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Abstract

We use the Landau-de Gennes energy to describe a particle immersed into nematic lig-
uid crystals with a constant applied magnetic field. We derive a limit energy in a regime
where both line and point defects are present, showing quantitatively that the close-to-
minimal energy is asymptotically concentrated on lines and surfaces nearby or on the par-
ticle. We also discuss regularity of minimizers and optimality conditions for the limit energy.
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1 Introduction

The history of interaction between variational problems and geometry has been long and of great
mutual influence [28], starting from the geometrically motivated problem of the brachistochrone
curve [7,57], Fermat’s principle in optics [10], material science [5] to general relativity [30,47].

One particularly important problem arises when the size of geometrical objects themselves is to
be minimized leading to so called minimal surfaces [41]. A classical example is the two dimensional
soap film spanning between predefined (fixed) boundary curves, called Plateau’s problem [23,60,67].
Some solutions can be constructed explicitly [21,37] or studied through means of harmonic and
complex analysis [18, 36, 56], but a general theory was not available until the development of
geometric measure theory and its language of currents, flat chains, mass and varifolds to describe
the objects and how to measure them [3,24,25,55,68].

Another question giving rise to problems involving minimal surfaces is given by the classical
I'—convergence result of Modica and Mortola [52] (see also [50]) of a weighted Dirichlet energy and
a penalizing double-well potential to the perimeter functional. A constraint such as a prescribed
volume ensures the problem to be non trivial. The energy typically is concentrated in regions
where none of the favourable states of the potential are attained. For the limsup inequality, one
constructs a one dimensional profile that minimizes the transition between the favoured states.

Another variational problem in which geometry appears is given by the Ginzburg-Landau
model. In the famous work [9], the (logarithmically diverging) leading order term and (after a
rescaling) a limit problem have been derived. The limit energy is stated geometrically as finding
an optimal distribution of points in the plane subject to constraints coming from the topological
degree of the initial problem. This approach stimulated research which lead to a large litera-
ture [2,11,16, 32,42, 49, 62], in particular for problems in micromagnetics [33, 40], superconduc-
tors [38,64,66] and liquid crystals [6,34,43].

Our work combines many of the before mentioned ideas to describe the different contributions
and effects that take place in our problem. For example, we use the generalized three dimensional
analogue of estimations in [9] as considered in [14,16,17,35,61] to make appear a length minimiza-
tion problem for curves. Coupled with this optimization problem, we show using a Modica-Mortola
type argument that the remaining part of the energy concentrates on hypersurfaces which end ei-
ther on the boundary of the domain or on the described line.

This article is the continuation of the work started in [4], our main theorem (Theorem 3.1) is a
generalisation of Theorem 3.1 in [4] (see Remark 3.3). In particular, our new theorem holds for an
arbitrary manifold M of class C*! instead of a sphere and we remove the hypothesis of rotational
equivariance of Q).

We place ourself in the context of the Landau-de Gennes model for nematic liquid crystals,
although the applied ideas could be used to carry out a similar analysis for a larger class of energy
functionals.



2 Preliminaries

Before we can state our results, we give a short introduction to the Landau-de Gennes model that
we use here and the concept of flat chains, stating some results that will be used later in the proof
section.

2.1 Landau-de Gennes model for nematic liquid crystals

Our article has been motivated by the study of liquid crystal colloids with external magnetic field.
The Landau-de Gennes energy with additional magnetic field term [59, Ch. 6, Secs. 3-4 and Ch.
10, Sec. 2.3] (see also [22, Ch. 3, Secs. 1-2]) can be stated in dimensionless form as

1 1 1
£6(@ = [ FIVQP+ Q)+ 50(Q)+ Gy da. (1)
where the energy density f is given by
b
Q) = €= Ft(@%) - 36r(Q") + T0(QY)*. 2)

We consider the case when the parameters 7 and £ converge to zero in a regime where n|In(§)| —
B € (0,00). The constant Cy = Cy(n, &) (resp. C) is chosen such that the energy density (resp. f)
becomes non-negative.

The following properties of f are going to be used in the sequel:

1. The function f is non-negative and N := f~1(0) is a smooth, closed, compact, connected
manifold, diffeomorphic to the real projective plane RP?. Note that A is given by

N:{S* (n®n—;1d) : nESQ},

for s, = £ (b+ Vb2 + 24ac) (cf. [46]).

2. We need f to behave uniformly quadratic close to its minima, i.e. we assume that there exist
constants dg,y1 > 0 such that for all Q € Sym, with dist(Q, ) < dy it holds

F(Q) > mdist*(Q,N).

3. Lastly, we need to quantify the growth of f. More precisely, we assume that there exist
constants C1,Cy > 0, such that for all @ € Sym,

2
r@zafler-32) . br@:Qzaial-c.

It can be checked that f given in (2) satisfies these assumptions [4,12,14,46]. The exponent 4 in
the last assumption is not crucial but only needs to outweigh the growth of g.

We also recall the following facts about the geometry of Sym,:

1. Elements Q € Sym, admit the following decomposition: There exist s € [0,00) and r € [0, 1]

such that ) .
st((n@n—31d>+r<m®m—31d)>, (3)

where n, m are normalized, orthogonal eigenvectors of . The values s and r are continuous
functions of Q.

2. The set where decomposition (3) is not unique, is given by C := {Q € Sym, \ {0} : r(Q) =
1} U{0}. Another characterization of C is C = {Q € Sym, : A\ (Q) = A2(Q)}, where the two
leading eigenvalues of @) are denoted by A1, A2. Moreover, C has the structure of a cone over
RP? and C\ {0} 2 RP? x R.



3. There exists a continuous retraction R : Sym, \ C — N such that R(Q) = Q for all Q € N.
One can choose R to be the nearest point projection onto A. In this case, R(Q) = s.(n ®
n — 11d) for Q € Sym, \ C decomposed as in (3).

The energy density ¢ in (1) incorporates an external magnetic field into the model. This
motivates the following assumption:

1. The function g favours @) having an eigenvector equal to the direction of the external field,
in our case chosen to be along es. More precisely, assume ¢ is invariant by rotations around
the ez—axis and the function O(3) > R — g(RTQR) is minimal if e is eigenvector to the
maximal eigenvalue of RTQR. Decomposing @ as in (3) with n = e and keeping s and m
fixed, then ¢(Q) is minimal for r = 0. For a uniaxial Q € NV, i.e. Q = s,(n® n — Id) for
s« >0 and n € S? we have

9(Q) = c(1 - nj). (4)

The precise formula for g in (4) is not important to our analysis, but for simplicity we assume
this particular form. It would be enough to assume that g|y has a strict minimum in Q =
sx(es ®es — %Id), see Remark 4.18 in [4]. Besides this physical assumption, our analysis requires
g to satisfy the following hypothesis:

2. The function g : Sym, — R is of class C? away from @ = 0 and in particular satisfies the
Lipschitz condition close to A: There exist constants d;,C' > 0 such that if @ € Sym, with
dist(Q,N) < 6 for 0 < § < &1, then

9(Q) — 9(R(Q))] < C dist(Q,N) . ()

3. The growth of g is slower than f, namely
9(@)] < C(1+Q"), (6)
[Dg(Q)] < C(1+1QP), (7)

for all ) € Sym,, and a constant C' > 0.

A physically motivated example that satisfies those assumptions [4, Prop. A.1] is for example
given by

9(Q) = 28* Q33 . (8)

Under these assumptions on f and g, it has been shown in [4, Prop. 2.4 and Prop. 2.6] that ¢
acts on f as a perturbation in the following sense:

Proposition 2.1. For §,n > 0 with £ < 1, there ezxists a smooth manifold N, ¢ C Sym,, diffeo-
morphic to N such that

52

F(Q) + 259(Q) + €Co(&,m) > 72 dist?(Q, Ny e) (9)
for a constant v > 0. In addition, there exists a constant C > 0 such that
2
sup dist(Q,N) < C’%. (10)
QENn,E 7]
Furthermore, there exists a unique Qs ¢ € Ny ¢ such that
1
Qootn = argmm zf(Q) 9(Q),
QESym, f 77
given by Qoo gy = 542 /2 (€3 ® €3 — 1Id) where |s, 4 — s«| < Ct.
This shows that the constant Cp in (1) can be chosen to be Cy(§,n) = —g%f(Qm,g,n) =
77%g(@oo,gm) > 0 and it also holds true that Cy(&,n) < CE2/nt.
Since Seg2/n2 —> Sx0 = S« for £,m — 0 in our regime, it is convenient to also introduce

Qoo = s«(es®es — %Id) which minimizes £2£(Q) + n~2¢(Q) among Q € N.



2.2 Flat chains

In the statement of our main theorem, we will use the language of flat chains. We therefore give
a quick overview of the most important results. For a detailed and complete presentation of flat
chains and geometric measure theory, we refer to [24-26,55,65].

Polyhedral flat chains. Let G be an abelian group (written additively) with neutral element
0Oand |-| : G — [0,00) a function satisfying |g| = 0 if and ounly if ¢ = 0, | — g| = |g| and
lg + h| < |g| + |h| for all g,h € G. In this paper, we are only concerned with the easiest case
of G = 73 and | - | the normal absolute value. For n,k € N, k < n, we denote by P* the group
of polyhedral chains of dimension k with coefficients in G i.e. the set of formal sums of compact,
convex, oriented polyhedra of dimension %k in R™ with coefficients in G together with the obvious
addition. We identify a polyhedron that results from glueing along a shared face (and compatible
orientation) with the sum of the individual polyhedra. Also, we identify a polyhedron of opposite
orientation with the negative of the original polyhedron. An element P € P* can thus be written
as

p
P =% goi, (11)
=1

where ¢g; € G and o; are compact, convex, oriented polyhedra that can be chosen to be non-
overlapping. Note that in our case of G = Zs, the non trivial coefficients g; all equal 1 and that
the orientational aspect of the above definition becomes trivial. The boundary do of a polyhedron
o is the formal sum of the (k — 1)—dimensional polyhedral faces of o with the induced orientation
and coefficient 1 under the above mentioned identifications. Note that 0(do) = 0. We can linearly
extend this operator to a boundary operator 9 : P¥ — Pk-1,

Mass and flat norm. For a polyhedral chain P € P* written as in (11), we define the mass
M(P) = >"_ |g:|H*(0;) and the flat norm F(P) by

F(P) = inf{M(Q)+M(R) : P=0Q + R,Q € P¥*' RcP*}.

Obviously it holds F(P) < M(P) and F(0P) < F(P). One can show that F defines a norm on
Pk |26, Ch. 2|.

Flat chains and associated measures. We define the space of flat chains F* to be the
F—completion of P*. The boundary operator d extends to a continuous operator 9 : F* — Fk—1
and we still denote by M the largest lower semicontinuous extension of the mass which was defined
on P*. Furthermore, one can show [26, Thm 3.1] that for all A € F*

F(A) = inf{M(Q) +M(R) : P=0Q+ R,Q € F*'' Rec F*}.

For a measurable set X C R™, we can define the restriction AL X via an approximation by
polyhedral chains [26, Ch. 4]. To each flat chain A € F*, there exists an associated measure 114 (see
[26, Ch. 4]) such that for each s —measurable set X, AL X is a flat chain and p4(X) = M(ALX).
The support of A is denoted supp (A) and given (if it exists) by the smallest closed set X such
that for every open set U D X there exists a sequence of polyhedral chains (P;); approximating
A and such that all cells of all P; lie inside U. If A is of finite mass, then supp (A) = supp (ra)
(see [26, Thm. 4.3]).

Cartesian products and induced mappings. In the case of finite mass flat chains A, B (or
one of the two chains having finite mass and finite boundary mass), it is possible to define the
product A x B (by polyhedral approximation), see e.g. [26, Sec. 6]. In particular, it is always
possible to define [0,1] x B. For U C R™, V C R™ open sets and a Lipschitz function f: U — V,
one can define an induced mapping fx on the level of flat chains, i.e. for a flat chain A supported
in U, fgA is a flat chain supported in V' (see [26, Sec. 5] and [25, Sec. 2 and 3]).



Generic properties and Thom transversality theorem. A property of an object (such as a
function or a set) that can be achieved by an arbitrarily small perturbation of the object is called
generic. In this work we encounter two such properties: Two dimensional planes have the generic
property of not containing a fixed single point (can be achieved by shifting normal to the plane).
The second one is that smooth maps intersect a submanifold transversely. The latter will be used
to apply Thom’s transversality theorem [70] in the form given in [31, Thm. 2.7].

Deformations. In certain situations it is beneficial to approximate a flat chain A by a polyhedral
chain P. The usual way to construct P is through pushing A onto cells of a grid. In this paper,
a (cubic) grid of size h is understood to be a cell complex in R? which consists of cubes of side
length h. Then, every A € F* can be written as A = P 4+ B + dC, where P € F* is a polyhedral
chain, B € F* and C € F**! satisfy the estimates M(P) < M(A) + hM(0A), M(0P) < M(0A),
M(B) < hM(0A) and M(C) < hM(A), see [26, Thm. 7.3].

Compactness. One point of importance from the perspective of calculus of variations are the
compactness properties of flat chains whose mass and the mass of their boundary is bounded. We
will use the result from [26, Cor. 7.5] which holds for coefficient groups G such that for all M >0
the set {g € G : |g| < M} is compact. This is trivially true in our case where G = Zo. Let K C R"
be compact and C; > 0. Then the corollary states that

{A e F* : supp (A) C K and M(A) +M(9A) < Cy}

is compact.

Rectifiability. Another aspect of flat chains concerns their regularity and if one can define
objects originating in smooth differential geometry such as tangent spaces. It turns out that this
can be achieved a.e. provided the flat chain is rectifiable. By definition, rectifiability of a flat chain
A € F* means that there exists a countable union of k—dimensional C'—submanifolds N of R”
such that A = AL N [72, Sec. 1.2]. For finite groups G, finite mass M(A) < oo implies rectifiability
of A, see [26, Thm 10.1].

3 Statement of result

Our main result concerns the asymptotic behaviour of the energy &, for n,§ — 0. Physically
speaking, we consider the regime of large particles and weak magnetic fields, see [4,27] for more
discussion of the physical interpretation of our limit.

The liquid crystal occupies a region € outside a solid particle E, i.e. Q = R3\ E. We assume
the boundary of the particle M := OF to be sufficiently smooth for our analysis, that is we require
M to be a closed, compact and oriented manifold of class at least C1'!. The regularity will be
needed to ensure that the outward unit normal field v € W or in other words M has bounded
curvature. Furthermore, we assume that

I = {weM: rzw)=0}

is a C?—curve (or a union thereof) in M, see also Remark 3.2.

In order to make the minimization of the energy &, ¢ non trivial, we impose the following
boundary condition on M:

Q = s, (y@yéId) on M. (12)

Indeed, without (12) the minimizer of &, ¢ would be the constant function @, ¢ o.. We define the
class of admissible functions A := {Q € H' (2, Symy) + Q. ¢.00 : Q satisfies (12)}. It is convenient



to define the energy 5;7‘72 for Q@ € H'(Q,R¥>3) + Qy ¢.00 by

+00 otherwise .

EA(Q) = {577,5(@) if Q€ A,

We also use the notation &, ¢(Q,U) (resp. 57“;}5(Q,U)) for the energy &, ¢ (resp. 57;"‘5) of the
function @ on the set U.

Theorem 3.1. Suppose that
nn(€)| = B € (0,00) asn—0. (13)

Then n 8;7‘}5 — &y in a variational sense, where the limiting energy & is given by
£0(T, S) = 25,c1 Bo(M, e3) + 4s.cs / [€0s(6)| dpgg o+ 5520M(S) +4s.c.M(TL Q) (14)
M
for (T,S) € Ay == {(T,S) € F>?x Ft : 0T = S+T} and where

Eo(M,e3) = /

{V3>0}(1 —cos(0)) dw +/ (1+ cos()) dw .

{vs<0}

The variational convergence is to be understood in the following sense: Along any sequence 0y, xix —
0 with ni|In(&x)| — B (not labelled in the following statements):

1. Compactness and I'—liminf: For any sequence Q, ¢ € H' (Q,R3*3) + Q, ¢ oo such that there
exists a constant C' > 0 with

there exists (T, S) € Ao, Cm € C™(R, Symg) with lim, ¢, ||Q,775—@:75HH1 =0, 5;7‘}5(@;5, Bgr) <
5;,‘}5(@7,,5’753) + Cr and Y, ¢ € Sym with ||Yy, ¢l — 0 such that Ty ¢ = (Qne — Yy.e) (T,
Spe = (Qne—Yne) H(C) are smooth flat chains with

6Tn,£ = Sn,E + Dhyes (16)

and, up to a subsequence, for any bounded measurable set B C )

i F(Te ~T,B) =0, lim F(S,¢ ~5,8)=0. a7)

Here, Iy, ¢ is a smooth approzimation of I' which converges to I' in CYY. Furthermore, we
have

lim inf ENe(Qne) > &(T,S). (18)
2. T'—limsup: For any (T, S) € Ao, there exists a sequence Q¢ € A with ||Qy ¢|lre < \/gsn,é,*
such that (16),(17) hold and

limsupn £ (Qn.¢) < E(T, S) - (19)
n—0

Remark 3.2. 1. We note that due to our assumptions € (0,00), the global energy bound (15)
can be reformulated as

EA(Qne) < C (6.

This reflects the classical behaviour of a logarithmic divergence of the energy close to singu-
larities as already observed in earlier works e.g. in [9].



2. If Q¢ is smooth enough (for example C?) and verifies a Lipschitz estimate as in (23) for
n ~ 71, we can choose Cm = Q¢ in the above Theorem. This is particularly true if Q¢ is
a minimizer of (1). Indeed, from the Euler-Lagrange equations, one can deduce the reqularity
and the required estimate on the gradient [8, Lemma A.2].

3. The compactness claim holds for almost every Y € Sym, with ||Y'|| small enough. The norm
converging to zero is needed to recover the condition 0T = S + 1T, the stated energy densities
on F, F°, and the coefficient in front of M(T L Q).

4. Another possibility of introducing the set S, ¢ is by using the operator S defined in [15, 16].
It holds that F(Sy (Qy,e) —S) — 0 as &,n — 0.

5. The assumption of {w € M : v(w)-e3 = 0} being a C%—curve is not very restrictive. In
fact, this can already be achieved by a slight deformation of M which changes the energies
Ene and & in a continuous way.

Remark 3.3. 1. We can express the energy (14) in a slightly different way by writing Pl g =
xaH? L M for a mesurable set G C M and defining

F={weM\G : vw) e >0U{we MNG : v(w)- e <0}. (20)
Then, (14) reads

&E(T,S) = 23*0*/

(1 —cos(8)) dw + 2s.cs / (14 cos(8)) dw (21)
F

M\F
+ gsfﬂM(S) +ds. e, M(TL Q).

2. For convez particles E, there exists a orthogonal projection 11 : Q@ — M. By convezilty of
E, we find that E(I4T,114S) < &(T,S), so that we can restrict ourselves to the case
TLQ=0=SLQ. Using (20), we find that OF =145 and (21) becomes

(1 —cos(8)) dw + 2s.cx /

(1 - cos(6)) dw + —s2AM(DF) .
M\F 2

go(H#T,H#S) = 28*0*/
F

In particular, (14) is a generalization of the limit energy &y defined in [4].

Figure 1: Illustration of flat chains T, S and the sets F, F'“ appearing in the limit energy &.



Figure 2: Expected minimizers of & for 8 <« 1 (left) and intermediate 8 (right). For small 8 the
line S has the tendency to stick to M and optimize F, thus no T appears. For larger 8 one may
find a configuration as depicted on the right, i.e. the energy is decreased by joining two parts of S
by a surface T glued to M.

4 Compactness

The structure of this section is as follows. We regularize the sequence @, ¢ in the first subsection.
For this new sequence Q, ¢ ,, we define a 2—chains T}, ¢, € F2 and 1—chains S, ¢, € F' such
that 01 ¢.n = Sy,e,n and we have bounds on the masses to get the existence of limit objects T and
S with 0T = S. This construction is carried out in steps in the subsections two, three and four,
where we distinguish the case of @, ¢, being almost uniaxial and @, ¢, being biaxial, e.g. close
to the boundary S. The passage to the limit is to happen in the last subsection.

4.1 Approximating sequence

This section is devoted to the definition of a sequence of smooth functions @, ¢ », replacing @, ¢ in
our analysis and proving the properties required for the estimates in the following chapters. More
precisely, we need that

e the sequence Q¢ approximates @, ¢ in H',

o verifies the same energy bound 7 &, ¢(Qn.en) < C and

e the estimate Lip(Qy.¢,n) < C n holds.

For technical reasons, we are going to extend @), ¢ into a small neighbourhood into the interior
of E. Since M is compact and of class C'*!, we can fix a small radius ro > 0 such that M satisfies
the inner ball condition for all radii < 2ry. In particular, rq is smaller than the minimal curvature
radius of M. For = € E such that dist(z, M) < 2r¢, define

1
Quela) = 5. (vlo) 0 7(a) - 310)
where 7(z) = v(IIp(2)), o the orthogonal projection onto M, is the obvious extension of the
outward normal unit vector field v in E.

Let IIg : Sym, — Bgr(0) C Sym, be the orthogonal projection with \/gs* < R < o0 to be
fixed later. Furthermore, let o € C2°(R3) be a convolution kernel with 0 < o < 1, g(z) = 0 if



|| > 1, [s 0(z) dz =1 and ||Vg|s < 1. We set o, (2) = n®o(nz). Then, for n > rot we define
Qu.en(x) for z € 0 as the convolution

Qnen(r) = (MTrQye) * on) (2). (22)

Remark 4.1. 1. This definition also extends Q. ¢ n into the interior of E up to distance ro to

M.

2. Through the convolution, we change the boundary values of Qy.¢, i.e. Qy ¢ n does not neces-
sarily satisfy (12). We will see in Proposition 4.2 that Q¢ — Qu.¢ in H* for n — co. This
implies convergence of the traces in H? and thus pointwise a.e. on M for a subsequence.
This is sufficient for the compactness and lower bound.

3. The convolution also changes that the approzimations of T that we are about to construct
will not end on T, but on a set Ty, (which is generically again a line) in the neighbourhood
of I' and T',, converges uniformly to I' as a consequence of the next proposition.

The following proposition shows that this sequence has indeed the desired properties.

Proposition 4.2. The sequence Q¢ defined in (22) verifies:

1. The functions Q¢ are smooth and there exists a constant C' > 0 such that

IVQnenllee < Cn. (23)

2. We have convergence Qu¢n — Que in H' for n — oo, for all &,m > 0 fized. Moreover,
Qn.enlm = Quelm for n — oo uniformly on M.

3. There exists R > \/%s* and constants C1,Cy > 0 such that for all measurable sets Q' C Q
with || < oo the energy of Qye.n can be bounded as

1 1+ R?

NEne(Qnen, ) < O (1 + en? + ng> nEne (Qn,& B, ()N Q) (24)

Q 2
+ 02% + Cr (|n2|5n,5(62n,579')> ,
where B,.(Q) denotes the r—mneighbourhood around €.

Proof. The smoothness of the functions (), ¢, is clear by standard convolution arguments, since
o is smooth. The bound on the gradient follows from the computation

VQuen(@)] < [Vouli /

Bl(m

4
)lHQn,f(y” dy < gﬂ'Rn.

The H'—convergence is again a well known result. The uniform convergence follows since M is
compact and @y ¢|a¢ is continuous since it verifies the boundary condition (12). It remains only
to prove the energy bound. For this, we first note that

2

/ (VQue) % 0al? d < / / (Va@ue) (@ — y)no(ny) dy| de
(94 4 B%L(O)

[ 1VQuen da
Q/

zZ
< |By| / / (VaQue)(@ — 2)Plo(2)? dz da
/ Bl(O) n
2 212
— 1B, / 10(2)] / (VoQue) (@ — 2)|? da dz
B1(0) Q n
< |B| VQycf? da.
B ()
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Writing B1 () = (Bo(Q) N Q) U (B
integral can be further estimated by

(@) N E) and using that |Vv(IIxr(x))] is bounded, the

1
n

1 C
[ 3@l dr < Ee(Que By@) N+ (29
B1 () 2 n n

Next, we compare the bulk energy of @, ¢, and @, ¢. To this goal, we use the triangle inequality
to get

F(@y60) = FQue)de < [ 1P(Quen) = FNIQue)l dot | FIQu0) = F(@ye) do.
(26)

Q/

where we used the notation F(Q) = f(Q)+ f;—zg(Q) +&2Cy. Asin [4, Prop. 4.1] we fix R such that

F(Q) > F(IIQ) for all Q € Sym,. Hence [, f(IIQy.¢) — f(Qn,e) dz < 0. It remains to estimate
the first integral of the RHS of (26). We calculate

1
| 1@uen—11QueP do = [ |1Que) + 00 =T1Qyef de < [ 1V(1Q, 0P dr

IN

1 c
7 | V@ dr < 5Ee(Que ). (1)
Combined with the L>—bounds [Qy ¢ |, |IIQy | < R that gives
c
| 1#@c0) — 11Q, 0 do < TE1+ R+ ) £,6(Quen ). (28)

It remains the estimate of g(Qy,¢n) — g(IIQy.¢). It is enough to consider the set Q" = Q' N{zx €

2

{Q e Sym, : |Q| e [\/gs*,m}, we find

Qo Quen(z)] > l\/gs*}, on '\ Q” we use Proposition 4.2 in [4]. By smoothness of g on

§2
/Q/ |9(Qn,£7n) - g(HQn,£)| dz < C;‘%,E(me,m Q/) + C||v9||L°°(Q”) o |Qn,§,n - HQn,£| dz

2 2

& 1
< C;&y,s(Qn,ﬁ,m Q) + C|IVygll Lo |Q/|ﬁ5n,£(Qn,sv Q)

Combining this with (25) and (28), we substract C%gn,ﬁ(Qn,f,n;Q/) from both sides and divide
2

by 1 — C%5 to get the estimate (24). O
n

Having established these properties of @ ¢,n, we are able to identify the size and structure of
the set where (), ¢, is close to being uniaxial as stated in the next Lemma.
Lemma 4.3. There exists a constant C' > 0 such that for all § > 0, there ezists a finite set I C )

which satisfies

1. the following inclusions

Us € |JBgl(2) C Usps, (29)
zel "
where Us == {x € Q : dist(Qy,e,n(z),N) > 4},
2. and
pr<c— (e} (30)
- n fglin 63 TL2 7

where fO. =min{f(Q) : dist(Q,N) > 5/2}.
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Proof. Let § > 0 and z¢ € U;. By Lipschitz continuity of @, ¢, (Proposition 4.2), we can deduce
that for any = € B s (x0) it holds

. . 4]
dist(@ne.n(2), N) 2 dist(Quen(@0), N) ~ [V@ngnlloog - 2

| >

)

so that z € Us/p. From this, we get that
Us C U B%@j) C U5/2.
zeUs

By Vitali covering theorem, we find a subset I C Us with the same property and B
B

4 (@) N
%%(Ij) = for i # j and x;,z; € I. Furthermore, using Proposition 4.2

Cce?
n

C 1
> [f@de = [ fQuendo- (52 n n)
C 1 C 1
| Qe = (€+40) 2 canBgltmn - (€4 )

3fF .
> ol lmn _C (&2+12) ,
n n

Y

n3

where we used that f > fuin > 0 on Us /2. From this it follows that

n? 9 1
< _— — | .
#I o CT] fmin(s3 <§ * n2>

O

In [4] a similar result was obtained using a regularization related to the energy and using the
Euler-Lagrange equation to derive the Lipschitz continuity. This approach would also work in the
new setting and one could obtain Lemma 4.3 with n = £¢~'. However, our new approach has two
major advantages: The first one is that the proofs are shorter and more elegant. The second (and
main) reason is that we now have control over the gradient of the approximation as well, contrary
to the approach in [4].

From (30) it follows that the volume of the union of balls in (29) converges to zero for 7,£ — 0
and n ~ £~1. The same holds true for the union of the surfaces of those balls. Note however that
the sum of the diameters is not bounded and diverges like n~!. With the tool developed in [9] and
used in [4,14] it would be possible to derive a bound, namely the sum of diameters can be shown
to be bounded.

4.2 Definition of the line singularity

The goal of this section is to define a 1—chain S, ¢ ,, of finite length which satisfies the compactness
properties announced in 3.1. The necessary analysis has already been carried out in [15,16] but
for the reader’s convenience we recall the important steps and results.

Following Section 3 in [15], we note that there exists a smooth retraction R : Sym, \ C — N,
where C is the cone of biaxial Q—tensors seen as a smooth simplicial complex of codimension 2
in Sym,. Evoking Thom’s transversality theorem, one can assume that @, ¢, — Y is transverse
to all cells of C for almost every Y € Sym,. Subdividing the preimages of the cells under the
map Qn¢n — Y if necessary, (Qnen — Y) '(C) defines a smooth, simplicial, finite complex of
codimension 2 which we call S, ¢ ,,. Note that S, ¢, depends on the choice of Y.

The relevant estimates on S, ¢ ,, are formulated in Theorem C and Section 4 in [16]:

Theorem 4.4. There exists a finite mass chain S such that one can choose a subsequence Sy ¢ p,
(not relabelled) and o > 0 with

F(Syen—S5) = 0 for almost every Y € B,(0).

12



Furthermore, for any open subset U C R3 it holds
liminfn &, ¢(Qnen, UNQ) > BM(SLU).
&n—0

In our situation, by construction of @, ¢, and for Y € B,(0) (« small enough) it holds that

(@Qnen—Y)H(C) € Us C |JBal(a).
el

Hence supp (Sy.¢.n) C Uzer B (z) and in view of the lower bound in Theorem 4.4 we deduce that

the energy coming from S, ¢, in U is already contained in U N |J,; Bs (x).

4.3 Construction of 7" and estimates for () close to uniaxial

In this subsection we carry out the first steps to define the 2—chain 7. We start by defining
T :={Q€Sym;, : s>0,0<r<1,n3=0}, (31)

where r, 5,1 are defined as in (3). From this we want to define T}, ¢ ,, close to Q;EH(T) As carried
out in [15] and described in Subsection 4.2, for almost every Y the set (@, ¢, —Y) ' (7) is in fact

a smooth finite complex. In Lemma 4.6, we show that in addition for a.e. Y € Sym,, the definition

Tn,&,n = (Qn,é,n_y)il(T)

allows to control the area in regions where @, ¢, is close to being uniaxial. Since both the
constructions of S, ¢, and T ¢, are valid for a.e. Y, we can choose the same Y and hence
0Ty enNQ = Syen. In parts of Q where Q¢ ., is far from N, e.g. close to S, ¢, we need to
modify T}, ¢ . This will be the subject of the next subsection.

At first, we recall the (intuitively obvious) result that 7 is well behaved close to A in the sense
that the level sets {n3 = s} for s small have a similar H*—volume as 7. This can be interpreted
as control on the curvature of 7 NN.

Lemma 4.5. There exists ag, a1, C > 0 such that for Q € Sym,, dist(Q,N) < ap and a € (0, 1)
it holds that

lim HY({Y € Ba(0) : n3(Q-Y) =s}) = HY(Ba(QNT).

In the smooth case this lemma follows as in [51, Lemma 3], however we give a proof here for
completeness.

Proof. The parameter ag needs to be small enough to avoid problems far from N due to the
non-smoothness of 7 at the singularity 0 € Sym,. So we choose 0 < ap < %dist(O,N). To avoid
dealing with the topology of the sets involved, we pick 0 < oy < gdiam (V). Hence, B, (Q) N T is
diffeomorphic to a 4—dimensional ball.

We define ¢(Y) = ng(Y) for Y € B,(Q) and note that B,(Q) N7 = ¢~ 1(0). One can
calculate D¢(Q) = Dyns(Q) and by the calculations in the proof of Lemma A.4, D¢(Q) is parallel
to the normal vector Ng. Hence, for ag, a1 small enough rank(D¢(Q)) = 1. By the implicit
function theorem, there exists a function v such that ¢(Q + y + ¥(y)Ng) = s for y € B,(0)
with y L Ng. Furthermore, Di(Q + ) = (Dns(Q +y + ¥(y)) : Ng)(Dns(Q +y + (1)).
Since Dns is parallel to Ng in first order, for each € > 0 and s. > 0 small enough it holds that

1—e< (det(DyYTDy))z <14 €on {¢ <s.}. With a change of variables this becomes for s < s,
-0 W< HEO) £ 0+ [ vy
{¢=s} {p=s}

In the limit s — 0 we obtain (1 +¢€) [(,_o, ¥(y) dy < (1 +¢)*H*(¢71(0)). Analogously (1 —
€) Jpmoy ¥(y) dy = (1 — €)*H*(¢71(0)). Since e > 0 was arbitrary, the claim follows. O
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For ¢ > 0, we introduce the set As C € in which @, ¢ , is close to being uniaxial as
As = {.’L‘ e diSt(Qn,gtn(l'),N) < (5} . (32)

The next lemma shows that (in average) the H?—measure of (Q,¢, —Y) ! (T) that lies in As is
controlled by the energy.

Lemma 4.6. There ezists ag,dg > 0 such that for all o € (0,0), § € (0,00) one can find a
constant C' > 0 such that

5 (0)H2(A5 N (Qn,é,n - Y)_l(T)}) dy < C n gn,&(Qn,é,na Aﬁ) . (33)

Proof. Let a,d > 0 small enough such that for Y € B,(0), the map @ — n3(Q —Y) is smooth
on {Q € Sym, : dist(Q,N) < §}. Let As be defined as in (32). In order for the map =
n3(Qn.en(z) —Y) to be well defined, we need to restrict ourselves to a simply connected subset of
Ajs. For this, take xg € As and r > 0 such that As N B,(x) is simply connected. We carry out
the analysis on As N B, (xo), noting that we can cover As by such balls to find the estimate (33).
With zg € Ay and r > 0 fixed as described, we can calculate

/B HA(B(0) 1 451 (Qunlx) = Y) 7 (T))) aY

= /B o [ DX {2e90ns(Qu en () -v) >0} | (Br(w0) N As) dY

AN

e—0

< lim inf/ / [Va(heons o (Qnen—Y)) () de dY
(0 r(zo)NAs
= lim inf/ ( / |h’6(n3(Qn7§7n(x) —Y))Vons(Qnen(z) —Y) : VoQ(z)| dz dY,
B, (0 zo)NAs

e—0

where h, € C*(R,[0,1]) is an approximation of the Heaviside function, i.e. hc(z) = 0 for z < 0,
he(z) = 1 for + > e and h. > 0 on (0,¢). The above inequality is then just the lower semi
continuity of the total variation. With the identity h.(n3(Qp.en(z) —Y))Vons(Qpen(z) —Y) =
—Vy(heonz o (Qyen(x)—Y)) and the Fubini theorem we can rewrite

Lo n(@uen() = V) Vom(@uen(e) = ¥): VaQuen(o)] de dY
Ba(0) J By (ﬂfo)ﬁAs
< o Vel [ Vv (oo @uen YDl @Y o
B,«(alo)ﬁAg
S [ Qe [ HY € Ba0) ¢ h(@uenle) ~ V) = ) d e
B (.’Eo)ﬁA(; 0
1
= [ 9Quenl [ HAY € Bal0) 5 mi(@uene) —¥) = b1 (5))) ds da
(zo)NAs 0
where we also used the coarea formula. By Lemma 4.5 in the liminf ¢ — 0 this equals

1
lim inf ‘VQU7§7H|/ HY{Y € Bo(0) : n3(Qpen(z) —Y)=h"(s)}) ds da
€20 JB, (z0)NAs 0
= [ Vel W Ba(Quen) N T) s
B (Zo)ﬂAg
by translation invariance of H*. Applying the elementary inequality 2ab < a? + b? we get

[ V@ueal M (Ba(@uen) N T) o
B (z0)NAs

n 1
< [ IVQuen + o Bul@en) N T dr
B, (zo)NAs n
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The Dirichlet term appears in the energy, so it remains to estimate H*(Ba(Qyen) N T)? in
terms of g(Qn¢.n). We first note that 7 N Ba(Qyen(x)) = 0 if dist(Qy¢.n(x), T) > a and since
dist(Qy,¢,n, N) < 6 we have H*(Bo(Qye,n) NT) < Csa* by Proposition A.5. Hence, we get

/ 7-[4(BQ(Q77,5,TL) NT)%dx < (Csa*)?|By(zo)NAsN{z € Q : dist(Qne.n(x), T) < a}l.
By (x0)NAs

For z € AsN{x € Q : dist(Qne.n(z),T) < a} we can estimate

3

9Qnen(@)) = 9(R(Qnen(2)) = Codist(Qnen(@), N) = (/51 =15(Qnen())) = Cyd

> \/3(1—0704)—095 >G>0

for o, 6 < 1 small enough. Hence,

G|Br(zo)NAsN{z € Q : dist(Qnen(z),T) <a} < / 9(Qnen) dz.
B,,v(ajo)ﬁA5
O

We remark that although Lemma 4.6 control the size for a.e. fixzed Y € B,(0), but degenerates
with «. Hence it does not provide a uniform bound in « allowing to pass to the limit Y — 0. A
bound independent of a will be derived in the section on the lower bound.

4.4 Estimates near singularities

At points x € Q where dist(Q, ¢n(x),N) > §, the estimates we derived in the previous subsection
are no longer available and we need new tools to bound the mass of T, ¢ ,. We are concerned with
two different cases: The first case is the one of x € T}, ¢, far from the boundary S, ¢,. We can
simply "cut out" those pieces and replace them by parts of surfaces of spheres which are controlled
in mass. This will be made precise using Lemma 4.3. The second case is more challenging. We
will modify T}, ¢, close to the boundary S, ¢, by using a construction similar to the one used in
the deformation theorem (see Lemma 4.8). This will allow us to express the mass of the modified
2—chain in terms of the surface of cubes and Lemma 4.3 permits us to control the number of such
cubes.

Lemma 4.7 (Deformation in the interior). Let I'"* C I be the subset of points xo € I such that
dist(20, Sp.en) > 2 and dist(zo, Ty en) < 2. Then, there exists a flat 2—chain T with values in
m1(N) and support in B™ := |, ¢ jint B (x) such that

1. 9T = (T e.n L B™),

2. and M(T) < L+ )
Proof. Since B™ Nsupp(T;,¢.n) # 0 and B Nsupp(Sy.¢,n) = O we know that 0 # 9(T), ¢, ,LB™) C
OB™. Furthermore, since 9> = 0 it follows that (T}, ¢ ,L_B™") consists of closed curves and divides

OB into domains. Let D be the set of these domains. Now pick any subset D’ C D such that
0 (Upep U) = 0(Tyy¢.n - B). We define T := >, ,,[U]. Then, by definition T, ¢, L B™ and T

have the same boundary and since T C OB we also have

~ . 2
M(T) < M(@B™) < 3 M@©@B,) < #nm% < z<52+nl2>'

e Jint
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At the boundary we cannot remove a disk without the risk of creating new boundary which
might not be controlled, so another method has to be used. The idea is the following: Take a cube
K of size % which contains a part of the singular line S, ¢ ,, and intersects with T}, ¢ ,,. We then
modify (deform) the "surface" connecting T}, ¢ , NOK and S, ¢, N K by pushing it onto a part of
OK (see also Figure 3). The result is a modified T, ¢ ,, with the same boundary as before and the
surface inside the cube is controlled by the surface area of K and the length of the singular line.
We point out that this procedure and its proof is closely related to the deformation theorem (for
flat chains) (see [71], Chapter 5 in [25], Theorem 7.3 in [26] and Chapter 4.2 in [24]) but differs in
some details so that we give a full proof here.

Lemma 4.8 (Deformation close to the boundary). Let I°™Y C I be the subset of points xo € I

such that dist(zo, Spen) < 2 and dist(zo, Ty¢.n) < 2. Then there ezists a flat 2—chain T with

values in m (N) and support in B*™ verifying |, ¢ joary Bzi(as) C BPIY such that

1. 0T e = 0Ty e L BY),

2. and

— 1
MTen) 5 5 (€40 (39)
Proof. For the sake of readability we drop the dependences on &, 7, n in the notation of this proof.
Covering S with a cubic grid of size h = % such that S is in a general position, we can assume
that the center xzx of all cubes K that contain parts of S does not intersects S or T, i.e. xx ¢
supp (T),supp (5). Indeed, this is possible S intersects only a finite number of cubes according to
Lemma 4.3. Let G be the set of those cubes and X the set of its centers.

Step 1 (Construction and properties of the retraction map). Let K € G be a cube and let
xx € X be its center. Let P be the central projection onto 0K originating in zx. We define
a homotopy @ : [0,1] x (K \ {xx}) — K between the identity on K and P by simply taking
O(t,z) = (1 — t)x + tPz. Note that by definition this homotopy is relative to 0K, i.e. ®(t,z) =«
for all t € [0,1] and = € K. Furthermore, for all z € K \ {xx} and t € [0,1] it holds

dist(®(t, x), xx) > dist(z, zk). (35)

Since |0;®(t, )| = | — x4+ Pz| < +v/3h and by (35) we deduce that ® is locally Lipschitz continuous
and Lip(®(t,2)) < C hdist(z,2x)"!. Since @ is relative to OK we can glue together all those
functions defined on the cubes K € G with the identity on cubes K ¢ G to get a function ® defined
everywhere in R3 \ X.

Step 2 (Intermediate estimate). In this step we want to show that if we allow for a small
translation of the chain S, then the mass of ®4([0, 1] x S) can be bounded by M(S) times the size
of the cube h, up to a constant.

Applying Corollary 2.10.11 in [24] (or Section 2.7 in [25]) we get as in [71, Lemma 2.1]

M(@4([0,1] x 8)) < 1d - Pllu / sup Lip(®(t, z)) dpus(z)
R3 t€[0,1]

Ch2/ dist(z, X)™ dus(z).
R3

IN

16



Taking the mean over translation by a vector y € [0, 1]®, we arrive at

M(®4([0,1] X (45)) dy = C h2/ / dist(az:,X)_1 dpr,,s(z) dy
[0,1]3 [0,1]3 JR3

=C h2/ / dist(z + hy, X) ' dus(z) dy
[0,1]3 JRr3

=C h2/ / dist(z + hy, X) ' dy dus(z)
Rrs J{0,1]3

< Ch / dus(z)
R3
= ChM(S).
Hence, we can assume that S is in a position such that

M(®4([0,1] x 5)) < ChM(S). (36)

Step 8 (Definition of T) We define
T = 9(®x([0,1] xT)) —T.

Considering a cube K € G, one can think of this construction as the boundary of the three
dimensional object created by filling the space between T' and its projection onto K according
to Step 1 and then removing the original part T. Another but equivalent point of view is to take
T as all the points along the path created by projecting T'L 0K, S together with the projection
P, (T), see also Figure 3. Indeed, one can calculate for K € G

0(®4([0,1] x (TLK))) =24((0[0,1]) x (TLK))+ ®x([0,1] x (0T)L K) + ®4([0,1] x T'L (0K))
=Pu(TLK)— (Idx)%(T) + 24(]0,1] x (SLK))+ ®4([0,1] x T'L (0K)).

Thus, we have the formula
TLK = Pu(TLEK) + ®4([0,1] x (SLK)) 4+ ®4([0,1] x TL (dK)).
Since Py (T K)+ ®4([0,1] x TL (0K)) C K from which we derive the bound on the mass of T
M(TLK) < M(OK) 4+ M(®4([0,1] x (SLK))) < 6h? + ChM(SLK), (37)

where we also used the estimate (36) on K of Step 2. On all cubes K ¢ G, TLK =0, so that we find
supp (1) C Ugeq K- Adding cubes if necessary, we can achieve the inclusion (J, ¢ jbary B (x) C

BPdY | Since @08 = 0, the boundary of T' coincides with dT'. Since all calculations in Step 3 were
local and @ is relative to the boundaries of the cubes, (34) follows from summing up (37) over all
cubes K € G. O
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Figure 3: Construction near the boundary inside a cube: The newly created area (grey) is controlled
by the surface of the cube and the length of the line singularity (red).

As a direct consequence of Lemma 4.6, Lemma 4.7 and Lemma 4.8 we have the following
corollary:

Corollary 4.9. There ezists a flat 2—chain 1{77\5'; with values in w1 (N) such that

1. 0T} ¢.n = Syen,
2. and for all xg € Q and R > 0

M(Tyen L Balan)) S 1 Ene(@uen Baan)) + 2 (4 25 (59)

4.5 Proof of compactness for fixed Y

Let B C Q open, bounded and choose n := ¢~!. Then, by Lemma 4.6 and Corollary A.3, we
deduce that for all & > 0 and almost every Y € B,(0) C Sym,, our construction yields a flat chain

Tyen € F? such that 0Ty = Sygn + T and

M(Ty¢.LB) < C(nsn,g@n,g,mBR(xo)Hj) < c(nen,g@n,g,BR(mo)Hi) ,

where we also used (24) of Proposition 4.2. In particular the energy bound (15) implies that
M(T),.¢,n L B) is bounded. Applying a compactness theorem for flat chains as stated in the prelim-
inary part ([26, Cor. 7.5]), there exists a subsequence (which we do not relabel) and a flat chain
T € F? with support in Q such that

F(T,en—T)—0  for almost every Y € B,(0).

Since the boundary operator 0 is continuous we conclude with Theorem 4.4 that 0T = S +1T'. The
finite mass of 7" and S immediately implies rectifiability [26, Thm 10.1]. Expressing the measure
pr restricted to M as pig = xgH? L M for a measurable set G C supp (T'L M) C M we can
define

F={weM\G : v(w)-es>0U{we MNG : v(w)- e3 <0}.

18



Consequently,

FC={weM\G : v(w) e <0tU{weMNG : v(w)- e3>0}.

5 Lower bound

This section is devoted to the I'—liminf inequality of Theorem 3.1. The proof necessary to deduce
the line energy has already been given in [16], so that we will only state the result for completeness
(Proposition 5.1). The energy contributions of T' far from M are to be derived in Subsection 5.1.
In the remaining, we are concerned with the energy of T and F' close resp. on M.

The precise cost of a singular line in our setting has been derived first in [13] based on ideas
in [35,61]. In our case, the result reads as follows.

Proposition 5.1. Let B C Q be a bounded open set and U, = {x € Q : dist(z, Sye.n) < 7}
Then

liminf 7y &, ¢(Quen, Uy N B) > —s28M(SL B). (39)
7,60 ’ > 2
Proof. See Theorem C and Proposition 4.1 in [16] for a proof of the version we used here. O

To derive the exact minimal energy for the lower bound related to T', we introduce the following
auxiliary problem:

T2 o210,/ |2

) sZln
inf / i 3‘2
na€H([r1,r2],[-1,1]) J,,, 1 —n3

ng(ri)=a, ng(rg)=>b

I(ry,7r9,a,b) = + (1 —n3)dr (40)

for 0 <r; <ry < oo, a,b e [—1,1]. It is one dimensional and only takes into account the derivative
along the integration path. Problem (40) is equivalent to minimizing [ (1]6,Q* 4+ ¢(Q)) dr
subject to a N —valued function @ and fitting boundary conditions. This reflects that by Lemma,
4.3, the regions where Q) ¢, is far from A are small. The functional in (40) has been previously
studied in [1] and [4, Lemma 4.17] from which we need the following lemma:

Lemma 5.2. Let 0 <r; <ry < oo. Then,

1. I(rq,79,—1,1) > 4s,c..
2. Let 6 € [0,7w]. Then the minimizer ng of I(0,00,cos(6),1) is explicitly given by

A(0) — exp(—2c¢./547)
A(0) + exp(—2c¢y/s41)

_ 1+cos(0)
~ 1—rcos(f)

N3 (’I"7 0) =

A(0) (41)

and
1(0, 00, cos(f), +1) = 2s,.c,(1 F cos(6)) . (42)
In this lemma, we use that g reduces to ¢2(1 — n3) for Q in N, as demanded in (4). However,
as pointed out in Remark 4.18 in [4], this is not necessary.

During the blow up procedure in the next subsection, we want to quantify the energy necessary
for a close to uniaxial Q¢ to pass from ns(Qy.en) = £1 to n3(Qpen —Y) =0, i.e. to intersect
T,¢n. Since problem (40) does not take into account the perturbation made by subtracting
Y € B,(0) from Q¢ n, we also introduce for o > 0 small enough

I, (r1,7m9,a,b) == inf{I(r1,re,a,n3(Q)) : Q € Symy, n5(Q —Y)=5b,Y € B,(0)}. (43)

We will only be concerned with the case b = 0. Note that I, (r1,r2,a,b) = I(r1,r2,a,b) for a — 0.
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The knowledge about the optimal profile in (42) is also used in the construction of the upper
bound, in particular the fact that |ng| — 1 and all derivatives of ng decay fast enough (here expo-
nentially) as 7 — oo. The result that for minimizers of (40), n? approaches 1 exponentially fast is
complemented by the next lemma. It states that for a bounded energy configuration on a line, n3
cannot always stay far from 1.

Lemma 5.3. There exist constants € > 0 and 5o > 0 such that for a line ¢ and Q € H'(¢,Sym,)
and K > 0 a constant such that n &, ¢(Q,£) < K < oo it holds: For § € (0,6), there exist a set
Is C ¢ and Cs > 0 such that

K+1

0\ I <
NI < ==

and |n3(Q)] >1—¢V5 on Is.

Proof. Let

gmin = min{g(Q) : Q € Symy, dist(Q,N) <4, |Q — Quo| > aV/5},

where a > 0 is chosen as in [4] and for § > 0 small enough. Proposition 2.5 in [4] then implies that
Jmin > 0. Then, we can estimate

K > n&(Q.0) = %gminl{xeﬁ 2 dist(Q(2),N) < 8} N{z € £ 1 |Q — Quo| 2 aV/5}].

In view of Proposition 2.1, it holds that |[¢\ {dist(Q,N) > §/2}| < C&?/n?. Furthermore, a
straightforward calculation shows that if [n3(Q)| < 1 —2—2—a+/§, then |Q — Quo| > av/6. Hence,

4\/55*
1 5 52 K
K > —gmin|qz €l : |n3(Q(z))] <1-2 Ao —Cc — o2
> Lomnl{r € s Im(@NI < 1-2 2 aBY |- 0% -0
from which the claims follow for € := 2-—2—aand I; == {z € ( : [n3(Q(x))| > 1-Vs}. O

4425,

In the following two sections, we detail how Lemma 5.2 combined with Lemma 5.3 can be
applied in the case of T'LL 2 and on the surface M.

5.1 Blow up

Let z9 € Q be a point of rectifiability of T'. Let ro > 0 such that B, (z) C Q, By, (zo)Nsupp(S) = 0
and let (1) be a sequence of real numbers converging to 0. Defining the measures p, ¢(U) =
NEn.e(Qne,U), we have the following lemma:

Lemma 5.4. There exists a constant C > 0 independent of x¢ such that

Fin&(Br, (0)) T A
w1 (Boy (o)) = el b0 C(‘Sk*arz) @ (49)

Proof. We start by introducing some notation. We set T, := TL B, (z0) and Qx(y) = Qn,en(zo+
rry). The latter allows us to express

T ’1“3 ’/‘3
1 Ene(Quns By (w0)) = /B o 7 IV + 0@ + G Qo+ ariCody. (49)
1 0

Furthermore, we note that by rectifiability of 7" in x( that there exists a unit vector v € S? such
that

T, —
F(ZQML&—RL&>%0 for k — oo, (46)
k

where P, = {v}* is the two dimensional plane perpendicular to v passing through 0. Indeed, by
Theorem 10.2 in [45] we know that (7, — z¢)/r; approaches P, in a weak sense and by Theorem
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31.2 in [65] we get the equivalence between the weak convergence and convergence in the F—norm
in our case of T" having integer coefficients and 7', 01" being of bounded mass.

From (46) we infer that there exist flat chains A, € F2 and Az, € F> with M(As ), M(0A3 k) —
0 (for kK — oo0) such that

T, —
';72""”0 LBy = P,L By + Agy + 0As . (47)
k

Since P, is a plane, we can write P, = 0H,,, where H,, is the half-space H,, = {p+tv :p € P,,t > 0}.
Hence, (47) can be rewritten to

Trk — o

2
Tk

LBl —AQ,]@ = 8(H,,|_Bl +A3’k) . (48)
We are interested in the energy coming from lines in the ball By parallel to v. In order to relate this
energy to the mass of T', we need to know how much energy each line carries and that a substantial
portion of those lines intersect 7. So let’s first consider a line ¢ C Bj parallel to v that intersects
T. Because of the mirror symmetry or our problem w.r.t. P,, it is in fact enough to consider
lines ¢ C H, N By parallel to v and to show that ¢ contributes half of the energy demanded, i.e.
1,(0,00,1,0) — Cn. In view of (44) that we want to prove, we can restrict ourselves even further
to the case when

r 7“3 7“3
/ IVQE + Eg(@u) + Qi)+ uriCo dy < 1a(0,00,1,0), (49)
J4

otherwise there is nothing to prove. But then (49) implies with Lemma 5.3 that whenever |¢| >
Lo(@.00LOHL ), there exists a point p € £ such that [n3(Qk(p))| > 1 — €v/5. We can apply Lemma

3
Csry

5.2 to get

T 7”3 7"3 3
/L;\VQkF + ;kg(Qk) + %f(Qk) +nrpCo dy > 1,(0,00,1,0)r7 — C ||dist(Qp, N) || oo (o) 7 -
L

It remains to estimate the measure of the lines which do not intersect T or are shorter than
L2(0.00.L0)+1 ) o the former lines, we can use (48) and (46) to show that this number is negligible

C(srz
in the limit £ — oo. For the latter, a simple computation shows that the measure of those lines is
bounded by a constant times (%n)2 O
k

Lemma 5.5. Let B C Q) be a open and bounded set. Then,

liminfn €,6(Quen B) > 210(0,00,1,0) M(TLB) ~ C|BJ3. (50)
n,§—

Proof. The global energy bound (15) implies that the sequence (i, ¢ is bounded and hence there
exists s subsequence (not relabelled) and a non-negative measure o such that g, ¢ — po. This
implies in particular that u, ¢(B) — po(B) for all bounded measurable sets B.

-3

, - — 0for n — 0, we can apply

Choosing a sequence r, \, 0 depending on 7, such that nr
Lemma 5.4 for this sequence and get that

B
o () = gy P8 @) o6 e 1,0).
dpr n§=0 pr(By, (7))

This implies

du
N Ene(Quen, B) = /1dun,§ = /1dﬂo+\un,§(3)—M0(3)| =/ 3 % dur +o(1)
B B B apr

> 21,(0,00,1,0) M(TL B) + o(1).
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5.2 Surface energy

In this section we do the necessary calculations to find the announced energy contribution of F'
and M\ F. For this, we estimate the energy close to M. More precisely, we define My 5 = {z €
Q : dist(z, M) < 2,/n}.

The goal is then to apply Lemma 5.2 to the rays perpendicular to M on which @, ¢ ,, is taking
values close to N. For w € M and r > 0 we define

L, = {w+tr(Q) : tel0,r]} (51)

and recall that for § > 0 we denote Us = {z € Q : dist(Qy ¢ n(x),N) > §}. We assume 1 small
enough such that 2,/ < rg. We recall that ro was fixed in the beginning of Section 4 such that rq
is smaller than the minimal curvature radius of M.

For the estimation, we set proxies for F'

Fmg = {WEM : Lw)\/ﬁﬁU(;:@, I/3(W)>OandefﬂTn§n:®}
UfweM : Lo mNUs =0, r3(w) <0and Ly, 5N Tyen # 0} (52)

and analogously for M \ F

Frs = {w €M : Ly, 5N Us =0, v3(w) < 0 and Ly, 5N Ty e = 0)
UfweM : Lo mNnUs =0, v3(w) >0and Ly, 5N Tyen # 0}

We now rewrite the energy so that the line integrals over L, 5 appear. We note that for
0 <n < 1 the map M x [0,2,/5] = Q given by (w,r) — w + rv(w) is injective. The differential of
this map is given by Idr, a4 + 1 dyv +v. Using the normalized eigenvectors v, Wy, ws corresponding
to the eigenvalues 1, k1, ko with k; being the principal curvatures of M at w, i.e. the eigenvalues
of the Gauss map d,v. Then

det(Id + r dpv(w)) = (1 + r&1)(1 + TR2)
and the gradient transforms as
1 1

Ozt P |07
‘2| Q¢ +|1+?‘\/€2||2| 2

v 2 — 8 2
| Qﬁ7€7n| | TQ??7§JL| + |1—|—7"|/$1|

In order to shorten our formulas, we still use the notation VQ, ¢ . The energy can then be
rewritten as

n&(Qnémsz / /2\[(

Consider a point w € F;, 5. We can assume that nE, ¢(Qy.¢n, Lu, 7) < 214(0,00,1,0), otherwise
the result is trivial. If w € F) 5 such that L, s NT = 0, then Lemma 5.3 implies that for 6 > 0
and 7 > 0 small enough, there exists ,, € [0, /7] such that |n3(Qy¢n)(w + tor(w))] > 1 — EV3.
Since furthermore L, 5 NUs = (), and for n < 1 we can apply Lemma 5.2 to get

2
ggf(Qnﬁn) Qan§n>H1+7“/‘€1 drdw
=1

Y

207 2
n
1 Ene(Qn.g o, Lw,2\/ﬁ) /0 <2|arQn,£,n|2 + €2 f(Qn en) T Q(Qn en) 7700> H (1 +7k;)
i=1

> 1(0,t,,co8(6,),1) — CVé + o(1).

Note that since @ ¢, does not verify the boundary condition (12), the lower bound contains an
angle 0, instead of . But due to Proposition 4.2, 6, converges to ¢ uniformly for n — 0. If
L., 0T # 0, this implies that there exist ¢, € (0,/7) and t,, € (/7,24/1) such that [n3(Qy.¢n—

Y)(w + t,v(w))| < V6 and |n3(Qyen)(w + tyr(w))| > 1 — €6 and hence

0 Ene(Quems Luaym) = 1a(0,t,,c08(0,),0) + Lo (], tw, 1,0) — CV3 +o(1).
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Mutatis mutandis, we get the analogous estimates for ﬁn,g and we can pass to the limits n — 0
and 6 — 0.

It remains the passage Y — 0. Since I, — I for o — 0, the bound (50) of Lemma 5.5 is
uniform in Y (and hence «) and since M is compact, we can pass to the limit « — 0. Using a
diagonal sequence, we can also choose Y, ¢ — 0 as claimed in the Theorem.

6 Upper bound

This section is devoted to the construction of the recovery sequence of Theorem 3.1. Essentially,
there are three steps in this construction:

1. We approximate T by a sequence T, solution to a minimization problem. The advantage of
replacing T by T,, is the gain of regularity. Indeed, as we will see in Subsection 6.1, T" and
its boundary inside Q will be of class C''!. Furthermore, by a comparison argument, we can
show that 9(7,, L M) is a line of finite length.

2. We introduce local coordinate systems in which we can define @, ¢, and estimate its energy.

3. Choosing a diagonal sequence n(£,n) we find the recovery sequence.

6.1 A first regularity result for (almost) minimizers

In this subsection, we rewrite the limit energy & in a way that it only depends on 7"
Eo(T) = Fo(M,es) + 4s.cs / [€Os(B)] i+ 43.c.M(TLO) + 2 2BM(OT - T),  (58)
M

where I' € F! is given by the curve {v3 = 0} C M. For the approximation of a flat chain T € F?
we are going to study the following minimization problem:

min E(T)+nF(T —T), (54)
Ter?

for n € N. The existence of a minimum of (54) is imminent since by assumption T' verifies
Eo(T) + nF(T —T) = &(T) < oo, the energy is non-negative and lower semi-continuous with
respect to convergence in the flat norm. We have the following result:

Proposition 6.1. Let T € F? with £(T) < co. For all n € N, the problem (54) has a solution
T, € F?. The minimizer T, verifies

1. T, = T for n — oo in the flat norm.
2. T, LQ is of class C* up to the boundary O(T, L Q).
3. (0T,)_Q is of class C11.

We note that the above Proposition also holds true for n = 0, i.e. minimizers of (53) and
hence of our limit problem are of class C! up to the boundary in Q which is of class C™'. As
we will see later, the minimizers of & are in fact smooth (see Proposition 7.1). In order to make
this subsection more readable and simplify notation, we divide (53) by 4s.c. and redeﬁne the
parameter ( to replace the constant 1 2= 3. Also, we will simply write n instead of ;-"—. Since in
this subsection we are only concerned Wlth the regularity of minimizers, this change of notation
does not impact our results.

The proof of Proposition 6.1 makes use of a series of lemmas which we are going to state and
prove first. The main ideas for the regularity of T}, and 97,, have already been developed in earlier
papers [19,20,53,68], so it remains to check that we can apply them in our case. For the sake of
simple notation, we drop the subscript n for the rest of this section and define S := 9T —T.
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Lemma 6.2. Let rect(S) be the rectifiability set of S. Then supp (S) = rect(S) and H!(supp (S)\
rect(S)) = 0.

Proof. Let’s show first that S is supported by a closed 1-dimensional set.

For this, we prove that S cannot contain subcycles of arbitrary small length. Assume that S is
a subcycle of S, i.e. M(S) = M(Sy) +M(S — S1) and 95, = 0, and that S; is supported in B,.(zp)
for r € (0,1ro). By (7.6) in [26], there exists a constant b > 0 and T; € F? such that Sy = 9Ty
and M(T}) < bM(S;)%2. By projecting T} onto B,(x9) N Q, we can furthermore assume that T}
is supported in B, (zo) and lies within Q. Projecting onto B,.(zo) does not affect the previous
estimate since it decreases the mass. Projecting T7 L E onto M has Lipschitz constant less than
1+ 4% and hence, the estimate stays true with an additional factor of 1 + 4%. We estimate by
minimality of T

50(T) +HF(T—T0) 50(T+T1) +TLF(T+T1 —To)
60(T) + M(Tl) — ﬂM(Sl) + ’IIF(T — T()) + nM(Tl)

&av—amwﬁ+mwT—%»un+wa+4%wM@n%

INIA

VAN

and thus SM(S1) — b(n + 1)(1 + 4%)1\/11(51)2 < 0. We hence find that either M(S7) = 0 or that
M(51) = B/(3b(n +1)).

Now, let g be a point of rectifiability of S and r < 8/(6b(n+1)). Assume that us(B,(xg)) < 2r.
Then, since

A%wmmmmsMwmm<w,

we can evoke Theorem 5.7 of [26] to deduce that there exists a set of positive measure I C [0, 7] such
that ps(0Bs(zg)) < 2 for all s € I. Thus, we can find radii s < r such that M(9(S N Bs(zo))) < 1.
But a bounded 1-chain cannot have just one end, so that for S; := SN Bs(zg) we conclude that
051 = 0. In addition M(S7) < 2r by assumption. Hence, we have M(S;) < 3/(3b(n + 1)) and the
above calculation shows that necessarily M(S;) = 0. In particular, xg is not in the support of S
which is a contradiction.

Let us conclude now that S is indeed a closed set. Let rect(S) be the rectifiability set of S.
Since S has coefficients in a finite group, it is rectifiable [72] with pg = H! L rect(S). Now, take a
sequence zj, € rect(S) and assume z, — z. By the above reasoning it holds ps(B,(x)) > 2r for
all » < 8/(6b(n+1)) and in the limit ¥ — oo also pg(B,(z)) > 2r. Hence z € rect(S). This allows
us to conclude that H!(supp (S) \ rect(S)) = 0. O

After having established this basic property of S, we can state a first regularity result:

Lemma 6.3. The flat chain S is supported on a finite union of closed C'z —curves.

Proof. Our goal is to prove that SL () is an almost minimizer of the length functional M and apply
Theorem 3.8 in [53] to deduce C''»2 —regularity.

Let 2o € Q and 7 € (0, 3r¢) such that By(z) C . Consider T" € F? with supp (T'—T") C
Br(zg) C Q. Then, for almost every r € (0,7), it holds that S, := SN B,(x) is a flat chain with
boundary 9, = 0SN B, (xp). In this case, S.. := TN B,(zp) has the same boundary. Hence, the
flat chain A := S, + S, = 9T + 9T is a cycle, i.e. verifies A = 0 and is supported inside B, (x¢).
We can construct the cone C’ with vertex x¢ over A. Then, 0C" = A and M(C") < erM(A). Now,
we distinguish two cases: It holds either M(S,.) < M(S!) (which is enough for our conclusion as
we will see below) or M(S,) > M(S!) and hence M(A) < 2M(S,.). Comparing T to T 4+ C’ and by
minimality of T" we get that

BM(S,) < BM(S.) + (n+ 1)M(C") < BMI(SL) + 2¢(n + 1)rM(S,).
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For r small enough we conclude that

de(n +1)
B

In case T” is not entirely contained in 2, we need to project those parts of 7" and of the bound-
ary S/ onto M. Since we assumed r < %ro, the Lipschitz constant of the projection can be
estimated by 14 4., i.e. our analysis and in particular (55) holds true if we replace M(S].) by

(1+45)M(S;). Tog%ther with Lemma 6.2, (55) allows us to apply Theorem 3.8 in [53] which gives

the C'1'/2—regularity and the decomposition of supp (S) into a finite union of curves, possibly
meeting at triple points. Finally, since our flat chains take values only in 71 (N) = {0, 1}, we can
exclude the existence of triple points since they would create boundary. Hence, S is a union of
curves. O

M(S,) < (1+ r> M(S") . (55)

The regularity of S in Lemma 6.3 is not optimal. The following Lemma provides us with the
smoothness we announced in Proposition 6.1:

Lemma 6.4. The flat chain S is supported on a finite union of closed C1'' —curves. In particular,
the curvature of S is bounded.

Proof. Let xy € supp (S) and take r > 0 such that B,(xg) C Q and ps(0Br(z9)) = 2. Let
{z1,22} = supp (S) NIB,(x) and define S, := SL B,(xp). We compare S, (and T'L B, (zo))
to two competitors.

The first one is the geodesic segment S, joining x; and z2 in 0B, (x¢). For the corresponding
T, we use a piece of 0B, (x¢) between T'L (0B, (x¢)) and Sy. By minimality of S, we find

BM(S,) < 2mr(B+4(n+ 1)r) . (56)

Our second competitor is the flat chain supported on the straight line segment joining x; to
xo which we call S’. Then S’ + S, is supported in B,(x¢) and is closed, i.e. (S’ + S,.) = 0. By
the construction (7.6) in [26], we get the existence of a flat chain 77 € F? supported in Q and
a constant b > 0 (depending only on the dimensions of the flat chains and the ambient space)
such that OT" = S’ + S, and M(T") < b(M(S’) + M(S,.))2. Since x¢ € supp (S) it also holds that
M(S,) > 2r. This, together with the minimality of S, and (56) implies that

261 < BM(S,) < BM(S’) + b(n + 1)(M(S') + M(S,))?
< BM(S') +b(n+1) (M(S’) P (1 + 4(”“)7«)) (57)

B
< AM(S") + Crr?,

for C; = 2(2 + 27)2b(n + 1) and r small enough. Hence, (57) implies (2 — (C1/8)r)r < M(S").
If we now choose r even smaller to assure r < r; := (C1)7'3, one gets even M(S’) > r, i.e. the
points 1 and x2 must not be too close.

Our goal is now to show that S, is in fact close to S” and that S’ is almost a diameter of B,.(zg),
in the sense that S, lies in a small neighbourhood of S’ and the distance between zy and S’ is
of order r2. Let’s denote £ := M(S’) = |z — 21|. Suppose M(S,) < £+ « for a a > 0 and let
p > 0 be the smallest positive number such that S, lies within a p—neighbourhood of S’. Then,
M(S,.) > /2 + 4p? and hence (2 + 4p? < M(S,.) < (¢ + a)? which yields the bound

é 2
p <5+ < Vra, (58)

provided a < 4r and ¢ < 2r. Applying this result to our case where o = 87 1C17r2, we get S, is
contained in a neighbourhood of S’ of radius p < /28~ 1Cyr3.

In addition, if S, is supported in a p—cylinder around S’, there exists a T}, € F? and a constant
¢ (depending only on the space dimension) such that M(7,) < ¢pM(S,) and 07, = S" + S,. This

25



implies that M(S,) < ¢+ B71(n + 1)cpM(S,). Previously, we have also shown that M(S,) <
04+ B71Cir% < 3r, leading to

n+1

M(S,) < €4 Copr, where Cy =3¢ (59)

Now, we want to iterate this procedure. Let ag := B~1C17? as start of our induction.

1. Knowing that M(S,) < €+ oy, (either by (57) or by induction hypothesis) and by (58) we
can deduce that S, lies in a pp—neighbourhood of ', for pr, = v/2ray,.

2. Since S, lies in a pp—neighbourhood of S’, one can use (59) with p = p; to obtain M(S,) <
{4 ajy1, where ag1 = Corpy.

Throughout this iteration, oy and py verify pgi1 = v/2ragr1 = +/2C2pg r. Thus, pi, converges to
2C5r? in the limit k& — oco. We can conclude that the distance between a point in S, and S’ is
at most 2Cyr2. In particular, since xo € supp (S,), it holds that dist(xo,supp (S’)) is of order 72
which shows that the line S’ is close to being a diameter.

Let us turn now to the assertion of the lemma. For z¢ € supp (S) and r > 0 chosen small
enough, we denote 7.(x¢) the vector ﬁ, where x1,xo are constructed as before. By our
previous calculations, we know that the corresponding points for § are at most at distance 20572
from the line connecting z; and z2 which gives ||7,.(zo) — 7z (x0)|| < C3r. This shows that the limit
7(x0) = lim, o 7-(20) exists and that ||7,.(z¢) —7(zo)|| < 2C5r. The triangle inequality then yields
the existence of another constant Cy > 0, depending on 8 and n, such that for x,y € supp (S) with

| — y| =: r small enough we have ||7(z) — 7(y)|| < Cyr.

O

Having reached the optimal regularity for S, we now turn to the properties of T'.

Lemma 6.5. The flat chain T is supported on a hypersurface of class C' up to the boundary.

Proof. We first discuss the regularity in the interior of T'L Q. Let zg € €, r > 0 such that
B,.(z9) Nsupp (T Q) # 0 and consider a variation 7" of T in B,.(zp). Then, by minimality of T'
we find

4
M(T) < M(T') + nF(T -T') < M(T') + gﬂnr?’.
We can then apply the result of Taylor [68], or more general Theorem 1.15 in [19] to obtain
Y@ —regularity in €2, for some o > 0.

For the regularity up to the boundary we want to apply Theorem 31.1 in [20]. In order to do
this we need to show that on a certain scale, the boundary S is close to a straight line and T is
almost flat.

Take a point of rectifiability ¢y € S. We define a blow-up sequence 7 N\, 0. Since S is supported
by C1:! —curves, a blow up of S converges to a straight line. We claim that a blow up of T converges
to a limit Ty which is a half plane. For this, we use the minimality of T" to deduce for > 0 small
enough that

M(T L By(xo)) +28r < M(TL B,(x0)) + BM((0T) L B,(z0))
M(cone(T L 9B, (z0))) + SM(cone((0T) L 0B, (x0)))

SM(TL OB, (20)) + Br((OT) L OB, (0))

IAIA

IN

gM(TI_éBT(xO)) +28r.

This implies that M(T L B,.(z0))/r? is monotonically increasing and thus admits a unique limit
d. We define T,, = (T — o)/ and by monotonicity we get for s; < sy that M(T,, L By,)/s? <
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M(T;, L Bs,)/s%. For 7. — 0 both sides converge to the same limit 7d. But this means that
M(ToL Bs,)/s? = M(Ty L Bs,)/s3 , i.e. Tp is a cone and hence a half-plane. Since a half plane has
density %, we find d = . In particular, we have for k large enough

5.
T, —
M(k%L&)_
Tk

from which it follows that condition (31.6) in [20] holds and thus we can apply Theorem 31.1 on a
length scale R < r. We remark that by convergence in the flat norm, following [48], we also verify
the condition (31.4) of Theorem 31.1 in [20]. By compactness of the boundary (0T") L 2, we find
a finite cover with balls of uniformly positive radius to which we can apply Theorem 31.1. This
allows us to conclude. O

Proof of Proposition 6.1. We have already established the existence of a minimizer of (54). The
convergence F(T,, — Ty) — 0 for n — oo is obvious since n F(T,, — Tp) < Ey(Th) < oo for all n € N.

The regularity of T, follows from Lemma 6.4 and Lemma 6.5. O

6.2 Construction of the recovery sequence

In this section we will use the approximation of T given by the minimizer of (54) to construct our
recovery sequence. First we establish the following Proposition which yields additional control over
O(TL M)\ 9T and its boundary which will be necessary for the final construction in Proposition
6.9.

Proposition 6.6. Let T C Q be a flat 2—chain of finite mass and S C Q be a flat 1—chain of
finite mass such that S = 0 and OT = S +T. Then, there exist finite mass flat chains T,, € F?
of class Lip up to the boundary and S, € F' of class C*' such that

1. 39S, =0 and 0T, = S, + T,
2. F(T,, —T) =0 and E(T,) — E(T) as n — oo,

3. and there exists a constant Cp, > 0 such that M(0(T,, L M) \ 9T},) < C,, and M(9(0(T,, L
M)\ 9Ty)) < Ch.

Essentially, the first two parts of Proposition are proved by Proposition 6.1, saying that the
minimizer T;, of (54) fulfils our claims. It remains to prove the last assertion i.e. that we can modify
T, to control the length of the set where the T,, attaches to M. For this, we need the following
average argument stating that we can find radii r such that the corresponding sets 7, L M,., for
M, = {z e Q : dist(z, M) = r}, are of finite length.

Lemma 6.7. Let T,, be as constructed in the previous subsection. There exist a constant ¢ > 0
and a radius r € (0, 31¢) such that

4¢M(T,)

M(T,,LM,) <
Io

(60)
Proof. Assume that M(T,,L M,) > %E)T") for all r € (0, 4r) and some ¢ > 0. This implies

ro/2
/ pr, (My) dr > 2¢M(T,) .
0

Now, there exists a constant ¢ > 0 such that fOrO/Q pr, (M) dr < eM(T,,) (see (5.7) in [26]).

Hence, the lemma is proved. O

Now, we can modify T, by replacing a small part close to M by a projection to control the
boundary of T,, L M which is not included in S.
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Proof of Proposition 6.6. We construct T;, as in Proposition 6.1. To ensure the additional estimate,
we choose a radius r and a slice M,. as in Lemma 6.7. With the same argument as in Lemma 6.7 for
Sy, one can choose r € (0, 31¢) for which additionally M(S,LM,) is finite. Let IT : Qy, — M be the
projection onto M. We define ® : M,. x [0,1] — Q by ®(x,t) := (1 —t)x+tIlz. Then, by [25, Sec.
2.7], [24, Cor. 2.10.11], M(®4(T,,L M, x [0,1])) < CrM(T,, L M,) and also M(IL(T,, L M,.)) <
CM(T,,_M,). Again by the same argument, we get M(1L (T}, LM,)) < CM((T,,LLM.,.)). This
procedure can be applied to almost every r € (0, %ro), in particular, we can choose a sequence
r, — 0 as n — oo. Replacing T}, close to M with these projections, we get the desired estimates.

The convergence of the energy & (T},) to E(T) is a consequence of the convergence statements
in Proposition 6.1 and the fact that T,, L M approaches T'L_ M. O

The recovery sequence @, ¢ for our problem will be constructed around the regularized sequence
of T'. The gained regularity permits us to define @, ¢ directly and without the need to write T" as
a complex and ’glue’ together the parts of (), ¢ on each simplex.

Before starting, we need one final ingredient as stated in the following lemma stating that the
normal field on M can be extended to €. It will be used to fix choices of orientation consistently
across 2. The only crucial point is that the gradient of the extension must be bounded in order
for our estimates to work out.

Lemma 6.8. Let M be a closed compact manifold of class C1'. Then, there exists a Lipschitz
continuation v of the outward normal field v on M to Q with the same Lipschitz constant.

Proof. Since M € CY!, the outward normal v is Lipschitz continuous. Then, the existence of a
Lipschitz extension with the same Lipschitz constant is a direct consequence from Kirszbraum’s
theorem [39] (see also Theorem 7.2 in [45] or in full generality Theorem 1.31 in [63]). O

Proposition 6.9. There exists a recovery sequence Qy ¢ for the problem (19).

The construction relies on the approximation and regularisation made in the previous subsec-
tion. We will construct @), ¢ step by step: The straightforward parts are the profile on £ and
M\ F away from OF, as well as the transition across T. In order to be compatible with the latter,
we have to adjust the construction made in [4] for the singular line S. The profile of the part of
S that approaches the surface M can be chosen as in [4]. Last, we need to connect OF \ S to the
profile of T already constructed. This last part is a bit subtle since the 9F \ S does not appear in
the energy. The control we obtained in Proposition 6.6 is artificial and indeed we do not control
the length of OF \ S. Hence, we will choose n depending on 7, £ in a way to allow this length to
slowly grow to infinity while the energy contribution of @, ¢ in this region vanishes.

Proof. From now on we choose n depending on &, 71 such that M(9(T,, L M)), M(9(d(T;, L M) \
0T,)) < C|In(n)| and that the curvature of S, is bounded by C/,/7. Indeed, if the constant C,,
in Proposition 6.6 is bounded in n, then for n small enough this condition is trivial. If C),, — oo
for n — oo (choosing a subsequence we can furthermore assume that C,,  o0), we can define
n(n) = sup{m e N : C,,, < —In(n)}. Since —In(n) — oo for n — 0, it also holds that n(n) — oo
and the bound M(9(T, () L M)), M(0(O(T}, ) L M) \ 0T;,(,)) < C|1n(n)| holds.

Furthermore, whenever this doesn’t lead to confusion, we drop the subscript parameters 7, £
and n in order to make the construction more readable.

Step 1: Adaptation of the optimal profile. The goal of this step is to construct a one dimensional
profile close to the optimal one in Lemma 5.2, but where the transition takes place on a finite length
and which gives the correct energy density (42) for n — 0. To this goal, we introduce the "artificial"
length scale 07 for v € (%, 1) and define

s.(n*(t/n,0) @ n*(t/n,0) — 11d) te[0,n7],
O, (t,0,0) = < s.(nF(n7/n,0) @nF (7 /n,0) — Hd)(2n —t) + (t —1") Qe t € (n7,20"]
(3777 - t)Qoo + (t - 277W)Q77,E,oo te (277V7 3777

I
(61)
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with n* = (1/1 — n3(v1, v2), £n3), where n3(t, 0) is the optimal profile from (41) and (vy,vs) € S*.
The choice of 77 permits us to conclude that n*(n?/n) — +es for n — co. On the other hand, "
is large enough to verify (17)?/n — 0 which ensures that undesired energy contributions vanish,
as we will see in the following steps.

Step 2: Construction on F and F°. Let w € F3,y = {w € F : dist(w,0F) > 3n"} C M and
let 0 <r<3n” < %ro. We define

Que(w+rv(w)) = &1 (r,0,v(z)) where § = arccos(v(w) - e3). (62)

Since |Vv| is bounded, one can then easily calculate

3n” 2
1 Ene(Qngs Fonpany) = /F / ( VQnel® + e L1 (Que) + g(Qns +7700> [0+ rss) dr dw
3nY i=1

2

[ [ (B0 + bo@0) TTa+ e dr s 0

=1

/ I <O U cos(&),—l—l) dw +0(1),
Fyy n

where Fy,v g i={z € Q : v =w+1rv(w), w € Fav, 7 € [0, R]} for R > 0. Note that % — oo for
1n — 0 since we chose v € (%, 1). Analogously, we can define ), ¢ on F° away from OF by using
®~ and estimate its energy. Note that this construction may already create the part of T that
attaches to the surface M in the limit 7, — 0. Indeed, if a point w is contained in F' although the
energy density corresponding to F'¢ would be lower, the profile constructed passes trough ng = 0
within a distance 1 from M and hence is included in the limiting 7.

IN

IN

Step 3: Construction on T. Let z € T,, := {x € supp (T) : dist(z, M) > 3n” and dist(x, S) >
3n7}. For each connected component of T' (and thus of T},) we can associate a sign depending on
the sign of the degree of the singularity line S (if the component of T" has such). This must be
compatible with the part of T that reaches M and already has been constructed in Step 2. The
compatibility corresponds to the choice of the signs of ¢,jf and of the distance function, viewing T},
as a boundary, locally. Assuming that in Step 2 we chose <I>; whenever dist(-, T;) > 0 and @, for
dist(-, T},;) < 0, we define

Quen(®) = @ (dist(e.T). 5. v(x)).

Since |Vv| is bounded, and writing 7, ; = {z € Q : dist(z,T),) = dist(z,T) and dist(z, T;,) < t}
for ¢ > 0 we can estimate by Lemma (5.2) and the coarea formula

/T g £ ggf(Qnsn)Jr g(ann)+nCodx

IN

| 3I9Quen P+ £0(@ue) o +Cn1a(T)

n,nY

= 25,04 / |nf (dist(x, T},) /n)| dz + Cn M(T)
T,

n,nY

n?
- e / / I3 (s/n)| ds + o(1)
0 Ty, ny N{dist(-,T)=s}

= e / " HE(T, o 0 {dist(- T) = s}l (s/n)] ds + o(1)
0

9., (2M(T) +0(1))/0 I, (/)| ds + o(1)
= 4s.cinz(n?/n)| M(T) + o(1),

IN
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where we also used that H?(T,,,» N {dist(-,T) = s}) — 2M(T) for s — 0. Note that |n3(t)| — 1 as
t — oco. Hence, for n,£ — 0 we end up with

limsup/ g\VQnyg,nPJr L
T

1,§—0 n,3n7Y 52
< 4s.e.M(T5,) .

1
f(Qn,E,n) + 59(Qn,£7n) +nCo dz

Step 4: Construction on S|_€2. Following the notation we used in Step 2 and 3, we introduce
the region

Sgpy = {z € Q : Jy € T with dist(y, S) < 3n” and dist(z,T) = ||z —y|| <317} (63)

around the singular line S (see also Figure 5). We will construct @, ¢, as follows: Depending
on the sign attributed to the connected component of 7" in Step 3 or the change between F' and
F¢ in Step 2, we place a singularity of degree —% (resp. %) as in Lemma 5.2 in [4] in the center
of S3,v. We do so by setting @ = 0 in a disk of radius £ (perpendicular to S) and @ uniaxial
with director field (sin(¢/2),0,cos(¢/2)) on the annulus between the radii 2§ and 7, interpolating
linearly in radial direction between these two regions. From the circle of radius 7 to the boundary
of the region (63), we use the profile <I>$ to make a transition to (), along Vdist(-, 7). By doing

so, we get the compatibility between the construction made for T and S.

More precisely, we define as in [4](Lemma 5.2, Step 3, Equation (55))

0 r€0,8),
Qs(r0) == { (£-1)Q0) rele29),
Q(¢) re[26m),
where r € [0,7), ¢ € [0,27) and
sin(¢/2)
Q) = s. (n(¢) @n(@) - ;Id> with n(@) = (0
cos(¢/2)

We use this to define @, ¢ on a small n—neighbourhood of S as follows. For 1 small enough, we can
assume that the n—neighbourhood is parametrized by the projection onto S, the radius dist(-,S)
and an angle ¢.

Modifying T close to S if necessary, we can furthermore assume that on each (small) plane disk
perpendicular to S, the restriction of T to this disk is given by a straight line segment. Indeed, as
in Lemma 6.7 we can select a radius r € (1,2n) and a slice T;. of T' at dist(-, S) = r such that T, is

of finite length. One can then replace T" by a 7' inside the tubular neighbourhood {dist(z, S) < r}
where T is defined by the straight lines connecting S to 7). on each disk perpendicular to S.

Consider xg € S. By applying rotations if necessary, we can assume that a normal vector of T;,
in xg is v = ez and the outward normal vector of S seen as boundary of T verifies vg = e;. We
then set

Qnen(z) = Qp(dist(z,S), d(x)),

where
T— : r—T
o(z) arccos (VS . |‘w7wg|‘) if vy - m >0,
€Tr) =
27 — arccos | vg - ”i%igu) otherwise.

Note that if ¢(z) € (3, 2F), then dist(z, T) < dist(z, S) and thus we can also write

2
B dist(z, T ™
¢(I) = arccos <dlst(m) —+ 5 .
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It remains the transition from the set {dist(-,S) = n} to the boundary of (63). Let II be
the projection along Vdist(-,T) onto {dist(-,.S) = n} U (T N {dist(-,S) > n}). The function
Qn.¢ is already defined on the first set in the union, for the second we simply pose Q,¢(z) =
5+((v(x),0) ® (v(z),0) — 3Id) in order to be compatible with Step 3. For z € Ss,+ \ ({dist(-, S) <
n} U (T N{dist(-,S) > n})) we then define

Que(x) = @ (e -1z, 0(),v(z)),
where 6(z) is the angle between es and the director field that we have already constructed in Ilz,
i.e. O(x) = arccos(n(é(z)) - e3) or (x) = arccos(v(Ilz) - e3) depending on which set contains Ilz.

It is easy to see that since f, g and Cy are uniformly bounded and the curvature of S is bounded
by Lemma 6.4, we get

/g'vQﬁ,fyTIlQ + %f(@n,f,n) + %Q(Qn’£7n) + 7700 dx
n [ , . | . |
< 2/25 /{dist(~,5)=r} IVQ(¢(x))|” dr + C?H ({dist(-, 9) < 2¢}) + C?’H ({dist(-, S) < n})
n (" ,
2 \ dr + Cn(1+ Kg)M(S).
- 2/25 /{dist(~,s)—r}| Qe@)F dr + Cn(l + Kg) M(5)

Estimating the gradient at distance r := dist(-, S) € [2£,n) yields

2 2
SIVQ@@)I = 2Vn@@)P < =

" oun(0(e) Vo)

r

2
Sy
+ Z|8rn(x)\2 + C(|V7s]? + |Vus|?)

2

S*
2 (1+Cr)+C.

IN

Hence, we get

s

ﬂ ! 2 s "1
2/25 /{dist(_)s)_T}IVQ@(m))l dr < =-M(S) /25 ~dr+o(1)
< %sim In(&)M(S) + o(1) .

A

For the remaining part of the domain defined in (63) we get that

2+

1 1 (n)?
Eﬁf(@n,é,n) + ?Q(Qn,ﬁ,n) +Codz < Cn 2 M(S) + o(1).
1

Since we chose v > 5, we get that 7
the limit.

1
77/§|in,§,71

2y=1 5 0 as n — 0 and the energy contribution vanishes in
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TLO

Figure 4: Schematic view of the different parts of 7" and S that are constructed in Step 2 to 6

Qmé,oo

Figure 5: Sketch of the construction for @, ¢, in Step 5 in the region Ss,» defined in (63) (grey

shaded area). Dashed lines indicate the direction of the projection II.
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Step 5: Construction on SL M. The domain
S0,y = {z € Q : dist(x, S) <317, dist(xz, M) < 3n” and dist(z, (T L M)\ oT)) > 31"}

can essentially be treated in the same manner as in Step 4 or as in [4, p.1444, Step 3|. To give some
more details, we can reuse the profile @ from the previous step (assuming a +%—singularity) for
defining @), ¢ in a ball of radius 7 centered in zg in the middle of Sy 3,-, seen as family of plane
sets perpendicular to S. Note that @, ¢ has already been defined on the boundary on each of those
plane sets. Thus, a simple two dimensional interpolation of the phase angle along Vdist(-, zg) as
in [4, eq (56-64)] shows that the energy contribution is

(n")?

U

Ene(Qnes Soar) < (14O T2 m(OM(SLM) +C

Step 6: Construction on OF \ S. It remains to fill the "gaps" left by the Steps 2 to 5. The
important part is the transition between the part of T' that approaches M (and which was con-
structed in Step 2) and the part that stays bounded away, including the region where S detaches
from M. At distance larger than 37" from M, we set Q¢ = Q¢ for all points where we
haven’t defined @, ¢ so far. Note that this is compatible with the previous constructions.

Let’s consider the set Y3,y = {z € Q : dist(z,)(TLM)\9T) < 3" and dist(z, d(O(TLM)\
0T)) > 3n7}. Considering the slices of T3, orthogonal to and parametrized by 0(T'L..M), we note
that Steps 2 to 5 ensure that Q,, ¢ takes values in A whenever meeting the boundary of the slice and
Qy,¢ having trivial homotopy class. For an arbitrary @ € N, we can define @, ¢ := @ on a disk of
size 1 in the middle of the slice and again by linear interpolation of the phase towards the boundary
of the disk. We thus get a function Q, ¢ € H' (Y 3,7,N) respecting the previous constructions
and Q = @ on M. Furthermore, the interpolation allows us to estimate |[VQ|? < C((n7) 2 +n72)
and since g is bounded, f(Q) = 0 (because @ takes values in /) the energy contribution can be
estimated

7781775(@7 T0,3777)

IN

1 1
1 ool (G 1)

O M(O(TL M)\ aT) (n+ (";)2 +n<m>2) ,

IN

which vanishes in the limit 1, — 0 due to our hypothesis about the size of (T'L M) \ 9T

It remains the region where S detaches from M or in other words Yi3,» = {z € Q
dist(z, 0(0(TL M)\ S)) < 3n7}. We can also use interpolation to construct @, ¢ and estimate its
energy but we need to be a bit more careful since this time f(Q,,¢) cannot be chosen to be zero.
This is due to the isotropic core of our construction around S. So we connect the ’core’ parts from
Step 4 and 5 where we defined S in 2 and close to M that is the profile Q5 which has been used
in both steps. Around this tube, we can again apply the previous idea of linear interpolation of
the phase, this time on slices perpendicular to the tube. We end up with

Ene(Qne; Tranr) < C'M(A(O(TL M)\ IT)),
which vanishes in the limit 7 — 0 in view of the bound M(9(O(T' - M)\ 9T)) < C|1lun(n)|. O

7 Regularity and optimality conditions for the limit problem

Let us first state an improved regularity results for minimizers of the energy &:

Proposition 7.1. Let T be a minimizer of (14) and S = 0T —T'. Then each component of T
is an embedded manifold-with-boundary of class C*°.

Proof. The main work has been already carried out in the proof of Proposition 6.1 for n = 0.
The higher regularity can be obtained by Schauder theory. For details we refer to Theorem 2.1
in [54]. O
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Next, we give a characterization of minimizers of the limit energy. Because of the regularity
given by Proposition 7.1, we can take variations of T'L. 2 and S in the classical sense to derive
the optimality conditions. Furthermore, we can obtain a version of Young’s law [58, 69]

Proposition 7.2. Let T be a minimizer of (14) and S = 0T —T'. Then T L Q has zero mean
curvature and S L Q is of constant curvature %z—*ﬁ’l. Furthermore, Young’s law holds

va(rnQ) - Vor+ = Um-e3 on d(TLQ)\ S,

i.e. T meets M in an angle 6 = arccos(vpq - €3).

Proof. The first claim is a well known fact since the variation of M(T' Q) along a smooth vector
field = in Q yields [44, Proposition 2.1.3]

(M(TLQ))/(E) = o HT(E . VT) de + /a(TmQ)(E . VBT) dLL', (64)

where Hrp is the mean curvature of 7', v is a normal vector of T' and vgr is the inward normal
vector of 9(TL ) in the tangent space of T. With the same argument and since 95 = 0, we get
that

(M(9))'(5) = /S Ks(E-vs) de, (65)

where Kg is the curvature of S and vg is the normal vector of S in R?, such that the plane for
the circle of maximal curvature is spanned by vg and a tangent vector to S. This yields for the
boundary that

0 = /E (4s*c*uaT+gsfﬂKgus) dz,
s

from which we deduce vor = +rvg and Kg = :I:%;‘—:,B_l. In particular, the circle of maximal
curvature for S lies in the plane spanned by the tangent space of T'. Finally, taking variations on
M we get

</Fil:FCOS(9) dw>/(E) = /Wi (15 cos(0)) (B - vgps) dw.

Since vgp- = —vgp-, we hence get

(/F+ 1 —cos(6) dw—l—/_ 1+ cos(6) dw)/(E) = —/6F+ 2¢c0s(0) (2 - vgp+) dw. (66)

As in the proof of Theorem 19.8 in [45], (64) and (66) combine to

0 = / = - (4sscevr|pm — dswcs cos(0)vgp+) d.
dF+
If we take a variation with = - vy = 0 and write
= - VT|M = =- ((V(?T . V8F+>V8F+) + =- ((VT|M . T)T)
where 7 is a unit tangent vector to M, perpendicular to vyr+, we get
E-(wor-m)t) =0 and Vor - Vop+ = cos(f).

The first equality is automatically true since vgr - 7 = 0 (vgr can only have a component in
direction vgp+ and one in direction va) and the second one implies that

Vor " Vor+ = VM - €3.
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A The complex T

In this section, we collect and prove all results in connection to the structure of 7 as defined in
Section 4.3. Recall that

T :={Q€Symy : s>0,0<r<1,n3=0}.

Our first result is a characterization of 7 that provides us with a more accessible parametriza-
tion.
Proposition A.1. Every matriz QQ € T can be written as

Q=Xn®n-RIMR,),

where A > 0, n = (ny,n2,0) € S?, Ry, is the rotation around n A ez, such that Ron = e3 and

0

!

M:M 0
00 O

with M' € R?*% symmetric, tr(M') = 1 and (M'v,v) > —1 for all v € S'. The matriz Q is
uniazial if and only if M’ = £1d.

Proof. A matrix Q of the above form Q = A(n ® n — R} M R,,) has n as an eigenvector to the
eigenvalue A and ng = 0 by definition. Furthermore, since min, cg1 (M'v,v) > —1 the eigenvalue A
is strictly bigger than the other eigenvalues, thus » < 1 and @ € 7. Conversly, we can write every
Q@ € Sym, as

Q = A\n®n+m@m+A3p@p,

with Ay > Ay > A3 and n,m,p € S? pairwise orthogonal eigenvectors of Q to A, A2, A\3. By
definition of 7, n3 = 0 as required for our parametrization and clearly we can identify A = A;.
Setting M = —Rn(32m ® m + ;\—i’p ® p)R,., it is obvious that M is of the above form and that

A1 n’
Q € T can be written as claimed.

If M’ = LId then
3 1
Q = \n®n-R/MR,) = 5A(n®n—§ld),

i.e. @ is uniaxial. The reversed implication follows similarly, since the matrices R, R, are
invertible.

O

Remark A.2. Given a vector u € R® as awis of rotation and an angle 0, then this rotation is
described by the matriz R with

cos 0 + u?(1 — cos ) ujug(l — cosf) —ussin®  ujus(l — cosf) + ug sin b
R = | uwiu2(1 — cos ) + ugsind cos 0 + u3(1 — cos ) uguz(1l — cos @) — up sin @
uruz(l —cos @) — ugsinf  wuguz(l — cos ) + uq sin 6 cos ) + uZ(1 — cos )

Corollary A.3. T is a four dimensional smooth complex and 0T = S.

Proof. From the characterization in Proposition A.l, it is clear that one can use the map @ —
(A\,n,m11,m12) to make T a four dimensional manifold with a conical singularity in @ = 0. In
particular, 7 is a smooth complex.

Proposition A.1 furthermore implies that the boundary of 7 consists of matrices of the form
A = 0 (from which follows directly @ = 0) or M’ has the eigenvalue —1 (which corresponds to
r = 1). In particular, the matrices with » = 0 are not included in 97 as one may think from
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the definition in (31). This implies the inclusion 97 C S. For the inverse inclusion, take Q € S
with orthogonal eigenvectors m,p € S? associated to the biggest eigenvalue A\; = Xo. So in
fact we have a two dimensional subspace of eigenvectors to this eigenvalue spanned by m and p.
Since the hyperplane defined through {n3 = 0} is of codimension one, there exists a unit vector
n € {n3 = 0} Nspan{m, p} which we were looking for. The unit eigenvector orthogonal to n in the
plane span{m, p} requires M’ to have the eigenvalue —1 or in other words min,eg: (M'v,v) = —1,
so that Q € 0T O

Lemma A.4. Let Q € T NN. Then, the normal vector Ng on T at Q is given by

3 0 0 n
NQ = 5)\ 0 0 na,
ny nNng 0

where n = (ny,n2,0) € S? is the eigenvector associated to the biggest eigenvalue \;.

Proof. We are going to prove a slightly more general result by first considering @ € 7 and calcu-
lating the tangent vectors to 7 in (). We use the representation from Proposition A.1 and vary
A,n,mq1, mi2 one after another.

e First, we can easily take the derivative with respect to A and obtain T; = (n®n— R M Ry,).

e Second, we vary the parameter n. So, let’s consider n = (n1,n2,0) € S2. Without loss of
generality we assume that ny # 0 and write n(t) = (n1+t,n2 — 11t). Then |n(t)]* = 1+0(t?)
and

0
n(t) @n(t) = n@n+tDagn + O(?), Dngn = | py — it —2n1 O
0

The derivative of the second term RI(t)MRn(t) can be calculated using Remark A.2 with the

axis nt(¢) = n(t) A es. Since n(t) L ez we can write
—2n1ng —n% + n% —No
Rywy = Ra+tDp, +0(t?), Dp,=—|-n}+n? 2mny m
"2 ng —nq 0

The second tangent vector Ty is thus given by Ta = A(Dngn — D MRy — R MDg,,).

e Third, we can take the derivative with respect to my;. This is straightforward and we obtain

1 0
Ts=AR! |0 -1 Ry .
0
e Last, varying mqo we easily calculate
0 1
Ty=AMR. |1 0 Rn.
0

Before proceeding, we want to calculate a fifth vector by varying nz. As it will turn out later, this
is indeed the normal vector.

e Writing once again n = (ny,n,0) and defining n(t) = (n1v1—12,n2v/1 — t2,t) we can
express

n(t)®@n(t) = n®@n+t(n®@es+e3®@n)+O(t?).
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As for the second tangent vector, we use Remark A.2 and the rotation around nt(t) =
n(t) A es. Unlike previously, n(t) is no longer orthogonal to es for ¢ # 0, namely 6 =
arccos({n(t), es)) = t. Substituting this our expression of the rotation matrix we get

1— n% ning 0
Rn(t) = R, +tDs+ O(tQ) , Ds=1[ nny 1-— n% 0
0 0 1

Adding the two partial results, we get

N = \n®e3;+e3®n—D; MR, — R\ MD3).

It remains to show that {T1, T3, T3, T4, N} are pairwise orthogonal if @ is uniaxial. Indeed, then
it follows that IV is a normal vector, since it is orthogonal to Tg7T.

It is easy to see that since the trace is invariant by change of basis and since R, = R;!

mas () 2@ ) (4 ) o

Noting that n ® nR! M R, = 0 for M € Sym,, with m;; =0if i =3 or j = 3, we get

1 0
(T, T;) = Atr((n@gn—RIMRn)(RI 0 -1 Rn))
0
1 0 mi1 —Mi2
= /\tI‘(M 0 -1 ) = )\tI‘( mi2 —1MmM9o2 ) = )\(2m11—1).
0 0
With the same argument we also find
0 1
(T1,Ty) = Atr((n@@n—RIMRn)(RI 10 Rn))
0
01 mi2 M1
= )\U‘(M 1 0 ) = )\tI‘( Mmoo 112 ) = 2/\m12.
0 0

Furthermore, we claim that
(T1,T2) = Ar((n®n — R, MRy)(Dngn — Djy MR, — Ry MDg,)) = 0.
Indeed, one can check that

tr(n @ nDypgn) = 0 = tr(n®nD£nMRn),
tr(n@nR] MDpg,) = 0 = tr(R) MRuDnen),
tr(Ry MRyD}j, MR,) = 0 = tr(RyMRyR,MDp,).

This implies that

1 0
(N,Ts) = )\2tr((n®e3+e3®n—D;MRn—RIMDg)(RI 0 -1 Rn)> -0,

since again the traces of all cross terms vanish. Similarly,
(N,T4) = 0.
Next, we have the equality

(Ty,T3) = —4x2"12
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This follows since tr(DpgnT3) = 0 and tr(DsMR,T3) = 27;212. The latter fact is evident if one

1 0 mi1 —Mi2 0 —1/n2 1
calculates M [0 -1 = mia —May and RoDy = |1/ny 0 —ny/ng
0 0 -1 nl/ng 0
This also permits us to derive
(T, Ty) = 2221
n2

Again, we simply calculate the traces of all cross terms. For example
tr(n ® e3Dpgn) = 0,
tr(n® e3R. MDg,) = 0,

tr(n®esD} MRy) = —2(n? —n2) —ny(2may — 1),
n ng

min 1

tr(Df, MRnDngn) = 2——2 + —(n2(2myy — 1) +mu1),
o ny
T T nimi2 1 2 2 2
tr(Dp, MRy Ry MDp,) = —2 T T2 (3(miy +miy) — (L +nf)(2mir — 1))
2

2
tr(Df, MRyDj MRy,) = 2w7

n3
We end up with
6A2m12(n? —n3)

<N7 T2> = — 6)\2711(277111 — 1) .
no

Another straightforward calculation shows that
<N, T1> = /\anmlg(n‘;’mlg — 27141171277?,11 — 2n‘?m12 — 271%71377111 —+ 371%71277?,11
— 2n§n2 — nlnémlg + nimis + n‘gmn — NoMmi1 — 2n§ + 2n,) .

After these calculations, it is apparent that for Q € N, i.e. M’ = %Id all inner products vanish.
In order to form a basis, we must prove that the vectors themselves never vanish. We find

HT1||2 = 2(”‘%1 —myy +mi2 + 1),
2

HT2||2 = ?(671%(1 —2my1) — 6mianing + 5m§1 —2mq1 + 5mis + 2),
2

IT3]> = 2A%,

IT4l> = 227,

HNH2 = )\2(12m11nf - Gn% + 12mianing + Zm% —8my; + 2m?2 +8),

and thus for M’ = 21d it holds that | T1||> = &, | T2[? = $A2n;? and | N[> = 222
This concludes the proof that {T1, T3, T3, T4} form indeed a basis of T 7T, and since N is
orthogonal to T() 7, the result follows. O

Proposition A.5. There exists C, oy > 0 such that for all a € (0,a9) and Q € N it holds
HYB.(Q)NT) < Ca®.

Proof. As seen before, T has the structure of a smooth manifold around A. By invariance of A/
under rotations, it is enough to show that the claim holds around one Q € N. The Ricci curvature
k of N is bounded so that we can choose ap > 0 small enough such that B,(Q) N T is contained
in the geodesic ball in T of size 2« around @ for all a € (0, «p). Furthermore, if needed, we can

choose ag > 0 even smaller such that 1 — 5z% < 2. Theorem 3.1 in [29] then implies that
0

H (B.(Q)NT) < volr(B2a(Q)) < 1672,
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