
HAL Id: hal-03584128
https://hal.science/hal-03584128v2

Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deformable image registration with deep network priors:
a study on longitudinal PET images

Constance Fourcade, Ludovic Ferrer, Noémie Moreau, Gianmarco Santini,
Aislinn Brennan, Caroline Rousseau, Marie Lacombe, Vincent Fleury,

Mathilde Colombié, Pascal Jézéquel, et al.

To cite this version:
Constance Fourcade, Ludovic Ferrer, Noémie Moreau, Gianmarco Santini, Aislinn Brennan, et al..
Deformable image registration with deep network priors: a study on longitudinal PET images. Physics
in Medicine and Biology, 2022, 67 (15), pp.155011. �10.1088/1361-6560/ac7e17�. �hal-03584128v2�

https://hal.science/hal-03584128v2
https://hal.archives-ouvertes.fr


Deformable image registration with deep network

priors: a study on longitudinal PET images

Constance Fourcade1,2 Ludovic Ferrer4,5 PhD

Noémie Moreau2 Gianmarco Santini2 PhD

Aislinn Brennan2 Caroline Rousseau3,5 MD PhD

Marie Lacombe5 MD Vincent Fleury5 MD
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Abstract.

This paper proposes a novel approach for the longitudinal registration of PET

imaging acquired for the monitoring of patients with metastatic breast cancer. Unlike

with other image analysis tasks, the use of deep learning has not significantly improved

the performance of image registration. With this work, we propose a new registration

approach to bridge the performance gap between conventional and deep learning-based

methods: Medical Image Registration method Regularized By Architecture (MIRRBA).

MIRRBA is a subject-specific deformable registration method which relies on a deep

pyramidal architecture to parametrize the deformation field. Diverging from the usual

deep-learning paradigms, MIRRBA does not require a learning database, but only a pair

of images to be registered that is used to optimize the network’s parameters. We

applied MIRRBA on a private dataset of 110 whole-body PET images of patients with

metastatic breast cancer. We used different architecture configurations to produce the

deformation field and studied the results obtained. We also compared our method

to several standard registration approaches: two conventional iterative registration

methods (ANTs and Elastix) and two supervised deep learning-based models (LapIRN

and Voxelmorph). Registration accuracy at a global and local level was evaluated using

the detection rate and the Dice score respectively, while the realism of the registration

obtained was evaluated using Jacobian’s determinant. The ability of the different

methods to shrink disappearing lesions was also computed with the disappearing rate.

MIRRBA significantly improved the organ and lesion Dice scores of Voxelmorph by 6%

and 52% respectively, and of LapIRN by 5% and 65%. Regarding the disappearing rate,

MIRRBA more than doubled the score of the best performing conventional approach
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ANTs. In this paper, we also demonstrate the regularizing power of deep architectures

and present new elements to understand the role of the architecture in deep learning

methods used for registration.

Keywords: Image registration, PET, Breast cancer, Deep Image Prior

1. Introduction

Medical image registration is the precise overlaying of a fixed and moving image.

It is notably used to create patient models (inter-patient monomodal registration),

exploit information from different modalities acquired for a single patient (intra-patient

multimodal registration), and to monitor tumor evolution (longitudinal registration).

However, the accuracy of image registration is a long-standing fundamental problem

in medical image analysis ([Maurer and Fitzpatrick, 1993, Fu et al., 2020]). In the

past 30 years, registration methods have considered registration as an optimization

problem: the goal is to minimize a dissimilarity term between moving and fixed images.

It is usually measured with mean square error (MSE), mutual information (MI) or

normalized cross-correlation (NCC). In addition, a term enforcing smooth and realistic

transformations is often used as a regularizing term.

Most conventional methods manage registration by parameterizing the transfor-

mation between the fixed and moving image. They use for instance discrete cosine

transforms ([Friston et al., 1995]), 3D Fourier series ([Christensen et al., 2007]), cu-

bic B-splines ([Klein et al., 2010]) or optimized velocity fields ([Avants et al., 2009]).

The parameters of the model are typically optimized though efficient second-

order minimization ([Vercauteren et al., 2007b]) or stochastic gradient descent (SGD)

([Klein et al., 2009a]), within a single- or multi-level optimization strategy. The mini-

mized cost function combines dissimilarity and regularization terms.

Recent deep learning (DL) supervised registration methods ([Fu et al., 2020]) also

rely on dissimilarity measurements and regularization terms that can be optimized

with variants of SGD. However, there are two key differences compared to conventional

approaches. DL methods require a training stage with a training database that gives

the model prior knowledge regarding deformations. They also use a different type

of transformation model, with convolutional neural networks (CNN) used as an over-

parameterized but structured model of the deformation field.

Despite recent developments in DL-based registration ([Chen et al., 2021]),

conventional methods still perform better and obtain more accurate results in most

applications ([Heinrich and Hansen, 2020]). In addition, even though trained networks

are faster than conventional methods, training requires large databases which often

restricts their use to a specific therapeutic area.

With this work, we propose a new registration method formalized as a conventional

registration approach, with a deformation field modeled by an untrained deep pyramidal
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network. We named our approach MIRRBA for Medical Image Registration method

Regularized By Architecture.

We applied MIRRBA on longitudinal PET images acquired for the evaluation of

treatment response in patients with metastatic breast cancer and compared the results

to registrations obtained with standard approaches. We also studied the impact of

different architecture configurations (14 configurations) on the deformation field.

The contributions of this paper are i) the proposition of a novel registration method

regularized by architecture MIRRBA, ii) an extensive comparative study of the effects

of different network components on the deformation field, and iii) a solution to register

whole body PET images both at a global and local level without the need for prior

registration to facilitate the simultaneous monitoring of multiple lesions.

2. Related work

Automatic longitudinal lesion monitoring Automatic approaches for lesion segmenta-

tion and/or image registration have been developed over the years to help with cancer

monitoring and treatment response assessments.

[Necib et al., 2011] used affine registration to align baseline and follow-up PET

images, before subtracting them to identify tumor voxels showing significant changes

between the two scans. However, since affine registration is a global method, it

mainly performs well for single localized tumors. In a situation where there were

multiple lesions to assess, [Hsu, 2020] first segmented all lesions on liver-centered

CT images, then used a longitudinal correspondence module to find matching pairs

of lesions from the segmentation maps, and finally computed the lesions’ evolution.

Even if promising, multi-staged methods suffer from error propagation between stages.

[Chassagnon et al., 2020] removed the need for a prior segmentation step and relied

on a conventional registration algorithm between longitudinal CT pairs to obtain the

deformation fields and their Jacobian determinants. This information was then used to

train a classifier network assessing systemic sclerosis interstitial lung disease.

Image registration can be a key step in lesion monitoring. As our long-term goal

is to use registration results to develop tools for the monitoring of metastatic breast

cancer, this work focuses on registration and on how to improve its accuracy. We

present hereafter the most used registration approaches and the good practices which

contribute to make them successful.

Established registration tools There is a large body of literature on conventional regis-

tration methods ([Klein et al., 2009b, Sotiras et al., 2013]). Some of today’s most used

registration tools include the Demons method ([Vercauteren et al., 2007a]) using non-

parametric diffeomorphic displacement fields, the Elastix toolbox ([Klein et al., 2010])

based on cubic B-splines, and the Advanced Normalization Tools (ANTs)

([Avants et al., 2009]) parametrizing the velocity field and relying on bi-directional dif-

feomorphisms. We compared our proposed approach to the last two methods, as they
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perform well with different datasets ([Klein et al., 2009b]) and their pyramidal coarse-to-

fine optimization has inspired recent works on DL-based registration which is presented

hereafter.

DL methods In recent years, different types of DL-based registration approaches have

been proposed ([Chen et al., 2021]). With the monitoring of metastatic breast cancer,

deformation fields are not available and are difficult to obtain. We therefore focused on

unsupervised registration methods. We categorize as unsupervised methods which do

not require ground truth deformation fields, segmentations, or landmarks. Typically,

they learn by minimizing a dissimilarity term between the fixed and the wrapped moving

image. Among the unsupervised registration methods, various CNN architectures

have been proposed. The widely used U-Net ([Ronneberger et al., 2015]) inspired the

reference Voxelmorph network first trained on brain MRIs ([Balakrishnan et al., 2018]).

[Stergios et al., 2018] added dilated convolutions to the encoder path of Voxelmorph

to capture a wider field of view from lung MRI images. Later, [de Vos et al., 2019]

proposed a U-Net-based cascade network applied to cardiac cine MRI and chest CT

data to perform affine and deformable registrations in stages, at the cost of an increase

in complexity. On 3D PET images, [Li et al., 2021] also proposed an iterative DL-

based registration method to reconstruct motion compensated PET images. While

still using a U-Net-shaped architecture, [Eppenhof et al., 2019] proposed a coarse-to-

fine training mimicking the best performing conventional approaches. With a similar

training strategy, [Mok and Chung, 2020] won the Learn2Reg 2021 MICCAI challenge‡
using a pyramidal network named LapIRN. Contrary to the above cited methods,

[Mok and Chung, 2020] did not only impose a smoothness constraint on the deformation

field through its gradient, but also enforced diffeomorphic transformations using

stationary vector fields under the Log-Euclidean framework, as in [Dalca et al., 2019].

Despite recent efforts, when using DL-based registration techniques no major

gain in registration performance was reported. Conventional iterative optimization

methods still yield better accuracy in many tasks such as inter-patient alignment or

intra-patient lung motion registration ([Heinrich and Hansen, 2020]). Large databases

would be needed to learn the network parameters and produce accurate deformation

fields. Moreover, we can argue that the generalization ability of the trained network

is questionable when the deformation patterns do not repeat consistently across the

dataset.

Deep Image Prior registration To alleviate the dependency to a dataset and the need

for repeated deformation patterns, we adapted the Deep Image Prior (DIP) framework

([Ulyanov et al., 2020]) to propose a learning-free method for deformable medical image

registration. Contrary to standard DL-based approaches, DIP does not learn from a

database but relies on a single image. It uses a deep architecture not to summarize the

‡ https://learn2reg.grand-challenge.org/
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information across samples but as a prior. Effectively, the architecture plays the role

of a parametric model in an optimization problem restricting the solution space. While

DIP was initially designed for denoising and inpainting tasks ([Ulyanov et al., 2020]),

we adapted it here to medical image registration.

[Laves et al., 2019] suggested image registration as a potential application of DIP,

with preliminary results in the context of 2D brain MR images. DIP has also been

used on medical data for the reconstruction of CT and PET images ([Gong et al., 2019,

Baguer et al., 2020]). To perform these reconstructions, an untrained deep network was

used as a denoiser and iteratively optimized by a conventional algorithm. Apart from the

use of an initial reconstruction and classical regularization, images from other modalities

were also given as input to condition the network output.

With this work, we establish a link between conventional, deep learning and

DIP-based approaches. In particular, we focus on the role of the untrained network

in parameterizing the displacement field, showing that each architecture induces

an implicit regularization when used within a conventional optimization scheme.

Similar observations have been made in the context of DL for inverse problems

[Lucas et al., 2018] and [Dittmer et al., 2020]. As a result, well-structured architectures

(e.g. [Mok and Chung, 2020]) provide better over-parameterizations for the deformation

fields, both in the supervised and in the untrained cases. We also investigate the role of

the input (random, moving or moving and fixed images) and potential interactions of

the untrained network with conventional supervised approaches.

3. Method

3.1. Image registration

Given a pair of fixed and moving (F , M) images, deformable image registration aims to

estimate a dense deformation field Φ such that the wrapped image W = M(x + Φ(x))

is aligned with F for each voxel x. Given a metric S(., .) measuring the dissimilarity

between two images, conventional registration methods choose a parametrization of

transformation and optimize it through a cost function of the form:

argmin
Φ

S(F,W ) (1)

However, the problem stated Eq. 1 is ill-posed: it belongs to the nonlinear transformation

class ([Myronenko and Song, 2009]). By explicitly constraining the transformation,

parametric approaches can become well-posed ([Rueckert et al., 1999]), at the cost of

limiting the range of admissible transformations. Constraining an over-parameterized

or complex deformable transformation is effectively done by adding a regularization

term Rsmooth(Φ) to the objective function Eq. 1. Regularization terms incorporate

priors, which if correctly chosen, guide the optimization towards better estimates of the

deformation fields. Weighted by λsmooth, the most common regularization term enforces
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Figure 1. Overview of A. MIRRBA, B. DL LapIRN and C. MIRRBA wo Regul and D.

MIRRBA wo Archi methods. The LapIRN architecture is visible with the encoder path

(blue), the residual blocks (green) and the decoder path (orange with a blue layer from

the encoder path). Best viewed in color.

smoothness onto the displacement field by penalizing the spatial derivatives of Φ.

argmin
Φ

{S(F,W ) + λsmoothRsmooth(Φ)} (2)

DL-based registration approaches ([Fu et al., 2020]) adapt the cost function in Eq. 2 by

modelling Φ to be the output of a CNN trained on a dataset (See Eq. 3). The inputs of

this network are the (F , M) pair, and the warping operation to getW is performed using

a spatial transformer layer ([Jaderberg et al., 2015]), handling the transformation, the

sampling and the interpolation. Regarding the regularization, DL-registration based

methods continue relying on a term enforcing the smoothness of the transformation

Rsmooth, as done in conventional approaches. Smoothness is often completed by Rdiffeo,

which enforces the diffeomorphism of the transformation by penalizing the determinant

of the Jacobian negative values. Regularization terms are weighted respectively by

λsmooth and λdiffeo. Moreover, we state that two additional regularizing priors are also

implicitly added in the DL setup and influence the predicted deformation field Φ: the

first one Rdataset is induced by training on a domain-specific dataset, while the second

one Rarchi is entailed by the network architecture choice (see Fig. 1.B). Due to the

dataset dependency, one limitation of DL-based registration methods is the difficulty to

generalize across organs or modalities.

argmin
Φ(Rdataset,Rarchi)

{S(F,W ) + λsmoothRsmooth(Φ) + λdiffeoRdiffeo(Φ)} (3)
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Next, we recall the deep image prior concept, which removes the dataset dependency

in Section 3.2, and present our method for registration based on an untrained network

in Section 3.3.

3.2. Deep Image Prior

The DIP method proposed in [Ulyanov et al., 2020] uses a deep architecture to denoise

images using a network, but without any prior learning. Supposing X0 a distorted image

and X the network output, the fitting process is characterized by Eq. 4, with Rarchi the

implicit prior captured by the network architecture and SDIP a reconstruction function

on a single image.

argmin
X(Rarchi)

{SDIP (X0, X)} (4)

DIP reconstructs a noisy image (e.g. with JPEG compression noise) from a white noise

image by training a generator architecture to fit the noisy image. A denoised image is

obtained by stopping the training before completely fitting the noise. We propose to

adapt this idea to the registration of a pair of images, where we modify the moving

image to match the fixed one. Contrary to the original DIP, we are interested in fitting

all the way up to the finest deformations.

3.3. MIRRBA (Medical Image Registration method Regularized by Architecture)

In this paper, we argue that deep architectures, as parametric models with high

capacity, are powerful representations for deformation fields. They can thus be

exploited as implicit priors for image registration in iterative optimization schemes

without a training stage ([Heckel and Soltanolkotabi, 2020, Dittmer et al., 2020,

Lucas et al., 2018]). Although DIP priors have been explored in the context of image

reconstruction, there is no prior in depth study of such architecture priors in the context

of image registration.

Since there is no learning step, the training dataset no longer influences the

transformation. Thus, we transform Eq. 3 into Eq. 5 to directly optimize a patient-

specific CNN for the pair of interest (F , M), as traditionally done with iterative

optimization methods (see Fig. 1.A).

argmin
Φ(Rarchi)

{S(F,W ) + λsmoothRsmooth(Φ) + λdiffeoRdiffeo(Φ)} (5)

By optimizing Eq. 5, we find the best warped image allowed by the over-parametrization

of the architecture. Carefully designing the architecture to be used, it is possible

to integrate several of the commonly used tricks in conventional approaches. In this

paper, we rely on the LapIRN architecture ([Mok and Chung, 2020]), which incorporates

filtering through convolutions, pyramidal coarse-to-fine refinement, and interpolation

steps with down- and transpose convolutions. Eq. 5 is optimized with an SGD for

an input pair of images. Our idea applies to other architectures and optimization

algorithms.
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4. Experimental setup

4.1. Dataset description

We ran our experiments on images from a private dataset, acquired in the context of the

ongoing prospective multicentric XXX study for metastatic breast cancer monitoring.

Patients underwent between two and three PET/CT acquisitions, corresponding to pre-,

early- (after a month) and mid-treatment time points. A total number of 110 pairs of

images were obtained, a pair being composed of a pre-treatment and either an early- or

a mid-treatment image (58 and 52 images respectively). Images were acquired at two

different centers. The 54 pairs of images from center A were obtained using a Philips

Vereos or a GE Discovery PET/CT imaging systems, while the 56 pairs of images from

center B were acquired on two different dual-slice Siemens Biograph PET/CT scanners.

Since we are interested in lesion monitoring in the context of metastatic

breast cancer, we worked only on PET images, as shown useful in previous

studies [Carlier and Bailly, 2015] and [Avril et al., 2016]. Expert physicians manually

segmented all lesions. The brain and the bladder were also delineated, since they can be

useful to mask irrelevant regions for patient response assessment. All PET images were

normalized by the standardized uptake value (SUV) ([Kim et al., 1994]) and resampled

to obtain an isotropic resolution of 1×1×1 mm3 with 200 pixels for each side. Besides,

no prior registration of any kind was performed.

This prognostic study was approved by XXX and a written informed consent was

obtained from all patients.

4.2. Architectural implementation details

Our MIRRBA method relies on the LapIRN network architecture proposed in

[Mok and Chung, 2020]. LapIRN is a pyramidal network with N = 3 depth levels,

each level being composed of a feature encoder, a set of residual blocks and a feature

decoder, as shown in Fig. 1. For each level Li∈{1,2,3}, input images are downsampled

by a factor 0.5(N−1) using a trilinear interpolation. Hence, for the coarsest level L1 the

image resolution is divided by 4, while for the finest L3 it remains identical. Moreover, a

scaling and squaring module ([Dalca et al., 2019]) enforces diffeomorphic deformations.

Network levels were trained in a coarse-to-fine manner, meaning the coarsest level

L1 is first trained alone, and then higher levels are progressively trained to refine the

registration. To avoid unstable starts when training levels Li>1, lower levels weights were

frozen for a fixed number of epochs. Regarding the optimization process, the learning

rate was set to 10e−4, and the Adam optimizer was used for 1000 iterations on the two

lower levels and 2000 iterations on the finest. As a dissimilarity metric, we used the

NCC, regularized by smooth and diffeomorphic terms, for which λsmooth and λdiffeo were

determined with a grid search to 0.1 and 1.0 respectively to minimize the overall loss

function over a test set (see Eq. 5), as described below for DL-based methods training.

Indeed, since we aim at using registration-based features to monitor metastatic breast
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cancer in future work, we need to reach precise global and local registration. More

details can be found in [Mok and Chung, 2020].

Starting from the architecture in Fig. 1, we performed an ablation study to measure

the influence of each component. Hence, we i) changed the depth of the network (network

with 1, 2, 3 or 4 depth levels), ii) computed the results after training each level during the

coarse-to-fine registration i.e. the coarsest, the intermediate and the finest, iii) deleted

the residual connections of residual blocks to transform them into simple convolutional

blocks, iv) replaced the down- and up-convolutions to respectively max-pooling and

upsampling operations, v) used deformable convolutions ([Dai et al., 2017]) in the finest

level, and vi) used a Gaussian noise image N (0, 0.001) (as in [Laves et al., 2019]) or

concatenated fixed and moving images as network inputs. Moreover, we also vii) set

both λsmooth and λdiffeo to 0 to remove the registration-specific regularization terms (see

Fig. 1.C). All these implementations are detailed in Table 1.

4.3. Reference methods implementation details

Regarding the methods used as reference, we used a grid search on a test set (as

described below for DL-based methods training) to find hyperparameters yielding

best performance running the ANTs pipeline ([Avants et al., 2009]), i.e. with a

three resolutions coarse-to-fine optimization, a gradient step of 0.2 and a symmetry

transformation penalty. We used both MI and NCC as similarity metrics, leading to SyN

and SyNCCmethods respectively. We also ran the Elastix pipeline ([Klein et al., 2010]) to

perform successive rigid, affine and deformable image registration with four resolutions

optimized with an adaptive SGD minimizing the NCC similarity term for 1000 iterations

(Elastix). As for our method, we used a penalty on the bending energy as regularization

to enforce smooth deformations.

To highlight the regularizing power of the architecture in MIRRBA, we ran the

pipeline without the network, optimizing directly the deformation field (initialized as a

Gaussian noise N (0, 0.001)) with the Adam optimizer, MIRRBA wo Archi (see Table 1

and Fig 1.D).

Regarding deep learning-based methods, DL LapIRN ([Mok and Chung, 2020]) was

ran with a similar regularization balance as MIRRBA, i.e. with λsmooth = 0.1, while

all other recommended settings were used. For DL Voxelmorph, we used the latest

diffeomorphic version to date ([Dalca et al., 2019]), with the NCC loss and recommended

settings. For methods relying on a training stage, we split our dataset into five folds,

paying attention to balance data from different acquisition centers among folds. For

each fold, we refer to Dtrain and Dtest as the train and test dataset, respectively. We

trained the DL-based approaches on Dtrain before testing them on Dtest for the five folds.

All architectures were implemented with PyTorch ([Paszke et al., 2017]) and

trained from scratch on a Nvidia V100 32GB SXM2 GPU.
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Table 1. Loss terms and structural setups of the methods presented in the paper.

“Pyr. net.” stands for “Pyraminal network”, “Sym. diffeo. transfo.” for “Symmetric

diffeomorphic transformation”, “Max.” for “Maxpooling”, “Up.” for “Upsampling”,

and “Def. conv.” for “Deformable convolutions”. An absence of information in the

Other column indicates the use of setups described in Sections 4.2 and 4.3.

Loss terms Structural choices

Rdataset Rsmooth Rdiffeo Rarchi Model Depth
Trained

levels

Input

images
Other

MIRRBA x x x Pyr. net. 3 3 Moving -

DL LapIRN x x x x Pyr. net. 3 3
Fixed &

moving
-

DL Voxelmorph x x x x
U-shaped

network
1 1

Fixed &

moving
-

Elastix x
Cubic

B-splines
4 4 Moving -

SyN x
Sym. diffeo.

transfo.
3 3 Moving -

SyNCC x
Sym. diffeo.

transfo.
3 3 Moving -

Combined x x x

Sym. diffeo.

transfo. &

Pyr. net.

3 - 4 3 - 4
Fixed &

moving
-

MIRRBA wo Regu x Pyr. net. 3 3 Moving -

MIRRBA wo Archi x x Pyr. net. 3 3 Moving -

MIRRBA Depth 1 x x x Pyr. net. 1 1 Moving -

MIRRBA Depth 2 x x x Pyr. net. 2 2 Moving -

MIRRBA Depth 4 x x x Pyr. net. 4 4 Moving -

MIRRBA Level 1 x x x Pyr. net. 3 1 Moving -

MIRRBA Level 2 x x x Pyr. net. 3 2 Moving -

MIRRBA Max x x x Pyr. net. 3 3 Moving Max.

MIRRBA Up x x x Pyr. net. 3 3 Moving Up.

MIRRBA DefConv x x x Pyr. net. 3 3 Moving Def. conv.

MIRRBA NoiseImg x x x Pyr. net. 3 3
White

noise
-

MIRRBA FixImg x x x Pyr. net. 3 3
Fixed &

moving
-

MIRRBA Best x x x Pyr. net. 4 4
Fixed &

moving

Max. Up.

Def. conv.

4.4. Evaluation metrics

The first criterion we used to evaluate the registration accuracy is the detection rate,

defined for an individual as the percentage of lesions presenting an overlap greater than
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50% between the wrapped and fixed segmentations ([Moreau et al., 2020]). A higher

percentage refers to a better detection.

To evaluate the registration more locally, we computed Dice scores between fixed

and wrapped i) brain and bladder and ii) lesions segmentation masks. A Dice score

close to 1 means a precise local registration, while a Dice close to 0 is unsatisfactory.

Since the detection rate represents the percentage of lesions correctly detected, it is

positively correlated with the Dice score of the lesions. However, since some lesions

(155) are cured over time and disappear on PET images, we removed them from the

Dice score and detection rate computations to avoid erroneous null values. Instead, we

evaluated the capacity of a method to effectively make lesions disappear by computing

its disappearing rate, or percentage of volume reduction of a lesion induced by the

registration, where a complete disappearance would mean a rate of 100%.

Registration smoothness was evaluated by measuring, for every deformation field,

the standard deviation of its Jacobian determinant SDJDet. Null values indicate

an identity transformation and high ones disorganized and incoherent displacements.

Although an optimal value is difficult to define, we sought to obtain small positive

values, characterizing smooth deformations ([Mok and Chung, 2020]).

Finally, we evaluated the approximate running time of each approach, using a CPU

for SyN, SyNCC and Elastix, and a GPU for all other methods.

4.5. Statistical analysis

To evaluate the statistical significance of our results, we first studied their distribution.

According to the Shapiro-Wilk test (testing the null hypothesis that a sample comes

from a normal distribution), we cannot reject the null hypothesis. Hence, we ran a

paired sample t-test on our results and considered them of statistical significance if

p < 0.05.

5. Results

5.1. Regularization terms

In the first experiment, we looked at the influence of the different regularization terms

from Eq. 3, i.e. Rsmooth, Rdiffeo, Rdataset and Rarchi. To this end, we compared the

results to our MIRRBA approach optimized directly (without learning) on the Dtest pairs,

using Rsmooth, Rdiffeo and Rarchi terms (see Table 1, Fig. 1.A and Eq. 5).

Dataset regularization We trained the Voxelmorph (DL Voxelmorph) ([Dalca et al., 2019])

and LapIRN (DL LapIRN) ([Mok and Chung, 2020]) with the four regularization terms

from Eq. 3 (see Table 1 and Fig. 1.B). Predictions were made on Dtest images. Even if

both DL-based methods reached similar numerical results (see Table 2) and coherent vi-

sual ones (see Fig. 2 and supplementary material), MIRRBA performed better than both of

them globally and locally. Indeed, from Table 2, we note that running a patient-specific
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Figure 2. Overlay of the fixed (green) and warped (pink) images on two different

patients after performing Identity registration, MIRRBA (corresponding to level 3),

DL LapIRN, SyNCC, Combined, MIRRBA wo Regu, MIRRBA wo Archi, MIRRBA Level 1,

MIRRBA Level 2 and MIRRBA FixImg. Grayscale color indicates good overlapping. It

can be noticed that MIRRBA registration is better than DL LapIRN and SyNCC around the

bladder, while Combined obtains nicely registered images. Even without registration-

specific regularization terms, MIRRBA wo regu wrapped images are realistic looking,

unlike MIRRBA wo archi. We can also note that the coarsest level (MIRRBA Level 1)

performs global registration, while finest ones refine it (MIRRBA Level 2) and achieve

more local registration (MIRRBA). MIRRBA FixImg reaches visually accurate registration.

Best viewed in color.

optimization, i.e. removing Rdataset and optimizing an untrained network MIRRBA com-

pared to DL Voxelmorph and DL LapIRN, helps improve the results especially for the

lesions. The organs’ Dice score improved by 6% and 5% while the Dice of the lesions

improved by 52% and 65% for DL Voxelmorph and DL LapIRN respectively. Moreover,

MIRRBA presented lower SDJDet values, hence produced smoother deformations than

training-based approaches. On the other hand, DL Voxelmorph and DL LapIRN had a

higher disappearing rate.

Registration-specific regularization To understand the influence of the registration-

specific regularization terms Rsmooth and Rdiffeo, we removed them from Eq. 5 in

MIRRBA wo Regu (see Table 1) and Fig. 1.C). As quantitatively show in Table 3, MIRRBA

presented Dice scores for the organs and lesions which are respectively 6% and 4% higher

compared to MIRRBA wo Regu. Yet, the detection and disappearing rates were increased

for MIRRBA wo Regu over MIRRBA.

Architecture regularization Finally, to also understand the impact of the regularization

power of the network architecture on the registration, we looked at the results of

MIRRBA wo Archi, which directly optimizes the deformation field without including any
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Table 2. Comparison of MIRRBA to DL-based methods (Section 5.1) – Detection rate,

Dice score of the organs and lesions (Dice organs and Dice lesions resp.), SDJDet,

disappearing rate, and approximate computational time. Both training and inference

computational times are indicated for DL-based methods. All pipelines were computed

on GPU. Statistically significant improvement of our MIRRBA method over the others

with p < 0.05 is indicated with *. Best results are marked in bold, and second best

ones in bold–italic, except for SDJDet since no ideal value is defined.

Detec.

rate (%) ↑
Dice

organs ↑
Dice

lesions ↑
SDJDet ↓ Disap.

rate (%) ↑
Time

(min) ↓

Identity 5.00 0.626 ± 0.138* 0.090 ± 0.115* 0.000 ± 0.000 0.00* 0

MIRRBA 33.04 0.918 ± 0.126 0.425 ± 0.207 0.124 ± 0.988 9.36 55

DL LapIRN 11.76 0.878 ± 0.076* 0.258 ± 0.198* 0.464 ± 1.367 19.15 1450 – 3

DL Voxelmorph 14.13 0.865 ± 0.077* 0.279 ± 0.192* 0.224 ± 0.186 5.67 1200 – 2

Table 3. Ablation study on the regularization terms, architectural choices and inputs

(Sections 5.1 & 5.2) – Detection rate, Dice score of the organs and lesions, SDJDet,

disappearing rate, and approximate computational time. All pipelines were computed

on GPU. Statistically significant improvement of our MIRRBA method over the others

with p < 0.05 is indicated with *. Best results are marked in bold, and second best

ones in bold–italic, except for SDJDet since no ideal value is defined.

Detec.

rate (%) ↑
Dice

organs ↑
Dice

lesions ↑
SDJDet ↓ Disap.

rate (%) ↑
Time

(min) ↓

Identity 5.00 0.626 ± 0.138* 0.090 ± 0.115* 0.000 ± 0.000 0.00* 0

MIRRBA 33.04 0.918 ± 0.126 0.425 ± 0.207 0.124 ± 0.988 9.36 55

MIRRBA wo Regu 33.70 0.868 ± 0.199* 0.407 ± 0.219* 6.655 ± 30.709 16.84 55

MIRRBA wo Archi 20.54 0.753 ± 0.144* 0.239 ± 0.223* 1.247 ± 0.475 59.95 20

MIRRBA Depth 1 11.74 0.748 ± 0.169* 0.239 ± 0.211* 0.016 ± 0.047 4.82 30

MIRRBA Depth 2 23.26 0.873 ± 0.135* 0.364 ± 0.211* 0.038 ± 0.174 7.56 45

MIRRBA Depth 4 40.22 0.945 ± 0.012 0.466 ± 0.199 0.057 ± 0.058 15.12 60

MIRRBA Level 1 4.35 0.722 ± 0.091* 0.221 ± 0.157* 0.013 ± 0.010 0.00* 2

MIRRBA Level 2 19.78 0.869 ± 0.114* 0.371 ± 0.198* 0.035 ± 0.1737 0.00* 10

MIRRBA Max 33.26 0.922 ± 0.098 0.426 ± 0.213 0.316 ± 2.934 8.34 55

MIRRBA Up 33.04 0.922 ± 0.112 0.439 ± 0.204* 0.056 ± 0.309 8.84 55

MIRRBA DefConv 35.22 0.487 ± 0.463* 0.257 ± 0.275* 0.027 ± 0.020 12.23 130

MIRRBA NoiseImg 22.44 0.892 ± 0.081* 0.381 ± 0.194* 0.007 ± 0.009 0.00* 55

MIRRBA FixImg 36.03 0.941 ± 0.017 0.451 ± 0.197 0.071 ± 0.095 20.52 60

MIRRBA Best 40.94 0.947 ± 0.010 0.467 ± 0.202 0.080 ± 0.085 19.48 60

specific architecture, hence not including Rarchi (see Table 1 and Fig. 1.D). According

to Table 3, MIRRBA wo Archi was outperformed by MIRRBA for both organ and lesion

segmentations by 22% and 78% respectively. Although MIRRBA wo Archi disappearing

rate was higher than MIRRBA’s, the method without architectural regularization

presented a low detection rate confirming the structural bias of convolutional generators.
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5.2. Architectural choices

To study the regularization effect of a network architecture on registration, we compared

the results of various architectural choices built from the pyramidal network presented

in [Mok and Chung, 2020] (see Table 1). Quantitative results are presented in Table 3,

while qualitative ones are visible Fig. 2 and in supplementary materials.

Depth of the pyramidal network First, we modified the architecture to optimize

a simple U-Net-shaped network (MIRRBA Depth 1), and pyramidal ones with two

(MIRRBA Depth 2), three (MIRRBA), and four (MIRRBA Depth 4) resolutions. While

MIRRBA Depth 1 was optimized on full resolution images, all other architectures were

trained using a coarse-to-fine strategy.

Results show that increasing the network depth improves the Dice results, as well

as the detection and disappearing rates. Indeed, MIRRBA Depth 4 presented the second

highest Dice scores for both the organs and the lesions among all MIRRBA setups.

Regarding the SDJDet values, they were higher when using a depth 3 or 4, than when

the network was trained on less resolutions.

Trained network level To understand the amount of information brought by each

network level during the coarse-to-fine training strategy, we computed the registration

after optimizing only the lower level (MIRRBA Level 1) on coarse resolution images, both

lower levels (MIRRBA Level 2) on coarse and medium resolution images, and the whole

network (MIRRBA) with the complete coarse-to-fine training strategy.

According to Table 3, training on all three levels of the network improved the

registration accuracy over training only on low resolution images. Moreover, the

disappearing rate was null when the training only occurred on low resolution images.

Max-pooling and upsampling operations For each network level, we replaced the down-

convolution (convolution with stride 2) by a max-pooling operation in MIRRBA Max, and

the transpose convolution by an upsampling in MIRRBA Up. As presented Table 3, using

these learning-free operations improved the registration accuracy globally and locally.

The disappearing rate was however slightly reduced.

Residual blocks We removed the residual connections of the residual blocks

(MIRRBA wo RB) to understand their influence in our architecture. Without them, we

obtained null Dice scores and detection rate, as well as very high SDJDet value. Besides,

wrapped images did not look realistic (see Fig. 2 in the supplementary materials).

Deformable convolutions To adapt the receptive field of the convolutions to the local

scale of objects to be registered, we replaced those of the highest resolution level (i.e.

level 3) by deformable convolutions (MIRRBA DefConv). While global registration results

were improved over MIRRBA, local ones were not. Moreover, the SDJDet was low.
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Table 4. Comparison of MIRRBA to conventional methods (Section 5.3) – Detection

rate, Dice score of the organs and lesions (Dice organs and Dice lesions resp.),

SDJDet, disappearing rate, and approximate computational time. While ANTs and

Elastix pipeline were computed on CPU, MIRRBA ran on GPU. Statistically significant

improvement of our MIRRBA method over the others with p < 0.05 is indicated with *.

Best results are marked in bold, and second best ones in bold–italic, except for SDJDet

since no ideal value is defined.

Detec.

rate (%) ↑
Dice

organs ↑
Dice

lesions ↑
SDJDet ↓ Disap.

rate (%) ↑
Time

(min) ↓

Identity 5.00 0.626 ± 0.138* 0.090 ± 0.115* 0.000 ± 0.000 0.00* 0

MIRRBA 33.04 0.918 ± 0.126 0.425 ± 0.207 0.124 ± 0.988 9.36 55

Elastix 20.54 0.868 ± 0.124* 0.350 ± 0.191* 0.096 ± 0.044 9.59 25

SyN 24.57 0.936 ± 0.023 0.386 ± 0.210* 0.016 ± 0.018 0.00 5

SyNNC 39.57 0.944 ± 0.014 0.477 ± 0.211 0.073 ± 0.066 4.26* 60

Combined 44.71 0.945 ± 0.012 0.481 ± 0.197 0.077 ± 0.072 25.11 115

Input images Regarding the network inputs, instead of conditioning the network with

the moving image, we fed it with a Gaussian noise, as in [Laves et al., 2019]. In Table

3, MIRRBA NoiseImg shows worse results than MIRRBA, except for the SDJDet. We also

provided more information to the network by concatenating the fixed to the moving

image in MIRRBA FixImg, which significantly improved all MIRRBA results, especially the

disappearing rate.

Combining best practices Finally, we combined the best architectural variations

presented above to perform registration with four resolutions, both fixed and moving

images as input, max-pooling and upsampling operations, as well as residual blocks:

MIRRBA Best.

MIRRBA Depth 4 Dice scores were slightly improved by the use of max-pooling and

upsampling operations. On the other hand, adding a fourth depth to MIRRBA FixImg,

MIRRBA Max and MIRRBA Up statistically improved their results, leading to the best

performing MIRRBA-based method in terms of local registration precision MIRRBA Best.

The SDJDet of MIRRBA Best was smaller or similar to either one of the three other

methods, while the disappearing rate lied between their values. Images of lesions

registered with MIRRBA Best are visible Fig. 3.

5.3. Comparison to conventional methods

Conventional registration According to Table 4, even after rigid and affine pre-

registration, locally precise deformable registration is challenging on whole-body images

for the conventional Elastix ([Klein et al., 2010]) pipeline (see Fig. 1 in supplementary

material).

On the other hand, both SyN and SyNCC ([Avants et al., 2009]) statistically
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performed better than MIRRBA (which used the NCC metric) on organ segmentation,

while the NCC similarity metric allowed SyNCC to also reach a better accuracy on lesion

segmentation. Regarding the disappearing rate, MIRRBA performed better than both

SyN-based methods, whereas their SDJDet was lower than ours.

Combination of DIP and conventional registration Finally, we pushed the analysis

by combining our best MIRRBA-based method with the best performing conventional

SyNCC approach. To do so, we optimized MIRRBA Best, using as input the deformation

fields and already registered images obtained by SyNCC. Our assumption was that the

conventional pre-registration would be improved by our method.

Results of this Combined pipeline are shown in Table 4. In terms of global and

local accuracy, the combined approach outperformed both SyNCC and MIRRBA Best. In

addition, the disappearing rate was significantly improved for both methods.

6. Discussion

6.1. Impact of training on a database

When comparing MIRRBA to the DL-based approaches (DL LapIRN and DL Voxelmorph),

we show that not learning registration patterns from a dataset helps to obtain precise

segmentations, especially at a lesion level. Indeed, while the size of organs and their

locations are relatively consistent across patients, this is not the case with the lesions.

Hence, there are fewer deformation patterns that can be learned from a database. Since

performing locally precise registration with a DL-based method is very challenging in

this situation, our method adapts to each subject. Moreover, according to its lower

SDJDet value, MIRRBA produces smoother deformations than the DL-based approaches.

6.2. Architectural choices

Regularization terms As presented in Section 3.1, removing the registration-specific

regularization terms is equivalent to solving an ill-posed problem in conventional

registration methods. In our case, since we use a network to perform registration, Rarchi

is present when running MIRRBA wo Regu. For similar Dice scores and detection rate,

MIRRBA wo Regu has higher SDJDet than MIRRBA, indicating Rsmooth and Rdiffeo help

smooth the deformation field, even though they have less impact than the regularization

of the architecture.

On the opposite configuration MIRRBA wo Archi, where Rarchi is not used but

Rsmooth andRdiffeo are, quantitative results show that the lack of architecture negatively

impacts the registration smoothness, as well as its local and global precision, making

questionable the convergence of the method without architecture. Hence, we confirm

that the architecture has a regularization effect on the registration, which helps to find

an admissible solution.
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Coarse to fine strategies and image resolution Considering the overall network,

[Dittmer et al., 2020] affirms that an architecture ran in a DIP pipeline acts as a

low-pass filter in the beginning of the optimization, allowing higher frequencies to

pass only after lower ones. We observe similar results over the coarse-to-fine training

strategy (see Fig. 2), where low frequencies are registered first (global registration),

followed later by higher frequencies (local registration). In the same way, looking at the

intermediate results during the 4-depth pyramidal optimization of Elastix (see Fig. 1

in supplementary materials), we observe a tendency to register global features before

local ones.

Modifying the number of coarse resolution levels, i.e. the depth of the pyramidal

architecture, we studied the impact of global structural choices to optimize the whole

network. The higher SDJDet values obtained when more resolutions are used could be

explained by the generation of more local transformations, hence a globally less regular

deformation field. Moreover, with four resolutions, the receptive field of the coarsest

level of MIRRBA Depth 4 captures the whole image (i.e. 200 × 200 × 200), explaining

the high Dice scores, as well as detection and disappearing rates. Indeed, successful

conventional pipelines as Elastix ([Klein et al., 2010]) or ANTs ([Avants et al., 2009])

also uses this type of pyramidal strategy.

Network conditioning with input images Contrary to [Ulyanov et al., 2020] and

[Laves et al., 2019], who used Gaussian noise as input for their architectures,

[Gong et al., 2019] and [Baguer et al., 2020] respectively improved CT and PET DIP-

based image reconstructions by providing acquisitions from other modalities to their

networks. We made similar observations, as MIRRBA NoiseImg reached less accurate

results than when we conditioned the model with PET images, as in MIRRBA. Moreover,

feeding the network with more patient information, using the fixed image as additional

input to the moving image in MIRRBA FixImg, improves the results by increasing the

network conditioning on a single patient.

Other architectural choices Moving inside the architecture, residual blocks can be

related to diffeomorphic registration according to [Rousseau et al., 2020]. Indeed,

stacking residual blocks in ResNets ([He et al., 2016]) aims to incrementally map

the embedding space to a new unknown space, each block being defined as y =

F (x) + x, with x and y the respective input and output of the residual blocks,

and F the residual mapping to be learned. Similarly, diffeomorphic registration

models ([Beg et al., 2005, Sotiras et al., 2013]) address the registration issue by piling up

incremental diffeomorphic mappings. Making the link between ResNets and registration,

the function F can be seen as a parametrization of an elementary deformation

flow, and training a series of residual blocks as learning continuous and integral

diffeomorphic operator. With our deep architecture, MIRRBA wo RB results indicate that

the registration without residual blocks fails to converge. Indeed, as explained above,

residual blocks allow incremental diffeomorphic mappings, and removing them leads to
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Figure 3. Overlay of lesions disappearing (1st column), reducing (2nd column), stable

(3rd column) and growing (last column) before and after performing MIRRBA Best.

Fixed lesions can be viewed in green, while moving and wrapped ones in pink. White

color indicates overlapping. Best viewed in color.

gradient vanishing for our patient-specific method.

Regarding the convolutions, [Heinrich, 2019] suggested deformable convolutions

([Dai et al., 2017]) to capture larger deformations. These convolutions add 2D or 3D

offsets to the regular grid sampling of standard operations. If these offsets are set to

zero, deformable convolutions become standard convolutions, otherwise they modify the

receptive field. Since these offsets are learnable, deformable convolutions are trained to

adapt their receptive fields, in order to focus on objects of interest in classification

problems for instance. According to the high detection rate, this is performed globally

by MIRRBA DefConv. Yet, the resulting low Dice scores show that MIRRBA DefConv

did not achieve precise local registration, which can be explained by the low SDJDet

value, showing that only smooth and regular deformations occurred instead of locally

irregular ones. Indeed, deformable convolutions might need a more complex integration

in the architecture ([Liu et al., 2020]). Moreover, the additional learnable parameters

and adaptive receptive field of deformable convolutions are to some extent redundant

with the pyramidal structure, and make it harder to train.

Considering the amount of parameters to optimize in a network, we looked at

the results of MIRRBA Max and MIRRBA Up compared to MIRRBA. Even if the learnable

down- and up-convolutions are now common to respectively increase or decrease image

dimensions within a network, max-pooling and upsampling operations were originally

used. As in conventional registration methods, these operations are not learnable.

Hence, their results do not depend on optimization parameters, and they help to

control the overfitting in a traditional trainable setup. Therefore, the good results

obtained using max-pooling and upsampling operations in MIRRBA Max, MIRRBA Up and

MIRRBA Depth 4 Max Up may be explained by the fewer number of parameters to fit (see

Fig. 2 in supplementary materials).

6.3. Lesion segmentation

Regarding lesion registration, Fig. 3 shows different lesion evolution scenarios. We can

see that the moving masks adapt to the fixed ones when the lesion does not disappear.

Although the disappearing lesion from the first column was not deleted, it was reduced
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by the registration algorithm. Indeed, lesion disappearance implies deformations which

are not smooth nor diffeomorphic, hence the good disappearing rate of MIRRBA wo Regu

and the probable need to adapt our registration strategy to the specific problem of lesion

disappearance in future work.

7. Conclusion

In this paper, we propose an alternative method to perform image registration

using a neural network without the typical learning stage on a database. We

formalize the registration problem by following the conventional approaches relying

on image-based similarities and regularization terms, but also explicitly consider

the dataset and architecture bias. Indeed, our study was motivated by recent

work on DIP, implying that neural networks create an inductive bias when learning

from a database, but also an intrinsic structural bias induced by the architecture

[Heckel and Soltanolkotabi, 2020]. These biases are shown sufficient to solve certain

image processing tasks. Our proposition also resonates with [Dittmer et al., 2020], who

suggested that deep convolutional neural networks process low-frequency information

first, to later focus on the finer deformations, both desirable properties for a registration

algorithm. We integrate the LapIRN network from [Mok and Chung, 2020], who

developed an effective pyramidal architecture, tested in the DL-based set-up. Here,

we further demonstrate that beyond any prior coming from the dataset learning step,

the architecture design has an important effect on the registration results, acting as

an implicit regularizer. Our study also shows the impact of some of the architecture

components, particularly the residual blocks, and we justify this behavior by making

a link with findings from [Rousseau et al., 2020]. Moreover, we found that for our

application, a pyramidal architecture capturing the whole image with a limited amount

of parameters to optimize, as conventional registration methods, provides precise

registration results.

The architectural prior seems to be a better option than learning from data in

cases where there are no positional consistency, which is the case with metastatic breast

cancer lesions, which arbitrarily vary in position, size and number. Indeed, finding a set

of network parameters allowing precise registration for a whole dataset is a challenging

task. Our approach enables to correctly register active organs such as the brain and the

bladder, which could be used to automatically propagate annotations masking regions

irrelevant for patient response evaluation. Although the Dice scores are relatively low

for the lesions, we obtain good detection values and improve the disappearance rate.

Our approach makes a step in bridging conventional and DL-based methods for

image registration, and provides several suitable approaches for the challenging 3D full-

body longitudinal registration problem. We demonstrated the possibility to perform

both global and local registration on whole body medical images using a network but

without suffering from dataset bias. In future work, we would study the feasibility

of extracting registration-based feature from our method to monitor lesion evolution



Deformable image registration with deep network priors 20

without depending on manually performed segmentations.
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deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of

Computer Vision, 61(2):139–157.

[Carlier and Bailly, 2015] Carlier, T. and Bailly, C. (2015). State-Of-The-Art and Recent Advances in

Quantification for Therapeutic Follow-Up in Oncology Using PET. Frontiers in Medicine, 2.

[Chassagnon et al., 2020] Chassagnon, G., Vakalopoulou, M., Régent, A., Sahasrabudhe, M., Marini,
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Supplementary Material

Figure 1. Comparison to reference methods – Overlay of the fixed (green) and

warped (pink) images on two different patients after performing Identity registration,

MIRRBA, DL Voxelmorph, SyN, Elastix Level 1, Elastix Level 2, Elastix Level 3

and Elastix (corresponding to the level 4). Grayscale color indicates good overlapping.

DL-based method has difficulties to register the bladder because of its important

deformation. SyN wrapped images look coherent, even if missing a bit of precision

around the bladder. The pyramidal optimization of Elastix acts as a progressive

registration: global features are registered before more local and precise ones. Best

viewed in color.
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Figure 2. Ablation study – Overlay of the fixed (green) and warped (pink) images on

two different patients after performing Identity registration, MIRRBA (corresponding

to depth 3), MIRRBA Depth 1, MIRRBA Depth 2, MIRRBA Depth 4, MIRRBA wo RB,

MIRRBA Max, MIRRBA Up, MIRRBA DefConv, MIRRBA Best and MIRRBA NoiseImg.

Grayscale color indicates good overlapping. We can see that the higher the depth, the

more precise the registration. A simple U-Net-shaped architecture as MIRRBA Depth 1

produces transformations of very low accuracy, while the more resolutions are used,

the more precise the registration. The all green MIRRBA wo RB image is due to the

non-convergence of the registration algorithm and a wrapped image not registered

to the fixed one. All four other approaches produce realistic looking and coherent

transformations, even if MIRRBA DefConv lacks a bit of precision around the bladder.

MIRRBA NoiseImg does not reach local precise registration. Best viewed in color.
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