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ABSTRACT
In the abstract argumentation setting, gradual semantics have been

proposed to assess the individual strength of arguments. A number

of such semantics have been proposed recently, and their formal

properties have been studied. While these semantics are sometimes

motivated by their better adequacy to capture debates, their be-

haviour in such multiagent settings is largely unexplored. In this

paper, we undertake a study of the multiagent dynamics of a stan-

dard gradual semantics.We propose a simple protocol, where agents

exchange arguments in order to provide a collective evaluation of

the value of a given argument (i.e an issue), and may learn new

arguments from the other agents, as well as an extended version

allowing votes. The debate proceeds following a better response

dynamics. We study how the value of the issue and the agents

opinion evolve, depending on various parameters of this setting.
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1 INTRODUCTION
Argumentation theory has been thoroughly studied in AI and multi-

agent systems in the last decades. Despite its rather crude represen-

tation power, abstract argumentation [15] has been influential due

to its generality. Argumentation semantics define formally methods

to assess whether (group of) arguments should be accepted. Dung

[15] defined several such semantics. Recently, gradual (or scoring)
semantics have been proposed as an alternative (quantitative) way

to assess arguments. Interestingly, from their very inception, these

semantics have been promoted as more natural in contexts, such

as online debates [18]. A number of such semantics have been

proposed recently, and their formal properties have been studied

(in particular, their axiomatics and their computational properties,

[3]). However, to the best of our knowledge, very few works have

addressed the dynamical aspects of such settings. Our research

question in this paper is thus the following:

If agents indeed reason and interact using some gradual
semantics, together with some protocol, howwill debates
and agents opinion evolve?

This is a very general question, and there are a number of assump-

tions that we wish to make explicit upfront for the sake of clarity:

(1) agent-system coherence: we assume that the agents’ opinions

and the system evaluation of the debate are based on the

same argumentation semantics;

(2) agreement on the argumentative structure: while agents may

have different opinions because they hold different sets of

arguments, they agree on attack relations among those ar-

guments;

(3) independence of agents: each agent behaves independently

of the others, we shall not consider issues of coalitions, com-

munication or influence directly among agents.

Of course, all these assumptions could be discussed. We believe

though they constitute a natural starting point for the study of such

dynamics — and a sort of minimal relevance test for such semantics

in multiagent settings.

While motivated by naturally occurring debates, our work is

normative by nature. We make no claim that agents do indeed use

(variant of) such semantics in practice. We instead study how a

system would evolve if agents were designed/enforced to follow

such principles. Whether this correspond to what is observed in

real online platforms for instance is an interesting but difficult

question that we leave for future work. What we are after instead

are findings which could help to design better platform, and to at

least provide some partial validation of the relevance of using such

semantics in that context [24]. For instance, we may expect our

system to allow opinions to converge to a more satisfying collective

outcome when agents have more learning capability.

1.1 Related work
Multiparty argumentation settings have been much less studied

than bilateral ones [23]. Both [17] and [8] studied team persuasion
settings, where agents, either in favour or against a given issue,

debate publicly. The underlying argumentative reasoning is based

on Dung’s semantics for abstract argumentation, and no opinion

dynamics is considered. On the other hand, opinion dynamics has

been extensively studied (see e.g. [13]), but these models assume

no argumentative structure of the information exchanged among

agents (opinions are typically abstract real values). Recently, a few

works attempted to mix opinion dynamics and argumentation, such

as [9, 31], who remain committed to the classical Dung’s frame-

work. Another interesting approach is that of [5], who also study

the polarization of agents opinion through exchange of arguments;

however, they do not use abstract argumentation frameworks to

explicitly model the links between arguments and issues. Thus,

surprisingly, while gradual semantics have been advocated for their

adequacy to model debate settings, the multiagent dynamics of



these semantics have been neglected. The work of [4] is an excep-

tion in that landscape since it considers a multiagent setting using

a gradual semantics, namely QuAD [29] (a quantitative bipolar

argumentation framework modelling both attacks and supports).

Technically, the paper exploits initial and final opinion sets from a

debate and define different semantics for opinion transitions.

1.2 Outline of the paper
The remainder of the paper is as follows. We start by recalling in

Section 2 the background required in formal argumentation theory,

and gradual semantics in particular. In Section 3, we detail our

model, in particular the protocol and the dynamics that will result

from agents’ moves. We put forward a number of hypothesis and

report on experimental results in Section 4. We then present how

we could improve the protocol by allowing the agents to vote on

arguments in Section 5, and conclude in Section 6.

2 BACKGROUND
2.1 Argumentation theory
In this section, we briefly recall some key elements of abstract

argumentation frameworks, as proposed by Dung [15].

Definition 1. An argumentation framework (AF) is a pair𝐴𝐹 =

⟨A,R⟩ where A is a finite and non-empty set of (abstract) argu-

ments, and R is a binary relation on A, i.e. R ⊆ A × A, called the

attack relation. ∀𝑥,𝑦 ∈ A, (𝑥,𝑦) ∈ R means that 𝑥 attacks 𝑦. An
AF may be represented by a directed graph, called the argumenta-
tion graph (AG), whose nodes are arguments and edges represent

the attack relation.

In the remainder of this paper, we will use the notion of argu-

mentation framework or argumentation graph indistinctly. Let us

now introduce different notions that we will use in this article.

Definition 2. Let 𝐴𝐺 = ⟨A,R⟩ be an argumentation graph and

𝑥,𝑦 ∈ A be two arguments. A path 𝑃 from 𝑦 to 𝑥 , denoted 𝑃 (𝑦, 𝑥),
is a sequence ⟨𝑥0, . . . , 𝑥𝑛⟩ of arguments such that 𝑥0 = 𝑥 , 𝑥𝑛 = 𝑦

and ∀𝑖 ∈ {0, 1, . . . , 𝑛 − 1}, (𝑥𝑖+1, 𝑥𝑖 ) ∈ R. We denote by 𝑙𝑃 = 𝑛 the

length of 𝑃 . An argument is a defender (resp. attacker) of 𝑥 if it

is situated at the beginning of an even-length (resp. odd-length)

path towards 𝑥 .

We shall abuse notation and write 𝐴𝑟𝑔(𝐴𝐺) for the set of argu-
ments of a given 𝐴𝐺 , and 𝐴𝑡𝑡 (𝑥) for the direct attackers of a given
argument 𝑥 .

In Dung’s framework, the acceptability of an argument depends
on its membership to some sets, called extensions. These exten-

sions characterize collective acceptability. A set of arguments is

admissible when it is conflict-free and each argument of the set is

collectively defended by the set itself. Several semantics for accept-
ability have been defined in [15].

2.2 Gradual semantics
Dung’s semantics evaluate arguments at the level of a set: either

a set of arguments is acceptable (and therefore an extension, un-

der a given semantics), or it is not. However, it may be too coarse

a classification for some application, in particular for online de-

bate platforms. Hence the efforts to provide alternative means of

evaluating the acceptability of a given argument. Ranking-based

semantics (see e.g. [1, 2, 10, 16, 21, 26, 27]) rank every arguments

of an argumentation system, in order to compare their individual

strengths. Gradual-based semantics (see e.g. [6, 12, 18, 19]) assign a

score, or a grade, to each arguments.

Definition 3. A gradual semantics is a functionwhich associates
to an argumentation framework𝐴𝐹 = ⟨A,R⟩ a scoring 𝑆 : A → R.

Recently, many of these semantics have been extended to ac-

count for the possibility of adding weights on arguments. This is

of course a desirable feature in our multiagent setting where we

may aggregate the graphs of several agents, or even allow agents

to vote themselves. In the rest of the document we will make the

distinction between flat and weighted argumentation graphs.

Definition 4. Aweighted argumentation graph is defined as a

tuple𝑊𝐴𝐺 = ⟨A,R,𝑤⟩, where𝑤 is a function assigning a positive

weight ∈ [𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 ] to each argument.

Among these semantics, we shall use specifically the h-categorizer
semantics [6] in its weighted variant proposed by [3], which is

known to satisfy several desirable axioms.

Definition 5. The weighted h-categorizer is defined as:

𝐻𝑏𝑠 (𝑎) = 𝑤 (𝑎)
1 +∑𝑏∈𝐴𝑡𝑡 (𝑎) 𝐻𝑏𝑠 (𝑏)

Observe that by construction, this function will return a value in

[0,𝑤𝑚𝑎𝑥 ]. When dealing with flat graphs, we shall simply assume

that the weights are 1 for all the arguments. In this case, we retrieve

the classical ℎ-categorizer definition.

3 OUR MODEL
3.1 A multiagent debate setting
The argumentation graphs used to model multiagent debates in

our setting satisfy a number of conditions: first of all, a specific

argument (the issue) plays the role of the main question of the

debate, and all arguments must be connected to this issue.

Definition 6. Let 𝐴𝐺 = ⟨A,R⟩ be an argumentation graph and

𝑖 ∈ A be an argument. 𝐷𝐺 = ⟨A,R, 𝑖⟩ is an issue-oriented ar-
gumentation graph (IOAG) of issue 𝑖 if 𝑖 is the root of the graph

formed by the nodes of A and the edges of R and if all attacks are

directed toward the root 𝑖 , that is for all 𝑥,𝑦 ∈ A , if there exists a

path between 𝑥 and 𝑦, then that path is a subset of a path from 𝑥 to

𝑖 the root of 𝐷𝐺 .

Our setting is a multiagent one: we shall deal with a set N =

{1, 2, · · · } of agents. We assume that each debate will be charac-

terized by a unique issue-oriented argumentation graph 𝑈𝐺 , the

universe graph, containing every argument relevant to the issue of

the debate. Each agent is equipped with a private IOAG, composed

of a subset of nodes of𝑈𝐺 , called her opinion graph, and represent-

ing her own view of the world. Therefore, all agents agree on the

attack relations between the arguments they know of, and all the

graphs share the same issue. We shall call the collection of IOAG

⟨𝐷𝐺1, 𝐷𝐺2, . . . 𝐷𝐺𝑛⟩ the profile of the game.



Definition 7. Let N = {1, 2, · · · , 𝑛} a set of 𝑛 agents, 𝑈𝐺 =

⟨A,R, 𝑖⟩ the universe graph, and 𝑖 ∈ A the issue of the debate. The

profile of the game ⟨𝐷𝐺1, 𝐷𝐺2, . . . 𝐷𝐺𝑛⟩ is a collection of IOAG,

one for each agent, such that ∀𝑘 ∈ N , 𝐷𝐺𝑘 = ⟨A𝑘 ,R𝑘 , 𝑖⟩, where
A𝑘 ⊆ A and ∀𝑥,𝑦 ∈ A𝑘 , (𝑥,𝑦) ∈ R𝑘 iff (𝑥,𝑦) ∈ R.

The second version of our protocol allows agents to vote for

arguments (see Section 4). We use a function which, for each ar-

gument 𝑥 , takes a the number of "pro" votes (upvotes, 𝑣+ (𝑥)) and
"con" votes (downvotes, 𝑣− (𝑥)) and aggregate them into a weight.

The following principles are relevant for such a weight function :

(w-n) Normalization : The domain of the function is Z and its

image is [𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 ], with 𝑤𝑚𝑖𝑛 ≥ 0, 𝑤𝑚𝑎𝑥 ≤ 1 and

(𝑤𝑚𝑖𝑛 +𝑤𝑚𝑎𝑥 )/2 = 0.5

(w-p) Proportionality : Results depend on the proportion of votes

for each arguments and not on the total number.

(w-i) Ignorance :Arguments which have neither upvotes nor down-

votes have the median value of 0.5.

(w-r) Resistance : No argument can have a base weight of 0.

There are existing proposals for such functions in the litera-

ture. The vote aggregation function of [18] defined as 𝑤 (𝑥) =
𝑣+ (𝑥)

(𝑣+ (𝑥)+𝑣− (𝑥)+𝜖) satisfies (w-n), (w-p), but does not satisfy principle

(w-i) nor (w-r), as it takes value 0 when no votes are expressed on an

argument. On the other hand, the vote base score of [28] defined as

𝑤 (𝑥) = 0.5 + 0.5× (𝑣
+ (𝑥)−𝑣− (𝑥))
𝑣+ (𝑥)+𝑣− (𝑥) satisfies principle (w-i) but not (w-

r). Clearly, (w-r) may be subject to discussion. The rationale behind

this property is that no amount of downvotes should completely

discard an argument. In a sense, the resistance property aims at

lowering the impact of the social votes on the argument’s value.

In the case of an online debate, this would be a safeguard against,

for example, manipulation by trolls. We propose to use a sigmoid

weight function which offers some control as to how strictly (w-r)

is applied, thanks to a parameter 𝛼 which can be chosen to control

the slope and range of the weight depending on the votes:

𝑤 (𝑥) = 1

1 + 𝑒−𝛼 ·
𝑣+ (𝑥 )−𝑣− (𝑥 )
𝑣+ (𝑥 )+𝑣− (𝑥 )

(1)

We set 𝛼 = 2.5 in our study. This means in particular that argu-

ments which are upvoted by all agents have a weight of 𝑤𝑚𝑎𝑥 =

0.92, while those downvoted by all agents have a weight of𝑤𝑚𝑖𝑛 =

0.07. By augmenting the value of 𝛼 the bounds 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥

reach their limits.

In the remainder of this paper, in order to lighten the notations,

A, R and 𝑖 will denote respectively the set of arguments, the set of

attacks of the universe, and the issue of the game.

The private opinion (value) of an agent𝑘 regarding the issue is the
value of the issue in the agent’s sub-graph as given by the semantics,

and will be denoted 𝑉𝑘 . As our setting includes the possibility for

agents to learn, this value may vary during the debate.

Using the weight function, we now define the merged graph,

which is the aggregation of the opinion graph of the agents.

Definition 8. For a universe graph 𝑈𝐺 = ⟨A,R, 𝑖⟩ and a given

profile ⟨𝐷𝐺1, 𝐷𝐺2, . . . 𝐷𝐺𝑛⟩, the merged graph is defined as the

weighted argumentation graphwhere 𝑣+ (𝑥) = #{𝑘 | 𝑥 ∈ 𝐴𝑟𝑔(𝐷𝐺𝑘 )},
𝑣− (𝑥) = #{𝑘 | 𝑥 ∉ 𝐴𝑟𝑔(𝐷𝐺𝑘 )}, and𝑤 (𝑥) is the weight function (1).

In words, we assume each agent holding the argument 𝑥 in her

AF "virtually" vote for it, while the others vote against. Note that

this graph is a tool for analysing the debate, but plays no actual

role in the course of the game.

3.2 The protocol
The state of the game at step 𝑡 is described by a tuple (𝑈𝐺, 𝑃𝐺𝑡 ,N)
where𝑈𝐺 is the universe graph (which is never modified) and 𝑃𝐺𝑡

is the public debate graph at step 𝑡 , visible to all agents. At the

beginning of the game, 𝑃𝐺0 = ⟨{𝑖}, ∅, 𝑖⟩ is composed only of the

issue. We denote 𝑉𝑃𝑡 the value of the issue of the public debate

graph at step 𝑡 , as given by the semantic.

All agents play simultaneously, i.e., at each step 𝑡 all agents play

a move. An agent’s move consists in adding to the current public

graph 𝑃𝐺𝑡−1 an argument, and all the attacks between this new

argument and the ones already present in the public graph. Agents

can only play arguments which directly attack an argument of

𝑃𝐺𝑡−1.
Intuitively, this corresponds to the behavior of agents seeing the

state of the online debate and adding a direct response to one of

the published arguments. This is a mild constraint on the relevance

of the moves [23], allowing to backtrack to any previously stated

arguments, although not to construct lines of argumentation which

would require to state arguments not explicitly related to the debate

in the first place. Each agent is able to perform only one operation

on the state of the game at each step.

Definition 9. Let a game at a given step
1 (𝑈𝐺, 𝑃𝐺,N), with 𝑃𝐺 =

⟨A𝑃𝐺 ,R𝑃𝐺 , 𝑖⟩. An agent’s 𝑘 move consists in adding argument

𝑎 ∈ A𝑘 in 𝑃𝐺 such that ∃𝑥 ∈ A𝑃𝐺 , (𝑎, 𝑥) ∈ R𝑘 . The resulting

argument graph denoted, 𝑃𝐺 ′ = 𝑃𝐺∪{𝑎}, is constructed as follows:
𝑃𝐺 ′ = ⟨A𝑃𝐺′,R𝑃𝐺′, 𝑖⟩, with A𝑃𝐺′ = A𝑃𝐺 ∪ {𝑎}; R𝑃𝐺′ = R𝑃𝐺 ∪
{(𝑥, 𝑎), (𝑎, 𝑥) ∈ R|𝑥 ∈ A𝑃𝐺 }.

3.2.1 Dynamics and agents’ strategies. To properly define the ra-

tional behaviour of the agents, we need to clarify how an agent

evaluates the current state of the debate, relatively to her own pri-

vate opinion. It would be too demanding to assume that agents

require the value of the debate to be exactly as their personal opin-

ion. Instead, we assume there is an interval around this value (the

comfort zone) that makes them happy with the current outcome of

the debate. The size of the comfort zone allows to model to what

extent an agent is ready to compromise with her own value.

Definition 10. An agent 𝑘 is comfortable at step 𝑡 if the value of
the public debate graph at this step lies within her comfort zone, an
interval around her ideal value 𝑉𝑘 ; that is, 𝑉𝑃𝑡 ∈ [𝑉𝑘 − 𝑐𝑙 ;𝑉𝑘 + 𝑐𝑙].

For every argument 𝑎 of their opinion graph, each agent can

compute a hypothetical value𝐻𝑃 (𝑎) which corresponds to the value
of the issue of the public debate graph when adding argument 𝑎 and

all relevant attack relations. Formally,𝐻𝑃 (𝑎) is the value of the issue
of the debate graph 𝑃𝐺 ′ = 𝑃𝐺 ∪ {𝑎}. Using this hypothetical value,
they can evaluate every argument that they know of and determine

which of them would (theoretically) improve their satisfaction.

Their strategy at step 𝑡 is dictated by the following rules, based

on the previous state of the game at step 𝑡 − 1 :
1
The step is not mentioned here to lighten the notations.



• if an agent 𝑘 is not comfortable, she can play any argument

present in her opinion graph, which directly attack at least

one argument of 𝑃𝐺𝑡−1 and whose hypothetical value is

closer to her opinion than the current public graph value.

• if an agent 𝑘 is comfortable, she can play any argument

present in her opinion graph, which directly attack at least

one argument of 𝑃𝐺𝑡−1 and whose hypothetical value is still
contained in her comfort zone.

Note the difference between both situations here: while an agent

follows a simple better-response approach when she is not comfort-

able, we assume when she is that she may continue to exchange

arguments as long as this does not make her uncomfortable.

In the end, to select which argument to play, the agents choose

randomly amongst the possible strategies. If the set of possible

strategies is empty, the agent does not play.

At the end of the turn, every argument that was selected by an

agent is added to the public graph, along with all relevant attacks,

to create 𝑃𝑡 . In this simple version of the protocol, the public debate

remains flat, and thus the fact that several agents may select the

same argument to play next is notmodelled. In Section 5we describe

a protocol where agents are allowed to vote.

3.2.2 End of the game. The game stops at step 𝑇 if every agent’s

strategy at this step is to do nothing. As the number of arguments

known by the agents is finite, the game trivially always finishes. If

𝐴 is the total number of distinct arguments known by the agents

N , then 𝐴 is also trivially an upper bound for the number of steps

before termination.

3.2.3 Values of a game. In order to study our protocol, we introduce
the following notions:

Definition 11. The universe value (resp. merged value) of a
game, denoted 𝑉𝑈𝐺 (resp. 𝑉𝑀 ), is the value of the issue of the

universe graph (resp. merged argumentation graph), as given by

the semantic.

Definition 12. The outcome of a debate game, denoted𝑉𝐹 , is the

value of the issue of the public argumentation graph at the end of a

game, as given by the semantic.

Definition 13. We define the dissatisfaction of an agent 𝑘 at a

step 𝑡 of a game as the difference between the value of the public

debate graph and the agent’s opinion 𝑉𝑘 : 𝑑𝑘𝑡 = |𝑉𝑃𝑡 − 𝑉𝑘𝑡 |. The
final dissatisfaction of an agent 𝑘 is the dissatisfaction at the end of

a game regarding the outcome of the debate: 𝑑𝑘 = |𝑉𝐹 −𝑉𝑘 |

Intuitively, the dissatisfaction captures how well a state, or the

outcome, of the debate matches an agent’s personal views.

After a turn, every agent has the possibility of learning the

arguments that were played by others and are unknown to her.

Learning an argument 𝑎 means adding 𝑎 to the set of arguments

of the opinion graph of the agent, adding all the attack relations

between 𝑎 and the arguments of her opinion graph as they appear

in the universe graph, and therefore updating the agent’s opinion.

Definition 14. Let an agent𝑘 ∈ N , and her IOAG𝐷𝐺𝑘 = ⟨A𝑘 ,R𝑘 , 𝑖⟩.
When 𝑘 learns argument 𝑎 ∈ A, her IOAG becomes 𝐷𝐺 ′

𝑘
=

𝐷𝐺𝑘 ∪ {𝑎}, and is constructed as follows: 𝐷𝐺 ′
𝑘
= ⟨A ′

𝑘
,R ′

𝑘
, 𝑖⟩, with

A ′
𝑘
= A𝑘 ∪ {𝑎}; R ′𝑘 = R𝑘 ∪ {(𝑎, 𝑥), (𝑥, 𝑎) ∈ R|𝑥 ∈ A𝑘 }.

3.2.4 Learning process. We chose to model the learning process to

represent confirmation bias. Confirmation bias is a cognitive bias

which consists in manifesting a preference towards the information

which confirm preconceived ideas and to grant less weight to the

assumptions which challenge them [22].

At the end of each turn, the agents have access to the new argu-

ment’s impact on the public graph, that is the difference in value

induced by each argument. The probability for an agent to learn

a new argument is related to the dissatisfaction brought by this

argument. Agents have a greater probability 𝑝 𝑓 𝑎𝑣𝑜𝑟 to learn argu-

ments which favored their own opinion: those are the arguments

whose impact on the public graph was to bring its value closer to

the agent’s opinion, and thus the effect of these arguments on the

public graph decreased the agent’s dissatisfaction. Conversely, if the

arguments’ impact on the public graph was to bring its value fur-

ther away from the agent’s opinion, and thus increased the agent’s

dissatisfaction, the agent has a probability 𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡 to learn it, with

𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡 ≤ 𝑝 𝑓 𝑎𝑣𝑜𝑟 to account for the confirmation bias.

Definition 15. Let an agent𝑘 with opinion𝑉𝑘𝑡 at step 𝑡 , and 𝑝 𝑓 𝑎𝑣𝑜𝑟
(resp. 𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡 ) her probability to learn an argument favorable (resp.

unfavorable), with 𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡 ≤ 𝑝 𝑓 𝑎𝑣𝑜𝑟 . The probability for 𝑘 to
learn argument 𝑎 is:

• 𝑝 𝑓 𝑎𝑣𝑜𝑟 if |𝑉𝑃𝑡 \{𝑎} −𝑉𝑘𝑡 | ≥ 𝑑𝑘𝑡
• 𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡 if |𝑉𝑃𝑡 \{𝑎} −𝑉𝑘𝑡 | < 𝑑𝑘𝑡

Example 1. Let us consider a public graph 𝑃 and an agent 𝑘 . At
the previous turn, three arguments 𝑐 , 𝑑 and 𝑒 were added to the public
graph, which now has a value of 𝑉𝑃 = 1

3
(see Fig. 1, where the issue

is dark gray whereas the arguments added in the previous turn are
light grey).

Public Graph

𝑖 ,𝑉𝑃 = 1

3

𝑎 𝑏 𝑐

𝑑 𝑒

Agent 𝑘 opinion graph

𝑖 ,𝑉𝑘 = 0.5

𝑎

Figure 1: Example of the learning process

We can compute the values the graph would take without each new
argument : 𝑉𝑃\{𝑑 } = 𝑉𝑃\{𝑒 } ≈ 0.2857; and 𝑉𝑃\{𝑐 } = 0.5.

The initial dissatisfaction of agent 𝑘 is 𝑑𝑘𝑡 = |𝑉𝑃 −𝑉𝑘 | = |
1

3
−0.5| ≈

0.1666. Therefore, we can say that arguments 𝑑 and 𝑒 are favoring
the agent’s opinion because without them, the public graph’s value
would be further away from the agent’s opinion : |𝑉𝑃\{𝑑 } − 𝑉𝑘 | =
|𝑉𝑃\{𝑒 } −𝑉𝑘 | ≈ 0.2143 ≥ 𝑑𝑘𝑡 . On the other hand, without argument
𝑐 , the value of the public graph would be exactly the value of the
agent’s opinion : |𝑉𝑃\{𝑐 } − 𝑉𝑘 | = 0 < 𝑑𝑘𝑡 . We can say that adding
argument 𝑐 goes against the agent’s opinion.

Therefore, agent 𝑘 has a probability 𝑝 𝑓 𝑎𝑣𝑜𝑟 of learning 𝑑 and 𝑒

and a probability 𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡 of learning 𝑐 , with 𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡 ≤ 𝑝 𝑓 𝑎𝑣𝑜𝑟 .

3.2.5 An example course of the protocol.



Example 2. Let a game be composed initially of a universe argu-
mentation graph𝑈𝐺 , and two agents 1 and 2. The issue is argument
𝑖 , and both agents have a comfort zone of 0.05. Let assume that agent
1 is stubborn, and will not learn any new argument easily even if
it is favourable (𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡1 = 0.1; 𝑝 𝑓 𝑎𝑣𝑜𝑟1 = 0.3); whereas agent 2 is
more open-minded and open to new information (𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡2 = 0.3;
𝑝 𝑓 𝑎𝑣𝑜𝑟2 = 0.7). Fig. 2 shows the universe graph, the merged graph,
the profile of the game, and one of the possible courses of the protocol.

𝑖

𝑎

𝑏𝑐 𝑑

, 𝑉𝑈𝐺 = 0.4286

Universe graph

𝑖

𝑎

𝑏𝑐 𝑑

, 𝑉𝑀
0
= 0.6277

Merged graph

𝑖

𝑎

𝑐 𝑑

,𝑉1
0
= 0.75

Agent 1

𝑖

𝑏𝑑

,𝑉2
0
= 0.5

Agent 2

A possible course allowed by the protocol is the following :

𝑡0

Public Graph Value Comfortable P. Strat. Strategy Learning

𝑖 ,𝑉𝑃
0
= 1 1 : 0.75 NO {𝑎} 𝑎 {}

2 : 0.5 NO {𝑏 } 𝑏 {𝑎}
𝑉𝑀

0
: 0.6277

𝑡1

𝑖 ,𝑉𝑃
1
= 0.33

𝑎 𝑏

1 : 0.75 NO {𝑐,𝑑 } 𝑑 {}
2 : 0.4 NO {𝑑 } 𝑑 {}
𝑉𝑀

1
: 0.5331

𝑡2

𝑖 ,𝑉𝑃
2
= 0.4

𝑎 𝑏

𝑑

1 : 0.75 NO {𝑐 } 𝑐 {}
2 : 0.4 YES {} − {}
𝑉𝑀

2
: 0.5331

𝑡3

𝑖 ,𝑉𝑃
3
= 0.43

𝑎 𝑏

𝑑𝑐

1 : 0.75 NO {} − {}
2 : 0.4 YES {} − {}
𝑉𝑀

3
: 0.5331

Figure 2: Possible course of the protocol

At 𝑡0, the issue is the only argument on the public graph, and none
of the agents are in their comfort zone. Each agent can only play one
argument (possible strategy P. Strat), and thus chooses to play it. Both
agents can learn a new argument. Agent 1 could learn argument 𝑏,
but even if this argument has decreased her dissatisfaction (it allows
to bring closer the value of the issue in the public graph to her personal
value), as 𝑝 𝑓 𝑎𝑣𝑜𝑟1 is low, she does not learn it. Agent 2 chooses to learn
argument 𝑎, as 𝑝 𝑓 𝑎𝑣𝑜𝑟2 is high, and this argument has also decreased
her dissatisfaction. As agent’s 2 personal graph has changed, the
merged value decreases: there are now 2 votes for argument 𝑎.

At 𝑡1, both agents are still not comfortable. Agent 1 can play ar-
guments 𝑐 or 𝑑 , that have the same effect on the value of the issue
on the public graph. She randomly chooses to play 𝑑 , as agent 2 who
does not have the choice. At 𝑡2, agent 2 is in her comfort zone. She

has played all her arguments. Agent 1 is still not comfortable, but can
play argument 𝑐 . Agent 2 could learn argument 𝑐 , but we assume she
did not (which is a possibility with 𝑝 𝑓 𝑎𝑣𝑜𝑟2 = 0.7). The game ends in
𝑡3, with agent 1 not comfortable, whereas agent 2 still is.

We can see that learning argument 𝑎 changed the opinion of agent
2, and allowed her to get closer to the final value of the game. It also
allowed to bring the merged value closer to the final outcome.

3.3 Some remarks on the semantic properties
Based on the previous example, it may be tempting to conclude

that the analysis of this protocol will be straightforward. After

all, if agents learn, their structure will become more similar, and

as a consequence their values will also get closer. However the

behaviour of the gradual semantics when applied to 𝐼𝑂𝐴𝐺 is not

as simple as it seems.

First, as we observed along the way in our discussion of Exam-

ple 1, the value of two distinct graphs can be similar.

Observation 1. Distinct IOAGs may have the same value.

Graph A

𝑉𝐴 = 0.5

𝑎 𝑏

𝑑 𝑒

Graph 𝐵

𝑉𝐵 = 0.5

𝑎

Graph 𝐵′

𝑉𝐵′ =
2

3

𝑎

𝑑

Figure 3: Structural similarity and values of graphs

As one can see in Fig. 3, graphs 𝐴 and 𝐵 do not share the same

structure, but have the same value.

This leads to another observation: there is no obvious relation be-
tween the structural “similarity” of IOAGs and how close their values
are. Structural similarity between graphs is often formally defined

as the minimal cost of graph edit operations (e.g. node/edge dele-
tion/addition/substitution) required to turn a graph into another

one. But Observation 1 would require the sum of the cost of opera-

tions to turn 𝐴 into 𝐵 to be 0, while the addition of any argument,

either a defender or the addition of an attacker, must have a strictly

positive cost. It was already observed that graph edit distances may

not be well suited to assess the actual similarity between “natural

and complex networks” [30] : our remark makes the same point in

the context of argumentation graphs.

This observation is of course completely expected given the non-

monotonic behaviour of argumentation and the different roles of

attackers and defenders; but we see why it can make the analysis

of the protocol challenging: if we imagine that 𝐴 and 𝐵 were the

graphs of two agents at the beginning of the game, and that 𝐵′ is
the graph of agent 𝐵 at the end of a game, after 𝐵 has learned one

argument from 𝐴, learning has in fact widened the gap between

the two agent’s opinion.

Another, somewhat more subtle observation, can be made:

Observation 2. The relative intensity difference of values between
two nodes does not transfer to the issue.



Let𝐴 and 𝐵 be two trees whose issue has only one direct attacker,

respectively 𝑎 and𝑏. Let us now imagine that their respective values

𝑉𝑎 and𝑉𝑏 as given by the semantic are modified after some abstract

operation: for example, 𝑎 and 𝑏 may be the root of two respective

trees to which an operation is performed. Let us call 𝑉 ′𝑎 and 𝑉 ′
𝑏

the resulting values of 𝑎 and 𝑏. If we have 𝛿𝑎 = |𝑉𝑎 −𝑉 ′𝑎 | ≤ 𝛿𝑏 =

|𝑉𝑏 −𝑉 ′𝑏 |, can we give a condition on the differences between the

corresponding values of the issue of 𝐴 and 𝐵? In particular, if 𝑉 ′
𝐴

and𝑉 ′
𝐵
are the new values after the modification, can we guarantee

that 𝛿𝐴 = |𝑉𝐴 − 𝑉 ′𝐴 | ≤ 𝛿𝐵 = |𝑉𝐵 − 𝑉 ′𝐵 |? The following example

shows a case where this is not verified.

Arg. tree A 𝑖𝑎

𝑉𝑎 = 1→ 𝑉 ′𝑎 = 0.9; 𝛿𝑎 = 0.1

𝑉𝐴 = 0.5→ 𝑉 ′
𝐴
= 0.526; 𝛿𝐴 = 0.026

Arg. tree B𝑖 𝑏

𝑉𝑏 = 0.1→ 𝑉 ′
𝑏
= 0.19; 𝛿𝑏 = 0.09

𝑉𝐵 = 0.909→ 𝑉 ′
𝐵
= 0.840; 𝛿𝐵 = 0.069

In this example, we have 𝛿𝑎 > 𝛿𝑏 and 𝛿𝐴 < 𝛿𝐵 . While 𝑎 was

more intensely modified than 𝑏 (negatively for 𝑎, and positively for

𝑏), it turns out that the issue of 𝐵 is more affected than that of 𝐴.

Finally, the following property can be seen as a generalization of

the properties of increase of defense and attack branches (which are

both satisfied by ℎ-categorizer [7], but are restricted to the addition

of specific structures).

Proposition 1. Attaching a tree of𝑚 arguments to a node, with
𝑚 ≥ 1:
• leads to an increase of the value of the issue if the node is an
attacker;
• leads to a decrease of the value of the issue if the node is a
defender.

In other words, the effect of adding nodes to an argumentation

graph does not depend on the structure of the tree of arguments that

we add, but only on the position of the node they are attached to. In

the terminology of [14], we can also say that adding any (sub)tree

of arguments to an attacker (resp. a defender) has a positive (resp.

negative) impact.
To conclude, it is useful to remind the special case of a tree 𝑇𝑚

with only one line of arguments 𝑎0 ← 𝑎1 ← ... ← 𝑎𝑚 . Defining

the sequence (𝑉𝑚)𝑚∈N as the sequence of the value of the issue of

these trees, it was observed in [11, Example 3] that:

• The sequence (𝑉𝑚)𝑚∈N converges to ` = 0.61, which is the

fixed point of the function : 𝑓 : 𝑥 ↦→ 1

1+𝑥 .
• The values of the sequence (𝑉𝑚)𝑚∈N alternate around the

limit `, with for all𝑚 even, 𝑉𝑚 > ` and 𝑉𝑚+1 < `.

4 EXPERIMENTAL RESULTS
The remarks of the previous section suggest that the analysis of

our protocol are not straightforward. We now enumerate a number

of hypothesis than we intuitively expect from our protocol, and

proceed to check that they are supported experimentally
2
.

2
All the material used for this work is available at https://github.com/LouiseDupuis/

ArgumentationProject.

While our setting is well-defined for argumentation graphs, most

of the debates, as they can be seen in real life or online debate

platforms
3
are in the form of trees, with the debated issue at the root.

We thus decided to study especially issue oriented argumentation
trees (that is, for every argument of the graph, there is one and only

one path toward the issue 𝑖) in order to present results specifically

relevant for debates.

4.1 Hypotheses
We hypothesize that the following properties are verified by our

protocol :

H1 - Outcome: For a given debate, if the learning probabilities

increase, the outcome gets closer to the merged value.

H2 - Flexibility: Increasing the size of the comfort zone increases

the agent’s satisfaction.

H3 - OpenMind: If the learning probability of an agent increases,
she will be more satisfied at the end of the debate.

H4 - Strength of the Group:When many agents share the same

initial information, they have a greater chance to be satisfied

by the final result.

H5 - Power of Knowledge: Agents that know more arguments

at the beginning of the game are more satisfied at the end.

H6 - Convergence of Views: The highest the learning probabil-

ities, the lower the distance between the agent’s final values.

Two different metrics can be used to assess the satisfaction of

agents at the end of a game: the number of agents comfortable 𝑁𝐶

and the average of their respective dissatisfaction 𝐴𝐷 = 1

𝑛

∑𝑛
𝑘=1

𝑑𝑘 .

As the latter is less dependent on the value chosen for 𝑐𝑙 and takes

continuous values rather than discrete ones, it was favored when

evaluating hypotheses on agent’s comfort, except in the case of

Hypothesis 2 which focuses on the impact of 𝑐𝑙 .

In the special case of Hypothesis 4 (Strength of the Group), as we

lacked a proper way to describe the similarity of groups of distinct

agents, we proceeded by creating a certain number of “clones”,

agents which start the game with the same opinion graph, and

studied the average dissatisfaction of these clones with the variation

of their number. We wanted to see whether big groups of clones

had a better chance to sway the debate in their favor.

In the case of Hypothesis 6 (Convergence of Views), we chose

to evaluate 𝑆𝑇𝐷 , the standard deviation of agent’s opinions at the

end of the game, as a measure of similarity of these opinions.

To test the effect of the learning process, in the case of Hypothe-

ses 1, 3 and 6, we randomly select a learning probability 𝑝 𝑓 𝑎𝑣𝑜𝑟 and

we fix 𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡 =𝑚𝑎𝑥 (0, 𝑝 𝑓 𝑎𝑣𝑜𝑟 − 0.1). 𝑃𝐿 designates the average

of these two probabilities.

4.2 Experimental setting
Each game simulation starts with the generation of the universe

graph𝑈𝐺 . We generate random issue-oriented argumentation trees

of size 𝐴 using a Prüfer sequence. [25] showed a bijection between

labelled trees of size 𝐴 and an integer sequence of size 𝐴 − 2. After
generating such a sequence, we obtain an undirected labelled tree,

which we transform into an issue-oriented tree by directing the

edges toward the issue using a depth-first search.

3
See e.g. Debategraph (debategraph.org/home)

https://github.com/LouiseDupuis/ArgumentationProject
https://github.com/LouiseDupuis/ArgumentationProject


The profile of the game is built by selecting for each agent a

random integer 𝑆 ∈ [2, 𝐴], the size of the agent’s opinion graph, and
then drawing 𝑆 nodes fromA and adding the edges corresponding

to the relevant attacks. Note that the agents’ IOAG are sub-forests

of 𝑈𝐺 and that several groups of arguments may not be connected

to the issue. With such a profile, we can construct the merged

graph, which is a weighted sub-forest of 𝑈𝐺 , and the public graph

throughout the game.

For each hypothesis, we ran 1000 debates, with parameters |N | =
7 agents and |A| = 20 arguments, and studied the correlation

between two values of interest. We report the Pearson correlation

coefficient 𝑅, as well as the p-value of the correlation 𝑝 (see e.g.
[20]).

The Pearson correlation coefficient 𝑅 is a measure of linear cor-

relation between two sets of data. It varies between -1 (perfect

negative correlation) and 1 (perfect positive correlation), with 0

corresponding to two uncorrelated sets of data. The closest it is to

1 (in absolute value), the greater the correlation.

The p-value 𝑝 of a statistical test represents the probability that

if the null hypothesis were true, we would obtain results at least

as extreme as the results actually observed. In our case, the null

hypothesis will always be the hypothesis that the variables that we

study are in fact not correlated. Therefore, the lower the p-value,

the less likely it is that the set of data we compare are in fact not

correlated. Usually, the limit of 𝑝 ≤ 0.05 is used as a threshold to

distinguish significant results.

We consider that 0.50 < |𝑅 | < 1 corresponds to a high correla-

tion, 0.30 < |𝑅 | < 0.49 to a moderate correlation and |𝑅 | < 0.29 to

a low correlation. We consider the null hypothesis (no correlation)

to be successfully rejected when 𝑝 < 0.01.

4.3 Results
Table 1 presents the results of our experiments. We denote𝐴𝐷𝑐𝑙𝑜𝑛𝑒𝑠

the average dissatisfaction of the group of clones, |𝐴𝑟𝑔(𝐷𝐺𝑘 ) | and
𝑑𝑘 respectively the number of arguments known at the beginning

of the game by agent 𝑘 and her dissatisfaction at the end of the

game.

Variable 1 Variable 2 𝑅 𝑝 value

H1 𝑃𝐿 |𝑉𝐹 −𝑉𝑀 | -0,55029 2,44E-80

H2 𝑐𝑙 𝑁𝐶 0,680451 4,1E-137

H3 𝑃𝐿 𝐴𝐷 -0,70346 2,1E-150

H4 Nb of Clones 𝐴𝐷𝑐𝑙𝑜𝑛𝑒𝑠 -0,28678 2,19E-20

H5 |𝐴𝑟𝑔 (𝐷𝐺𝑘 ) | 𝑑𝑘 -0,40972 9,3E-38

H6 𝑃𝐿 𝑆𝑇𝐷 -0,6683870 1,2764E-130

Table 1: Testing the hypotheses. Correlation level: Dark
green = high, light green = moderate, yellow = low.

Many of the 𝑅 we obtain are negative, because many of the

correlations we investigate are negative correlations : for instance,

we expect the average dissatisfaction of the agents to decrease when
the learning probability increases. The signs of the correlation

coefficient we obtain are all consistent with our hypotheses.

In every experiment, the null hypothesis is rejected with a 𝑝-

value that is much lower than the threshold of 0.01. In the case of

Figure 4: H3 - Open Mind : Average dissatisfaction of the
agents as a function of learning probability.

Hypotheses 1, 2, 3, 5 and 6 the correlation is high or moderate, and

we conclude that these hypotheses are verified experimentally. Fig.

4 presents the evaluation of the average dissatisfaction 𝐴𝐷 of the

debates obtain when we vary 𝑃𝐿 the learning probability of the

agent. We observe a clear trend towards reduced agent dissatisfac-

tion, however with a number of outliers indicating that this is not

an exact law.

In the case of Hypothesis 4, the effect of the presence of clones is

not null, but is not responsible for a large variation of the satisfac-

tion of agents. Qualitative assessment of individual debates leads us

to assume that this is because other factors play a larger role in the

outcome of the debate, such as the number of arguments known to

the clones. Indeed, as we do not take into account the number of

people who play the same arguments, a group of ignorant clones

act as a single ignorant agent and cannot prevent a knowledgeable

opponent to sway the game in her favor.

We conclude that our simple protocol empirically exhibits de-

sirable properties. In the next section we ask ourselves whether

this empirical evidence is robust to a modification of the protocol

where votes can be expressed by agents.

5 AN IMPROVED PROTOCOLWITH VOTES
It is common for online debate platforms to allow their users to cast

votes on arguments.
4
We propose an improved version of the pro-

tocol where agents can do so, as in [28] for instance. This approach

introduces an element of social validation of the arguments: their

value can be dramatically influenced by the amount of social sup-

port they receive. This allows the public argumentation framework

to better reflect the opinion of all the agents.

Votes can either be positive or negative: an agent votes for an

argument if she endorses it, and against otherwise. We refer to

positive arguments as upvotes and negative arguments as downvotes.
Note that here, endorsing an argument means that the argument

belongs to the agent’s opinion graph.

Votes are aggregated using the weight function (1) used to build

the merged graph (see Def. 8). Thus, the more endorsed or well-

accepted an argument is, the greater its weight, and arguments with

an equal number of upvotes and downvotes have a weight of 0.5.

Because of its special status, the issue is not voted for or against and

4
See for example ChangeMyView (https://www.reddit.com/r/changemyview/)



has a weight of 1 throughout the game. In this version, the pub-

lic graph thus becomes a weighted issue-oriented argumentation

graph.

Each step 𝑡 of the new protocol is similar to a step of the sim-

pler protocol with the addition of a voting stage after the learning
stage.When computing the hypothetical value that the public graph

would take if they played an argument, agents assign an hypotheti-

cal weight of 1 to this argument. Agents vote on the new arguments

that were played during the step. Note that the order of the stages

is crucial, as agents can vote in favor of arguments they have just

learned. After the voting step, votes are aggregated into weights

for the arguments in the public graph. This mechanism makes the

dynamics of the game more complex.

Example 3. Let us take the same initial setting than in Example 2:
two agents 1 and 2 having a comfort zone of 0.05. Agent 1 is stubborn
(𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡1 = 0.1; 𝑝 𝑓 𝑎𝑣𝑜𝑟1 = 0.3); whereas agent 2 is more open-minded
(𝑝𝑎𝑔𝑎𝑖𝑛𝑠𝑡2 = 0.3; 𝑝 𝑓 𝑎𝑣𝑜𝑟2 = 0.7). Fig. 5 shows the universe graph, the
merged graph, the profile of the game, and one of the possible courses
of the protocol.
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A possible course allowed by the protocol is the following :

𝑡0

Public Graph Value Comf. P. Strat. Strat. Learning Voting

𝑖 ,𝑉𝑃
0
= 1 1 : 0.75 NO {𝑎} 𝑎 {} 𝑣+ {𝑎}, 𝑣− {𝑏 }

2 : 0.5 NO {𝑏 } 𝑏 {𝑎} 𝑣+ {𝑎,𝑏 }, 𝑣− {}
𝑉𝑀

0
: 0.628

𝑡1

𝑖 ,𝑉𝑃
1
= 0.41

𝑎 𝑏

𝑤𝑎 = 0.92 𝑤𝑏 = 0.5

1 : 0.75 NO {𝑐,𝑑 } 𝑑 {} 𝑣+ {𝑑 }, 𝑣− {}
2 : 0.4 YES {} − {} 𝑣+ {𝑑 }, 𝑣− {}
𝑉𝑀

0
: 0.533

𝑡2

𝑖 ,𝑉𝑃
2
= 0.51

𝑎 𝑏

𝑑
𝑤𝑎 = 0.92 𝑤𝑏 = 0.5

𝑤𝑑 = 0.92

1 : 0.75 NO {𝑐 } 𝑐 {} 𝑣+ {𝑐 }, 𝑣− {}
2 : 0.4 NO {} − {} 𝑣+ {}, 𝑣− {𝑐 }
𝑉𝑀

0
: 0.533

𝑡3

𝑖 ,𝑉𝑃
3
= 0.53

𝑎 𝑏

𝑑𝑐

𝑤𝑎 = 0.92

𝑤𝑏 = 0.5

𝑤𝑑 = 0.92
𝑤𝑐 = 0.5

1 : 0.75 NO {} − {} 𝑣+ {}, 𝑣− {}
2 : 0.4 NO {} − {} 𝑣+ {}, 𝑣− {𝑐 }
𝑉𝑀

3
: 0.533

Figure 5: Possible course of the protocol

Introducing votes changes the value of the public graph and, there-
fore, the course of the game. At the end of step 0, agent 1 votes for
argument 𝑎 (that she knows), and against argument 𝑏 (that she did
not learn). Agent 2 votes for 𝑏, that she already knew, and for 𝑎, that
she just learns. At step 1, agent 2 is comfortable, which means that
she can only play arguments whose hypothetical value remains in
her comfort zone, and no argument verifies this condition. However,
agent 2 still votes for argument 𝑑 , that has been played by agent 1,
because she endorses it, even though she did not play it. At the end of
this game, the value of the merged graph and the final public graph
are the same, as all arguments were played.

We have performed an experimental study of the hypotheses

presented in Section 4.1, whose results are presented in Table 2.

Hypothesis 1 is not verified at all by the new protocol. Intuitively,

the success of this hypothesis in the case of the first protocol was

due to the fact that the public graph was flat. This is not the case in

this new protocol, where the public graph is itself a form of merged

graph, using the same aggregation function, and it is not clear

whether two weighted graphs can converge as well as a weighted

graph and a flat one.

All of the other hypotheses remain confirmed, albeit with corre-

lation coefficient that are slightly lower than in the first protocol.

Variable 1 Variable 2 𝑅 𝑝 value

H1 𝑃𝐿 |𝑉𝐹 −𝑉𝑀 | -0,0645 0,04

H2 𝑐𝑙 𝑁𝐶 0,604745 6,6E-101

H3 𝑃𝐿 𝐴𝐷 -0,53363 1,39E-171

H4 Nb of Clones 𝐴𝐷𝑐𝑙𝑜𝑛𝑒𝑠 -0,23606 3,94E-14

H5 |𝐴𝑟𝑔 (𝐷𝐺𝑘 ) | 𝑑𝑘 -0,40972 9,3E-38

H6 𝑃𝐿 𝑆𝑇𝐷 -0.62242 1.8E-108

Table 2: Testing the hypotheses. Correlation level: Dark
green = high, light green = moderate, yellow = low, red = no.

6 CONCLUSION AND PERSPECTIVES
We studied the multiagent dynamics of gradual semantics, in a

setting allowing agents to learn new arguments during the debate.

We made a number of observations suggesting that the dynamics

resulting even from a simple protocol based on such a gradual

semantics may not be as straightforward as one could think, making

theoretical analysis challenging. We then performed an empirical

verification of a number of hypothesis. The results of this study

provides some evidence that the studied gradual semantics can

be meaningfully used in the context of multiagent debates over

a given issue. On the downside, we showed that the empirical

support for some hypothesis decreased (one hypothesis being no

longer verified) when we augmented the protocol with votes, which

reminds us of the importance of such seemingly minor design

choices. In future work, we plan to investigate whether some of

the hypotheses discussed here can be studied analytically. Another

natural perspective would be, building on previous work on the

axiomatics of such semantics [3], to generalize our results to a

broader class of semantics verifying given properties.



REFERENCES
[1] Leila Amgoud and Jonathan Ben-Naim. 2013. Ranking-Based Semantics for Ar-

gumentation Frameworks. In Proc. of the 7th International Conference on Scalable
Uncertainty Management, (SUM’13). 134–147.

[2] Leila Amgoud, Jonathan Ben-Naim, Dragan Doder, and Srdjan Vesic. 2016. Rank-

ing Arguments With Compensation-Based Semantics. In Proc. of the 15th In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
(KR’16). 12–21.

[3] Leila Amgoud, Jonathan Ben-Naim, Dragan Doder, and Srdjan Vesic. 2017. Ac-

ceptability Semantics forWeighted Argumentation Frameworks. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17.
56–62. https://doi.org/10.24963/ijcai.2017/9

[4] Ryuta Arisaka and Takayuki Ito. 2019. Semantics of Opinion Transitions in Multi-

Agent Forum Argumentation. In PRICAI 2019: Trends in Artificial Intelligence,
Abhaya C. Nayak and Alok Sharma (Eds.). Springer International Publishing,

Cham, 688–703.

[5] Sven Banisch and Eckehard Olbrich. 2021. An Argument Communication Model

of Polarization and Ideological Alignment. Journal of Artificial Societies and Social
Simulation 24, 1 (2021).

[6] Philippe Besnard and Anthony Hunter. 2001. A logic-based theory of deductive

arguments. Artificial Intelligence 128, 1-2 (2001), 203–235.
[7] Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, and Nicolas Maudet. 2016.

A Comparative Study of Ranking-based Semantics for Abstract Argumentation.

In 30th AAAI Conference on Artificial Intelligence (AAAI-2016). Phoenix, United
States.

[8] Elise Bonzon and Nicolas Maudet. 2011. On the Outcomes of Multiparty Per-

suasion. In Proceedings of the 10th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’11). 47–54.

[9] George Butler, Gabriella Pigozzi, and Juliette Rouchier. 2019. An opinion diffusion

model with deliberation. In 20th International Workshop on Multi-Agent-Based
Simulation (MABS 2019). Montreal, Canada.

[10] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. 2005. Graduality in

Argumentation. Journal of Artificial Intelligence Research 23 (2005), 245–297.

[11] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. 2005. Graduality in

Argumentation. J. Artif. Intell. Res. 23 (2005), 245–297.
[12] Célia da Costa Pereira, Andrea Tettamanzi, and Serena Villata. 2011. Changing

One’s Mind: Erase or Rewind?. In Proc. of the 22nd International Joint Conference
on Artificial Intelligence, (IJCAI’11). 164–171.

[13] Guillaume Deffuant, D. Neau, Frédéric Amblard, and G. Weisbuch. 2001. Mixing

beliefs among interacting agents. Advances in Complex Systems 3 (2001), 11.

https://doi.org/10.1142/S0219525900000078

[14] Jérôme Delobelle and Serena Villata. 2019. Interpretability of Gradual Semantics

in Abstract Argumentation. In ECSQARU 2019 - 15th European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Belgrade,
Serbia.

[15] Phan Minh Dung. 1995. On the acceptability of arguments and its fundamen-

tal role in nonmonotonic reasoning, logic programming and N-persons games.

Artificial Intelligence 77 (1995), 321–357.
[16] Davide Grossi and Sanjay Modgil. 2015. On the Graded Acceptability of Argu-

ments. In Proc. of the 24th International Joint Conference on Artificial Intelligence,

(IJCAI’15). 868–874.
[17] David Kohan Marzagão, Josh Murphy, Anthony P. Young, Marcelo Matheus Gauy,

Michael Luck, Peter McBurney, and Elizabeth Black. 2018. Team Persuasion. In

Theory and Applications of Formal Argumentation, Elizabeth Black, Sanjay Modgil,

and Nir Oren (Eds.). Springer International Publishing, Cham, 159–174.

[18] João Leite and João Martins. 2011. Social Abstract Argumentation. In Proc. of
the 22nd International Joint Conference on Artificial Intelligence, (IJCAI’11),. 2287–
2292.

[19] Paul-Amaury Matt and Francesca Toni. 2008. A Game-Theoretic Measure of

Argument Strength for Abstract Argumentation. In Proc. of the 11th European
Conference on Logics in Artificial Intelligence, (JELIA’08). 285–297.

[20] Danielle Navarro. 2018. Learning statistics with R: A tutorial for psychology
students and other beginners. Open Textbook Library.

[21] Theodore Patkos, Antonis Bikakis, and Giorgos Flouris. 2016. A Multi-Aspect

Evaluation Framework for Comments on the Social Web. In Proc. of the 15th
International Conference on Principles of Knowledge Representation and Reasoning
(KR’16). 593–596.

[22] Fenna H Poletiek. 2013. Hypothesis-testing behaviour. Psychology Press.

[23] Henry Prakken. 2006. Formal systems for persuasion dialogue. Knowl. Eng. Rev.
21, 2 (2006), 163–188. https://doi.org/10.1017/S0269888906000865

[24] H. Prakken. 2020. On Validating Theories of Abstract Argumentation Frame-

works: The Case of Bipolar Argumentation Frameworks. In CMNA@COMMA.
[25] H Prufer. 1918. Neuer bewis eines satzes uber permutationnen. Arch. Math. Phys.

27 (1918), 742–744.

[26] Fuan Pu, Jian Luo, Yulai Zhang, and Guiming Luo. 2014. Argument Ranking with

Categoriser Function. In Proc. of the 7th International Conference on Knowledge
Science, Engineering and Management, (KSEM’14). 290–301.

[27] Fuan Pu, Jian Luo, Yulai Zhang, and Guiming Luo. 2015. Attacker and Defender

Counting Approach for Abstract Argumentation. In Proc. of the 37th Annual
Meeting of the Cognitive Science Society, (CogSci’15).

[28] Antonio Rago and Francesca Toni. 2017. Quantitative Argumentation Debates

with Votes for Opinion Polling. In PRIMA 2017: Principles and Practice of Multi-
Agent Systems - 20th International Conference, Nice, France, October 30 - November
3, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10621), Bo An, Ana

L. C. Bazzan, João Leite, Serena Villata, and Leendert W. N. van der Torre (Eds.).

Springer, 369–385. https://doi.org/10.1007/978-3-319-69131-2_22

[29] Antonio Rago, Francesca Toni, Marco Aurisicchio, and Pietro Baroni. 2016.

Discontinuity-Free Decision Support with Quantitative Argumentation Debates.

In Proceedings of the Fifteenth International Conference on Principles of Knowledge
Representation and Reasoning (Cape Town, South Africa) (KR’16). AAAI Press,
63–72.

[30] Matthieu Roy, Stefan Schmid, and Gilles Tredan. 2014. Modeling and Measuring

Graph Similarity: The Case for Centrality Distance. In Proceedings of the 10th
ACM International Workshop on Foundations of Mobile Computing (Philadelphia,

Pennsylvania, USA) (FOMC ’14). Association for Computing Machinery, New

York, NY, USA, 47–52. https://doi.org/10.1145/2634274.2634277

[31] Patrick Taillandier, Nicolas Salliou, and Rallou Thomopoulos. 2021. Introducing

the Argumentation Framework Within Agent-Based Models to Better Simulate

Agents’ Cognition in Opinion Dynamics: Application to Vegetarian Diet Diffusion.

Journal of Artificial Societies and Social Simulation 24, 2 (2021), 6. https://doi.org/

10.18564/jasss.4531

https://doi.org/10.24963/ijcai.2017/9
https://doi.org/10.1142/S0219525900000078
https://doi.org/10.1017/S0269888906000865
https://doi.org/10.1007/978-3-319-69131-2_22
https://doi.org/10.1145/2634274.2634277
https://doi.org/10.18564/jasss.4531
https://doi.org/10.18564/jasss.4531

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Outline of the paper

	2 Background
	2.1 Argumentation theory
	2.2 Gradual semantics

	3 Our model
	3.1 A multiagent debate setting
	3.2 The protocol
	3.3 Some remarks on the semantic properties

	4 Experimental results
	4.1 Hypotheses
	4.2 Experimental setting
	4.3 Results

	5 An improved protocol with votes
	6 Conclusion and perspectives
	References



