is parameterized by a DNN with one hidden layer of 100 neurons and a ReLU activation function.
Finally, we consider a discrete version of the MTMC (di-MTMC) in which zk ∈ {�1, �2} is discrete [Gorynin et al.,
2018, Li et al., 2019, Chen and Jiang, 2020]. For this model, Alg. 1 and 2 can be directly applied in the augmented
space {!1, !2} × {�1, �2}.
3.4.2. Experiments and results

We now consider two scenarios in which binary images are corrupted with non elementary noises. In the first
scenario, the hidden images ℎℎℎK are the camel-type images of the Binary Shape Database and are corrupted with a
stationary multiplicative noise,

xk|ℎk, zk ∼
(

aℎk ; b
2
ℎk

)

∗ zk, (54)
where zk ∼  (0, 1), a!1 = 0, a!2 is a varying parameter and b!1 = b!2 = 0.2. Fig. 5a displays the results for the
setting �1 = 5, �2 = 1 in our variational approach. Scalar �1 can be interpreted as enforcing the standardized Gaussianprior on the learnt latent variables, which is seemingly favorable on this example because of the way zzzK is generated.
�2 is also needed and seems to guide the optimization so that the estimated ℎ̂ℎℎK corresponds to the desired segmentation.
A particular classification is also displayed in Fig. 5b. As we see, our MTMC models improve the performance (up
to a 7%-point improvement) of the HMC-IN. This comparison illustrates the interest of the third latent process zzzK . A
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(a) Error rate from the unsupervised segmentations of Scenario (54). Results are averaged on all the camel-type images from the
database.

ℎℎℎ xxx HMC-IN di-MTMC MTMC D-MTMC

7.6% 6.9% 3.6% 2.8%

(b) Selected illustrations for a!2 = 0.5 (signaled by the red vertical line on Fig. 5a). Error rates appear below the images.
Figure 5: Unsupervised image segmentation with General Triplet Markov Chains (Scenario (54)).

slight advantage goes to the models with continuouszzz (MTMC and D-MTMC) over the di-MTMCwhich still performs
better than the HMC-IN model. Note that in the case where we optimize directly the ELBO (i.e. �1 = 1 and �2 = 0),it has been observed that the classification obtained is not interpretable. This observation validates experimentally our
strategy to adapt the objective function.

In the second scenario, the hidden images ℎℎℎK are the dog-type images of the Binary Shape Database. They are
corrupted by a non-stationary general noise,

⎧

⎪

⎨

⎪

⎩

xk|ℎk ∼
(

aℎk ; �
2
)

, if k ∈
{

1,… ,
⌊K
2

⌋}

,

xk|ℎk ∼ aℎk +  (�) , if k ∈
{⌊K

2

⌋

+ 1,… , K
}

,
(55)

where (�) is the exponential probability distribution of parameter �, a!1 = 0, a!2 is a varying parameter, � = 0.2 and
� = 1.4. The main difficulty of this scenario is that the images are corrupted by two different noises with a relatively
low level for both areas and have to be fitted in a unique model. For this scenario, we set �1 = 0.1 and �2 = 0. A small
value of �1 can be interpreted as a way to better fit the observations. Indeed, more flexibility seems to be needed to
learn such a complex non-stationary noise. The reason why �2 is set to 0 is that the pre-classification obtained with
the HMC-IN is poor and should not be used to learn the parameters in the MTMC. It has been observed that other
values deteriorate the final classification obtained with MTMC models. The results are displayed in Fig. 6a and Fig.
6b displays a particular classification. It is clear that the TMC models with a continuous auxiliary latent r.v. (MTMC
and D-MTMC) offer a greater flexibility and are able to learn this complex multi-stationary noise. On the other hand
the average classification provided by the di-MTMC or the HMC-IN models are irrelevant as soon as a!2 < 2. Thisexperiment illustrates the interest of a continuous auxiliary latent r.v. over discrete auxiliary latent r.v.; the latter being
the only option that has been considered in the literature so far [Gorynin et al., 2018, Li et al., 2019, Chen and Jiang,
2020]. These experiments show the interesting capabilities of the generalized models to provide results in presence
of very general noises. Coupled to the deep parameterization, a continuous third latent process enables our models to
bypass the need of an explicit expression of the conditional distribution of the noise.
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(a) Error rate from the unsupervised segmentations of Scenario (55). Results are averaged on all the dog-type images from the
database.
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(b) Selected illustrations for a!2 = 2.2 (signaled by the red vertical line on Fig. 6a). Error rates appear below the images.
Figure 6: Unsupervised image segmentation with General Triplet Markov Chains (Scenario (55)).

4. Long memory dependency for PMCs
In this section, we propose a particular class of TMC which aims at extending the PMC model proposed in Section

2. The main motivation underlying this particular model is to introduce a long dependency on the past observations
xxxk−1 of the r.v. (ℎk, xk), for all k. This dependency is introduced through the continuous latent process zzzK and enables
us to build an explicit joint distribution p���(ℎℎℎK , xxxK ) which does not satisfy the Markovian property of the PMC (2).
The main difference with Section 3 is that zzzK is now a conditional deterministic latent process. The resulting model
is called a Partially PMC (PPMC). As we will see, this particular construction enables us to use directly the Bayesian
inference framework developed in Section 2. Finally, since PMCs appears as particular TMCs, the pretraining of deep
parameterized PPMCs is a direct adaptation of Section 3.3.
4.1. Partially Pairwise Markov Chains as deterministic TMCs

Let us focus on a particular case of the TMC (31)-(34). From now on, we consider that the conditional distribu-
tion & coincides with the Dirac distribution �, and that function s��� only depends on (zk−1, xk−1). Thus, zk becomes
deterministic given (zk−1, xk−1),

zk = s���(zk−1, xk−1). (56)
Each variable zk can be interpreted as a summary of all the past observations xxxk−1. Consequently, it is easy to see that(33) and (34) now coincide with p���(ℎk|ℎk−1, xxxk−1) and p���(xk|ℎℎℎk−1∶k, xxxk−1), respectively, and marginalizing (3) w.r.t.
zzzK gives the explicit distribution of (ℎℎℎK , xxxK ),

p���(ℎℎℎK , xxxK ) = p���(ℎ0, x0)
K
∏

k=1
�(ℎk; f���(zzzk−1∶k, ℎk−1, xk−1))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p���(ℎk|ℎk−1,xxxk−1)

�(xk; g���(zzzk−1∶k,ℎℎℎk−1∶k, xk−1))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p(xk|ℎℎℎk−1∶k,xxxk−1)

, (57)

where zk satisfies (56). It can noted that (ℎℎℎK , xxxK ) is no longer Markovian.
This kind of parameterization has an advantage in terms of Bayesian inference. Since zk is a deterministic func-

tion of (zk−1, xk−1) (and so of xxxk−1, by induction), the conditional posterior distribution p���(zzzk|zk−1, xxxK ) reduces to
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�s���(zk−1,xk−1). Consequently, Alg. 1 and Alg. 2 can be directly applied to estimate ��� and ℎk, for all k, by introducing
the dependency in zzzk−1∶k in functions f��� and g��� of Section 2.1. An alternative point of view is that when zk is deter-ministic, Alg. 4 can be seen as a particular instance of Alg. 1 in which we have set q'''(zzzK |xxxK ) = p���(zzzK |xxxK ), �1 = 1and �2 = 0. Indeed, for this particular setting the objective function (45) coincides with the ELBO but also with the
log-likelihood p���(xxxK ).
4.2. Deep-PPMC models

As previous models, we consider the case where PPMCs (57) are parameterized with DNNs. Such models will be
referred to as D-PPMCs. In the particular case of PPMCs, s��� can be seen as a RNN, i.e. a neural network which admits
the output of the network at previous time k − 1 as input at time k [Hochreiter and Schmidhuber, 1997]. It is thus
possible to directly combine our models with powerful RNN architectures such as Long Short Term Memory (LSTM)
RNNs or Gated Recurrent Unit (GRU) RNNs which have been developed to introduce long term dependencies for
sequential problems. Note that the gradient of s��� w.r.t. ��� can also be computed with a version of the backpropagation
algorithm adapted to RNNs [Hochreiter and Schmidhuber, 1997, Chung et al., 2014].

The pretraining of this deep architecture is direct. The constrained output layer step is an application of Paragraph
3.3.1 with q'''(zzzK |xxxK ) = p���(zzzK |xxxK ), �1 = 1 and �2 = 0; so it can be seen as the step described for PMCs in Paragraph
2.2.1 up to the additional input zzzk−1∶k.The second step of our pretraining procedure of Paragraph 3.3.2 can also be simplified. Since in this particular case
we have implicitly computed the optimal conditional variational distribution qopt''' (zk|zzzk−1, xxxK ) = �s���(zk−1,xk−1)(zk), thereparameterized sample zzzk−1∶k of Fig. 4 is now deterministic and coincides directly with the output of s��� , as shownin Fig. 7. Note that the parameters of s��� are unfrozen. The training process is summarized in Alg. 7.

xk−1

zk−1

zzzk−1∶k
s��� layers

ℎk−1

f��� layers
(���ufr , ���f r) Σ

Figure 7: Graphical and condensed representation of the parameterization of f��� in the D-PPMC model. The dashed arrows
represent the fact that some variables are copied.

Input: xxxK , the observation
Result: ̂ℎℎℎK , the final classification/* Initialization of the output layer of f��� and g��� */

1 Estimate ���∗fr and ℎ̂ℎℎ
pre
K with Lines (1)-(3) of Alg. 3

/* Pretraining of ���ufr*/
2 ���(0)ufr ← Backprop(ℎ̂ℎℎ

pre
K , xxxK , ���∗fr ,f��� ,g��� )/* Fine-tuning of the complete model */

3 Update all the models parameters (except ���f r) with Alg. 1
4 Compute ℎ̂ℎℎK with Alg. 2

Algorithm 7: A general estimation algorithm for deep parameterizations of PPMC models.

4.3. Simulations
We start again with the same experiments as those in Section 2.3, but we use an alternative noise which aims at

introducing longer dependencies on the observations. We now set
xk|ℎk, xxxk−2∶k−1 ∼

(

sin(aℎk + 0.2(xk−1 + xk−2)); �
2
)

. (58)
where a!1 = 0, �2 = 0.25 and a!2 is a varying parameter. We compare the deep models of Section 2 (D-SMPC and
D-PMC) with their natural extensions developed in this section (D-PSPMC and D-PPMC).
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Fig. 8a illustrates the results involving the models we have just introduced. For s��� we use two independent standardRNNs with ReLU activation function, i.e. zk = [z1k, z2k] = [s1���(z1k−1, xk−1), s2���(z2k−1, xk−1)]; f��� (resp. g���) depends on
zzz1k−1∶k (resp. zzz2k−1∶k). In this setting, we found that the models worked the best when the dimensions of z1k and of z2k is
5. We can see that the more general parameterizations embedded in D-PSPMC and D-PPMC lead to an improvement
of the D-PMC models; each D-PPMC model leading to a better accuracy than its D-PMC counterpart. The ability to
model long term dependencies proves to be important to better solve the correlated noise. This experiment illustrates
a way to take advantage of a deterministic auxiliary process: by strengthening the sequential dependencies between
the hidden random variables.
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D-PMC
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D-PPMC

(a) Error rate from the unsupervised segmentations of Scenario (58). Results are averaged on all the cattle-type images from the
database.

ℎℎℎ xxx D-SPMC D-PMC D-PSPMC D-PPMC

22.1% 28.0% 19.0% 19.5%

(b) Selected illustrations for a!2 = 0.21 (signaled by the red vertical line on Figure 8a). Error rates appear below the images.
Figure 8: Unsupervised image segmentation with Partially Pairwise Markov Chains.

5. Experiments on real datasets
We finally experiment our models on two real datasets. The first one is devoted to a medical images. The main

challenge of this kind of data is that the noise associated to such images is unknown and non usual; that is why we
introduce our TMCs to measure the impact of the third latent process. The next dataset is related to human activity
recognition. For this problem, the dependencies between the r.v. (the class and the observed r.v.) are critical; that is
why we focus on the impact of our PMCs.
5.1. Unsupervised segmentation of biomedical images

We first illustrate the potential of the generalized TMC models on real biomedical data. The taks consists in the
segmentation of micro-computed tomography X-ray scans of human arteries containing a metallic stent biomaterial3.
These images are reminiscent of the synthetic experiment of Scenario (55): some regions exhibit a particular type of
correlated noise (because of of the beam hardening artifacts caused by the interactions between X-rays and the metallic
stent) and some regions do not.

Table 1 and Fig. 9 summarize the experiment. It can be seen that the classical models (HMC-IN and di-MTMC)
are unable to handle the non-stationarity of the noise. The di-MTMC model even fail to provide any improvement

3The authors want to acknowledge Dr. Salomé Kuntz (GEPROMED, Strasbourg, France) for the acquisition of the micro-computed tomography
images.

H Gangloff et al.: Preprint submitted to Elsevier Page 20 of 26



Deep parameterizations of Pairwise and Triplet Markov Chains

Slice HMC-IN di-MTMC MTMC D-MTMC

Average 8.6 8.6 7.6 6.56.56.5

Table 1
Averaged error rates (%) in unsupervised image segmentation with all the generalized TMCs assessed on ten micro-
computed tomography slices. The detailed scores are given in App. A.2.

ℎℎℎ xxx HMC-IN di-MTMC MTMC D-MTMC

10.9% 10.9% 8.7% 6.5%

Figure 9: Illustration of the unsupervised segmentation of slice B, as reported in Table 1. The D-MTMC appears to better
fit the non-stationary noise, offering a 4%-point improvement in the error rate. The stent components appearing in red are
segmented beforehand with a thresholding technique and are considered as image borders during the segmentation using
the probabilistic models.

Data HMC-IN SPMC D-SPMC D-PSPMC PMC D-PMC D-PPMC

Average 25.2 21.3 16.8 16.716.716.7 17.1 16.8 16.8

Table 2
Averaged error rates (%) in the binary clustering of the first twenty raw entries of the HAPT dataset [Reyes-Ortiz et al.,
2016]. The detailed scores are given in App. A.2.

over the HMC-IN model. On the other hand, major improvements can be seen when using the TMC models with a
continuous auxiliary process, suggesting that the latter model offers more flexibility and that our parameter estimation
algorithm enables to take advantage of it. These results on real-world data corroborates the results found in the synthetic
experiment given in Section 3.4.2. Note that, in this case, we set �1 = 5, �2 = 1 and used the HMC-IN classification
as a pre-segmentation. The network configurations are the same as in Section 3.4.2.
5.2. Unsupervised clustering for human activity recognition

We now illustrate the performances of classical PMC models, deep PMCmodels and deep PPMCmodels on a real
clustering task linked with human activity recognition. We use the Human Activity and Postural Transition (HAPT)
dataset described in [Reyes-Ortiz et al., 2016]4. It consists of three-dimensional time series that we wish to cluster into
two classes: movement and no movement.

The results are given in Table 2 for models sharing the same configurations with the models in Section 2.3 and 4.2.
First of all, the modelization using the pairwise models seems very relevant in this application since we notice up to
a 9%-point improvement over the HMC-IN model. In the case of the SPMCs, we clearly see the advantage of using
deep parameterizations over the shallow models. The advantage of the deep parameterization is less significant in the
PMC case. The contributions of the D-PSPMC and D-PPMC models are also less significant. The absence of gains in
error rate when using the most complex models might be related to the limited length of the training sequences in this
application (sequences of length between 15000 and 20000).

6. Conclusion
In this paper, we have proposed a general framework for PMC and TMC models which fully exploits the modeling

power offered by such models for unsupervised signal processing. Contrary to previous work on TMCs, we have
4http://archive.ics.uci.edu/ml/datasets/smartphone-based+recognition+of+human+activities+and+postural+

transitions
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introduced a continuous latent process. For thesemodels, we have derived Bayesian inference algorithms for estimating
their parameters and the associated hidden r.v. and we have emphasized the case where the parameterization relies on
DNNs. Our algorithms rely on an objective function deduced from the variational Bayesian inference but which has
been modified in order to include the interpretability of the discrete hidden r.v.

This contribution enables us to propose an efficient answer to three recurrent questions linked with the practical
applications of complex probabilistic graphical models for sequential data: which probability distributions to choose,
how to parameterize them and how to estimate their parameters in an unsupervised way. For several applications, it
has indeed been showed that our global procedure leads to new models which consistently performs better than the
classical ones. Importantly, the ability of these models to tackle more complex noises comes without no additional
effort from the signal processing point of view. Our experiments also suggest that it possible to model complex noises
by using the universal approximating properties of DNNs and by training them in an unsupervised way with the new
algorithms that we propose.
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A. Appendix
A.1. Proof of Proposition 1

The ELBO
F (���,''') =

∑

ℎℎℎK
∫ q'''(ℎℎℎK , zzzK |xxxK ) log

(

p���(ℎℎℎK , zzzK , xxxK )
q'''(ℎℎℎK , zzzK |xxxK )

)

dzzzK (59)

can be decomposed as

F (���,''') = ∫

1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

∑

ℎℎℎK

q'''(ℎℎℎK |zzzK , xxxK )

]

q'''(zzzK |xxxK ) log
(

p���(zzzK , xxxK )
q'''(zzzK |xxxK )

)

dzzzK

− ∫ q'''(zzzK |xxxK )DKL
(

q'''(ℎℎℎK |zzzK , xxxK )||p���(ℎℎℎK |zzzK , xxxK )
)

dzzzK , (60)

≤ ∫ q'''(zzzK |xxxK ) log
(

p���(zzzK , xxxK )
q'''(zzzK |xxxK )

)

dzzzK = F opt(���,'''). (61)

We have F (���,''') = F opt(���,''') when the KLD term in (60) is null, i.e. when q'''(ℎℎℎK |zzzK , xxxK ) = p���(ℎℎℎK |zzzK , xxxK ). It
remains to compute F opt(���,'''). Starting again from (59) where we set q'''(ℎℎℎK , zzzK |xxxK ) = q'''(ℎℎℎK |xxxK )p���(ℎℎℎK |zzzK , xxxK ),the Markovian structure of p���(ℎℎℎK , zzzK , xxxK ) and the additive property of the logarithm function give the decomposition
(28)-(30).

Note that the computation of F opt(���,''') via (28)-(30) relies on p���(ℎℎℎk−1∶k|zzzK , xxxK ). It can be computed from a
direct extension of the intermediate quantities ����,k and ����,k which are now defined as ����,k(ℎk) = p���(ℎk, zzzk, xxxk) and
����,k(ℎk) = p���(zzzk+1∶K , xxxk+1∶K |ℎk, zk, xk). Their computation is similar to (16) and (18), except that they now involve
the transition p(ℎk, zk, xk|ℎk−1, zk−1, xk−1) rather than p(ℎk, xk|ℎk−1, xk−1).
A.2. Detailed error rates for experiments 5.1 and 5.2

This section provides the full results of the real world experiments of Section 5.
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Slice HMC-IN di-MTMC MTMC D-MTMC

A 8.5 8.5 6.5 5.4

B 10.9 10.9 8.7 6.5

C 6.9 7.0 6.0 5.2

D 10.0 10.1 8.3 6.1

E 6.5 6.3 6.2 5.4

F 11.5 11.5 10.8 9.3

G 4.6 4.6 3.9 3.7

H 8.6 8.6 8.5 7.7

I 11.5 11.5 10.1 9.2

J 7.2 7.2 6.9 6.5

Average 8.6 8.6 7.6 6.56.56.5

Table 3
Detailed error rates (%) in unsupervised image segmentation with all the generalized TMCs assessed on ten micro-computed
tomography slices. See Section 5.1.
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Data HMC-IN SPMC D-SPMC D-PSPMC PMC D-PMC D-PPMC

acc_exp01_user01 15.0 29.0 20.9 17.8 20.9 19.9 20.1

acc_exp02_user01 16.0 20.3 13.3 12.4 13.1 18.2 14.6

acc_exp03_user02 25.7 16.1 11.7 9.8 11.7 5.6 12.7

acc_exp04_user02 24.3 15.2 10.9 11.5 10.9 5.6 11.7

acc_exp05_user03 21.1 28.8 23.2 15.3 22.4 22.7 23.4

acc_exp06_user03 26.3 15.6 12.9 11.0 12.3 19.9 14.2

acc_exp07_user04 23.3 19.2 14.4 13.4 23.3 21.9 14.6

acc_exp08_user04 26.3 17.1 13.1 12.3 12.9 10.4 12.9

acc_exp09_user05 24.3 19.0 14.9 12.3 14.7 12.3 15.5

acc_exp10_user05 25.8 48.3 24.5 25.4 24.3 27.6 24.3

acc_exp11_user06 27.7 15.1 12.7 10.9 12.7 12.6 11.9

acc_exp12_user06 36.9 43.5 42.8 43.2 42.8 42.1 41.5

acc_exp13_user07 26.1 18.2 14.6 16.5 14.4 13.9 13.9

acc_exp14_user07 26.0 18.5 14.5 21.9 14.4 18.9 13.6

acc_exp15_user08 22.2 16.7 12.9 9.0 12.8 10.0 13.0

acc_exp16_user08 26.2 19.4 16.5 14.7 16.5 15.8 14.3

acc_exp17_user09 25.6 17.0 13.1 17.9 12.9 14.0 11.0

acc_exp18_user09 24.8 13.8 10.9 11.3 10.8 8.1 12.3

acc_exp19_user10 26.1 13.3 10.4 21.4 10.3 8.0 15.2

acc_exp20_user10 34.9 22.1 27.2 26.8 27.1 29.1 25.9

Average 25.2 21.3 16.8 16.716.716.7 17.1 16.8 16.8

Table 4
Detailed Error rates (%) in the binary clustering of the first twenty raw entries of the HAPT dataset [Reyes-Ortiz et al.,
2016].
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