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Abstract 
This chapter deals with the integration of user’s perceptions into the design process of products. 
Beyond the traditional approaches using predefined Design of Experiments (DOE) to study the effect 
of design variables of stimuli on human perceptions (classical in sensory analysis), methods based on 
Interactive Evolutionary computation (IEC) present a great interest. They are efficient to deal with 
complex optimization problems, where the derivative is unavailable, and can take into account 
perceptual assessments in the course of the solution search. In this chapter, we propose to show how 
Interactive Genetic Algorithms (IGA), a particular class of IEC, can be implemented for sound design. 
We illustrate the method with a particular application, the design of alert sounds for Electric Vehicles 
(EVs). EVs being very quite at low speed, it is necessary to add warning sounds but this can represent 
an annoyance if they are poorly designed. We describe a perceptual experiment in which the 
detectability and the unpleasantness of synthesized sounds are optimized with IGA. Results show that 
the quality of the sounds designed by the IGA method is significantly higher than different 
propositions of a designer, validating the relevance of the approach. 
 
Keywords:  
Sound design; electric vehicle; interactive optimization; interactive genetic algorithm; User centred 
design; sound quality; detectability; unpleasantness; masking effect 

1 INTRODUCTION 

In today’s increasingly competitive market, industrials need to reach all the components of customer 
expectations. These expectations can be translated into functional specifications, such as the fuel 
economy or the power of a car, or represented by more subjective requirements, such as the 
“pleasantness” of a motor sound. Recently, an increasing number of businesses are realizing that to 
gain a competitive edge, they must win the customers’ hearts as well as their minds. Emotions elicited 
by product appearance can enhance the pleasure of using things and design for emotions is now an 
important topic in engineering design (Barnes & Lillford, 2009). The development of successful 
products requires the control of product semantics, the “symbolic qualities of man-made forms in the 
context of their use and application of this knowledge to industrial design” (Krippendorff & Butter, 
1984). To manage the risks of design projects, and increase the consistency between the positioning of 
a product and its design, companies must check that the product matches specific semantic 
dimensions, in accordance with marketing or design briefs (Kaul & Rao, 1995). For example, the 
motor sound of a sporty car must inspire “sportiness" to customers, and the company must check from 
the early stages of the project that the design decisions agree with this connotation for the considered 
market segment. The challenge for designers is to understand what “sportiness” means to customers, 
in order to translate it into relevant acoustic attributes. Even if designers are trained and skilled to 
understand customers, capture trends and make innovative proposals, discrepancies may occur 
between designers’ and users’ product perception (Hsu et al., 2000). Furthermore, users are not 
designers and it is illusory to ask them directly what design attributes would be relevant (users are 
generally unable to give an opinion on a prospective product until they see it). Companies, despite 
having well defined product needs, may encounter difficulties anticipating the customers’ reactions to 
a design and the control of product semantics remains an important problem in product design (Hsiao 
& Wang, 1998). Therefore, to assist designers in their design decisions and to confirm their proposals, 
an active research field in product design concerns the analysis of end-users’ evaluations, in order to 
extract useful information to take design decisions (Orsborn et al., 2009 - Hoyle et al., 2009). 
 



 3 

In this context, a first category of methods concerns the modeling of customers’ perceptions or 
preferences according to a given set of parameterized products (modeling of perceptual data). These 
methods use the Design of Experiments theory (DOE) and assume a model between the perceptual 
dimensions and the design variables. Conjoint analysis (CA) (Green & Rao, 1971), the typical 
decomposition method of preference, initiated in marketing, belongs too this category, and has several 
applications in design (Wassenaar et al., 2005). A model (generally linear without interaction) 
explaining the preference by design attributes is assumed and various statistical procedures and design 
of experiments are proposed to estimate the coefficients of the model. For product design, the 
presentation of the samples is generally visual and a new discipline, visual conjoint analysis, has been 
emerging in engineering design (Vriens et al., 1998), including Virtual Reality techniques for product 
presentations (Tovares et al., 2014). Many works address limitations of CA, concerning in particular 
the difficulty in the definition of the experimental design (Kuhfeld, 1997) or the importance of 
interactions between attributes (Green & Srinivasan, 1990). For visual studies that concern shape 
parameters of a product, interactions between features seem to be particularly important (Sylcott et al., 
2015) since they are not considered in the majority of conjoint studies. Beyond customer preferences, 
the conjoint analysis framework has been extended to study semantic or sensory dimensions. From 
ratings or choices of participants according to a given semantic dimension, a statistical model is fitted 
to the data to study the value participants give to specific product features. This process was for 
example used in (Reid et al., 2010) to study the environmental friendliness of car silhouette and to 
propose optimal designs. 
 
Another model-based approach is the Japanese Kansei engineering, a design method to account for 
user’s feelings and perceptions (Nagamachi, 1995). From subjective measurements of the user’s 
“Kansei”, generally using the semantic differential method and adjective pairs, different statistical 
models are proposed to translate the user’s perceptions into design elements and make design 
decisions (Nagamachi, 2011). The estimation of the statistical models can be made with the 
Quantification theory type I (Hayashi, 1952) with maximization of the correlation coefficients or with 
the least square method. The influence of slight changes in product attributes on user emotions using a 
linear model is for example presented in (Artacho et al., 2010). All these approaches have subjective 
assessments of users in common and assume a mathematical model (defined a priori) between the 
perceptions/preferences and the design attributes. An optimum of this model can be defined to 
constitute the “optimal” product according to a semantic dimension or preference. 
 
A second category of methods for the analysis of users’ evaluations is not model-based and uses 
human-computer interactions. These methods are model-free in content (contrary to CA, there is no 
model of the behavior of the respondent), but model-driven for the solution search. In this case, an 
algorithm gradually refines the propositions made to the users, for example with interactive 
evolutionary computation (IEC), a category of methods where the user plays the role of the evaluator 
in an evolutionary process (Takagi, 2001). In IEC, the user assesses the fitness of the population 
(adaptation of the population to the problem), using choices or ratings for example. IEC have been 
applied to many domains (music, writing, education, food industry, etc.) involving different sensory 
modalities. Particular cases of IEC are IGA (Interactive Genetic Algorithms), where genetic operators 
such as recombination, crossover, and mutation are used to modify design samples. This method has 
been used for example to capture aesthetic intention of participants for the design of cartoons (Gu et 
al., 2006), car silhouettes (Yannou et al.,  2008) or for preference modeling (Kelly et al.,  2011). IGA 
have also been tested in our previous studies for the design of drinking glasses (Poirson et al., 2011) or 
car dashboards (Poirson et al., 2013) which have confirmed their utility in extracting designs trends 
and to obtain a final product solution that optimizes a determined semantic dimension. IGA have the 
great advantage of not needing restrictive assumptions concerning the preference model of the 
participant. Interaction effects are in fact implicitly integrated in the course of the model driven search 
in the solution space. 
These two categories of methods (DOE and IGA) are very different in nature and comparative studies 
between them are very rare in the engineering design literature. A comparison is presented in (Teichert 
& Shehu, 2007), where the authors expose a simple case study on the design of a bottle with three 
attributes. The authors conclude on the superiority of interactive evolutionary algorithms to elicit the 
optimum product, but without explanations for the reason behind this superiority. The fields of 
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application of DOE and IGA are different but they share the same general goal: developing products 
that satisfy consumer’s needs and desires, on the basis of customer’s surveys. Both methods are 
clearly in competition for the optimization of products in a design space according to user perception 
of a given semantic dimension. DOE allows for the definition of “optimal” products and the 
generation of predictions in the design space, while IGA is oriented towards the search for the 
“optimal” product in the design space. They can also both be employed to “optimize” a given product 
according to a semantic or sensory dimension, on the basis of customers’ surveys.  
 
We propose in this chapter to study the efficiency of Interactive Genetic Algorithms for the design of 
sounds. Sounds are nowadays used for many applications during our interaction with complex 
products. They can be used to present information to the user (auditory display), to give a feedback on 
the state of a Human Machine Interface (HMI), to alert the user on potential dangers of a situation 
(aircraft or vehicle navigation systems (Stenton & Edworthy, 1999) or even to elicit a positive 
emotional state and to connote the design of a product with particular semantic dimensions (sounds of 
vehicles for example) (Roussarie et al., 2004). The design of such functional sounds is a complex 
design problem that necessitates coping with many constraints and dealing with perceptual aspects. In 
addition to the expertise of a designer, hearing tests are required in order to understand the complex 
relationships between acoustic parameters and perceptual dimensions. 

For warning sounds in particular, knowledge of the effect of sound parameters on the perceived 
urgency is important to give precise recommendations (Edworthy, Loxley & Dennis, 1991). Recently, 
new-in car technologies led to an increasing number of sound interfaces, for example for navigation or 
driver assistance systems (autonomous vehicle). Many studies propose an experimental approach with 
hearing tests to understand human perceptions for sounds design. In (Marshall, Lee & Austria, 2007), 
different hearing scenarii are proposed to study two objectives, annoyance and urgency, with a fixed 
design of experiments. In addition to the perceived urgency, other dimensions such as the criticality 
level or the severity level of alarms can be studied (Sousa et al., 2016), so as the influence of ambient 
noise conditions (Singer et al., 2015).  

Another typical example of sound design concerns Electric vehicles (EV) or hybrids that may be 
dangerous because too silent at low speed (under 30 km/h). Yet, several countries such as Japan and 
the United States of America already decided that adding artificial sounds to EVs is compulsory 
(Konet et al., 2011). Many studies have been conducted to recommend design guidance for external 
sound generation systems for EVs (Senselab, 2011), (Robart et al., 2013), (Singh et al., 2014).  

 
To study and understand human reaction to sounds, experiments use generally a parameterized 

sound synthesis and classical model-based design of experiments (for example D-optimal DOE) 
(Kuhfeld, 1997). The limitation of such approach is that a model between the acoustic parameters and 
the perceptual dimension must be assumed in advance, given that the exact form of the model is 
generally unknown.  

Concerning sounds, IGA have been used in sound design for musical compositions (Biles, 2007) or 
to design sign sounds (Miki et al., 2006). Subtle perceptual phenomenon can then be taken into 
account for the optimization of products involving sensory constraints (Wakefield et al., 2005). A 
study using IGA for the design of sounds for Electric Vehicles can be found in (Petiot, Legeay & 
Lagrange, 2019), where an exploration of the tradeoff between detectability and unpleasantness of the 
sounds is proposed, showing the efficiency of the approach. The present chapter is in the continuity of 
this work.  

The first objective is to describe how the optimization of the tradeoff detectability/unpleasantness 
of EV sounds can be made with IGA. A second objective of the chapter is to assess the efficiency of 
the design solutions compared to different designs and current proposals of a designer. For this, 
hearing tests based on synthesized alert sounds were proposed to a panel of participants in an 
interactive experiment. In a second experiment, the efficiency of the design solutions provided by 
different design methods was assessed. 
 
The remainder of the chapter is organized as follows. Section 2 presents a short background on 
interactive Genetic Algorithms (IGA) and their use in product design. Section 3 presents the 
application on EV with a Material and Methods section (presentation of the sound synthesis method, 
description of the tasks given to the participants and the sound stimuli used, methods used for the 
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analysis of the results) and a Results section. The concluding section provides implications for sound 
design and perspectives. 

2 BACKGROUND ON IGA 

2.1 Principles  
Genetic Algorithms (GA) are evolutionary optimization methods (Goldberg, 1989). The principle of 
GA is based on iterative generations of populations of individuals, converging step by step toward 
solutions, which are adapted to the problem. Based on the principle of Darwin’s natural evolution 
theory, the algorithm proceeds to a selection of parents, which will spread their genetic dominant 
heritage in the next generation, suitable to a desired objective. Classically, the fitness evaluation of the 
individuals is calculated numerically with a mathematical function known beforehand. A particular 
category of GA, Interactive Genetic Algorithms (IGA) introduces the user in the optimization loop to 
assess the fitness. In each iteration, the user selects solutions (products) that he/she considers as the 
most interesting for the desired objective. After a number of iterations, the method may converge 
towards solutions that fulfill the user’s objective. These algorithms are used for example to explore 
design spaces and to encourage creativity (Kim & Cho, 2006), (Qian & Ben-Arieh, 2009). Since the 
user decides the individual fitness, there is no need for a prior and unique formulation of the fitness 
function. For some applications, such as exploring semantic dimensions (Poirson et al., 2013) or 
integrating complex perceptual processes (Wakefield et al., 2005) (Lee & Chang, 2010), this 
advantage is crucial. 

2.2 Implementation of IGA 
After a definition of the design variables of the product and their corresponding levels, a coding of the 
designs, represented by a chromosome, is proposed. Our implementation uses a binary coding and 
discrete-valued variables, but continuous variables may also be used. A more complete description of 
the implementation of our IGA can be found in (Poirson et al., 2013). The IGA creates an initial 
population of individuals (e.g. pictures or sounds) by randomly generating the chromosomes and 
presents them to the user. Based on personal criteria, and according to the instructions given to the 
user for the experiment, the user has to assess the “fitness” of each individual of the population. Two 
main protocols can be used for this assessment: (1) a choice of a subset of individuals (for example 1 
or 2 designs) – this process is convenient for example for pictures or shapes, where the assessment of 
the participant can be immediate (Poirson et al., 2013). It is not well adapted to sounds because the 
short time memory of the participant cannot be activated, given that sounds, contrary to pictures, are 
embedded in time - (2) a rating of each design on a rating scale – this process is convenient for sounds, 
the sound being rated just after its listening. From these assessments of the fitness, a new population of 
individuals is then created using genetic operators applied to each design of the previous population. 
The general framework for a user-test using IGA (applied to sounds) is presented in Figure 1.  

 Figure 1: Framework of the iterative user-test of sounds using IGA 

 
The generation of the new population uses genetic operators, mainly crossover, mutation, and 
selection. In our implementation of IGA, the algorithm is controlled by 3 parameters: the crossover 
rate (𝑐!), the mutation rate (𝑚!) and the selection rate (𝑠!). These values are chosen between 0 and 1 
in such a way that  𝑐! +𝑚! + 𝑠! = 1. The choice of the operator applied to each individual i is made 
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randomly according to the following process: an indicator, rand(i), is randomly chosen between 0 and 
1 from a uniform distribution:  

– If rand(i) < 𝑐!, the operation applied is a crossover (single point crossover – the second parent 
is chosen randomly in the population (see after)) 

– If 𝑐! ≤ rand(i) ≤ 𝑐! +𝑚!, the operation is a mutation (random mutation of one variable) 
– If rand(i) > 𝑐! +𝑚!, the operation is a selection (simple duplication of the individual) 

A fourth parameter can be added for the generation of populations: the roulette wheel 𝑤!. In the 
crossover operation, the probability that an individual is the second parent in the crossover operation 
depends on its fitness, and can also be increased by the weight 𝑤! >1. The number of individuals per 
generation does not depend on the IGA methodology. It is chosen according to the number of 
variables and levels and the possible fatigue of the participants. This set of parameters allows the 
management of different strategies for the solution search, and control the convergence properties of 
the process. For example, with the set (𝑐! = 𝑠! = 0, 𝑚! = 1), the strategy corresponds to a random 
search in the design space. A very eugenist strategy can be obtained for example with (𝑐! =
1, 𝑠! = 𝑚! = 0) and 𝑤! ≫ 0 (very aggressive strategy that may converge fast but to local minima). 
 
Figure 2 presents the general mechanism of our implementation of IGAs: after the rating of the fitness 
of each individual of the population, the next population is created by applying either a selection 
(copy) or a mutation or a crossover. 

 
 

Figure 2: Synoptic of the IGA process for the generation of a new population 

The tuning of the parameters of IGA is a complex problem that depends mainly on the size of the 
design space and the maximum number of generations allowed. A balance between quality of the 
solutions and participant fatigue is necessary (Wang et al., 2006): not to few generations because poor 
solutions may be obtained, and not too much generations because inconsistent ratings of the 
participants due to fatigue may occur. An automatic process was implemented to tune the different 
parameters of our IGA (Poirson et al., 2013). This process uses simulated “virtual” users and a 
“target” product in the design space (defined by target values of the design variables). To simulate the 
choices of a virtual user, a distance function between the individuals of the population and the target is 
computed. By launching several simulations in the same conditions (Monte Carlo method), an average 
estimate of the convergence rates of the IGA is computed, given the value of the parameters. This 
process allows the experimenter to determine the “optimal” tuning of the parameters, given a 
maximum number of generations allowed. 
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3 APPLICATION OF IGA TO THE DESIGN OF SOUNDS 

3.1 The design problem: sounds for electric vehicles (EV) 
Electric vehicles (EVs) and hybrid vehicles are becoming a serious alternative to internal combustion 
engine cars (Gillibrand et al., 2011). However, at low speed (under 30 km/h), EVs are very quiet and 
may be dangerous for pedestrian or visually impaired peoples who have to rely on auditory cues when 
intending to cross a road (Parizet et al., 2014). Regulation concerning the sounds of electric cars is still 
under study. Nevertheless, several countries such as Japan and the United States of America already 
decided that adding artificial sounds to EVs is compulsory (Konet et al., 2011). Car manufacturers 
started to design warning sound generator devices, named for instance AVAS (Approaching vehicle 
Audible System), VSP (Vehicle Sound for Pedestrian), VPNS (Vehicle Proximity Notification 
Systems)…  
The sonification of EVs is a complex design problem, with many constraints and stakeholders 
involved. Stakeholders include cyclists and pedestrians some of whom might have difficulties hearing 
warning sounds in a urban environment, drivers who expect audio-feedback on the performance of the 
car, and other third parties who prefer not to be disturbed by additional sounds (Petiot et al., 2013). 
The main difficulty in the design concerns the tradeoff between detectability and acceptance of the EV 
sound (Lee et al., 2017).  
It is indeed clear that EV sounds may be masked by the background noise of the environment, making 
them hard to detect. And a naïve solution consisting in a simple increase of the sound level to reduce 
the masking effect may have dramatic consequences on the sound pollution of cities. There is then 
clearly a conflict between detectability and annoyance for the perception of EV sounds. Different 
studies addressed this problem (Campillo-Davo & Rassili, 2016), (Lee et al., 2017), (Parizet et al., 
2014). All these studies are based on hearing tests of a predefined set of sound stimuli (classical 
DOE). They produced interesting results to give recommendations for the design of sounds by the 
fitting of a model between the perceptual dimensions and the sounds parameters. This data modeling 
stage may constitute a limitation for the optimization of sounds, given the number of parameters of the 
sounds and the possible interaction between them. For these reasons, the IGA approach should be a 
valuable alternative. 

3.2 Material and methods 

3.2.1 EV Sound synthesis 

COMPONENTS OF THE SOUND 

The EV sounds were synthesized using the mathematical modeling software Matlab and the additive 
synthesis technique. In order to generate different but plausible sounds for an electric car, after an 
analysis of current sounds of different carmakers (Misdariis et al., 2012) and personal propositions 
(Petiot et al, 2013), four main components of the sound were considered. The components are also 
named design factors in this chapter: 
• Component C1 “A thermic motor sound”. This component synthesizes the first harmonics of a 

classical 4-stroke internal combustion engine (H0.5, H1, H1.5, H2, H4, H6 – H1 correspond to the 
rotation frequency of the engine), 

• Component C2 “A Harmonic Sound”. This component synthesizes different musical ‘notes’, 
harmonic, that constitute a chord (chord with 2, 3, or 4 notes), 

• Component C3 and C4: “A broad band Noise” (granular synthesis). These components synthesize 
two filtered noises. 

The final temporal signal of the EV sound 𝑠 𝑡  is simply a weighted sum of these different 
components (equation 1). 

𝑠 𝑡 =  𝑎!!.𝐶1 𝑡 + 𝑎!!.𝐶2 𝑡 + 𝑎!!.𝐶3 𝑡 + 𝑎!!.𝐶4 𝑡  (1) 

In addition, different parametric filters were applied to the final sound: (1) a sweeping filter (envelop 
filter), which changes the harmonics amplitude in function of time – (2) a flanging filter (swept comb 
filter effect), which produces time variations of the frequency spectrum. 
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Since it is out of the scope of this chapter to describe all the parameters of the synthesizer (there are 
more than 70 independent parameters to define a sound), we can mention that all the frequencies and 
amplitudes of the components are adjustable, to create credible and original sounds, as well as the 
filters parameters. The sound is not constant but ‘played’ by a control parameter of the car: the speed. 
To make the sound evolve with the speed of the car, we choose to adjust the frequencies and the 
amplitudes of the different components according to the speed with parameterized patterns.  
Figure 3 presents a typical pattern of speed with four phases of driving: idling (2s), acceleration (6s), 
constant speed (2s - typically: 50km/h), deceleration and idling. 

 
Figure 3: Typical pattern of speed versus time for the simulation of the EV sound 

Mapping the speed of the car with the parameters of the sound (frequencies and amplitudes of the 
components) makes the sounds evolve and “simulates” the movement of the car. Analogous to an 
internal combustion engine, for this mapping, the rule used is that the frequencies of the components 
increase, when the speed increases. This pattern creates realistic conditions to facilitate the perception 
of speed, acceleration or deceleration.  
An example of the spectrogram of an EV sound, playing the previous speed pattern, is given in Figure 
4. The sound is made of a broadband noise (component C3 - 50-650Hz, central frequency = 300Hz), 
the frequency range of which increases with the speed of the car. A thermic motor sound (component 
C1) is added, below 200Hz. 

 
Figure 4: Spectrogram of an EV sound with components C1 (motor sound) and C3 (broad 

band noise), playing the speed pattern presented in Figure 3 
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DESIGN VARIABLES OF THE EV SOUND 

Among the different synthesis parameters of the sounds, it is necessary to define which one are 
manipulated by the IGA and coded in the genome (space of exploration of the genetic code). After 
several tests, the following 6 variables, and their corresponding levels, were chosen as factors (table 
1). The four first factors (C1, C2, C3, C4) control the frequencies of the components C1, C2, C3, C4, 
the factor Amp control the relative amplitude of the different components, and the Filter controls the 
use of different filters to alter the global sound. 4 levels were chosen for each factor. The setting of the 
levels of the factors required many adjustments (not reported here) to get a large diversity of sounds 
and to obtain audible differences between sounds but with still convenient sounds. 

Table 1. Definition of the 6 factors (design variables) and their levels 

Factor Variable Level 1 Level 2 Level 3 Level 4 
C1 Fundamental 

frequency of C1 
70Hz 100Hz 130Hz 160Hz 

C2 Fundamental 
frequency of C2 

100Hz 150Hz 200Hz 250Hz 

C3 Central frequency of 
C3 

100Hz 200Hz 300Hz 400Hz 

C4 Central frequency of 
C4 

500Hz 600Hz 700Hz 800Hz 

Amp Amplitude of C1, C2, 
C3, C4 

𝑎!! = 2 
𝑎!! = 1 

𝑎!! = 0.75 
𝑎!! = 0 

𝑎!! = 0.5 
𝑎!! = 0.75 
𝑎!! = 1.5 
𝑎!! = 0.33 

𝑎!! = 0.25 
𝑎!! = 0.5 
𝑎!! = 0.1 
𝑎!! = 0.25 

𝑎!! = 0 
𝑎!! = 0.1 
𝑎!! = 0.1 
𝑎!! = 0.5 

Filter Type of filter None Sweeping filter Flanger Sweep+flanger 
 
With these six factors and four level, the design space counts 4! = 4096 possible designs (all the 
possible combinations of the full factorial). 

3.2.2 Scenario and Sound stimuli 
Given that the objective of the test is to assess the reaction time associated to the detection of the EV 
sound, the sound must be incorporated in a background noise (masking signal).  The background noise 
considered in the study corresponds to a two-lane street in downtown. The soundscape was 
synthesized with the SimScene software1 (Rossignol et al., 2015), from real recordings in a city. To be 
used as background noise, the soundscape must not contain any strong emergent event (horns, car 
passing, …) (Kerber & Fastl, 2008). The level of the background noise was adjusted to a convenient 
level and kept constant for all the stimuli proposed in the hearing test. To avoid the potential fatigue of 
the participant due to the repetition of the same background noise during the test, the part of the audio 
file selected (15 seconds) was randomly chosen in the total background noise (duration 1mn).  
The scenario chosen for the test corresponds to the following situation (Misdariis et al., 2013): a 
pedestrian located on the sidewalk of a street waits before crossing (Figure 5). An EV may pass by, 
coming either from the right or from the left. The listener is static, and must indicate when he/she 
detects the EV. 

                                                        
 
1 Open-source project available at: https://bitbucket.org/ mlagrange/simscene 
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Figure 5: Passing-by scenario for the hearing test: pedestrian located on the sidewalk of a 

street 

To obtain a pseudo-realistic passing-by scenario, the following properties have been implemented: 
• The sound level of the EV is modulated according to the vehicle/listener distance. The model 

used, based on acoustic theory, considers the EV as a monopole and provides a sound level 
inversely proportional to the distance to the listener (1/r) (see Figure 6) (Misdariis et al., 2013), 
(Lee et al., 2017), 

• The speed of the EV is 25km/h, and accelerate to 30km/h in the approach phase 
• The duration of the sound stimuli is 15 seconds, 
• The Doppler effect (shifting in frequency due to the speed of the source) is taken into account for 

a more realistic experience, 
• The direction of the car (from the right or from the left) is randomly chosen, 
• The panning of the EV sound is managed in such a way that the source goes progressively from 

one canal (left or right, depending of the direction of the EV) to the other (right or left) according 
to the position of the vehicle 

Figure 6 describes the assembly of the background and the EV sounds and their respective sound level 
evolution. 

 
Figure 6: Timeline of the assembly of the background and the EV sound, with their respective level 
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We can mention that for experimental reasons related to the test duration, the attenuation function of 
the EV sound is asymmetrical, as in (Misdariis et al., 2013) (the attenuation is more fast than the 
increase of the sound level). Of course this aspect does not affect the detectability of the EV sound, 
which always occurs in the approach phase. 

3.2.3 Experiment 
The objective of the experiment is to assess the detectability and the unpleasantness of EV sounds. 
15 participants (12 males), with no reported auditory deficiencies, performed the experiments. The 
audio stimuli were presented with the same hardware desktop configuration, sound card and software, 
as well as Beyerdynamics DT-990 headphones in a quiet environment. The same sound output level 
was set by the experimenter for all computers. Instructions were given to the participants at the 
beginning of the experiment, mainly to explain how to assess the detection time. 
After selecting a sound (“select” button Figure 7), participants had to strike the “space bar” to start 
playing the stimuli (t = 0), and next strike the “a” key as soon as they detect the EV coming from the 
left, or the “e” key if it is coming from the right. This allows the definition of the detection time 𝑡! 
(see Figure 6). The detection duration 𝐷! is then given by (equation 2). 
 

𝐷! = 𝑡! − 𝑡! (2) 

 
In case the participant did not strike any key, or strike a key before 𝑡! (starting time of the EV), the 
detection duration was arbitrarily set to the maximum value, and a warning was recorded. In case the 
participant struck the wrong key (mistake in the direction of the EV), the detection duration was still 
computed, but a warning was recorded. The change in the direction of the car in the protocol is very 
important to be able to detect “false alarm” cases, where the participants strike the key before 
detecting the car. Furthermore, to avoid habituation of the participant in the detection time, the starting 
time 𝑡! of the EV sound in the mixture (Figure 6) was not always the same, and was randomly chosen 
in the interval [1, 3] seconds. 
After assessing the detectability of the sound, participants were asked to rate the unpleasantness 
𝑈𝑛! of the sound on a structured semantic scale (Figure 7 – from “0”: not at all unpleasant to “10”: 
very unpleasant)). To explain this semantic dimension unpleasantness, the following information was 
given to the participants « If the car passed by your house during a calm moment, how unpleasant 
would the sound be? ». They were able to play again the stimuli, but of course it was not possible to 
assess again the detectability (given that they already heard the sound and knew the direction of the 
car). 

 
Figure 7: Interface for the assessment of the detectability and the unpleasantness of a 

sound stimulus (structured rating scale). 

3.2.4 IGA test 
The assessment of the EV sound according to detectability and unpleasantness has been included in an 
IGA iterative experiment. The problem of IGA tests is to manage a good balance between 
convergence properties and fatigue of the participant. After different tests, we considered that the 
assessment of 11 populations of 9 sounds was enough to not fatigue the participant. This corresponds 
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to a test duration of around 35mn. An automatic process was implemented to tune the different 
parameters of our IGA (Poirson et al., 2010). The optimal tuning parameters of the IGA are as follows: 
• Wheelrate: 𝑤! = 14 
• Crossrate:  𝑐! = 0.65 
• Mutation rate: 𝑚! = 0.3 
• Selection rate 𝑠! = 0.05 
 
The fitness of the individuals was computed from the detectability and unpleasantness assessments 
(equation 3). The following form was defined, according to the detection duration 𝐷!  and the 
unpleasantness rating score 𝑈𝑛!: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑎 1 − !!
!!!!!

+ !
!
(10 − 𝑈𝑛!) (3) 

The higher the unpleasantness, and the higher the detection duration, the lower the fitness. The 
parameter 𝑎 represents the relative contribution of the detection time to the fitness. After several tests, 
it was set to 𝑎 = 5 to give a similar importance to detectability and unpleasantness given the variance 
in the population. At the end of the IGA test, the individual (EV sound) with the highest fitness 𝐼𝐺𝐴!"# 
in the last population can be defined for each participant. 

3.2.5 Assessment of sounds proposals 
At the end of the IGA test, participants were asked to assess the detectability and unpleasantness of six 
different EV sound proposals (interface given in Figure 7). Four EV Sounds 
(𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2, 𝑟𝑎𝑛𝑑3, 𝑟𝑎𝑛𝑑4) were randomly defined in the experimental space, whereas two EV 
sounds (𝑆𝑜𝑢𝑛𝑑1, 𝑆𝑜𝑢𝑛𝑑2) were designed by a sound designer with instructions for good detectability 
and good acceptance. In total, each participant had to assess 105 sound stimuli (11*9 for the IGA + 6 
design proposals). For each participant, the detection time, unpleasantness, fitness of his/her best 
individual 𝐼𝐺𝐴!"# was next compared to those of the different sound proposals. In addition to this, the 
detection time was converted into the distance to pedestrian, i.e. the distance of the EV to the 
participant at the instant of detection. 

3.3 Results 
Concerning the detection of the car direction, one participant made more than 50% of errors in the 
detection direction (problem with the headphone). He was withdrawn of the panel. The other 14 
participants made very few errors (less than 5 errors for the 105 stimuli), errors only in the direction of 
the car due to careless mistakes (strike of the wrong key). Their data were considered as valid. 

3.3.1 IGA convergence 
The average fitness of the population according to the generations for the whole panel of participants 
is presented in Figure 8. 

 
Figure 8: Average fitness of the populations over the generations 
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An improvement of the fitness is noticed over the generations, sign of the reliability of the 
experimental protocol for the assessment of the detection time and the unpleasantness, and a correct 
tuning of the IGA parameters. 

3.3.2 Analysis of the best IGA sounds 
Table 2 shows the occurrences of each level of the variables in the set of 𝐼𝐺𝐴!"# sounds. For example, 
for the fundamental frequency of the motor sound (C1), 6 participants chose the level 3 (130Hz), 3 the 
level 2 (100Hz) or level 4 (160 Hz), and 2 the level 1 (70Hz) for their final sound. To define the 
variables subjected to the most consensual choice concerning their levels, a multinomial goodness of 
fit test of the distribution of the occurrences was carried out. Results are presented in Table 2. 

Table 2: Occurrences of the levels of the variables in the IGA final choices of the 
participants (IGA test) 

 C1 C2 C3 C4 Amp Filter 
Level 1 2 2 3 5 8 1 
Level 2 3 4 4 4 0 4 
Level 3 6 3 3 2 3 3 
Level 4 3 5 4 2 2 5 
Multinomial 
test Signif. 

N.S. N.S. N.S. N.S.  *** N.S. 

 ***: p<0.01 N.S.: not significant 
 
Only one variable (Amp) obtains occurrences significantly different from a random distribution at the 
1% level. For the amplitude of the components of the sounds, the level 1 (strong presence of the 
thermic motor sound) is by far the most represented. This over-representation could be explained by 
the “naturalness” of the thermic motor sound in the street, and the habit of people to be surrounded by 
such noises. 
In conclusion, for the whole group, the presence of the thermic motor sound is important for the 
detectability and the acceptance of the EV sounds. For the other variables (C1, C2, C3, C4, Filter), 
there was no significant consensus, mainly because of the small size of the panel of participants. 
Additional studies are needed to identify the sound that better fits in average the requirement of all 
participants. 

3.3.3 Comparison IGA sounds/design proposals 
Figure 9 presents, for the panel of 14 participants, the average performances of the sounds proposals 
and of the best sound 𝐼𝐺𝐴!"# according to the two criteria detection time and unpleasantness. The 
standard error is also reported for information. 

 
Figure 9: Scatterplot of the average performances of the different EV sounds (detection time 

vs. unpleasantness) with their standard error. 
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It is clear on Figure 9 that the 𝐼𝐺𝐴!"# sound is Pareto efficient (it dominates all the other proposals, 
with the lowest detection time and the lowest unpleasantness). In average, the 𝐼𝐺𝐴!"# sound obtains 
the best performances both for detectability and unpleasantness. The first proposal of the sound 
designer, Sound1, is still not unpleasant, but less detectable than 𝐼𝐺𝐴!"#. The second proposal, 
Sound2, is more detectable, but the price to pay is the unpleasantness, that is the largest. The randomly 
generated sounds (rand1 to rand4) obtain average performances: they are rather unpleasant, and with 
large detection times. 
To investigate the differences in the performances of the sounds, the average scores with their standard 
errors are presented in Figure 10 left (Detection time), Figure 10 right (distance to pedestrian), Figure 
11 left (Unpleasantness), and Figure 11 right (Fitness). To study the differences in the average score, a 
Duncan multiple comparisons test is carried out for every pair of sounds (significant threshold: p = 
0.05). The results are presented with bold lines connecting the sounds in the figures. When sounds are 
connected, pairs are not significantly different, whereas they are when not connected.  
 
According to detection time, there is no significant difference between two groups of sounds (Figure 
10 left): (rand2, Sound2, IGAopt) and (rand4, rand1, Sound1, rand3, rand2, Sound2). With detection 
time only, the 𝐼𝐺𝐴!"# sound does not outrank two other proposals, particularly the sound designer 
proposal Sound2.  Concerning the distance to pedestrian, Figure 10 (right) shows that some proposals 
(rand4, rand1) may be dangerous because detected under the stopping distance of the vehicle 
(considered as 11m at 30km/h). These sounds do not allow the EV (and the pedestrian!) to stay in a 
safety zone with regard to a blind detectability.  

 
Figure 10: Bar graph of the average value of the Detection time (left) and distance to 

pedestrian (right) for the different EV sounds. Non significant differences between pairs of 
sounds (p>.05) are linked with an horizontal line (Duncan multiple comparison test). 

According to Unpleasantness (Figure 11 left), there is no significant difference between three groups 
of sounds. Again the 𝐼𝐺𝐴!"# sound does not outrank all the proposals, particularly the sound designer 
proposal Sound1. When global fitness is considered (Figure 11 right), 𝐼𝐺𝐴!"# is then significantly 
different of all the other proposals. This result shows that the IGA allows a conjoint optimization of 
the two conflicting criteria. 
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Figure 11: Bar graph of the average value of the Unpleasantness (left) and Fitness (right) for 
the different EV sounds. Non significant differences between pairs of sounds (p>.05) are 

linked with an horizontal line (Duncan multiple comparison test). 

 
These results are average results for the whole panel. At the individual level, the IGA sounds got the 
best fitness for 7 participants out of 14. The IGA procedure is interesting to define convenient EV 
sounds, optimized for unpleasantness and detectability. It allows ones to uncover tradeoffs between 
detectability and unpleasantness.  
We are of course aware that a larger panel of participants should be necessary to support the 
conclusions in a real design project. It should also be interesting to confirm the generalizability of the 
results, by defining evaluations protocols in various environmental situations.  
In our experiment, the same experimental protocol is used for the optimization and for the evaluation, 
what could constitute a limitation. Validation tests in a real environment should be necessary to prove 
with an independent experiment that the IGA process is efficient to design EV sounds. This will be 
conducted in future experiments. The positive results are nevertheless encouraging given the small 
number of studies on the interactive optimization of sounds. 

4 CONCLUSION 

This chapter presented how Interactive Genetic Algorithm can be implemented to design EV sounds 
that are detectable but not unpleasant. The results show an optimization of the fitness of synthesized 
sounds, from perceptual assessments of participants. 
The designed experimental protocol provided a realistic assessment of the detection time. With 
hearing tests, and inclusions of the EV sounds in a background sound, assessments of the detection 
time and the unpleasantness of the sounds were provided. The results show the potential of the 
method: the IGA algorithm is effective for the design of efficient sounds. Comparisons between sound 
proposals showed that in average, the sound provided by the IGA was significantly more efficient. The 
IGA method can be considered as an valuable alternative to help the design of sounds, or to select 
particular acoustic attributes in a pilot study. 
 Several perspectives can be drawn for this project. Other perceptual dimensions should be included in 
the objectives of the project, for example aesthetical or emotional dimensions. A next stage of the 
project will be to explain the performances in detectability and unpleasantness with sound parameters 
(spectral or spectro-temporal). This will be important to be able to draw solid recommendations to a 
sound designer and to improve the design of sounds for EVs. 
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