
HAL Id: hal-03583859
https://hal.science/hal-03583859

Submitted on 8 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The appearance of particle tracks in detectors - II: the
semi-classical realm

Tristan Benoist, Martin Fraas, Jürg M. Fröhlich

To cite this version:
Tristan Benoist, Martin Fraas, Jürg M. Fröhlich. The appearance of particle tracks in detectors - II: the
semi-classical realm. Journal of Mathematical Physics, 2022, 63 (6), pp.062101. �10.1063/5.0088668�.
�hal-03583859�

https://hal.science/hal-03583859
https://hal.archives-ouvertes.fr


The appearance of particle tracks in detectors - II
the semi-classical realm

Tristan Benoist, Martin Fraas, Jürg Fröhlich

February 22, 2022

Abstract

The appearance of tracks, close to classical orbits, left by charged quantum particles propa-
gating inside a detector, such as a cavity periodically illuminated by light pulses, is studied for
a family of idealized models. In the semi-classical regime, which is reached when one considers
highly energetic particles, we present a detailed, mathematically rigorous analysis of this phe-
nomenon. If the Hamiltonian of the particles is quadratic in position- and momentum operators,
as in the examples of a freely moving particle or a particle in a homogeneous external magnetic
field, we show how symmetries, such as spherical symmetry, of the initial state of a particle are
broken by tracks consisting of infinitely many approximately measured particle positions and
how, in the classical limit, the initial position and velocity of a classical particle trajectory can
be reconstructed from the observed particle track.

1 Description of the problem, heuristic considerations, survey of
results

The purpose of this paper is to provide a partial answer to a fundamental question: How and under
what conditions does a classical image of the world emerge from a quantum-mechanical description
of reality?

The specific phenomenon we propose to analyze is the appearance of particle tracks in a cavity
periodically illuminated by laser pulses or in a cloud chamber, elaborating on results described in [1].
We will focus our attention on the example of a highly energetic, charged quantum particle, such as
an α-particle or an electron, whose approximate position is measured periodically by illuminating
the region of physical space wherein it propagates with a pulse of light of wave length « λ. We will
assume hc

λ to be small as compared to the kinetic energy of the particle. The light scattered off
the particle is supposed to hit an array of photomultipliers. Devices hit by photons then fire with
a certain positive probability, an event resulting in a projective state reduction in the quantum-
mechanical state space of the photomultipliers, which can be recorded. The process described here
serves to repeatedly determine the approximate position of the charged particle with a precision
of Opλq, at times tn “ nτ, n “ 0, 1, 2, . . . , where τ is the time elapsing between two subsequent
illuminations. In between two such indirect approximate measurements of the position of the
charged particle its state is assumed to evolve according to a Schrödinger equation. We propose
to show that the approximate positions of a highly energetic particle measured at times tn, as
described above, and its approximate velocities inferred therefrom lie close to points on a trajectory
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in phase space that is a solution of some classical Hamiltonian equations of motion, i.e., the particle
positions “track” a classical orbit. We will consider particles propagating in suitably regular external
potentials. But our main results are formulated for freely moving particles and particles in a
homogeneous external magnetic field and/or under the influence of a harmonic potential.

While in an earlier paper [1] we have studied the appearance of particle tracks in an idealized
model that can essentially be solved exactly, in the present paper we consider fairly general models.
In order to be able to derive reasonably explicit, mathematically rigorous results, we will study
these models in a semi-classical regime, which is reached when the expected de Broglie wave length
of the particle is much smaller than the wave length λ of the light pulses used to track the position
of the particle.

Interesting results on the emergence of particle tracks in detectors, as well as historical remarks
on various treatments of this phenomenon, can be found in two papers [5, 6], which have proven
to be very useful for the work reported in [1] and in the present paper. We also draw the readers’
attention to paper [11] where particle tracks have been studied within axiomatic quantum field
theory.

1.1 Quantum mechanics of a charged particle, semi-classical regimes

The Hilbert space of pure state vectors of a charged particle with non-relativistic kinematics and
without spin (to simplify matters) is given by

HP :“ L2pRd, ddxq, (1)

where Rd ” Rdx is the configuration space of the particle, and ddx is the Lebesgue measure on Rd.
We will set d “ 3 throughout this introduction. In between two illuminations by light pulses, the
dynamics of the particle is generated by a Hamilton operator, H, acting on HP given by

H :“ 1
2M

“

P ´ eApXq
‰2
` gV pXq, (2)

where M is the mass and e the electric charge of the particle (to be kept fixed in what follows),
A is the vector potential of a c-number external magnetic field (for simplicity chosen to be time-
independent), gV is an external potential, with g a coupling constant, P is the momentum operator,
and X is the position operator of the particle. In the Schrödinger representation

PΨpxq “ ´i~∇xΨpxq, XΨpxq “ xΨpxq, x P R3
x,

where Ψ is the wave function of the particle. The canonical commutation relations between position-
and momentum operators are given by

“

Xi, Pj
‰

“ i~δij1,
“

Xi, Xj

‰

“
“

Pi, Pj
‰

“ 0, (3)

where 1 is the identity operator on HP . The Schrödinger equation for the time dependence of the
wave function, Ψ, of the particle is given by

i~
B

Bt
Ψt “ HΨt. (4)

As argued by Schrödinger [9] and, with more mathematical precision, by Hepp [7], the classical
limit of this quantum-mechanical description of a charged particle is reached when ~Ñ 0, for wave
functions that are superpositions of coherent states of the form

Ψpxq “ exp
” i

~
px ¨ P ´ p ¨Xq

ı

expr´1
2px{Λq

2s, px, pq P R6,
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with ~{Λ kept constant.
In the Heisenberg picture, one can establish a Egorov-type theorem that says that

Time Evolution and Quantization commute, up to error terms of Op~q.
For a precise statement of Egorov’s theorem we refer the reader to [3] where a presentation

in the usual setting of semi-classical analysis is given. In Appendix A, we provide a simple proof
in a different setting; see Proposition A.5. In Nature, the value of Planck’s constant, ~, is fixed,
and we will henceforth use units in which ~ “ 1. Before starting to discuss the main topic of
this paper, we propose to identify semi-classical regimes in parameter space, which are equivalent,
mathematically, to a regime corresponding to a very small value of ~. Two such regimes are of
interest in the context of this paper and will be featured in our analysis.

1. We consider a particle with a very large massM :“ ε´1m, with 0 ă ε ! 1 and m “ Op1q. We
introduce a re-scaled momentum operator (proportional to the velocity operator), p1 :“ εP ,
and we set x1 :“ X. Then

“

x1i, p
1
j

‰

“ iε δij1, other commutators vanishing, (5)

and the Schrödinger equation reads

i
B

Bt
Ψt “

”

εp2mq´1`ε´1p1 ´ eApx1q
˘2
` gV px1q

ı

Ψt.

Choosing the vector field A to be large, namely A “ ε´1A0, and the coupling constant to be
given by g “ ε´1g0, with A0 and g0 kept fixed – which, physically, means that the acceleration
of the heavy particle is of Op1q, as ε tends to 0 – and multiplying both sides of the equation
by ε, we find that

iε
B

Bt
Ψt “

” 1
2m

`

p1 ´ eA0px
1q
˘2
` g0V px

1q

ı

Ψt.

Comparing this equation and equation (5) to (2), (4) and (3), we see that ε plays the role
of ~, and the semi-classical regime apparently corresponds to choosing very small values of
ε, or, in other words, considering a very heavy particle and preparing it in a state with the
property that its typical speed is Op1q.

2. Alternatively, we may consider a particle with a mass M :“ m of Op1q prepared in an initial
state Ψ0 with the property that

xΨ0,
`

P ´ eA
˘2Ψ0y “ Opε´1q, with 0 ă ε ! 1, (6)

i.e., the average kinetic energy of the particle in its initial state is Opε´1q, with ε ! 1. We
re-scale momentum and position operators as follows:

P “: ε´1{2p2, X “: ε´1{2x2. (7)

We then have that
“

x2i , p
2
j

‰

“ iε δij1, other commutators vanishing. (8)

We choose the vector potential A ” Aε and the potential V ” Vε to depend on the variable
ε in such a way that

eAεpε
´1{2x2q „ ε´1{2eA0px

2q, and gVεpε
´1{2x2q „ ε´1g0V0px

2q, (9)
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as εŒ 0. In three dimensions (d “ 3), the relation between A ” Aε and A0 is automatically
fulfilled for a vector potential describing a uniform magnetic field, B P R3, i.e., for Apxq “
1
2px ˆ Bq; and the relation between V ” Vε and V0 is automatically fulfilled for a harmonic
potential, e.g., V pxq “ |x|2, and g “ g0. If the relations in (9) hold, the Schrödinger equation
reads

iε
B

Bt
Ψt “

” 1
2m

`

p2 ´ eA0px
2q
˘2
` g0V0px

2q

ı

Ψt .

As above, inspecting Eq. (8) and this particular form of the Schrödinger equation, we find
that the variable ε plays the role of Planck’s constant ~. Apparently, the semi-classical regime
corresponds to taking a very small value of ε, i.e., preparing an initial state with a very large
average kinetic energy, Opε´1q, and then re-scaling the momentum and position operators
accordingly.

The semi-classical regime: Regions 1 and 2 in parameter space may be treated in a unified way.
For this purpose, we set

p̂ “ p1, x̂ :“ x1 “ X, or p̂ “ p2, x̂ :“ x2, with
“

x̂i, p̂j
‰

“ iε δij1, (10)

(other commutators vanishing). Dropping the subscript “0” on A, V and g, we consider the
Schrödinger equation

iε
B

Bt
Ψt “ HP Ψt , where HP :“ 1

2m
`

p̂´ eApx̂q
˘2
` gV px̂q. (11)

The semi-classical regime corresponds to values ε ! 1 and initial wave functions, Ψ0, with the
properties that Ψ0 P HP , }Ψ0} “ 1, and

∆Ψ0 x̂ ¨∆Ψ0 p̂ “ Opεq, (12)

where, as usual,

∆Ψ0A :“
b

xΨ0,
`

A´ xAyΨ0

˘2Ψ0y with xAyΨ0 :“ xΨ0, AΨ0y.

We propose to study the dynamics of the quantum particle in the semi-classical regime described
by Eqs. (10), (11) and (12) and to analyze the effect of repeated approximate particle-position
measurements, taking place every τ “ Op1q seconds, on the propagation of the particle. The
particle position, x̂, is measured approximately by scattering light with a wave length « λ off the
particle; (λ is taken in the same units as |x̂|). We assume that λ is much larger than the average
de Broglie wave length of the particle in the state Ψ0. In between two consecutive approximate
position measurements the wave function of the particle is assumed to propagate according to the
Schrödinger equation (11).

1.2 Approximate particle-position measurements

Next, we sketch a crude model describing approximate measurements of the particle position; see
also [1]. We imagine that, every τ seconds, a pulse of light is emitted into the region of physical
space R3 where the charged particle is located, and the light scattered by the particle is caught by
an array of photomultipliers that fire with a positive probability when hit by scattered photons.
The firing of photomultipliers represents an event whose effect is taken into account by applying the
state reduction postulate; see Eq. (18), below. Let H denote the Hilbert space of pure state vectors
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of the array of photomultipliers. This space contains a distinguished vector, Ω0, that corresponds to
quiescent photomultipliers. Furthermore, there is an operator, Q “ pQ1, . . . , Qkq, with commuting
components, Qi, i “ 1, ..., k, acting on H, which has a discrete spectrum, σpQq, given by, for
instance, a (subset of a) k-dimensional lattice. The vector Ω0 is the eigenvector of Q corresponding
to an eigenvalue denoted by q8 P σpQq. Points q “ pq1, ..., qkq P σpQq correspond to certain subsets
of photomultipliers. The firing of the photomultipliers indexed by a point q P σpQq is correlated
with the event that the position of the charged particle is somewhere within a distance of Opλq of
a point xpqq P R3 uniquely determined by q; (q8 indicating that the charged particle has escaped
to a region not illuminated by the light pulses). Let Hq Ă H denote the eigenspace of the operator
Q corresponding to the k-tuple q of eigenvalues of Q. The event corresponding to the firing of the
photomultipliers indexed by a point q P σpQq is represented by the orthogonal projection operator,
πq, onto the eigenspace Hq of Q corresponding to the eigenvalues q. One has that

ÿ

q PσpQq

πq “ 1H.

In every eigenspace Hq we may choose an orthonormal basis of eigenvectors, ϕq,α, labelled by the
eigenvalue q and an additional index α “ 1, 2, . . . . We denote by πq,α “ |ϕq,αyxϕq,α| the orthogonal
projection onto ϕq,α, and we have that

ř

α πq,α “ πq.
We assume that, after firing and the recording of an event πq, q P σpQq, the photomultipliers

relax back to the quiescent state Ω0, with a relaxation time, T , much shorter than the time, τ ,
elapsing between two consecutive light pulses. Furthermore, we assume that the time elapsing
between the release of a light pulse, the subsequent firing of the photomultipliers and the recording
of an event πq is sufficiently short that the motion of the charged particle can be neglected during
this process.

Let ρ be a density matrix on HP , i.e., a non-negative trace-class operator on HP with trpρq “ 1,
encoding the state of the particle just before a firing of the photomultipliers caused by light scatter-
ing and the recording of an event πq. We are interested in determining the Born probability of the
event πq. Let U be the unitary operator describing the evolution of the initial state, ρb |Ω0yxΩ0|,
of the total system (consisting of the charged particles, the radiation field and the photomultipli-
ers) at the instant when a light pulse is emitted to the state reached after light scattering by the
charged particle, but just before the event πq is recorded. Since the state ρ of the charged particle
is assumed to be very nearly constant during this process, the operator U has the form

“

U
`

ρb |Ω0yxΩ0|
˘

U˚
‰

px, yq “ ρpx, yq ¨ Upxq|Ω0yxΩ0|Upyq
˚, x, y in σpx̂q “ R3, (13)

where ρpx, yq is the operator kernel of ρ in the Schrödinger representation, x̂ is the position operator
of the particle, σpx̂q denotes the spectrum of x̂, and the operators Upxq are unitary operators on H,
for all x P σpx̂q. The x-dependence of the operator Upxq entangles the state of the charged particle
with the state of the photomultipliers; (the radiation field does not have to be taken into account
explicitly). The Born probability we are looking for is given by a functional, Πpq|¨q, on the space
of density matrices given by

Πpq|ρq :“ trHPbH

”

Upx̂qpρb |Ω0yxΩ0|qUpx̂q
˚πq

ı

. (14)

We can write this functional as

Πpq|ρq “
ÿ

α

trHP

”

pfq,αpx̂q ρ pfq,αpx̂q
˚
ı

, (15)
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where the (transition) amplitudes pfq,α ” pfq,αpx̂q are multiplication operators corresponding to
multiplication by the functions

fq,αpxq :“ xϕq,α, UpxqΩ0y, for x P σpx̂q, (16)

with ϕq,α the eigenvector in the range of the projection πq,α. Thus

fq,αpxq
˚ ¨ fq,αpxq “ xUpxqΩ0, πq,αUpxqΩ0y.

We note that
ÿ

q,α

fq,αpxq
˚ ¨ fq,αpxq “ }UpxqΩ0}

2 “ 1, i.e.,
ÿ

q,α

pf˚q,α ¨
pfq,α “ 1HP

. (17)

Since the point q P σpQq is supposed to track the position x P R3 of the charged particle, we assume
that the amplitudes fq,αpxq, x P σpx̂q “ R3, are of rapid decrease in the quantity |xpqq´x|{λ, where
the map x : σpQq Q q ÞÑ xpqq P R3, introduced above, maps a k-tuple q of eigenvalues of Q to a
unique approximate particle position xpqq.

Let ρ be the density matrix on HP encoding the state of the charged particle right before a
firing of the photomultipliers and τ seconds before the next light pulse is emitted. We propose
to determine the state, ρpqq, of the particle after the firing of the photomultipliers, assumed to
correspond to the point q P σpQq, and just before the next light pulse is emitted. Assuming that
the Born probability Πpq|ρq does not vanish, this state is given by

ρ ÞÑ ρpqq :“
Φ˚q

`

ρ
˘

trHP

“

Φ˚q
`

ρ
˘‰ , Φ˚q

`

ρ
˘

” Φ˚ε,qpρq :“ e´iτHP {ε
ÿ

α

´

pfq,α ρ pf˚q,α

¯

eiτHP {ε . (18)

Identity (17) implies that the map ρ ÞÑ
ř

qPσpQqΦ˚q pρq is completely positive and trace-preserving.
The map ρ ÞÑ ρpqq can be iterated to determine a state, ρpq0, q1, . . . , qnq, of the particle after n` 1
firings of photomultipliers:

ρpq0, q1, . . . , qnq “
Φ˚qn ˝ ¨ ¨ ¨ ˝ Φ˚q0pρ0q

trHP

“

Φ˚qn ˝ ¨ ¨ ¨ ˝ Φ˚q0pρ0q
‰ , (19)

where ρ0 is the initial state of the particle. With a measurement record
 

q0, q1, . . . , qn
(

we associate
the quantity

Ppnqε,ρ0pq0, q1, . . . , qnq “ trHP

“

Φ˚ε,qn ˝ ¨ ¨ ¨ ˝ Φ˚ε,q0pρ0q
‰

, (20)

which is non-negative. By Eq. (17) we have that
ÿ

qPσpQq

trHP

“

Φ˚q pρq
‰

“ trHP

“

ρ
‰

“ 1.

It thus follows that
ÿ

qnPσpQq

Ppnqε,ρ0pq0, q1, . . . , qnq “ Ppnqε,ρ0pq0, q1, . . . , qn´1q, hence

ÿ

qjPσpQq, j“0,1,...,n
Ppnqε,ρ0pq0,q1, . . . , qnq “ trHP

rρ0s “ 1 , (21)
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for an arbitrary density matrix ρ0 on HP . Thus, Ppnqε,ρ0pq0, q1, . . . , qnq can be interpreted as the
probability of the measurement record q

n
:“

 

q0, q1, . . . , qn
(

, conditioned on the initial state of the
particle being given by ρ0.

From this point on, the quantum mechanics of the radiation field and of the photomultipliers
does not play a significant role, anymore. It is subsumed completely in Eqs. (18) and (19). In
conventional jargon, the so-called “Heisenberg cut” may apparently be placed at the level of the
approximate particle-position measurements described by the rule (18), which conforms to standard
lore.

The goal of our paper is to show that, for ε ! 1, i.e., in the semi-classical regime, the measure-
ment record corresponds to a sequence of approximate particle positions,

 

xpqjq
ˇ

ˇ j “ 0, 1, ..., n
(

,
lined up near a particle orbit corresponding to a solution of classical equations of motion deter-
mined by a Hamilton function, hP , whose quantization is the Hamilton operator HP . Moreover,
we show that, for simple particle dynamics, the random initial data of the particle, and hence the
entire particle orbit, can be reconstructed from a large number of measurements of approximate
particle positions, i.e. when n " 1. This follows ideas outlined in the introduction of [1].

Let
Γ :“ R3

x ‘ R3
p, hP px, pq :“ 1

2m
`

p´ eApxq
˘2
` gV pxq (22)

denote the classical phase space of the charged particle and the Hamilton function corresponding
to the Hamilton operator HP introduced in (11), respectively. The Hamilton function hp generates
a symplectic flow, pφtqtPR, on Γ, where t denotes time, and we write pxt, ptq :“ φtpx, pq. Given a
function apx, pq on Γ belonging to the Schwartz space, SpΓq, let papx̂, p̂q denote the operator obtained
from apx, pq by Weyl quantization; (see Sect. 2). We will invoke a Egorov-type theorem that says
that

eitHp{ε pa e´itHP {ε “{a ˝ φt `Opεq. (23)
Furthermore, if a and b belong to SpΓq then

}
“

pa,pb
‰

} “ Opεq. (24)

These facts will be discussed in Sect. 2 and proven for a certain class of functions a in Appendix
A. Applying Eqs. (23) and (24) to the right side of (20), we find that

Ppnqε,ρ0pq0, q1, . . . , qnq “ tr
”

ρ0

n
ź

j“0

´

ÿ

α

pfqj ,αppxjτ q
˚ ¨ pfqj ,αppxjτ q

¯ı

`Opεq . (25)

Choosing a family
 

ρ0,ε
(

εą0 of density matrices indexed by ε with the property that their Wigner
quasi-probability distributions converge to a probability measure, dµ0, on phase space Γ, it follows
that

Ppnqε,ρ0,εpq0, q1, . . . , qnq “

ż

Γ

n
ź

j“0

´

ÿ

α

ˇ

ˇfqj ,αpxjτ q
ˇ

ˇ

2
¯

dµ0px, pq `Opεq , as εÑ 0 , (26)

where xjτ is the configuration space coordinate of the phase-space point φjτ px, pq. The error term
Opεq in (26) is expected to grow rapidly in the number, n ` 1, of approximate particle position
measurements. However, in deriving our results we only require convergence, as εÑ 0, for arbitrary
finite values of n.

Assuming that Apxq “ 1
2px ˆ Bq, where B is a uniform external magnetic field independent

of time, and that the potential V pxq is harmonic, we can use standard arguments from statis-
tics to show that the expression on the right side of Eq. (26) is peaked on measurement records
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q0, q1, . . . , qn
(

corresponding to classical particle orbits txt | t “ jτ, j “ 0, 1, . . . , nu. More pre-
cisely, if the amplitudes fq,αpxq are of rapid decrease in |xpqq ´ x|{λ the points xpqjq P R3 are
typically within a distance of Opλq of the points xjτ , for all j “ 0, 1, . . . , n, where pxt, ptq “ φtpx, pq
solves the classical Hamiltonian equations of motion with initial conditions px0, p0q. Moreover, the
probability that the initial conditions px0, p0q belong to a cell ∆ of phase space Γ is given by µ0p∆q
(i.e., Born’s Rule holds in the limiting regime where ε ! 1).

Precise statements of our main results are presented in Sect. 3. Detailed proofs are contained
in Sects. 4 and 5. In Sect. 6, some concrete examples of particle dynamics are sketched along the
lines of the discussion in [1]. Preliminaries, concerning, e.g., Weyl quantization etc., are discussed
in Sect. 2. Some technical proofs are presented in Appendix A.

Acknowledgements: We are grateful to Detlev Buchholz for some comments on our paper [1] and
for drawing our attention to a paper by the late Othmar Steinmann, where the problem of particle
tracks in detectors has been studied within the formalism of axiomatic quantum field theory, see
[11]. We thank Miguel Ballesteros and Baptiste Schubnel for earlier collaboration on somewhat
related problems and Philippe Blanchard for numerous discussions on quantum mechanics. T.B.
would like to thank Fabrice Gamboa for his advice on the estimation results and Jean-Marc Bouclet
for pointing out appropriate references for the semi-classical analysis results we use. The research
of T.B. has been supported by ANR project ESQUISSE (ANR-20-CE47-0014-01) of the French
National Research Agency (ANR). The research of T.B. and M.F. has been supported by ANR
project QTraj (ANR-20-CE40-0024-01) of the French National Research Agency (ANR).

2 Weyl quantization, repeated indirect measurements

In order to imbed the ideas presented between Eqs. (22) and (26) of Sect. 1 into precise mathe-
matics, we need to recapitulate some basics concerning Hamiltonian dynamics and the process of
quantization. In the following we will make use of Wigner-Weyl quantization of classical Hamilto-
nian systems with finitely many degrees of freedom. We follow conventions inspired by [4, §8.4].
The phase space, Γ, is taken to be the one introduced in (22), i.e.,

Γ :“ Rdx ‘ Rdp. (27)

Points of Γ are denoted by Greek letters ξ, ζ, . . . Let SpΓq be the Schwartz space of test functions
on Γ. The Fourier transform, Fpaq, of a function a P SpΓq is defined by

Fpaqpζq ” ãpζq :“ p2πq´2d
ż

Γ
apξq eiξ

tΩζdξ , (28)

where the superscript t indicates transposition, and Ω is the 2dˆ 2d matrix given by

Ω “
ˆ

0 ´1d
1d 0

˙

. (29)

For a positive number ε P p0, ε0s, the Weyl quantization, Opεpaq, of an arbitrary function a P SpΓq
is defined, formally, by

Opεpaq ” pa :“
ż

Γ
ãpζqW pζq dζ , (30)

where
W pζq ”Wεpζq :“ exp

“

ipζtΩpξ q
‰

, pξ :“
ˆ

x̂
p̂

˙

, (31)
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are the usualWeyl operators, and x̂ and p̂ are the position and the momentum operator, respectively,
on the Hilbert space HP , which satisfy the Heisenberg commutation relation; see Eq. (10), Sect. 1.
The Weyl operators W pζq, ζ P Γ, are unitary and satisfy the Weyl (commutation) relations

W pζ1qW pζ2q “ e´i
ε
2 ζ

t
1Ω ζ2W pζ1 ` ζ2q. (32)

We observe that
W pζq˚ “W p´ζq and W p0q “ 1. (33)

Digression on the mathematical meaning of Eq. (30): In order to render the definition of
the operation of quantization, Opε, more precise, we introduce a sesquilinear form, Bεpa|¨, ¨q, on
HP ˆHP given by

Bεpa|Φ,Ψq :“
ż

Γ
ãpζq xΦ,W pζqΨydζ , Φ,Ψ in HP . (34)

Since W pζq is unitary, for arbitrary ζ P Γ, we have that |xΦ,W pζqΨy| ď }Φ} ¨ }Ψ}; hence

|Bεpa|Φ,Ψq| ď }ã}1 }Φ} ¨ }Ψ} (35)

where } ¨ }1 denotes the L1-norm. Furthermore, the function ζ ÞÑ xΦ,W pζqΨy is continuous in ζ,
for arbitrary Φ and Ψ in HP , and, since the selfadjoint operator x ¨ p̂´ p ¨ x̂ has purely absolutely
continuous spectrum, for arbitrary 0 ‰ ζ “ px, pqt P Γ, it tends to 0, as |ζ| Ñ 8, by the Riemann-
Lebesgue lemma. The Riesz representation theorem thus implies that there is a unique bounded
operator, Opεpaq, on HP with the property that

Bεpa|Φ,Ψq “ xΦ,OpεpaqΨy, @Φ,Ψ in HP . (36)

By Equation (35), }Opεpaq} ď }ã}1. Thanks to this norm-bound and the continuity properties
of the function ζ ÞÑ xΦ,W pζqΨy, the operation Opε of quantization can be extended to a larger
function space, in the following denoted by S, strictly containing SpΓq. Examples of S are the
space of functions that are inverse Fourier transforms of finite complex Borel measures on Γ, or the
space of bounded C8-functions on Γ with bounded derivatives. We equip S with a norm, }p¨q},
with the property that }Opεpaq} ď }a}, @ a P S. In the following, the function space S is assumed
to conform to the following definition.

Definition 2.1.pSq The space S is an ε-independent, normed function space contained in the space
of bounded measurable functions on Γ. It contains the set of Schwartz functions SpΓq. When
equipped with point-wise multiplication and complex conjugation S is a normed ˚-algebra with a
sub-multiplicative norm.

For an arbitrary function a P S, the sesquilinear from Bεpa|¨, ¨q introduced in (34) is well defined
on HP ˆHP , with

sup
0ăεďε0

}Bεpa|Φ,Ψq} ď }a} }Φ} ¨ }Ψ}, for arbitrary Φ,Ψ in HP .

The operator Opεpaq is the unique bounded operator satisfying (36). Its operator norm is dominated
by the S-norm of a: }Opεpaq} ď }a},@a P S. We finally require that, for arbitrary functions a and
b in S,

lim
εŒ0

}OpεpaqOpεpbq ´Opεpa ¨ bq} “ 0. (37)
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Remark 2.2. The choices

S :“
 

a P C8pΓq
ˇ

ˇ supξPΓ|Bαapξq| ă 8, @multi-indices α
(

,

and
S :“

 

a
ˇ

ˇ a “ F´1pãq, where ãpdζq is a finite complex Borel measure on Γ
(

alluded to above, are convenient for our purposes; see [14], § 4, and Appendix A. ˝

Norms on S are specified in [14] (Theorem 4.23), and in Appendix A, respectively. In the
following we will often use the short-hand notation

pa :“ Opεpaq, a P S.

By (30) and (33), we have that
pa˚ “

ż

Γ
ãpζqW p´ζq dζ.

If the function a is real then ãpζq “ ãp´ζq, and we conclude that

pa˚ “ pa is self-adjoint, for an arbitrary real element a P S.

Next, we return to considering the dynamics of the particle. We suppose that the classical
Hamilton function hP is as specified in Eq. (22) of Sect. 1, for a smooth potential V on Γ, with BαV
bounded, for |α| ě 2; (one may allow V to also depend on p). This function does not belong to the
space S; but the appropriate quantization, HP ”

phP , of hP has already been introduced in Eq. (11)
of Sect. 1 (see also [4], §8.4). Under natural conditions on V (see, e.g., [10]), the Hamiltonian HP

is a self-adjoint operator on HP . Hence

Uε :“ exp
“

´ iτHP {ε
‰

(38)

is a unitary operator, for arbitrary ε P p0, ε0s; (the parameter τ is the time elapsing between two
consecutive approximate particle-position measurements, as discussed in Sect. 1). The classical
Hamilton function hP determines a symplectic flow pφtqtPR on Γ. We define a symplectomorphism
φ : Γ Ñ Γ by setting φ :“ φτ .

We require Uε and φ to satisfy the following semiclassical approximation assumption.
Assumption (SC). We assume that the symplectomorphism φ preserves the space S, in the sense
that a ˝ φ P S, @ a P S, and, moreover, that

limεŒ0 }U
˚
ε OpεpaqUε ´Opεpa ˝ φq} “ 0 , (39)

for all functions a P S.

Remark 2.3. If S is chosen to be the space of smooth bounded functions on Γ, as in Remark
2.2, and for a Hamiltonian HP as specified above, Assumption (SC) is a consequence of Egorov’s
theorem (see, e.g., [3], Theorem 1.2). A short proof of Assumption (SC) is provided in Appendix
A for a suitably chosen function space S under a somewhat abstract condition on the flow pφtqt.
Here we just remark that if the Hamiltonian is quadratic in x̂ and p̂, i.e., if the particle dynamics
is quasi-free, then it follows that

U˚ε OpεpaqUε “ Opεpa ˝ φJq, for arbitrary ε ą 0, (40)
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where φJpx, pq “ J

ˆ

x
p

˙

, with J a symplectic matrix on R2d, i.e., J tΩJ “ Ω, where Ω is the matrix

introduced in (29). This choice of Hamiltonian covers the examples of a freely moving particle, a
particle in a constant external magnetic field and the harmonic oscillator. (It is discussed in detail
in [1] and in Sect. 6).

2.1 Indirect approximate measurements of particle position

Next, we put the analysis of approximate particle-position measurements presented in Subsection
1.2 into a slightly more abstract guise. Let E be a locally compact metric space equipped with
its Borel σ-algebra, and let dν be a σ-finite measure on E. A weak measurement of some particle
properties, using a suitable instrument, can be described by an operator (belonging to the algebra
OpεpSq) corresponding to what, in Subsect. 1.2, has been called an amplitude, fα, which is defined
as follows: Let fα : EˆΓ Ñ C, α “ 1, 2, . . . , be measurable functions with the following properties:
Properties of amplitudes.

(P1) For dν-almost all points q P E, fq,α : ξ ÞÑ fq,αpξq is an element of the space S, and, for an
arbitrary continuous compactly supported function ψ on E,

xψyα : ξ ÞÑ xψyαpξq :“
ż

E
ψpqq|fq,αpξq|

2dνpqq belongs to the space S, @α.

(P2) The functions E Q q ÞÑ }fq,α}
2
8 are locally integrable with respect to dν and summable in α.

(For simplicity, we will henceforth assume that the number of indices α is bounded by some
finite integer, N0, for all q P E.)

(P3) Let pfq,α ” Opεpfq,αq, q P E, be the quantization of the functions fq,α (which, by (P1), is well
defined for almost every q P E). Then

ż

E

ÿ

α

´

pf˚q,α
pfq,α

¯

dνpqq “ 1HP
, (41)

for arbitrary ε P p0, ε0s, or, equivalently,
ż

E

ÿ

α

|fq,αpξq|
2dνpqq “ 1, for any ξ P Γ.

Remark 2.4. (1) Property (P3) guarantees that the map ρ ÞÑ
ş

E

ř

α

`

pfq,αρ pf
˚
q,α

˘

dνpqq is completely
positive and trace-preserving. Properties (P1) and (P2) are tailored to the use of semi-classical
analysis, as described below. We note that if the first half of property (P1) holds then the second
half of (P1) follows for our examples of spaces S.

(2) If the functions fq,α, q P E, are independent of the momentum variable p then properties
(P2) and (P3) hold, provided the functions q ÞÑ }fq,α} are locally square-integrable and, for every
ξ P Γ, q ÞÑ

ř

α |fq,αpξq|
2 is a probability density with respect to the measure dν.

(3) Condition (P3) ensures that for any ξ P Γ,
ř

α |fq,αpξq|
2dνpqq is the law of a random

variable Q taking values in E.
Let ρ be a density matrix on HP representing the state of the particle right before a weak

measurement of a particle property, as described by amplitudes pfq,α, is made, as discussed in
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Subsect. 1.2. The probability distribution of the measurement result Q “ q P E is given by the
Born probabilities introduced in Eq. (14) of Subsect. 1.2, namely1

Q „ Πpq|ρqdνpqq :“
ÿ

α

tr
`

pfq,α ρ pf˚q,α
˘

dνpqq

When conditioned on a measurement outcome Q “ q, with Πpq|ρq ą 0, the state, ρpqq, of the
particle τ seconds after the measurement, right before the next measurement, is given by

ρpqq :“
Φ˚ε,q

`

ρ
˘

trHP

“

Φ˚ε,qpρ
˘‰ , (42)

where the maps ρ ÞÑ Φ˚ε,qpρq, q P E, are as in Eq. (18), Subsect. 1.1. Thanks to property (P3),
Eq. (41), the map ρ ÞÑ

ş

E Φ˚ε,qpρqdνpqq is completely positive and trace-preserving.
The maps Φ˚ε,q can be iterated. We define

Φ˚ε,q
n

:“ Φ˚ε,qn ˝ ¨ ¨ ¨ ˝ Φ˚ε,q0 , (43)

with q
n

:“
 

q0, q1, . . . , qn
(

, for any n “ 0, 1, 2, . . . We define a probability measure dPpnqε,ρ0pqnq by

dPpnqε,ρ0pqnq :“ tr
“

Φ˚ε,q
n
pρ0q

‰

dνbpn`1qpq
n
q , (44)

where ρ0 is the initial state of the particle; see Eq. (20). Using (41) (see also (21)) and Kolmogorov’s
extension lemma, we conclude that there exists a probability measure, dPε,ρ0 , on the space, Q :“
EˆN0 , of infinite sequences of measurement outcomes, q

8
“

`

qn
˘

nPN0
, with the property that

dPε,ρ0

ˇ

ˇ

En`1 “ dPpnqε,ρ0 , (45)

where En`1 consists of all measurable subsets of Q that do not depend on qj , j ě n` 1.

3 Survey of results
In this section we present precise statements of our main results. We begin with a theorem that
says that, in the semi-classical regime, i.e., for 0 ă ε ! 1, the process of particle measurements
described in Subsect. 2.1 is close to a process of independent approximate particle measurements
whose laws follow a classical particle trajectory determined by the Hamiltonian dynamics generated
by the Hamilton function hP introduced in Eq. (22). The random initial condition, ξ0 P Γ, of the
particle trajectory is distributed according to a probability measure, dµ0, on phase space Γ that
describes the limiting initial state of the particle corresponding to a family of states,

 

ρ0,ε
(

εPp0,ε0s
,

as εŒ 0; see Eq. (26), Subsect. 1.1, and (46), below.

Theorem 3.1. We assume that the function space S be as required in Definition 2.1, and that the
time-τ symplectomorphism φ satisfy Assumption (SC); (see Eqs. (37) and (39), and Appendix A).
Furthermore, we assume that there exist a probability measure, dµ0, on phase space Γ such that,
for any function a on Γ belonging to the space S,

lim
εŒ0

ρ0,ε
`

Opεpaq
˘

“

ż

Γ
apξq dµ0pξq . (46)

1Note that, in the following, an abstract random variable is denoted by a capital letter, while its values are denoted
by the corresponding lower-case letter. Example: the approximate position of a particle is a random variable denoted
by Q, its measured values are denoted by q.
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Let
`

ξn
˘

nPN0
be the classical process with ξ0 „ dµ0 and ξn “ φpξn´1q, @n ą 0. For ξ P Γ, let Qpξq

be the random variable whose law is given by Qpξq „
ř

α

ˇ

ˇfq,αpξq
ˇ

ˇ

2dνpqq; and let
`

Qn
˘

nPN0
be the

process whose law is given by the probability measure dPε,ρ0, see (45). Then
`

Qn
˘

nPN0

L
ÝÑ
εŒ0

`

Qpξnq
˘

nPN0
,

where the different copies, Qpξnq, n “ 0, 1, 2, . . . , of the random variable Qpξq are independent. ˝

The proof of Theorem 3.1 is given in the next section.
Remark 3.2 Theorem 3.1 can be generalized to open systems, (i.e., systems interacting with an
environment). We suppose that, in the Heisenberg picture, the quantum-mechanical evolution of
operators of some open system is determined by a unital, completely positive map Ψε : O Ñ O,
where O is the C˚-algebra generated by the operators

 

Opεpaq
ˇ

ˇa P S
(

. The operator norm of Ψε

is bounded by 1; see [13]. (If the system were isolated, as above, the map Ψε would be given by
ΨεpXq “ U˚ε X Uε, for some unitary operator Uε on HP .) We replace Assumption (SC), Eq. (39),
by the assumption

lim
εŒ0

}Ψε

`

Opεpaq
˘

´Opε
`

Π a
˘

} “ 0,

where Π : S Ñ S is a Markov kernel. Then Theorem 3.1 holds, provided pξnqnPN0 is chosen to be
the Markov chain with kernel Π, and the law of ξ0 is given by the probability measure dµ0.

In [8], Examples III.1, III.3 and III.4, the following result clarifying the status of Eq. (46) has
been established.
Proposition 3.3. Let ρ0,ε :“

ˇ

ˇψ
px0,v0q
ε yxψ

px0,v0q
ε

ˇ

ˇ, with

ψpx0,p0q
ε pxq :“ ε´pdβ{2qh

´x´ x0
εβ

¯

eipx¨p0{εq, (47)

where h P L2pRdx, ddxq, with }h}2 “ 1, and px0, p0q
t P Γ. Then

ψpx0,p0q
ε P L2pRdx, ddxq, with }ψpx0,p0q

ε }2 “ 1,

and, for an arbitrary β P r0, 1s, the limit in Eq. (46) exists, with dµ0 given by the following formulae:

• For β “ 0,dµ0px, pq “ δpp´ p0q|hpx´ x0q|
2ddxddp.

• For β “ 1,dµ0px, pq “ δpx´ x0q|rhpp´ p0q|
2ddxddp, where rh is the Fourier transform of h.

• For β R t0, 1u,dµ0px, pq “ δpx´ x0q δpp´ p0qd
dxddp. ˝

Remark 3.4. (1) Whenever β R t0, 1u, the trajectory pξnqnPN0 is deterministic, with initial condi-
tion ξ0 “ px0, p0q

t.
(2) For β “ 1, and if the function h is invariant under space rotations (an s-wave state), the dis-
tribution of initial momenta of the particle is rotation-invariant, too. But the sequence of observed
approximate particle positions determines a definite initial direction of particle motion, which is,
however, random. The isotropy of the initial particle state is mirrored in the rotation invariance
of the distribution on the space of particle tracks; but conditioning on a sample track breaks this
symmetry. This becomes evident when estimating the initial momentum of the particle from the
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data of the particle track, as we will discuss in Section 5.
(3) Proposition 3.3 extends to mixed states given by

ρε “

ż

Γ
|ψpx0,p0q
ε yxψpx0,p0q

ε | dλpx0, p0q,

where dλ is a probability measure on Γ. By dominated convergence, the limit in Eq. (46) then exists,
with the measure dµ0 given by (i) dµ0 “ dλ, for β R t0, 1u, (ii) dµ0px, pq “

ş

Rdx
|hpx´ yq|2dλpy, pq,

for β “ 0, and (iii) dµ0px, pq “
ş

Rdp
|rhpp´ rq|2dλpx, rq, for β “ 1.

Next, we consider measurements of the approximate particle-position at times tn “ nτ, n “
0, 1, 2, . . . The functions fq,αpξq, q P E, are then independent of the momentum variable p, and we
assume, merely for simplicity, that the index α only takes a single value, so that it can be dropped.
Let

x : E Ñ Rd, E Q q ÞÑ xpqq P R3

be the map introduced in Sect. 1.2, where xpqq is interpreted to be the approximate particle position
corresponding to a measurement of Q with outcome q P E. We focus our attention on approximate
particle-position measurements.
(Space-) Translation-Invariant Instruments. We assume that the image of E under the map
x is given by Rdx, and that the push forward of the measure dνpqq by the map x is the Lebesgue
measure, ddx, on Rdx; i.e.,

ż

E
F pxpqqqdνpqq “

ż

Rd
F pxqddx, (48)

for any L1 function F on Rd. Furthermore, we assume that there exist a function g : Rd Ñ C
belonging to the space S such that fqpξ “ px, pqtq :“ gpxpqq ´ xq.

Theorem 3.1 then takes the following form.
Corollary 3.5. Under the hypotheses of Theorem 3.1, and for translation-invariant instruments,

`

xpQnq
˘

nPN0

L
ÝÑ
εŒ0

`

xn ` κn
˘

nPN0
,

where the law of
`

Qn
˘

nPN0
is given by the probability measure dPε,ρ0 defined in (44),

`

pxn, pnq
t
˘

nPN0
is the classical process pξn “ φnτ pξ0qqnPN0 introduced in Theorem 3.1, and pκnqnPN0 is a sequence
of independent, identically distributed random variables with values in Rd whose law is given by the
probability measure

ˇ

ˇgpκq
ˇ

ˇ

2
ddκ.

Remark We can reformulate this corollary as follows. For small values of the deformation param-
eter ε, the sequence of observed approximate particle positions has a distribution similar to the one
of a perturbation of the classical particle orbit:

 

xpQ0q, xpQ1q, . . .
(

„
 

x0 ` κ0, x1 ` κ1, . . .
(

, where
κ0, κ1, . . . are independent identically distributed random variables and the points

 

xn “ xpτnq |n “
0, 1, . . .

(

lie on a classical particle orbit
`

xptq
˘

tPR corresponding to some random initial condition
ξ0 P Γ whose distribution, dµ0, is consistent with Born’s rule.

Next, we propose to investigate how particle trajectories pξnqnPN0 can be reconstructed from
sequences of data of approximate particle-position measurements, pQnqnPN0 , in the limit where ε
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tends to 0. We require the assumptions specified in Corollary 3.5. To simplify our notations, we
assume that E “ Rd and that the map x is the identity, i.e., xpqq “ q, @q P Rd.

We introduce the measures

Λpξ,dqq :“
ˇ

ˇgpq ´ xq
ˇ

ˇ

2
ddq, with ξ “

ˆ

x
p

˙

, (49)

P pξ0,dq8q :“
8
â

n“0
Λpξn, dqnq, (50)

where ξn “ φpξn´1q, as in Theorem 3.1. If (46) holds then the measures dPε,ρ0,ε defined in Eq. (45)
converge to the measure P pµ0, dq8q :“

ş

Γ dµ0pξ0qP pξ0, dq8q, as εŒ 0.
Assumption (QF). (1) The particle dynamics is “quasi-free”, i.e., the Hamilton function hP in
Eq. (22) of Sect. 1.2 is quadratic in x and p. There then exists a symplectic matrix J on phase
space Γ such that φpξq “ φJpξq “ Jξ, @ ξ P Γ.
(2) The first and the second moment of the measure Λpξ,dqq exist, and

ż

Rd
qΛpξ,dqq “ x, (51)

with ξ and x as in (49).

Our aim is to understand how the particle states, ξn, n “ 0, 1, 2, . . . , and, in particular, the initial
condition ξ0 of the particle trajectory, can be determined from a given sequence, q

8
“ pqnqnPN0 , of

outcomes of approximate particle-position measurements.
Theorem 3.6. Assume that the hypotheses of Corollary 3.5 are valid and that Assumption (QF)
holds. Assume moreover that the classical dynamics has no stable or unstable manifolds (i.e.,
spec J Ă Up1q ” exppiRq) and is non trivial in any direction of space (i.e., p1d , 0qJ

` 0
1d
˘

is invert-
ible).

Then, in the classical limit ε Œ 0, there exists a sequence pξ̃nqnPN0 of measurable functions on
Q :“ EˆN0 with values in Γ such that, for each n P N0, ξ̃n depends only pQ0, Q1, . . . , Qnq and with
the property that

lim
nÑ8

EP p}ξ̃n ´ ξ0}
2q “ 0

with EP the expectation with respect to P pξ0,dq8q and }¨} the usual Euclidean norm on R2d. Hence
ξ̃n converges to ξ0 in probability, as n tends to 8.

More precise statements of this theorem, with an explicit expression for ξ̃n, and proofs are given
in Sect. 5.

These somewhat abstract considerations will be illustrated by concrete examples in Sect. 6.

4 Proofs of Theorem 3.1 and Corollary 3.5

We begin with the proof of Theorem 3.1, which relies on the fact that pa¨pb “ ya ¨ b`Opεq, for arbitrary
functions a and b belonging to the space S; see Eq. (37), Definition 2.1. Thanks to property (P1) of
amplitudes, stated at the beginning of Sect. 2.1, the assumption that the amplitdes fq,αpξq belong
to the space S (with α taking only finitely many values) implies that

ř

α |fq,αpξq|
2 belongs to S,

too, for ν-almost all q P E, because S is assumed to be a ˚-algebra. For every ξ P Γ, we define a
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measure Λ on the space E by setting Λpξ,dqq :“
ř

α |fq,αpξq|
2dνpqq, and we then define the measure

P pξ0, dq8q on Q as described in Eq. (50). Let EP denote expectation with respect to the measure
P , and let EPε denote expectation with respect to the measure dPε ” dPε,ρ0,ε , where dPε,ρ0 has
been defined in (45) and the family of states

 

ρ0,ε
(

0ăεďε0
is chosen such that (46) holds. We first

show that
EPεpψ0

`

Q0q ¨ ¨ ¨ψnpQnq
˘

Ñ
εŒ0

EP
`

ψ0pQ0q ¨ ¨ ¨ψnpQnq
˘

, (52)

for arbitrary non-negative, compactly supported continuous functions ψ0, . . . , ψn on E. Then, using
the decomposition of continuous functions into positive and negative parts and the density (in the
L1-norm) of compactly supported continuous functions in the set of bounded continuous functions,
the convergence stated in (52) yields Theorem 3.1.

For an arbitrary non-negative, compactly supported continuous function ψ on E, the map

Φε,ψ : X ÞÑ

ż

E
ψpqq

´

ÿ

α

pf˚q,αU
˚
ε X Uε pfq,α

¯

dνpqq, X P BpHP q,

with Uε :“ expr´iτHP {εs, is completely positive, since it is expressed as a Kraus decomposition.
From properties (P1) and (P2) of amplitudes (see Sect. 2.1),

}Φε,ψp1q} ď
ż

E
ψpqq

ÿ

α

}fq,α}
2dνpqq ă 8.

The Russo-Dye Theorem then implies that Φε,ψ is bounded uniformly in ε; see Corollary 1 in [13].
This map is the adjoint of the map Φ˚ε,ψp¨q :“

ş

E ψpqqΦ
˚
ε,qp¨q dνpqq, which acts on density matrices,

where Φ˚ε,q has been introduced in Eq. (18).
Next, we show that, for an arbitrary non-negative, compactly supported continuous function ψ

on E and any a P S,
lim
εŒ0

}Φε,ψ

`

Opεpaq
˘

´Opεpxψy a ˝ φq} “ 0, (53)

where

xψy “
ÿ

α

xψyα, with

xψyαpξq :“
ż

E
ψpqq|fq,αpξq|

2dνpqq. (54)

By property (P1), Sect. 2.1, we have that xψy P S. Moreover, Assumption (SC) stated in Sect. 2
implies that a ˝ φ P S, where φ is the time-τ symplectic map on Γ. Then Eq. (37) in Definition 2.1
entails that limεŒ0}OpεpxψyqOpεpa ˝ φq ´Opεpxψy a ˝ φq} “ 0. Thus, (53) follows from

lim
εŒ0

}Φε,ψ

`

Opεpaq
˘

´OpεpxψyqOpεpa ˝ φq} “ 0.

Since quantization, i.e., the operation Opε, is linear, we have that

Φε,ψ

`

Opεpaq
˘

´OpεpxψyqOpεpa ˝ φq “

“
ÿ

α

ż

E
ψpqq

“

pf˚q,αU
˚
ε OpεpaqUε pfq,α ´Opεp|fq,αpξq|2qOpεpa ˝ φq

‰

dνpqq .

Assumption (SC) and (37) imply that

lim
εŒ0

} pf˚q,αU
˚
ε OpεpaqUε pfq,α ´Opεp|fq,αpξq|2qOpεpa ˝ φq} “ 0,
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for ν-almost every q. Furthermore,

} pf˚q,αU
˚
ε OpεpaqUε pfq,α ´Opεp|fq,α|2qOpεpa ˝ φq} ď }fq,α}2

`

}a} ` }a ˝ φ}
˘

.

Since
ş

E ψpqq}fq,α}
2dνpqq ă 8, by properties (P1) and (P2), Sect. 2.1, and since the index α has

been assumed to take only finitely many values, Lebesgue dominated convergence implies that (53)
holds.

We set
Φε,ψ

n
:“ Φε,ψ0 ˝ ¨ ¨ ¨ ˝ Φε,ψn , n “ 0, 1, 2, . . .

We propose to show by induction that, for an arbitrary a P S and n P N,

lim
εŒ0
}Φε,ψ

n´1
pOpεpaq

˘

´Opε
`

xψ0y xψ1y ˝ φ ¨ ¨ ¨ xψn´1y ˝ φ
n´1a ˝ φn

˘

} “ 0 . (55)

In (53) this is shown for n “ 1. We now assume that (55) holds for n “ m´ 1. We will use that if
tXεu0ăεďε0 is a family of operators converging to 0 in norm, as εŒ 0, then

lim
εŒ0
}Φε,ψ

m´2
pXεq} “ 0 . (56)

Obviously

Φε,ψ
m´1

`

Opεpaq
˘

´Opε
`

xψ0yxψ1y ˝ φ ¨ ¨ ¨ xψm´1y ˝ φ
m´1a ˝ φm

˘

“

“Φε,ψ
m´2

`

Φε,ψm´1pOpεpaqq ´Opεpxψm´1y a ˝ φq
˘

` Φε,ψ
m´2

`

Opεpxψm´1y a ˝ φq
˘

´Opε
`

xψ0yxψ1y ˝ φ ¨ ¨ ¨ xψm´2y ˝ φ
m´2˘ ¨Opε

`

xψm´1y ˝ φ
m´1a ˝ φm

˘

(57)

We note that the first term on the right side of (57) tends to 0 in norm, by (53), and the second
term is shown to tend to 0 in norm by using Eq. (37) and the induction hypothesis. This completes
the induction step proving (55) for n “ m.

To complete the proof of Theorem 3.1 we set a “ xψny and then use the convergence result in
(55) and assumption (46) to show the convergence claimed in (52). ˝

Corollary 3.5 follows from Theorem 3.1 by assuming that the amplitudes fq,αpξq only depend on
x (i.e., are independent of the momentum variable p), specializing to translation-invariant instru-
ments, see Eqs. (48) and (49), and noticing that the law of xpqnq converges to the law of xn ` κn,
as εŒ 0, where the law of the random variables κn is given by |gpqq|2dq, @n “ 0, 1, 2, . . . ˝

5 Proof of Theorem 3.6, and general discussion of results
In this section we prove Theorem 3.6. As a warm-up, we start with a bare-hands construction of
an estimator for ξ0 in the special case where the particle is freely moving, i.e.,

hP px, pq “
p2

2m, xn “ x0 `
τ

m
n ¨ p0, ξn “

ˆ

xn
p0

˙

, n “ 0, 1, 2, . . . (58)

To simplify our notation we choose units such that pτ{mq “ 1. In Eqs. (49) and (50) we have
defined the measures

Λpξ,dqq :“
ˇ

ˇgpq ´ xq
ˇ

ˇ

2
ddq, P pξ0,dq8q :“

8
ą

n“0
Λpξn, dqnq .
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In the classical limit, εŒ 0, the law of a measurement record
`

Qn
˘

nPN0
is given by the measure

P pµ0, dq8q :“
ż

Γ
dµ0pξqP pξ,dq8q , (59)

where µ0 is a probability measure on the space Γ of initial conditions. We temporarily assume that

dµ0pξq “ δpx´ x0q δpp´ p0q d
dx ddp , with ξ “

ˆ

x
p

˙

.

Then the random variables Qn are independent, because P pξ0,dq8q is a product measure. More-
over, by Corollary 3.5,

Qn “ x0 ` np0 ` κn ,

where pκnqnPN0 is a sequence of independent, identically distributed (i.i.d.) random variables whose
law is given by |gpqq|2ddq.

The expectation of Qn is not uniformly bounded in n. It diverges as nÑ 8, unless p0 “ 0. It
is therefore advantageous to introduce the difference variables

∆Qn :“ Qn`1 ´Qn “ p0 ` pκn`1 ´ κnq, n P N0 . (60)

The random variables ∆Qn and ∆Qm are independent whenever |n ´ m| ą 1. It follows that
p∆Q2n`1qnPN0 and p∆Q2nqnPN are two sequences of i.i.d. random variables. They have the property
that Ep∆Qnq “ p0 and Varp∆Qnq “ 2 Varpκnq ă 8 for any n P N. Hence,

Ep|∆Qn|q ă 8, for any n P N.

The strong law of large numbers for i.i.d. random variables applies to p∆Q2n`1qnPN0 and p∆Q2nqnPN
jointly. It follows that,

lim
NÑ8

1
N

N´1
ÿ

n“0
∆Qn “ lim

NÑ8

QN ´Q0
N

“ p0, P pξ0, dq8q-a.s. (61)

Since Varp 1
N

řN
n“1 ∆Q2nq “ Varp 1

N

řN´1
n“0 ∆Q2n`1q “

2
N Varκ0, the convergence also holds in the

norm of L2pQ, P pξ0, dq8qq. We thus have a consistent estimator

p̃pnq :“ Qn ´Q0
n

of the initial momentum of the particle. We use it to construct an estimator of the initial position of
the particle. Assuming for a moment that p̃n “ p0 and Qk “ xk for any k P N0, then x0 “ Qk´kp̃n.
We thus define,

x̃n “
1
Nn

Nn
ÿ

k“0

 

Qk ´ kp̃n
(

with pNnqnPN0 strictly increasing, and Nn “ Op
?
nq, as n grows. Then,

x̃n ´ x0 “
1
Nn

Nn
ÿ

k“0

`

kpp0 ´ p̃nq ` κk
˘

.
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It follows that

x̃n ´ x0 “
Nn ` 1

2 pp0 ´ p̃nq `
1
Nn

Nn
ÿ

k“0
κk.

The second term on the right side vanishes almost surely and in the L2-norm (by the strong law
of large numbers and because Varp 1

Nn

řNn
k“0 κkq “ Varκ0{Nn). By definition of p̃n, the first term is

equal to
Nn ` 1
2
?
n
¨
np0 ´Q0 ´Qn

?
n

“
Nn ` 1
2
?
n
¨
κ0 ´ κn
?
n

.

Since Varpκ0´κn?
n
q “

2 Varpκ0q
n , limnÑ8

κ0´κn?
n
“ 0 in the L2pQ, P pξ0, dq8qq-norm. Moreover, by the

strong law of large numbers applied to pκ2
nqnPN0 , κ0´κn?

n
converges also almost surely to 0. It then

follows from the assumed behavior of Nn, namely Nn “ Op
?
nq, that

lim
nÑ8

x̃n “ x0, P pξ0,dq8q-a.s. and in the norm of L2pQ, P pξ0, dq8qq .

Hence, since the convergence of pXnq and of pYnq implies that the sequence
`

pXn, Ynq
˘

n“0,1,...
converges almost surely and in L2,

ξ̃n :“ px̃n, p̃nq
is a consistent estimator of the initial data of the particle, almost surely and in L2, hence in
probability. More explicitly, in the classical limit εŒ 0, ξ̃n estimates the initial data of the particle
more and more precisely, as the number, n, of approximate position measurement increases:

lim
nÑ8

ξ̃n “ ξ0, P pξ0, dq8q-a.s.

and in the L2pQ, P pξ0, dq8qq-norm, hence in probability.
Since dµ0px, pq “

ş

Γ
“

δpx ´ x0q δpp ´ p0qdµ0px0, p0q
‰

ddxddp, we can dispose of the assumption
that dµ0px, pq “ δpx´ x0q δpp´ p0q d

dx ddp. For a non-atomic measure dµ0, the initial condition ξ0
becomes random, but Theorem 3.6 continues to hold.
Remark 5.1. (1) The modest growth of Nn „ Op

?
nq ensures that the initial momentum estimator

p̃n is close to p0 when used in the estimation of the initial position of the particle. If Nn grew too
fast the volatility of the initial momentum estimator would prevent the initial position estimator
from converging.
(2) Even if the Hamiltonian of the particle and its initial state ρ0,ε (as well as the measure dµ0)
are perfectly spherically symmetric an infinitely long sequence of indirect particle-position mea-
surements corresponds (almost surely) to a particle motion that breaks the rotational symmetry by
singling out an initial value of the particle’s momentum in a definite (albeit random) direction.
(3) Arguments similar to the ones described above can be used to construct an estimator of the ini-
tial momentum and position in the direction of the magnetic field for the example of a very heavy
particle moving in a uniform external magnetic field (see also Sect. 6).

As mentioned in its statement (see Sect. 3), Theorem 3.6 can be extended to quite general
quadratic Hamiltonians. In the following, we reformulate and prove Theorem 3.6, using a sequence
of least-squares estimators pξ̃nq. Least-squares estimators minimize the Euclidean distance between
the deterministic classical orbit and the results of approximate position measurement:

ξ̃n :“ argminξPΓ
2n
ÿ

k“0
}xk ´Qk}

2
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where
ˆ

xk
pk

˙

“ φkpξq, and }p¨q} is the Euclidean norm on Rd. Since φ is linear, ξ̃n can be found by

differentiation. Let
J “

ˆ

Jxx Jxp
Jpx Jpp

˙

be the block decomposition of the matrix J corresponding to the symplectomorphism φ (see As-
sumption (QF), Sect. 3) with respect to the decomposition Γ “ Rdx ‘ Rdp, and define a matrix M
by

M “

ˆ

1d 0
Jxx Jxp

˙

.

Then

ξ̃n :“
˜

n
ÿ

k“0
pMJ2kqtMJ2k

¸´1 n
ÿ

k“0
pMJ2kqt

ˆ

Q2k
Q2k`1

˙

.

Of course, this expression holds only if
řn
k“0pMJ2kqtMJ2k is invertible. The hypotheses of the

next theorem ensure that this is the case. The theorem asserts the consistency of the least-squares
estimators (but only in L2; we do not have a proof of almost sure convergence).

Theorem 5.1. Suppose that the hypotheses of Corollary 3.5 and Assumption (QF) of Sect. 3 hold.
Assume that spec J Ă Up1q and that Jxp is invertible (which implies thatM is invertible, too). Then
the sequence of least squares estimators pξ̃nqnPN0 converges to ξ0 in the L2pQ, P pµ0, dq8qq-norm.
(Thus, convergence also holds in probability.)

The assumptions that spec J Ă Up1q and that Jxp is invertible correspond to assumptions AS
and AW, respectively, in paper [1].

Note that, for a free particle with τ{m “ 1, spec J “ t1u, Jxp “ 1d, M “

ˆ

1d 0
1d 1d

˙

and

MJ2k “

ˆ

1d 2k
1d 2pk ` 1q

˙

.

We end this section with a proof of this theorem and hence of Theorem 3.6.
Proof. We begin our proof by noting that it suffices to prove the theorem for the measure P pξ0, dq8q,
because P pµ0,dq8q is a convex combination (with respect to the measure dµ0) of laws corresponding
to deterministic initial data. From the hypotheses we infer the equality

ˆ

Q2n
Q2n`1

˙

“MJ2nξ0 ` ηn, for any n P N0,

where pηnqnPN0 is a sequence of Γ-valued i.i.d. random variables, with ηn “
ˆ

κ2n
κ2n`1

˙

, and pκnqnPN0

is a sequence of Rd-valued i.i.d. random variables with law |gpqq|2 ddq.
It follows that, for any n P N0,

ξ̃n “ ξ0 `

˜

n
ÿ

k“0
pMJ2kqtMJ2k

¸´1 n
ÿ

k“0
pMJ2kqtηk .
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Since the random variables ηn are centered, i.i.d. and in L2, we have that EP pξ̃nq “ ξ0 and that
there exists a constant C ą 0 such that

Varpξ̃nq ď C

˜

n
ÿ

k“0
pMJ2kqtMJ2k

¸´1

,

for any n P N0.
Let Σn “

řn
k“0pJ

2kqtJ2k. Since M is real and invertible, M tM is a positive matrix, and there
exists a constant C ą 0 such that

Varpξ̃nq ď CΣ´1
n .

Hence if we can show that Σn Ñ
nÑ8

82 then we conclude that the variance of ξ̃n converges to 0, as
nÑ 8, and therefore L2 convergence holds. The convergence in probability then follows, and the
theorem is proven.

It thus remains to show that limnÑ8Σn “ 8. Since pΣnqnPN0 is an non-decreasing sequence of
positive semi-definite matrices of fixed dimension, it suffices to prove that, for an arbitrary ξ P Γ
with ξ ‰ 0, limnÑ8 ξ

tΣnξ “ 8.
Let us assume that there exists ξ P Γ, ξ ‰ 0, such that ξtΣ8ξ ă 8. This implies that

limnÑ8 }J
2nξ} “ 0. Let J2 “ D`N be a decomposition of J2 into a diagonalisable matrix D with

spectrum in Up1q and a nilpotent matrix N , with rD,N s “ 0. (Take the Jordan decomposition of
J2.) Then

lim
nÑ8

}pD `Nqnξ} “ 0. (62)

Let m be the smallest integer such that Nm “ 0. Evaluating pD ` Nqn explicitly and using that
supn }D´n} ă 8 (since D is diagonalisable and specD Ă Up1q), one finds that Equation (62)
implies that

lim
nÑ8

}

m´1
ÿ

k“0

ˆ

n

k

˙

Dn´kNkξ} “ 0 , (63)

with the convention that N0 “ 1. Since, for fixed k,
`

n
k

˘

“ nk

k! ` Opnk´1q, dividing the left hand
side by nm´1 and taking the limit, we conclude that Nm´1ξ “ 0. Repeating this argument for
decreasing powers of n, one shows by recurrence that Dnξ tends to 0, as n Ñ 8. Since D is
invertible and supn }D´n} ă 8, it follows that ξ “ 0, and we arrive at a contradiction. Thus
Σ8 “ 8, and the theorem is proved. ˝

6 Examples of particle dynamics
In this last section, we illustrate the general results proven in this paper by discussing standard
examples of particle dynamics. The first two examples have already been discussed in [1]. We allow
for more general instruments (i.e., more general amplitudes fq,α), as compared to [1]. But we study
the particle-position measurement process only in the vicinity of the classical limit, εŒ 0.

6.1 Freely moving particle and harmonic oscillators

We consider N ě 1 particles of mass m ą 0 either freely moving or harmonically coupled. The
phase-space of this system is given by Γ “ RNdx ‘ RNdp . The Hamilton function, hP : Γ Ñ R`, is

2Or, more precisely, that for any C ą 0, there exists a finite n0 P N0 such that for any n ě n0, Σn ą C.
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given by

hP px, pq “
1

2mp}p}
2 ` xtOxq,

ˆ

x
p

˙

P Γ,

where O is a real symmetric positive-semi-definite matrix, and }p¨q} is the euclidean norm on RNdx .
(For freely moving particles, O “ 0.)

If the particles have a very large mass, as compared to the mass scale of the instrument, it is
convenient to replace the momentum variables and operators of the particles by their velocities,
i.e., p Ñ p{m (see item 1, Eq. (5), Sect. 1.1), and define ε :“ ~{m. We continue to denote the
velocity operator by p̂. As noted in Eq. (5), we then have that

rx̂i, p̂js “ iε δij , i, j “ 1, . . . , Nd.

The unitary time-τ propagator of the system is given by

Uε “ exp
´

´ i
τ

2ε
`

}p̂}22 ` xx̂, Ox̂y
˘

¯

.

Let J be the symplectic NdˆNd matrix defined by

J “

ˆ

cosp
?
Oτq τ sincp

?
Oτq

´
?
O sinp

?
Oτq cosp

?
Oτq

˙

.

Then, the classical time-τ symplectic map on Γ determined by the Hamilton function hP is found
to be

φpξq “ Jξ , ξ P Γ.

Since hp is quadratic,
U˚ε OpεpaqUε “ Opεpa ˝ φq,

for any a P S. Hence Assumption (SC), Eq. (39), Sect. 2, holds trivially.

If g : Rd Ñ C is a Schwartz-space function with the properties that
ş

Rd |gpqq|
2dq “ 1 and

ş

Rd q|gpqq|
2dq “ 0 then the amplitude fpξ; qq : Γˆ RNd Ñ C, defined by

fpx1, . . . , xN ; p1, . . . , pN ; q1, . . . , qN q “ gpx1 ´ q1q ¨ ¨ ¨ gpxN ´ qN q ,

has properties (P1), (P2) and (P3) stated in Sect. 2.1, with E “ RNd and dν given by Lebesgue
measure on RNd. The instrument for approximate position measurements corresponding to this
choice of an amplitude f is translation-invariant, and Corollary 3.5 holds.

We now turn to path estimation. We notice that spec J Ă Up1q and that the block Jxp is
invertible if and only if there does not exist an oscillator eigenfrequency, ω, that after multiplication
by τ is an integer multiple of π; i.e.,

Jxp invertible ðñ Eω P spec
?
O such that ωτ P πN.

This condition is fulfilled for free particles, since spec
?
O “ t0u and 0 R πN. Therefore the hypothe-

ses of Theorem 3.6, concerning the estimation of the initial conditions of the particle trajectories,
are satisfied. We conclude that, in the large-mass/classical regime of free particles and of harmonic
oscillators, and for translation-invariant instruments, the initial conditions of the particles can be
inferred from a long sequence of approximate position measurements, i.e., from the observed track.
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If the function g is the square root of a Gaussian density then we reproduce the setting of paper
[1], and the results presented in that paper hold. The assumption that Jxp “ sinp

?
Oτq{

?
O is

invertible corresponds to Assumption AW of [1].
The next example is inspired by the physics of observing tracks of charged particle in detectors.

With the purpose of measuring the momentum (or velocity) of charged particles entering a detector,
one turns on a strong uniform magnetic field pervading the detector.

6.2 Particle in a strong uniform external magnetic field

We consider a charged particle in R3
x propagating in a uniform magnetic field ~B “ p0, 0, 2Bq

(perpendicular to the plane Rp1, 0, 0q ‘ Rp0, 1, 0q), with B ą 0. We choose units such that the
charge of the particle is unity. It follows that the Hamilton function, hP , of the particle is given by

hP px, pq “
1

2m rpp1 ´Bx2q
2 ` pp2 `Bx1q

2s ` 1
2mp

2
3

with x “ px1, x2, x3q P R3
x, p “ pp1, p2, p3q P R3

p, and Γ “ R3
x ‘ R3

p; see Eq. (22), Sect. 1.2.
We set β :“ B{m, rescale momentum variables as in the previous section (p Ñ p{m) and

introduce new variables

y1 “ pp2 ` βx1q{
a

2β, w1 “ pp1 ´ βx2qq{
a

2β,
y2 “ pp1 ` βx2qq{

a

2β, w2 “ pp2 ´ βx1qq{
a

2β, (64)

and y3 “ x3, w3 “ p3.
One verifies that

rŵ1, ŷ1s “ iε, rŵ2, ŷ2s “ iε and rŵ1, ŵ2s “ rŷ1, ŷ2s “ 0,

with ε “ ~{m. In these new variables

hP py, wq “ mr2β2 pw
2
1 ` y

2
1q `

1
2w

2
3s .

The time-τ unitary propagator generated by the quantum Hamiltonian is thus given by

Uε “ expp´i τε p
2β
2 pŵ

2
1 ` ŷ

2
1q `

1
2 ŵ

2
3q.

Since the Hamiltonian is quadratic,

U˚ε OpεpaqUε “ Opεpa ˝ φq

where φ is the classical time-τ symplectic map on Γ generated by the Hamilton function hP . Since
hP is quadratic, we can determine φ explicitly: Introducing the symplectic matrices

G “

¨

˚

˚

˚

˚

˚

˚

˝

cosp2βτq 0 0 sinp2βτq 0 0
0 1 0 0 0 0
0 0 1 0 0 τ

´ sinp2βτq 0 0 cosp2βτq 0 0
0 0 0 0 1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

and P “
1
?

2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

?
β 0 0 0 1?

β
0

0
?
β 0 1?

β
0 0

0 0
?

2 0 0 0
0 ´

?
β 0 1?

β
0 0

´
?
β 0 0 0 1?

β
0

0 0 0 0 0
?

2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
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we find that φpξq “ Jξ “ P´1GPξ.
As in the example of heavy harmonic oscillators, the hypotheses of Theorem 3.6 hold for β

fixed and ε Œ 0. The limit considered here corresponds to a very heavy particle in a very strong
magnetic field, with the ratio between particle mass and magnetic field kept constant.

Let g : R3 Ñ C be a Schwartz-space function with the properties that
ş

R3 |gpqq|
2dq “ 1 and

ş

R3 q|gpqq|
2dq “ 0. Choosing amplitudes f : pξ, qq ÞÑ gpxpξq ´ qq, one verifies that properties (P1),

(P2) and (P3) of Sect. 2.1 hold, with E “ R3 and dν given by the Lebesgue measure on R3. The
hypotheses of Corollary 3.5 hold.

Concerning the classical path estimation, we note that spec J “ specG “ t1, ei2βτ , e´i2βτu Ă

Up1q. The upper-right block Jxp “
`

1R3
x

0
˘

P´1GP

ˆ

0
1R3

p

˙

is given by

Jxp “

¨

˚

˝

sinp2βτq
2β ´

1´cosp2βτq
2β 0

1´cosp2βτq
2β

sinp2βτq
2β 0

0 0 τ

˛

‹

‚

.

If βτ R πN then Jxp is invertible, and the assumptions of Theorem 3.6 hold. Thus, in the limit of
a large particle mass and a large magnetic field, the initial momentum and position of the charged
particle can be inferred from the particle track in the detector.

Taking g to be the square root of a Gaussian density we recover the setting of paper [1], and
the results presented there apply.

The dynamics of the next example is not described by a linear symplectic matrix on phase space
and hence does not fit into the setting of [1].

6.3 Particle in a smooth external potential

Let S “ ta P C8pΓq : }Bαa}8 ă 8,@αu. We say V : R˚` ˆ Γ Ñ R is a semi-classical potential if for
some m0 ą 0, there exists a sequence, pVjqjPN0 , of functions in S such that, for any N P N0 and an
arbitrary multi-index α, there exists a constant C ą 0 such that, for all m ą m0,

sup
ξPΓ

ˇ

ˇ

ˇ

ˇ

ˇ

Bαξ

˜

V pm, ξq ´
N
ÿ

j“0
m´j`1Vjpξq

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď Cm´N .

Assume V is a semi-classical potential. Then limmÑ8 }
1
mV pm, ¨q ´ V0}8 “ 0. In particular if V is

independent of m, V0 “ 0.
According to Egorov’s theorem (see, e.g., [3, Theorem 1.2]), setting ε “ ~{m and performing

the same rescaling of the momentum variables as in the previous two examples (p Ñ p{m), the
time-τ propagator given by

Uε “ exp
´

´i
τ

ε
Opε

`

}p}22 `
1
mV pm, ¨q

˘

¯

is a well defined unitary operator, and Assumption (SC), Eq. (39), of Sect. 2 holds, with φ deter-
mined by the classical Hamilton function

hP px, pq “
1
2}p}

2 ` V0pxq .

Ultraviolet regularized versions of the gravitational potential or the Lennard-Jones potential (with
strength proportional to the mass of the particle) are examples of semi-classical potentials. However,
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the definition given above characterizes a considerably more general class of potentials that scale
like V pm,xq „ mW pxq as the mass m becomes large, for a smooth effective potential W .

Since the dynamics of this example is non-linear, our results on the estimation of initial condi-
tions of particle trajectories do not apply directly. However, using results on classical and quantum-
mechanical scattering theory in external potentials with rapid fall-off at 8, one expects to be able
to extend these results to examples of the kind considered here. Further study of details is desirable.

A Weyl quantization and semi-classical analysis
In this appendix, we review Weyl quantization for appropriate spaces, S, of functions on phase
space Γ and study the validity of Assumption (SC) of Sect. 2 concerning the classical limit.

For linear functionals, l : ξ ÞÑ ξtl ¨ Ωξ, we define Opεplq “ ξtl ¨ Ωξ̂, and, for quadratic functions
c : ξ ÞÑ ξt ¨ Cξ, with C symmetric, we define Opεpcq “ ξ̂t ¨ Cξ̂. In the next subsection we define
Weyl quantization for some spaces of bounded functions.

A.1 Function spaces

Definition A.1 (Sk). Let MpΓq be the vector space of finite, complex Borel measures on phase
space Γ. We define a function space S0 as the image of MpΓq under inverse Fourier transformation,
F´1:

a P S0 ùñ Dµa P MpΓq, such that apξq “

ż

Γ
eiζt¨Ωξdµapζq , with |µa|pΓq ă 8. (65)

For k P N, we define the space Sk to be the subspace of S0 with the property that a P Sk implies
ş

Γ }ζ}
k d|µa|pζq ă 8. We equip Sk with the norm }a}TV pkq “

ş

Γp1 ` }ζ}q
kd|µa|pζq (using the

convention that x0 “ 1). This turns Sk into a Banach space. When equipped with point-wise
multiplication and point-wise complex conjugation, a ÞÑ ā, Sk becomes a commutative, normed
˚-algebra.

We define S8 “
Ş

kPN Sk and use the shorthand }a}TV “ }a}TV p0q.

Note that Sk`1 Ă Sk, for all k “ 0, 1, . . . ,8. Let SpΓq be the Schwartz space of test functions on
phase space Γ (see Sect. 2). Since FSpΓq Ă SpΓq, SpΓq Ă S8. But S8 is significantly larger than
SpΓq. For example, the constant functions belong to S8, and if f P SpRdxq then a : px, pq ÞÑ fpxq
is an element of S8.

For any k P N, a P Sk entails that a is k times continuously differentiable, with bounded
derivatives. Hence S8 Ă ta P C8pΓq : }Bαa}8 ă 8,@ multi-index αu. The converse inclusion does
not hold a priory.

For any a P S0, we define its Weyl quantization using a bounded bilinear form on HP ˆHP and
appealing to the Riesz’s representation theorem, as described in Sect. 2.

Proposition A.2. Suppose that a P S0. Then

Ba : HP bHP : Ñ C

pΦ,Ψq ÞÑ
ż

Γ
xΦ,W pζqΨydµapζq ,

is a well defined bounded sesquilinear form. (Here W pζq :“ exp
“

ipζtΩξ̂ q
‰

is the Weyl operator
associated with ζ P Γ, see (31), Sect. 2; in Eq. (34), Sect. 2, Ba has been denoted by Bεpa|¨, ¨q; the
measure dµa is as in (65).)
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Moreover, there exists a unique operator Opεpaq P BpHP q such that

BapΦ,Ψq “ xΦ,OpεpaqΨy and }Opεpaq} ď }a}TV . (66)

Proof. The Riesz representation theorem tells us that it suffices to prove that Ba is a well defined
bounded sesquilinear form on HP ˆ HP with a norm smaller than |µa|pΓq, in order to conclude
that a bounded operator Opεpaq satisfying (66) exists. We have noted in Sect. 2, above Eq. (34),
that the function ζ ÞÑ xΦ,W pζqΨy is continuous in ζ, and, since Weyl operators are unitary,
|xΦ,W pζqΨy| ď }Φ}}Ψ}. Thus xΦ,W p¨qΨy is continuous and bounded, hence µa-integrable. It
follows that Ba is well defined. It is sesqulinear, because the integral with respect to µa is linear,
and pΦ,Ψq ÞÑ xΦ,W pζqΨy is sesquilinear. Finally, from the definition of Ba,

|BapΦ,Ψq| ď
ż

Γ
|xΦ,W pζqΨy|d|µa|pζq ď |µa|pΓq }xΦ,W p¨qΨy}8 ď |µa|pΓq }Φ} ¨ }Ψ}.

It follows that Ba is bounded by |µa|pΓq and the proposition is proved. ˝

This definition of quantization can be extended to unbounded functions, a, in which case the
sesquilinear form Ba is defined only on a dense subspace of HPˆHP ; see [12, §VIII.6]. In particular,
for an arbitrary linear function l : Γ Ñ R and a function a P Sk, Opεplaq is well defined.

Next, we prove that Ak “ tOpεpaq : a P Sku is a ˚-algebra.

Proposition A.3. For all functions a, b P Sk, where k P N0 is arbitrary, Opεpaq˚ “ Opεpāq,
Opεpz ¨ aq “ z ¨Opεpaq,@z P C, Opεpaq `Opεpbq “ Opεpa` bq, and

Opεpaq ¨Opεpbq “ Opεpa ‹ bq,

where the star product, a ‹ b, of a and b is defined by
ż

Γ
fpζqdµa‹bpζq “

ż

Γ2
fpζ1 ` ζ2qe´i ε2 ζ

t
1Ωζ2dµapζ1qdµbpζ2q

for an arbitrary bounded continuous function f .
One has that a ‹ b P Sk, and pAk,`, ¨, ˚q is a ˚-algebra of bounded operators.

Proof. Clearly, a ÞÑ Ba is linear, so that it follows from the uniqueness of the operator representa-
tive, Opεpaq, that Opεpz ¨ aq “ z ¨Opεpaq, z P C, and Opεpaq `Opεpbq “ Opεpa` bq. Furthermore,
since W pζq˚ “W p´ζq, we have that BapΦ,Ψq “ BāpΨ,Φq. Uniqueness of the operator representa-
tive of Ba then implies that Opεpaq˚ “ Opεpāq. Finally, we show that Opεpaq ¨Opεpbq “ Opεpa ‹ bq,
with a‹ b P Sk. The definition of ‹, combined with the obvious inequality 1`x`y ď p1`xqp1`yq,
for x, y non-negative and the triangle inequality, implies that

ż

Γ
p1` }ζ}qkd|µa‹b|pζq ď

ż

Γ2
p1` }ζ1} ` }ζ2}q

kd|µapζ1q|d|µbpζ2q| ď }a}TV pkq}b}TV pkq.

Thus µa‹b is a finite measure, and, for a ‹ b P Sk, }a ‹ b}TV pkq ď }a}TV pkq}b}TV pkq. Since HP is
separable, it has a countable orthonormal basis tχnunPN, with

ř

nPN |χnyxχn| “ 1HP
. By definition,

xΦ,Opεpaq ¨OpεpbqΨy “
ÿ

nPN
BapΦ, χnq ¨Bbpχn,Ψq.

Fubini’s theorem then implies that

xΦ,Opεpaq ¨OpεpbqΨy “
ż

Γ2
xΦ,W pζ1q ¨W pζ2qΨydµapζ1qdµbpζ2q.
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The Weyl relations (see Eq. (32), Sect. 2) then yield

xΦ,Opεpaq ¨OpεpbqΨy “
ż

Γ2
xΦ,W pζ1 ` ζ2qΨy e´i ε2 ζ

t
1Ωζ2 dµapζ1q dµbpζ2q,

and the proposition is proved. ˝

When equipped with the ‹ product, instead of the point-wise product, the space Sk is a C˚-
algebra. But the algebra Ak is not closed in the operator norm on HP . We denote the norm closure
of Ak by C, i.e., C is the smallest C˚-algebra such that Ak Ă C. Since }¨}TV dominates the operator
norm, and since Sk is norm-dense in S0, C is independent of k. The weak closure C2 of C is actually
Weyl’s CCR algebra.

A.2 Classical limit

Using our definition of quantization, we can apply the Lebesgue dominated convergence theorem
to prove existence of the classical limit, as stated in Eq. (37) and Assumption (SC) of Sect. 2.

Proposition A.4. Let a, b P S0. Then,

lim
εÓ0
}Opεpaq ¨Opεpbq ´Opεpa ¨ bq} “ 0.

Proof. By Proposition A.3,
Opεpaq ¨Opεpbq “ Opεpa ‹ bq.

We note that µa ˚ µb is the finite measure whose Fourier transform is given by pointwise multipli-
cation of a with b, i.e., µa ˚ µb “ µa¨b, and that

|µa‹b ´ µa¨b|pΓq ď
ż

Γ2

ˇ

ˇ

ˇ
e´i ε2 ζ

t
1Ωζ2 ´ 1

ˇ

ˇ

ˇ
d|µa|pζ1qd|µb|pζ2q ď 2|µa|pΓq|µb|pΓq.

The proof of the proposition is then completed by invoking Lebegue’s dominated convergence
theorem and the bound Opεpcq ď |µc|pΓq, @ c P S0. ˝

Since Sk Ă S0, this proposition shows that, for any k “ 0, 1, . . . ,8, Sk is an appropriate choice
of a function space S in our quantization procedure.

Next, we prove that, for a Hamilton function hP “ h0`V , where h0 is a real polynomial in ξ P Γ
of degree at most 2 and V is a potential belonging to S1, Assumption (SC), Sect. 2, in particular
Eq. (39) hold.

Proposition A.5. Let t ÞÑ φt, t P R, be the symplectic flow generated by a Hamilton function
hP pξq “ h0pξq ` V pξq, ξ P Γ, where h0pξq is a real polynomial in ξ of degree at most 2, and V P S1
is real. We assume that for an arbitrary a P S1, the function t ÞÑ }a˝φt}TV p1q is uniformly bounded
on compact subsets of R. We set Uε :“ exp

`

´i τε OpεphP q
˘

.
Then, choosing S “ S1 and setting φ :“ φτ , Assumption (SC) of Sect. 2 holds.

Proof. By assumption, we have that φpS1q Ă S1. By definition,

Bt
`

a ˝ φτ´t
˘

“ ´ta, hP u ˝ φ
τ´t “ ´ta ˝ φτ´t, hP u,

for an arbitrary a P S1, where pa, bq ÞÑ ta, bu is the Poisson bracket.
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For a, b P S1, we define tta, buu :“ ´ i
εpa‹b´b‹aq. Using Duhamel’s trick and the anti-symmetry

of the Poisson bracket, it follows from Proposition A.3 that

U˚ε OpεpaqUε ´Opεpa ˝ φq “
ż τ

0
e
i
ε
tOpεphP qOpεptta ˝ φτ´t, V uu ´ ta ˝ φτ´t, V uqe´

i
ε
tOpεphP qdt.

Here we have used that, since h0 is at most of degree 2, one has that ´ i
ε rOpεpbq,Opεph0qs “

Opεptb, h0uq, for any b P S1 (see [4, Theorem 10.13] for example). The above identity implies that

}U˚ε OpεpaqUε ´Opεpa ˝ φq} ď
ż τ

0
}tta ˝ φτ´t, V uu ´ ta ˝ φτ´t, V u}TV dt. (67)

For arbitrary a, b P S1, ga,b “ tta, buu ´ ta, bu is the inverse Fourier transform of

g̃a,b : ζ ÞÑ
ż

Γ2
δpζ ´ pζ1 ` ζ2qq

”sinp ε2ζt2Ωζ1q
ε
2ζ
t
2Ωζ1

´ 1
ı

pζt2Ωζ1qdµapζ1q dµbpζ2q.

It follows that }ga,b}TV ď 2}a}TV p1q}b}TV p1q. Hence, by hypothesis, the integrand of the integral
on the right side of (67) is uniformly bounded in t, hence integrable on the interval r0, τ s. Since
limxÑ0

sinpxq
x “ 1, Lebesgue’s dominated convergence theorem implies that g̃a,b converges to 0, as ε

tends to 0, and hence
lim
εŒ0

}U˚ε OpεpaqUε ´Opεpa ˝ φq} “ 0.

This completes the proof of the proposition. ˝

We remark that the assumption that t ÞÑ }a ˝ φt}TV p1q is uniformly bounded on compact sets
of R holds if V “ 0.
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