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Abstract	

In	behavior,	action	and	perception	are	inherently	interdependent.	Yet,	the	actual	mechanis-
tic	 contributions	 of	 the	 motor	 system	 to	 sensory	 processing	 are	 unknown.	 We	 present	
neurophysiological	evidence	that	the	motor	system	is	involved	in	predictive	timing	–	a	brain	
function	 that	aligns	 temporal	 fluctuations	of	attention	with	 the	 timing	of	events	 in	a	 task-
relevant	 stream,	 thus	 facilitating	 sensory	 selection	 and	 optimizing	 behavior.	 In	 a	 magne-
toencephalography	 experiment	 involving	 auditory	 temporal	 attention,	 participants	 had	 to	
disentangle	 two	 streams	of	 sound	on	 the	unique	basis	 of	 endogenous	 temporal	 cues.	We	
show	 that	 temporal	 predictions	 are	 encoded	 by	 interdependent	 delta	 and	 beta	 neural	
oscillations	 originating	 from	 the	 left	 sensorimotor	 cortex,	 and	 directed	 toward	 auditory	
regions.	We	also	 found	 that	overt	 rhythmic	movements	 improved	 the	quality	of	 temporal	
predictions	 and	 sharpened	 the	 temporal	 selection	 of	 relevant	 auditory	 information.	 This	
latter	behavioral	and	functional	benefit	was	associated	with	increased	signaling	of	temporal	
predictions	in	right-lateralized	fronto-parietal	associative	regions.	In	sum,	this	study	points	at	
a	covert	form	of	auditory	active	sensing.	Our	results	emphasize	the	key	role	of	motor	brain	
areas	 in	 providing	 contextual	 temporal	 information	 to	 sensory	 regions,	 driving	 perceptual	
and	behavioral	selection.	

	

Significance	Statement	

How	 the	 motor	 system	 participates	 to	 auditory	 perception	 is	 unknown.	 In	 a	 magne-
toencephalography	experiment	involving	auditory	temporal	attention,	we	show	that	the	left	
sensorimotor	 cortex	 encodes	 temporal	 predictions,	 which	 drive	 the	 precise	 temporal	
anticipation	of	 forthcoming	sensory	 inputs.	This	encoding	 is	associated	with	bursts	of	beta	
(18-24	Hz)	neural	oscillations	that	are	directed	toward	auditory	regions.	Our	data	also	show	
that	the	production	of	overt	movements	 improves	the	quality	of	 temporal	predictions	and	
augments	 auditory	 task	 performance.	 These	 behavioral	 changes	 are	 associated	 with	
increased	 signaling	 of	 temporal	 predictions	 in	 right-lateralized	 fronto-parietal	 associative	
regions.	This	 study	points	at	a	 covert	 form	of	auditory	active	 sensing,	and	emphasizes	 the	
fundamental	role	of	motor	brain	areas	and	actual	motor	behavior	in	sensory	processing.		
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Introduction	

Active	sensing,	the	act	of	gathering	perceptual	information	using	motor	sampling	routines,	is	
well	described	in	all	but	the	auditory	sense	(1-4).	It	refers	to	a	dual	mechanism	of	the	motor	
system,	 which	 both	 controls	 the	 orienting	 of	 sensing	 organs	 (ocular	 saccades,	 whisking,	
sniffing,	etc.)	and	provides	contextual	information	to	optimize	the	parsing	of	sensory	signals,	
via	top-down	corollary	discharges	(5).	In	audition,	bottom-up	sensory	processing	is	generally	
disconnected	from	movements.	Moreover,	motor	acts	do	not	cause	inflow	of	auditory	input,	
except	when	movements	produce	sounds	(e.g.,	hand	claps,	musical	instruments).	However,	
top-down	motor	influences	over	auditory	cortices	have	been	well	characterized	during	self-
generated	 sounds	 (6,	 7).	 Strikingly,	 auditory	 and	 motor	 systems	 strongly	 interact	 during	
speech	or	music	perception	(8-11).	We	recently	proposed	a	theoretical	framework,	whereby	
a	 covert	 form	 of	 active	 sensing	 exists	 in	 the	 auditory	 domain,	 through	 which	 oscillatory	
influences	from	motor	cortex	modulate	activity	in	auditory	regions	during	passive	perception	
(1,	12).	This	idea	implies	that	the	chief	information	provided	by	the	motor	system	to	sensory	
processing	is	contextual	temporal	information.	

	 Relevantly,	 the	motor	 system	 is	 the	core	amodal	network	 supporting	 timing	and	 time	
perception	(13,	14).	It	is	also	involved	in	beat	and	rhythm	processing	during	passive	listening	
(9,	15-18).	Further,	beta	(~20	Hz)	activity,	the	default	oscillatory	mode	of	the	motor	system	
(19,	20),	is	also	related	to	the	representation	of	temporal	information	(21-26).	Time	estima-
tion	 could	 thus	 rely	on	 the	neural	 recycling	of	 action	 circuits	 (27)	and	be	 implemented	by	
internal,	 non-conscious	 simulation	 of	 movements	 in	 most	 ecological	 situations	 (28,	 29).	
Following	 these	 conceptual	 lines,	 we	 may	 predict	 that	 efferent	 motor	 signaling	 would	
convey	 temporal	 prediction	 information,	 with	 behavioral	 benefits	 in	 anticipating	 future	
sensory	events	and	the	facilitation	of	their	processing.	

	 We	recently	developed	a	mechanistic	behavioral	account	of	auditory	active	sensing	and	
showed	 that	 during	 temporal	 attending,	 overt	 rhythmic	 movements	 engage	 a	 top-down	
modulation	that	sharpens	the	temporal	selection	of	auditory	information	(30).	Crucially,	we	
found	 that	 the	participants	were	able	 to	disentangle	 two	streams	of	 sound	on	 the	unique	
basis	of	temporal	cues.	In	the	present	study,	we	recorded	Magnetoencephalography	(MEG)	
while	 participants	 performed	 such	 paradigm	 to	 dissociate	 stimulus-	 from	 internally-driven	
neural	 dynamics,	 and	 quantified	 the	 precision	 of	 temporal	 attention	 during	 auditory	
perception.	We	addressed	 three	 complementary	questions:	How	are	 temporal	 predictions	
encoded?	 How	 do	 temporal	 predictions	 modulate	 auditory	 processing?	 Why	 do	 overt	
rhythmic	movements	improve	the	temporal	precision	of	auditory	attention?	
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Results	

Behavioral	effects	of	temporal	attention	during	passive	listening	

We	asked	participants	to	categorize	sequences	of	pure	tones	as	higher-	or	lower-pitched,	on	
average,	 than	 a	 reference	 frequency	 (see	 Methods	 and	 (30)).	 In	 order	 to	 drive	 rhythmic	
fluctuations	 in	attention,	we	presented	the	tones	 (targets)	 in	phase	with	a	reference	beat,	
and	 in	 anti-phase	with	 irrelevant,	 yet	 physically	 indistinguishable	 tones	 (distractors).	 Each	
trial	 started	with	the	rhythmic	presentation	of	4	reference	 tones	 indicating	both	the	refer-
ence	frequency	and	beat	(1.5	Hz),	followed	by	a	melody	unfolding	at	3	Hz	(lasting	~5.5	sec),	
corresponding	 to	 the	 alternation	 of	 8	 targets	 and	 8	 distractors	 of	 variable	 frequencies,	
respectively	presented	in	quasi	phase	and	anti-phase	with	the	reference	beat	(Fig.	1A).	This	
interleaved	 delivery	 of	 sensory	 events	 forced	 participants	 to	 use	 the	 reference	 beat	 to	
discriminate	between	targets	and	distractors	–	 i.e.	 to	maximize	 the	 integration	of	 relevant	
sensory	cues	 (targets)	while	minimizing	 the	 interference	 from	 irrelevant	ones	 (distractors).	
This	 protocol	 (30)	 ensured	 that	 their	 attentional	 focus	was	 temporally	modulated	over	 an	
extended	time	period.	Thus,	during	the	3-Hz	melody	(our	period-of-interest),	while	sensory	
events	were	 delivered	 at	 a	 3-Hz	 rate,	 temporal	 attention	 fluctuated	 at	 1.5	 Hz,	 effectively	
dissociating	stimulus-	and	internally-driven	temporal	dynamics	(Fig.	1B).	The	task	consisted	
of	 two	 conditions:	 in	 the	 listen	 condition,	 participants	 performed	 the	 task	 while	 staying	
completely	still	during	the	duration	of	the	trial;	in	the	tracking	condition,	they	performed	the	
task	while	touching	rhythmically	a	pad	with	their	 left	 index	finger,	 in	phase	with	the	refer-
ence	beat.	

	 The	task	in	the	listen	condition	was	relatively	difficult,	with	an	averaged	categorization	
performance	of	73	%.	We	quantified	the	relative	contribution	of	each	tone	to	the	decision	
(see	Methods).	We	observed	that	the	first	target	had	a	considerable	influence	in	the	decision,	
due	to	its	leading	position	at	the	beginning	of	each	melody	sequence	(Fig.	1C).	To	properly	
investigate	the	effects	of	 temporal	attention,	we	thus	excluded	this	particular	event	–	and	
for	 the	 same	 reason,	 the	 last	 distractor	 –	 from	all	 subsequent	 analyses.	 Participants	were	
able	to	assign	greater	weight	to	targets	than	distractors	in	their	decision	(repeated-measures	
ANOVA	of	2	stimulus-categories	x	7	elements;	main	effect	of	stimulus-category:	F1,18	=	7.1,	p	
=	.016;	see	Fig.	1C-D).	Moreover,	as	predicted	by	the	logistic	regression	model,	the	influence	
a	 given	 target	wielded	on	 the	 subsequent	 decision	 scaled	parametrically	with	 its	 absolute	
distance	 from	 the	 reference	 frequency.	 This	 effect	 (i.e.,	 the	 slope	 of	 the	 function)	 was	
significantly	reduced	for	distractors	(paired	t-test:	t18	=	5.2,	p	<	.001;	Fig.	1E).	In	other	words,	
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participants	 were	 able	 to	 sustain	 and	 orient	 their	 temporal	 attention	 at	 a	 1.5-Hz	 rate	 to	
segregate	targets	from	distractors	and	maximize	the	integration	of	targets.	

	

Neural	correlates	of	the	3-Hz	melody	

The	3-Hz	melody	corresponded	to	a	stream	of	tones	presented	in	quasi-rhythm	fashion	(Fig.	
1A).	We	estimated	the	neural	response	to	this	auditory	stream	by	investigating	those	regions	
whose	oscillatory	activity	was	synchronous	to	the	melody.	We	relied	on	two	complementary	
measures:	the	phase-phase	(PLV)	and	phase-amplitude	(PAC)	coupling	between	MEG	source	
signals	 from	 correct	 trials,	 and	 a	 signal	 template	 of	 the	 3-Hz	melody	 (see	Methods).	 The	
dynamics	of	the	3-Hz	melody	principally	correlated	with	neural	oscillatory	activity	in	bilateral	
auditory	regions,	both	at	3	Hz	(phase	coupling)	and	in	the	5-18	Hz	frequency-range	(ampli-
tude	coupling)	(one-tail	t-tests	against	zero,	p	<	.05,	FDR	corrected;	Fig.	2A-C	top).	

	

Core	substrate	of	covert	temporal	predictions	

While	 listening	 to	 the	 3-Hz	melody,	 participants	modulated	 their	 attention	 temporally	 by	
relying	 on	 covert	 temporal	 predictions	 produced	 by	 an	 internal	model	 approximating	 the	
1.5-Hz	 beat	 cued	 from	 the	 four	 reference	 tones	 (Fig.	 1A-B).	 We	 estimated	 the	 neural	
correlates	of	temporal	predictions	by	examining	where	neural	oscillatory	activity	fluctuated	
at	 the	 beat	 frequency	 (i.e.,	 1.5	 Hz)	 during	 presentation	 of	 the	 3-Hz	 melody.	 Thus,	 we	
computed	 PLV	 and	 PAC	 between	 MEG	 source	 signals	 from	 correct	 trials,	 and	 a	 signal	
template	of	the	1.5-Hz	reference	beat	of	interest	(see	Methods).	

	 Whole-brain	 statistical	 maps	 of	 phase-phase	 coupling	 revealed	 that	 a	 network	 of	
sensorimotor	 regions	 –	 bilateral,	 over	 the	 pre-	 and	 post-central	 areas	 –	 tracked	 internal	
temporal	predictions	(one-tail	 t-tests	against	zero,	p	<	 .05,	FDR	corrected;	Fig.	2A	bottom).	
Moreover,	phase-amplitude	coupling	measures	revealed	the	presence	of	beta	bursting	(18-
24	Hz)	at	the	delta	rate	in	the	left	sensorimotor	cortex	(one-tail	t-tests	against	zero,	p	<	.05,	
FDR	corrected;	Fig.	2B	bottom).		

	

Response	profile	of	the	right	associative	auditory	(rAA)	and	left	sensorimotor	(lSM)	cortex	
during	passive	listening	

To	further	 investigate	these	results,	we	analyzed	the	response	profiles	of	 two	key	regions:	
the	 right	 associative	 auditory	 (rAA)	 and	 the	 left	 sensorimotor	 (lSM)	 cortex,	 where	 the	
respective	 phase-amplitude	 coupling	with	 the	 3-Hz	melody	 and	 the	 1.5-Hz	 reference	 beat	
was	found	to	be	maximal.	We	first	confirmed	that	phase-amplitude	coupling	with	the	3-Hz	
melody	was	significant	in	rAA	(5-30	Hz;	t-tests	against	zero,	p	<	.05,	FDR	corrected),	but	not	



Motor	origin	of	temporal	predictions	

	 6	

lSM	 (all	 p	 >	 .2,	 FDR	 corrected),	 and	 peaked	 in	 the	 alpha	 range	 (7-14	 Hz;	 Fig.	 2C-D	 top).	
Second,	the	1.5-Hz	beat	was	indeed	phase-amplitude	coupled	to	beta	oscillations	in	lSM	(17-
27	Hz;	p	 <	 .05,	 FDR	 corrected),	 but	 not	 rAA	 (all	p	 >	 .2,	 FDR	 corrected;	 Fig.	 2C-D	 bottom).	
Additional	coupling	with	the	1.5-Hz	beat	was	also	observed	in	the	alpha	range	in	both	rAAC	
and	lSM	(at	7-10	Hz	and	8-13	Hz,	respectively;	p	<	.05,	FDR	corrected;	Fig.	2C-D	bottom),	but	
these	results	did	not	reached	significance	at	the	whole-brain	level	of	analysis.		

	 The	evoked	response	to	tones	was	drastically	 larger	 in	rAA	than	lSM	and,	 importantly,	
significantly	different	between	targets	and	distractors	in	rAA	only	(at	30-53	ms,	106-141	ms,	
176-195	ms,	and	382-396	ms;	paired	 t-tests,	p	<	 .05,	FDR	corrected;	 in	 lSM	all	p	>	 .5,	FDR	
corrected;	Fig.	S1A),	highlighting	the	impact	of	temporal	attention	on	auditory	processing.	Of	
note,	while	 the	M50,	M200	 and	M300	 peaks	were	 larger	 for	 targets	 than	 distractors,	 the	
opposite	was	true	for	the	M100	peak.	In	contrast,	the	time-frequency	response	to	tones	was	
significantly	different	between	targets	and	distractors	in	lSM	only	(p	<	.05,	FDR	corrected;	Fig.	
S1B).	This	analysis	revealed	where	1.5-Hz	oscillatory	activity	originated	from,	and	confirmed	
the	phase-amplitude	coupling	results	(Fig.	2D	bottom).	The	1.5-Hz	beat	was	not	associated	
with	evoked	activity	in	lSM	(all	p	>	.5,	FDR	corrected;	Fig.	S1C	bottom),	confirming	that	the	
amplitude	modulations	at	1.5	Hz	observed	 in	 the	 (alpha	and)	beta	 range	did	not	correlate	
with	unexpected	motor	acts	during	the	listen	condition.	

	 Altogether	these	results	 indicate	that	covert	temporal	predictions	at	1.5	Hz	are	repre-
sented	in	the	phase	of	delta	oscillations	in	a	distributed	sensorimotor	network,	with	phase-
coupled	 amplitude	modulations	 of	 beta	 oscillations	 from	 the	 left	 lateralized	 sensorimotor	
cortex	(Fig.	2A-B	bottom).	We	emphasize	that	this	neural	substrate	is	distinct	from	melody-
driven	neural	dynamics,	both	in	terms	of	oscillatory	frequencies	and	regions	involved	(Fig.	2),	
and	could	not	be	explained	by	the	presence	of	evoked	motor	components	(Fig.	S1).	

	

Frequency-specific	directional	interactions	between	rAA	and	lSM	during	passive	listening	

In	our	paradigm,	two	complementary	dynamics	were	occurring	simultaneously:	the	melody-
driven	bottom-up	response	and	the	top-down	internal	temporal	predictions,	anticipated	to	
operate	 at	 3	 Hz	 and	 1.5	 Hz,	 respectively.	We	 investigated	 the	 directionality	 of	 functional	
connectivity	 between	 two	 regions-of-interest	 (rAA	 and	 lSM;	 see	 Methods),	 across	 the	
frequency	spectrum	(1-50	Hz).	We	found	bottom-up	directed	connectivity	at	3	Hz	(i.e.	from	
rAA	to	lSM),	and	top-down	directed	connectivity	in	the	beta	range	(18-24	Hz;	i.e.	from	lSM	to	
rAA;	p	<	.05,	FDR	corrected;	Fig.	3).	The	results	pointed	at	the	role	of	beta	band	oscillations	
in	mediating	 temporal	 predictions.	Of	note,	 using	either	 the	 left	 or	 right	AA	 cortex	 as	 the	
sensory	region-of-interest	led	to	similar	results	(Fig.	S2).	
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Behavioral	advantage	of	overt	motor	tracking	

In	 sum,	 we	 described	 the	 role	 of	 the	 left	 sensorimotor	 (lSM)	 cortex	 in	 representing	 and	
propagating	 temporal	 predictions	 (via	 beta-band	 oscillations),	 which	 were	 mandatory	 to	
modulate	auditory	processing	 in	the	present	study.	We	further	 investigated	whether	overt	
rhythmic	motor	activity	 improved	the	segmentation	of	auditory	information.	At	the	behav-
ioral	level,	the	comparison	between	 listen	and	tracking	confirmed	our	previous	finding	(29)	
of	a	significant	increase	in	categorization	performance	during	overt	motor	tracking	(one-tail	
paired	 t-test:	 t18	 =	 2.0,	p	 =	 .033;	 Fig.	 1C).	We	 confirmed	 that	 during	 tracking,	 participants	
were	 able	 to	 assign	 greater	weight	 to	 targets	 than	distractors	 in	 their	 decision	 (repeated-
measures	ANOVA	of	2	 stimulus-categories	 x	7	elements;	main	effect	of	 stimulus-category:	
F1,18	=	21.0,	p	<	.001;	paired	t-test	between	targets	and	distractors	slopes	of	element-weight	
profiles	as	a	function	of	tone	frequency:	t18	=	3.3,	p	=	 .004;	Fig.	S3).	Finally,	we	observed	a	
significant	 difference	 across	 element	 weights	 between	 listen	 and	 tracking	 (repeated-
measures	ANOVA	of	2	stimulus-category	x	2	conditions;	interaction:	F1,18	=	4.6,	p	=	.047;	Fig.	
4B):	the	contribution	of	targets	was	larger	during	tracking	(post-hoc	paired	t-test:	t18	=	3.5,	p	
=	 .003),	 whereas	 the	 contribution	 of	 distractors	 was	 not	 significantly	 different	 across	
conditions	(t18	=	0.2,	p	=	.88).	These	results	show	that	overt	motor	tracking	further	enhances	
the	perceptual	sensitivity	to	target	auditory	events.	

	

Neural	correlates	of	overt	temporal	predictions	

During	 tracking,	 the	 dynamics	 of	 the	 3-Hz	melody	 principally	 correlated	with	 neural	 3-Hz	
oscillatory	 activity	 in	 bilateral	 auditory	 regions	 (phase	 coupling),	 and	 in	 a	 broad	 low-
frequency	range	(5-20	Hz;	amplitude	coupling;	Fig.	5A-B	top).	In	addition,	and	in	contrast	to	
the	 listen	 condition,	we	 found	 PAC	 between	 the	 3-Hz	melody	 and	 the	 right	 sensorimotor	
cortex	(rSM)	in	the	beta	(14-24	Hz)	range	(one-tail	t-tests	against	zero,	p	<	.05,	FDR	correct-
ed;	 Fig.	 5C	 top).	 Temporal	 predictions,	 which	 were	 overtly	 conveyed	 during	 tracking	
(through	 left	 index	movements),	were	unsurprisingly	maximally	 represented	over	 the	right	
sensorimotor	cortex	 (i.e.	contralateral	 to	 finger	movements),	both	 in	1.5	Hz	phase	 (Fig.	5A	
bottom)	 and	 broadband	 (4-50	 Hz)	 amplitude	 modulations,	 with	 a	 main	 and	 secondary	
spectral	peak	in	the	beta	(~18-24	Hz)	and	theta	(~4-6	Hz)	ranges,	respectively	(one-tail	t-tests	
against	 zero,	 p	 <	 .05,	 FDR	 corrected;	 Fig.	 5B-C	 bottom).	 Importantly,	 coupling	 was	 also	
observed	in	 lSM	at	1.5	Hz	(phase	coupling)	and	within	the	beta	band	(amplitude	coupling),	
but	not	in	the	theta	band	(amplitude	coupling;	Fig.	5	bottom).	We	then	detailed	the	profile	
of	phase-amplitude	coupling	with	the	3-Hz	melody	or	the	1.5-Hz	beat	in	rAA,	lSM	and	rSM,	
and	qualitatively	 confirmed	 the	above-mentioned	 results	 (Fig.	 S4A-B).	 In	 rAA	and	 lSM,	 the	
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evoked	 and	 time-frequency	 response	 profiles	 were	 qualitatively	 similar	 than	 during	 the	
listen	 condition	 (Fig.	 S4C-E).	 In	 rSM	 (see	 Fig.	 S4	 bottom),	 we	 observed	 a	 strong	 evoked	
response	to	the	1.5-Hz	beat	that	slightly	anticipated	beat	onset	(-87-14	ms;	also	reoccurring	
after	1.5	Hz	(i.e.	667	ms);	p	<	.05,	FDR	corrected).	This	pattern	was	also	visible	in	the	evoked	
response	to	 tones	 (with	a	peak	slightly	prior	 to	 target	onsets	and	 following	the	distractors	
onset	 by	 ~333ms).	 Finally,	 the	 time-frequency	 response	 profile	 in	 rSM	 confirmed	 the	
presence	of	broadband	amplitude	modulation	at	1.5	Hz	 (with	peaks	 in	 the	 theta	and	beta	
ranges).	

	

Frequency-specific	directional	interactions	during	overt	motor	tracking	

We	 then	 investigated	 the	 directionality	 of	 functional	 connectivity	 between	 the	 three	
regions-of-interest	 (rAA,	 lSM,	 and	 rSM).	We	 first	 observed	 that	directed	 connectivity	 from	
rAA	 to	 lSM	 was	 found	 only	 at	 3	 Hz	 (p	 <	 .05,	 FDR	 corrected;	 Fig.	 6A).	 Second,	 directed	
connectivity	from	rSM	was	directed	toward	both	rAA	(1-8	Hz)	and	lSM	(1-4	Hz;	p	<	.05,	FDR	
corrected)	in	the	low-frequency	range.	Finally,	we	also	observed	directed	connectivity	from	
lSM	 toward	 both	 rAA	 and	 rSM	 in	 the	 alpha	 (8-12	 Hz)	 and	 beta	 (18-24	 Hz)	 ranges	 (and	
additionally	 at	 1.5	 Hz	 toward	 rAA;	 p	 <	 .05,	 FDR	 corrected).	 Importantly,	 lSM	was	 neither	
acoustically	 stimulated	 (contrary	 to	 rAA;	 Fig.	 S4C),	 nor	 associated	 with	 overt	 movements	
(contrary	 to	 rSM;	 Fig.	 S4E).	 Nevertheless	 this	 region	 was	 a	 source	 of	 directed	 functional	
connectivity	during	tracking	(Fig.	6B).	

	 Taken	together,	our	results	from	both	the	listen	and	tracking	conditions	revealed	a	key	
role	 for	 the	 left	 sensorimotor	 cortex	 (lSM)	 in	 representing	 and	 directing	 toward	 sensory	
regions	temporal	predictions	through	beta	bursting	(18-24	Hz).	

	

Extended	influence	of	temporal	predictions	during	overt	motor	tracking	

To	 further	 comprehend	 how	 temporal	 predictions	modulate	 sensory	 processing	 and	 drive	
performance	 accuracy,	 we	 contrasted	 the	 neural	 correlates	 of	 temporal	 predictions,	
estimated	at	 the	1.5-Hz	phase,	 in	 tracking	 vs.	 listen	 correct	 trials.	 The	data	 confirmed	 the	
qualitative	 difference	 in	 neural	 encoding	 of	 temporal	 predictions	 between	 listen	 and	
tracking.	 Specifically,	we	 showed	 that	overt	motor	 tracking	enhanced	phase	 coupling	with	
the	1.5-Hz	beat	 in	 a	broad	 set	of	 regions,	 encompassing	 the	bilateral	 sensorimotor	 cortex	
and	 right-lateralized	 temporal,	 parietal	 and	 frontal	 regions	 (paired	 t-tests,	 p	 <	 .05,	 FDR	
corrected;	Fig.	7A).	No	significant	enhancement	was	observed	in	listen	relative	to	tracking	(p	
>	.5,	FDR	corrected).		



Motor	origin	of	temporal	predictions	

	 9	

	 We	further	investigated	possible	accuracy	effects	by	contrasting	the	neural	correlates	of	
temporal	predictions	in	correct	vs.	incorrect	trials,	for	both	conditions.	During	tracking,	the	
phase	of	1.5-Hz	oscillations	in	right	sensorimotor,	inferior	parietal	and	lateral	frontal	regions,	
was	significantly	related	to	the	behavioral	outcome,	with	stronger	phase	coupling	in	correct	
than	incorrect	trials	(paired	t-tests,	p	<	.05,	FDR	corrected;	Fig.	7B).	 Importantly,	this	result	
could	 not	 be	 explained	 by	 a	 difference	 in	 the	 precision	 of	motor	 tracking	 events	 (i.e.	 the	
timing	of	individual	motor	acts)	between	correct	and	incorrect	trials	(paired	t-test,	t18	=	0.3,	
p	 =	 .29;	 Fig.	 S5).	 In	 the	 listen	 condition,	 no	 significant	 difference	 between	 correct	 and	
incorrect	trials	was	observed	at	the	whole-brain	level	of	analysis	(paired	t-tests,	p	>	.5,	FDR	
corrected).	We	 note	 that	 without	 correcting	 for	 multiple	 comparisons,	 the	 same	 analysis	
revealed	a	single	cluster	located	around	lSM	(paired	t-tests,	p	<	.05	uncorrected).	Finally,	no	
significant	difference	between	correct	and	incorrect	trials	was	observed	at	the	whole-brain	
level	of	analysis,	in	the	tracking	or	listen	conditions,	for	phase-amplitude	coupling	estimates	
of	temporal	predictions	(paired	t-tests,	p	>	.05,	FDR	corrected).	

	 Together	these	results	therefore	reveal	that	in	right	sensorimotor,	inferior	parietal	and	
lateral	 frontal	 regions,	 the	 phase	 of	 neural	 oscillations	 at	 the	 beat	 frequency	 (1.5	 Hz)	 is	
significant	 to	 behavioral	 outcome:	 phase	 coupling	was	 stronger	 in	 the	 condition	with	 the	
highest	categorization	score	(i.e.	tracking;	Fig.	4),	and	in	correct	trials	of	this	latter	condition	
(Fig.	7B).	
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Discussion	

The	present	study	aimed	at	identifying	the	neural	substrates	of	temporal	predictions	and	the	
mechanisms	 by	 which	 they	 impact	 auditory	 perception.	 We	 hypothesized	 that	 temporal	
prediction	information	is	encoded	in	sensorimotor	cortex	oscillatory	activity,	and	that	overt	
movements	 enhance	 their	 representation	 and	 further	 their	 influence.	 We	 designed	 a	
paradigm	 involving	 endogenous	 temporal	 attention,	 i.e.,	 attention	 guided	 by	 internal	
predictions	(31),	and	importantly,	in	which	temporal	attention	and	stimulus	dynamics	were	
operating	 at	 distinct	 rates	 (1.5	 vs.	 3	 Hz,	 respectively,	 Fig.	 1).	 Schematically,	 our	 paradigm	
involved	the	maintenance	of	temporal	predictions	and	their	deployment	through	temporal	
attention	to	modulate	sensory	processing.	

	 Behaviorally,	 our	 results	 show	 that	 participants	were	 able	 to	 sustain	 and	 orient	 their	
temporal	attention	to	segregate	targets	from	distractors	in	both	conditions	(Fig.	1C-E	&	S3).	
At	 the	 cortical	 level,	 we	 observed	 that	 temporal	 attention	 modulated	 the	 processing	 of	
auditory	information	down	to	the	auditory	cortex	(Fig.	S1A).	This	indicates	that	endogenous	
temporal	attention	impacts	on	stimulus-driven	event	patterns,	tuning	sensory	processing	to	
its	own	internal	temporal	dynamics	to	drive	perceptual	and	behavioral	selection	(32).	

	

To	 perform	 this	 paradigm,	 participants	 had	 to	 capitalize	 on	 temporal	 predictions	 (i.e.	 an	
internal	model	of	the	1.5-Hz	beat)	during	presentation	of	the	3-Hz	melody	(Fig.	1A-B).	While	
we	observed	differences	between	the	 listen	and	tracking	conditions,	especially	 in	 terms	of	
oscillatory	frequencies	and	regions	involved	(Fig.	2	and	5),	a	condition-invariant	representa-
tion	emerged	as	a	candidate	 to	encapsulate	 the	core	neural	 substrate	of	 temporal	predic-
tions.	 Indeed,	 we	 first	 observed	 in	 both	 conditions	 a	 low-frequency	 phase	 reorganization	
combined	with	 the	presence	of	beta	bursting	at	 the	delta	 rate	 --	 a	 result	 compatible	with	
previous	findings	(21,	28,	33,	34).	Second,	these	delta-beta	coupled	oscillations	were	present	
in	the	left	sensorimotor	cortex	(lSM).	Park	and	colleagues	recently	identified	that	this	region	
was	playing	a	pivotal	role	in	the	top-down	modulation	of	auditory	processing	(35,	36).	Finally,	
the	functional	connectivity	conveyed	by	beta	oscillations	directed	toward	the	right	auditory	
cortex	 (rAA),	probably	 to	modulate	perceptual	and	behavioral	selection	 (Fig.	3	and	6).	 It	 is	
striking	that	even	during	tracking,	where	beta	bursting	was	dominant	in	the	right	sensorimo-
tor	cortex	(rSM;	due	to	left	index	movements;	Fig.	5C),	the	connectivity	of	beta	oscillations	
was	 still	 directed	 from	 lSM,	 toward	 both	 rAA	 and	 rSM.	Altogether	 and	 to	 the	 best	 of	 our	
knowledge,	 these	 results	 are	 first	 to	 bridge	 between	 recent	 electrophysiological	 studies	
highlighting	the	role	of	beta	oscillations	in	representing	temporal	 information	(21-26),	with	
studies	that	emphasized	the	role	of	the	motor	system	in	timing	(9,	13-18,	37).	They	also	fuel	
the	 idea	 that	 left-lateralized	motor	 structures	 are	more	 preferentially	 engaged	 than	 their	
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right	 counterparts	 in	predicting	 future	events,	possibly	 to	optimize	 information	processing	
(37).	While	 our	 results	 underline	 the	 left	 sensorimotor	 cortex,	 it	 is	 likely	 that	 subcortical	
structures	and	 in	particular	 the	striatum	may	drive	 the	effects	we	observed	at	 the	cortical	
level	with	MEG	(16-18,	38-42).	

	 Multiple	 functional	 MRI	 studies	 have	 reported	 the	 involvement	 of	 the	 left	 inferior	
parietal	cortex	in	temporal	attention	(43-46).	While	our	analyses	highlight	regions	implicated	
in	the	encoding	of	temporal	predictions	and	sensory	dynamics,	we	have	not	investigated	the	
neural	bases	of	temporal	attention	per	se.	Rather,	we	suggest	that	the	left	inferior	parietal	
cortex	 is	at	 the	 interface	between	 internal	predictions	and	sensory	processing,	 i.e.	may	be	
driven	by	the	motor	system	to	modulate	auditory	processing.	

	 The	role	of	beta	oscillations	in	encoding	temporal	predictions	can	be	interpreted	in	two	
complementary	 manners.	 First,	 temporal	 predictions	 might	 be	 encoded	 in	 beta	 bursting	
because	 the	motor	 system	 is	 (among	other	 things)	dedicated	 to	 the	encoding	of	 temporal	
predictions	and	beta	 (~20	Hz)	activity	 is	 the	default	oscillatory	mode	of	 the	motor	 system	
(19,	 20).	 This	 would	 represent	 an	 incidental	 hypothesis.	 Second,	 we	 posit	 that	 top-down	
predictions	are	ubiquitously	encoded	through	beta	oscillations,	while	bottom-up	information	
tends	to	be	reflected	 in	higher-frequency	(gamma)	oscillations:	this	perspective	has	gained	
substantial	attention	in	the	recent	years	(47-50).	This	would	represent	an	essential	hypothe-
sis.	 In	 this	 framework,	 beta	 oscillations	 could	 mediate	 the	 endogenous	 reactivation	 of	
cortical	 content-specific	 representations	 in	 the	 service	 of	 current	 task	 demands	 (51).	 Our	
results	 also	 pinpoint	 at	 the	 role	 of	 alpha	 oscillations	 in	 both	 bottom-up	 and	 top-down	
processing	 (Fig.	 2,	 5	 and	 6).	 However,	 these	 alpha-related	 findings	 were	 not	 consistent	
across	conditions,	making	it	difficult	to	interpret.	

	 	

Our	behavioral	findings	also	confirm	that	overt	rhythmic	movements	improve	performance	
accuracy.	The	additional	act	of	tapping,	instead	of	interfering	with	the	auditory	task,	favors	it.	
This	 indicates	 that	 motor	 tracking	 and	 temporal	 attention	 synergistically	 interact	 (29).	
Further,	 this	beneficial	 strategy	does	not	 capitalize	on	any	additional	 external	 information	
(e.g.	 light	 flashes	 presented	 at	 the	 reference	 beat),	 but	 is	 purely	 internally	 driven.	 This	
suggests	that	embodied	representations	of	rhythms	are	more	stable	than	internal,	cognitive	
alternatives.	 This	 behavioral	 benefit	 was	 driven	 by	 an	 increased	 modulation	 of	 sensory	
evidence	encoding	by	 temporal	 attention,	 i.e.	 an	 increased	differential	weighting	between	
targets	 and	 distractors	 (Fig.	 1)	 (30).	 However	 in	 our	 study,	motor	 tracking	 only	 enhanced	
sensitivity	to	target	tones,	while	it	was	found	it	also	suppressed	sensitivity	to	distractors	in	a	
previous	study	(30).	Such	discrepancy	is	probably	due	to	this	study’s	setting	and	instructions,	
which	 resulted	 in	 enhanced	 attention	 to	 targets	 (see	 Methods).	 Overall,	 our	 behavioral	
results	confirm	that	overt	tracking	sharpens	the	temporal	selection	of	auditory	information.	
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Such	 behavioral	 advantage	 has	 broad	 consequences.	 For	 example,	 it	 could	 directly	 be	
exploited	 in	 language	 rehabilitation	 to	 help	 patients	 suffering	 from	 auditory	 or	 language	
deficits	understand	speech	better.	Using	an	overt	motor	 strategy	 (in	 the	 form	of	 rhythmic	
movements)	may	 indeed	help	 focusing	on	 the	 temporal	modulations	of	a	 speech	signal	of	
interest,	and	therefore	facilitate	speech	perception	and	segmentation,	especially	in	adverse	
listening	conditions	(52-54).	

	 This	behavioral	 advantage	 is	mirrored	at	 the	 cortical	 level	by	a	 task-specific	 amplified	
phase	 reorganization	 of	 low-frequency	 delta	 oscillations	 during	 motor	 tracking,	 in	 an	
extended	 network	 comprising	 bilateral	 sensorimotor	 and	 right	 lateralized	 auditory	 and	
fronto-parietal	regions	(Fig.	5A).	This	set	of	right-lateralized	regions	that	spreads	well	beyond	
the	sensorimotor	cortex	corresponds	to	the	typical	network	involved	in	auditory	memory	for	
pitch	(55,	56).	It	plays	a	major	role	in	the	current	task,	which	involves	pitch	estimation	and	
retention.	 Importantly,	 our	 results	 thus	 show	 that	 temporal	 predictions	 spread	 selectively	
toward	 task-relevant	 regions	 and	 propagate	 at	 the	 network	 level.	 Further,	 in	 a	 subset	 of	
right-lateralized	 regions,	 delta	phase	 reorganization	was	 significant	 to	behavioral	 outcome	
(Fig.	7).	Our	results	thus	show	that	during	overt	tracking,	additional	portions	of	cortex	were	
implicated,	through	delta	oscillations,	probably	to	modulate	sensory	processing,	emphasize	
target	selection,	and	augment	behavioral	performance.	However,	our	results	do	not	address	
whether	such	motor-driven	benefit	requires	a	sense	of	agency	(i.e.	the	intention	to	produce	
the	movement)	(57),	and/or	is	mediated	by	somatosensory	(tactile)	feedback	(58).	

	 Altogether	these	results	show	that	the	motor	system	is	ubiquitously	involved	in	sensory	
processing,	 providing	 (at	 least)	 temporal	 contextual	 information.	 It	 encodes	 temporal	
predictions	through	delta-beta	coupled	oscillations,	and	has	directed	functional	connectivity	
toward	 sensory	 regions	 in	 the	 beta	 range.	We	 also	 show	 that	 performing	 overt	 rhythmic	
movements	 is	 an	 efficient	 strategy	 to	 augment	 the	 quality	 of	 temporal	 predictions,	 and	
amplify	their	influence	on	sensory	processing,	enhancing	perception.	
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Methods	

Participants	

21	healthy	adult	participants	were	 recruited	 (age	 range:	20-48	years;	10	 females).	 The	experiment	
followed	ethics	guidelines	from	the	McGill	University	Health	Centre	(protocol	NEU-13-023).	Informed	
consent	 was	 obtained	 from	 all	 participants	 before	 the	 experiment.	 All	 had	 normal	 audition	 and	
reported	no	history	of	neurological	or	psychiatric	disorder.	We	did	not	select	participants	based	on	
musical	training.	Two	participants	were	excluded	from	further	analyses,	as	they	did	not	perform	the	
task	properly.	

Experimental	design	

Sequences	of	pure	tones	(Fig.	1A)	were	presented	binaurally	at	a	comfortable	hearing	level,	using	the	
Psychophysics-3	toolbox	(59)	and	additional	custom	scripts	written	with	MATLAB	(The	Mathworks).	
Each	pure	tone	was	sampled	at	44100	Hz	and	lasted	100	ms	with	a	dampening	length	and	attenua-
tion	of	10	ms	and	40	dB,	respectively.	

	 Each	trial	(~15	sec)	was	composed	of	20	pure	tones,	which	were	qualified	as	references,	targets,	
and	 distractors:	 4	 reference	 tones	 initiated	 the	 sequence,	 indicating	 both	 the	 reference	 tone	
frequency	(f0	=	440	Hz)	and	beat	(1.5	Hz;	i.e.	ISI	=	667	ms).	They	were	followed	by	an	alternation	of	8	
target	 and	 8	 distractor	 tones	 of	 variable	 frequencies	 (with	 a	 standard	 deviation	 of	 0.2	 in	 base-2	
logarithmic	units)	presented	in	a	quasi-rhythmic	fashion	(at	3	Hz;	i.e.	ISI	=	333	±	67	ms).	The	distribu-
tion	of	the	67	ms	jitter	across	the	tones	of	each	sequence	was	approximately	Gaussian	and	shorter	
than	141	ms.	This	ensured	that	no	overlap	between	targets	and	distractors	could	occur.	Importantly,	
targets	and	distractors	occurred	in	phase	and	anti-phase	with	the	preceding	references,	respectively,	
so	 that	 participants	 could	 use	 the	 beat	 provided	 by	 the	 references	 to	 distinguish	 targets	 from	
distractors,	which	where	otherwise	perceptually	indistinguishable.	

	 Participants	performed	a	 two-alternative	pitch	 categorization	 task	at	 the	end	of	each	 trial,	by	
deciding	 whether	 the	 mean	 frequency	 of	 targets	𝑓!"# 	was	 lower	 or	 higher	 than	𝑓! .	 Participants	
reported	their	choice	with	either	their	right	 index	(lower)	or	right	middle	(higher)	finger.	The	mean	

frequency	of	distractors	𝑓!"#	was	always	equal	to	𝑓!,	hence	non-informative.	The	absolute	difference	
between	𝑓!"#	and	𝑓!	was	 titrated	 for	each	participant	 to	 reach	 threshold	performance	 (see	below).	
The	task	consisted	of	two	conditions,	listen	and	tracking,	the	only	difference	being	that	participants	
tapped	 in	 rhythm	with	 the	 relevant	 sensory	 cues	 in	 the	 tracking	 condition.	 To	 do	 so,	 participants	
were	 required	 to	 follow	 the	 beat	 by	 moving	 their	 left	 index	 finger	 from	 the	 beginning	 of	 the	
sequence	(the	2nd	reference	tone),	so	that	their	rhythm	was	stabilized	when	the	3-Hz	melody	started.	
In	 essence,	 this	 condition	 is	 a	 variation	 of	 the	 synchronization-continuation	 paradigm	 (10).	 We	
instructed	participants	to	use	their	left	hand,	in	order	to	spatially	dissociate	the	neural	correlates	of	
motor	 acts	 (in	 the	 right	 motor	 cortex)	 from	 those	 of	 temporal	 predictions,	 hypothesized	 to	 be	
lateralized	to	the	left	hemisphere	(42-45).	Their	movements	were	recorded	with	an	infrared	light	pad.	
To	 ensure	 that	 participants’	 finger	was	 properly	 positioned	 on	 the	 pad	 and	 occluded	 the	 infrared	
light	when	tracking,	we	added	a	small	fabric	patch	below	the	infrared	light,	that	participants	had	to	
make	sure	to	touch.	Thus,	in	addition	to	the	task,	participants	had	also	to	focus	on	the	somatosenso-
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ry	 feedback	 from	 their	 finger	 in	 the	 tracking	 condition,	 which	 probably	 resulted	 in	 enhanced	

attention	to	targets	as	compared	to	a	previous	experiment	(30).	Participants	were	asked	to	stay	still	
in	the	listen	condition,	not	moving	any	part	of	their	body,	so	as	to	minimize	the	overt	involvement	of	
the	motor	system.	Absence	of	movements	during	the	 listen	condition	was	monitored	visually,	using	
online	video	capture.					

	 For	 each	 participant,	 the	 experiment	was	 divided	 into	 3	 sessions	 occurring	 on	 different	 days,	
each	lasting	approximately	1	hour.	The	first	session,	purely	behavioral,	started	with	a	short	training,	
where	the	task	was	made	easier	by	increasing	the	relative	distance	between	the	mean	frequency	of	
targets	𝑓!"# 	and	𝑓! ,	 and	 by	 decreasing	 the	 volume	 of	 distractors.	 Following	 this,	 participants	
performed	 a	 psychophysical	 staircase	with	𝑓!"#	as	 the	 varying	 parameter.	 The	 staircase	was	 set	 to	
obtain	75%	of	categorization	performance	in	the	listen	condition.	Then,	the	participants	performed	2	
separate	sessions	inside	the	MEG	scanner.	200	trials	per	condition	(listen	or	tracking)	were	acquired	
using	 a	 block-design	 paradigm,	with	 conditions	 alternating	 every	 20	 trials	 (~5	min).	 Feedback	was	
provided	 after	 each	 trial	 to	 indicate	 correct/incorrect	 responses,	 and	 overall	 feedback	 on	 perfor-
mance	 indicating	 the	 total	 number	 of	 correct	 responses	 was	 given	 after	 every	 20-trial	 block,	 for	
motivational	purposes.	

Data	acquisition	

MEG	 data	 were	 acquired	 at	 the	McConnell	 Brain	 Imaging	 Centre,	Montreal	 Neurological	 Institute		
McGill	 University	 (Canada)	 using	 a	 275-channel	MEG	 system	 (axial	 gradiometers,	 Omega	 275,	 CTF	
Systems	 Inc.)	 with	 a	 sampling	 rate	 of	 2400	 Hz.	 Six	 physiological	 (EOG	 and	 ECG),	 one	 audio,	 two	
response	buttons,	and	one	 infrared	 light	pad	channels	were	 recorded	simultaneously	and	synchro-
nized	with	the	MEG.	The	head	position	of	participants	was	controlled	using	3	coils,	which	 locations	
were	 digitized	 (Polhemus)	 together	 with	 ~100	 additional	 scalp	 points,	 to	 facilitate	 anatomical	
registration	with	MRI.	Instructions	were	visually	displayed	on	a	grey	background	(spatial	resolution	of	
1024	by	768	pixels	and	vertical	refresh	rate	of	60	Hz)	onto	a	screen	at	a	comfortable	distance	from	
the	subject’s	 face.	Auditory	stimuli	were	presented	through	 insert	earphones	 (E-A-RTONE	3A,	Aero	
Company).	On	 each	 trial	 participants	 had	 to	 fixate	 a	 cross,	 located	 at	 the	 centre	 of	 the	 screen,	 to	
minimize	 eye	movements.	 Prior	 to	 the	 first	 recording	 session,	 participants	 performed	 a	 5-minute	
eyes-open	 resting-state	 session	 to	 be	 used	 as	 baseline	 activity	 in	 ensuing	 analyses.	 For	 cortically	
constrained	MEG	source	analysis,	i.e.	the	projection	of	the	MEG	sensor	data	onto	the	cortical	surface,	
a	T1-weighted	MRI	acquisition	of	the	brain	was	obtained	from	each	participant	(1-mm	isotropic	voxel	
resolution).	

Behavioral	data	processing	

We	estimated	the	‘element	weight’,	i.e.	the	additive	contribution	assigned	to	each	target	(𝑔!!"#)	and	

distractor	(𝑔!!"#),	to	the	subsequent	decision	(higher-	or	lower-pitched	than	𝑓!).	We	calculated	these	
parameters	 across	 trials	 via	 a	 multivariate	 logistic	 regression	 of	 choice	 on	 the	 basis	 of	 a	 linear	
combination	of	the	frequencies	of	the	sixteen	tones	(8	targets	and	8	distractors):	

P high = Φ  𝑔!!"# ∙ 𝑓!!"#
!

!!!

+ 𝑔!!"# ∙ 𝑓!!"#
!

!!!

+ 𝑏                                                     1 	
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where	P high 	is	the	probability	of	judging	the	target	sequence	as	higher	pitched,	Φ . 	the	cumula-

tive	normal	density	function,	𝑓!!"#	(𝑓!!"#)	the	frequency	of	the	target	(distractor)	tone	at	position	𝑘	in	
the	sequence	(expressed	in	 logarithmic	distance	to	𝑓!),	and	𝑏	an	additive	response	bias	toward	one	
of	 the	 two	 choices.	 This	 analysis	was	 based	 on	 best-fitting	 parameters	 estimates	 from	 the	 logistic	
regression	model,	which	are	not	bounded	and	meet	the	a	priori	assumptions	of	standard	parametric	
tests	(30,	60).	To	estimate	the	element	weight	as	a	function	of	tone	frequency,	we	binned	the	data	
into	 100	 overlapping	 quartiles	 before	 computing	 the	 multivariate	 logistic	 regression.	 We	 then	
estimated	per	participant,	and	separately	for	targets	and	distractors,	the	slope	(linear	coefficient)	of	
the	resulting	element-weight	profiles	as	a	function	of	the	tone	frequency.		

Timing	of	motor	acts	in	the	tracking	condition	

We	extracted	the	timing	of	individual	motor	acts	to	investigate	the	precision	of	motor	tracking.	This	
analysis	 was	 performed	 separately	 for	 correct	 and	 incorrect	 trials	 of	 the	 tracking	 condition,	 after	
having	matched	 the	number	of	 trials	 in	 these	 two	groups	 for	each	participant.	We	 then	computed	
the	 preferred	 phase	 orientation	 (in	 radian)	 of	 motor	 acts	 relative	 to	 the	 1.5-Hz	 beat	 (with	 zero	
corresponding	to	perfect	simultaneity	between	a	motor	act	and	the	1.5-Hz	beat).	The	mean	resultant	
vector	 length	 was	 finally	 extracted	 to	 statistically	 compare	 the	 distribution	 of	 tapping	 events	 in	
correct	and	incorrect	trials.	

MEG	data	preprocessing	

Preprocessing	was	performed	with	Brainstorm	(61),	 following	good-practice	guidelines	(62).	Briefly,	
we	removed	electrical	artifacts	using	notch	filters	(at	60	Hz	and	its	first	three	harmonics),	slow	drifts	
using	 high-pass	 filtering	 (at	 0.3	 Hz),	 and	 eye	 blink	 and	 heartbeat	 artifacts	 using	 source	 signal	
projections	 (SSP).	 We	 detected	 sound	 onsets	 with	 a	 custom	 threshold-based	 algorithm	 on	 the	
simultaneously	recorded	audio	traces.	Data	were	both	split	 into	10-sec	trials	and	600-ms	epochs	 [-
100:500]	centered	at	the	onset	of	each	tone.	MRI	volume	data	were	segmented	with	Freesurfer	and	
down-sampled	 into	 Brainstorm	 to	 15,002	 triangle	 vertices,	 to	 serve	 as	 image	 supports	 for	 MEG	
source	imaging.	Finally,	we	computed	individual	MEG	forward	models	using	the	overlapping-sphere	
method,	and	source	 imaging	using	weighted	minimum	norm	estimates	 (wMNE)	onto	preprocessed	
data	–	all	with	using	default	Brainstorm	parameters	–	and	obtained	15002	source-reconstructed	MEG	
signals	(i.e.	vertices).	wMNE	also	included	an	empirical	estimate	of	the	variance	of	the	noise	at	each	
MEG	sensor,	obtained	from	a	2-min	empty-room	recording	done	at	the	beginning	of	each	scanning	
session.	

Neural	correlates	of	the	3-Hz	melody	

The	3-Hz	melody	corresponded	to	a	stream	of	tones	presented	in	quasi-rhythm	fashion	(Fig.	1A).	We	
estimated	 the	neural	 response	 to	 this	 auditory	 stream	by	means	of	 two	complementary	measures	
inspired	 by	 (63):	 phase-phase	 coupling	 (indexed	 by	 the	 phase-locking	 value,	 PLV)	 and	 phase-
amplitude	 coupling	 (PAC)	 between	 MEG	 signals	 and	 the	 3-Hz	 melody.	 For	 each	 trial,	 we	 first	
extracted	the	MEG	signals	recorded	during	presentation	of	the	3-Hz	melody	(Fig.	1A;	~2.5-8	sec).	We	
approximated	 the	 stimulus	 dynamics	 with	 a	 sinusoid	 oscillating	 around	 3	 Hz,	 in	 which	 each	 cycle	
corresponded	to	the	duration	between	two	successive	tone	onsets	(with	tone	onset	corresponding	
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to	𝜙=0).	For	phase-phase	coupling,	we	band-pass	filtered	the	MEG	source	signals	at	2-4	Hz	(using	an	
even-order	 linear	 phase	 FIR	 filter),	 extracted	 their	 Hilbert	 phase,	 and	 computed	 PLV	 scores	 (64)	
between	each	 resulting	MEG	signal	and	 the	3	Hz	acoustic	sinusoid	over	 time	and	 trials.	For	phase-
amplitude	 coupling,	 we	 first	 estimated	 the	 amplitude	 of	 MEG	 source	 signals	 in	 26	 frequencies,	
between	4-50	Hz,	by	applying	a	time-frequency	wavelet	transform,	using	a	family	of	complex	Morlet	
wavelets	(central	frequency	1	Hz;	time	resolution	(FWMH)	3	s,	hence	3	cycles).	Then,	we	computed	
the	phase-amplitude	cross-frequency	coupling	(65)	between	the	3-Hz	acoustic	sinusoid	(phase)	and	
each	resulting	MEG	signal	(amplitude),	over	time	and	trials.	Finally,	parameter	estimates	(PLV	or	PAC)	
were	 contrasted	 with	 similarly	 processed	 resting-state	 data	 (assigned	 randomly),	 projected	 on	 a	
standard	default	brain,	 spatially	 smoothed	 (30a),	 and	 z-scored	across	 vertices	 (to	normalize	across	
participants),	 prior	 to	 group-level	 statistical	 tests.	 Note	 that	 z-scoring	was	 applied	 for	main	 effect	
(e.g.,	listen	condition)	but	not	contrast	analyses	(e.g.,	tracking	vs.	listen),	as	this	latter	is	a	normaliza-
tion	procedure	in	itself.	

Neural	correlates	of	temporal	predictions	

During	 the	 3-Hz	 melody,	 participants	 modulated	 their	 attention	 in	 time	 by	 relying	 on	 an	 internal	
model,	 an	 approximation	 of	 the	 1.5-Hz	 beat	 initiated	 by	 the	 four	 reference	 tones	 (Fig.	 1A).	 We	
estimated	 the	 neural	 dynamics	 of	 these	 temporal	 predictions	 by	means	 of	 phase-phase	 (PLV)	 and	
phase-amplitude	 (PAC)	 coupling	 between	MEG	 signals	 and	 the	 internal	 1.5	Hz	 reference	 beat.	We	
approximated	 the	 internal	 reference	 beat	 with	 a	 pure	 sinusoid	 oscillating	 at	 1.5	 Hz	 (with	 beat	
occurrence	corresponding	to	𝜙=0).	We	then	applied	the	procedure	described	above,	using	the	1.5-Hz	
pure	sinusoid	as	signal	template,	and	band-passed	filtered	the	MEG	source	signals	within	1-2	Hz,	for	
phase-phase	coupling.	

Regions-of-interest	

We	 defined	 four	 regions-of-interest,	 of	 100	 vertices	 each,	 using	 functional	 localizers	 in	 each	
individual:	We	defined	the	left	and	right	associative	auditory	(AA)	cortices	as	respectively	the	left	and	
right	 hemispheric	 vertices	 having	 the	 largest	M100	 (~110	ms)	 auditory	 evoked	 responses	 to	 both	
target	and	distractor	tones,	in	both	listen	and	tracking.	The	left	and	right	sensorimotor	(SM)	cortices	
were	 defined	 as	 the	 vertices	 having	 the	 largest	 M50	 (~40ms)	 evoked	 response,	 corresponding	
respectively	 to	 the	 right-handed	 motor	 responses	 produced	 at	 the	 end	 of	 each	 trial	 (to	 report	
participants’	choices),	and	to	the	 left-handed	finger	movements	produced	in	the	tracking	condition	
(to	 track	 the	 reference	beat).	 Region-of-interest	 analyses	were	 carried	out	by	performing	principal	
component	 analysis	 across	 the	 100	 vertices	 composing	 each	 region-of-interest,	 to	 reduce	 their	
spatial	dimensionality.		

Evoked	responses	

Different	categories	of	evoked	responses	were	computed	by	averaging	MEG	signals	across	trials,	for	
each	time	sample	around	targets,	distractors	or	the	1.5-Hz	beat	onsets.	The	resulting	signal	averages	
were	z-scored,	using	similarly	processed	resting-state	data	as	baseline	prior	to	group-level	statistical	
tests.	

Time-frequency	responses	
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Time-frequency	 responses	were	 computed	 by	 first	 estimating	 the	 amplitude	 of	MEG	 signals	 in	 30	
frequency	 bins,	 between	 1-50	 Hz,	 by	 applying	 a	 time-frequency	 wavelet	 transform	 (see	 above)	
around	targets	and	distractors	onsets	(-1:1	s).	The	resulting	signals	were	averaged	across	trials.	We	
finally	contrasted	in	a	normalized	manner	(across	frequencies)	targets	and	distractors	by	subtracting	
their	respective	time-frequency	response	and	dividing	the	result	by	their	sum.	

Directed	phase	transfer	entropy	

Directed	 functional	 connectivity	 between	 regions-of-interest	 was	 estimated	 using	 directed	 phase	
transfer	 entropy	 (66).	 Briefly,	 it	 is	 based	 on	 the	 same	 principle	 as	Wiener−Granger	 causality,	with	
time	series	described	 in	 terms	of	 their	 instantaneous	phase	 (see	also	 (67)).	Signals	were	band-pass	
filtered	 in	 specific	 frequency	 bands	 (covering	 the	 1-50	Hz	 range)	 prior	 to	 computation	 of	 directed	
phase	 transfer	 entropy.	 We	 then	 normalized	 the	 results	 between	 -0.5	 and	 0.5,	 with	 the	 sign	
indicative	of	the	dominant	direction	of	functional	connectivity.		

Statistical	procedures	

All	analyses	were	performed	at	the	single-subject	level	and	followed	by	standard	parametric	tests	at	
the	group	level	(e.g.,	paired	t-tests,	t-tests	against	zero,	repeated-measures	ANOVAs).	To	test	for	the	
presence	of	significant	1.5-Hz	beat	evoked	responses,	data	were	z-scored	over	time	(i.e.	normalized	
around	 zero)	 and	 t-tests	 against	 zero	 were	 then	 performed.	 One-tail	 t-tests	 were	 applied	 when	
analyses	were	 constrained	with	 an	a	priori	 hypothesis.	 Two-tail	 t-tests	were	 applied	 otherwise.	 In	
particular,	 main	 effects	 were	 subjected	 to	 one-tail	 t-tests	 against	 zero,	 to	 investigate	 the	 specific	
hypothesis	of	a	stronger	impact	of	acoustic	stimuli	on	task-related	rather	than	resting-state	record-
ings.	The	alternate	hypothesis	was	not	investigated,	as	it	was	considered	unrealistic.	FDR	corrections	
for	 multiple	 comparisons	 were	 applied	 over	 the	 dimensions	 of	 interest	 i.e.,	 time,	 vertices	 and	
frequencies,	 using	 the	 Benjamini–Hochberg	 step-up	 procedure.	 For	 whole-brain	 analyses,	 only	
clusters	 >60	 vertices	 in	 size	 were	 reported.	 For	 time-frequency	 analyses,	 only	 clusters	 >400	 data	
points	are	reported.	

Data	and	analysis	pipeline	availability	

The	data	reported	in	this	paper	together	with	analysis	pipelines	can	be	accessed	upon	request	via:	
http://dx.doi.org/10.23686/0088165.	
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Figures	

Figure	 1.	 Experimental	 design	 and	 behavioral	 results	 in	 the	 listen	 condition.	 (A)	Quasi-rhythmic	
sequences	of	20	pure	tones	were	presented	binaurally	on	each	trial.	4	reference	tones	preceded	an	
alternation	of	8	target	and	8	distractor	tones	of	variable	frequencies.	Targets	occurred	in	phase	with	
the	 preceding	 references,	 whereas	 distractors	 occurred	 in	 anti-phase.	 Participants	 had	 to	 decide	
whether	 the	mean	 frequency	of	 targets	was	higher	or	 lower	 than	 the	 reference	 frequency.	Partici-
pants	performed	the	task	without	moving	before	the	end	of	the	sequence	in	the	listen	condition,	and	
while	 expressing	 the	 reference-beat	 by	 moving	 their	 left	 index	 finger	 in	 the	 (motor)	 tracking	
condition.	The	3-Hz	melody	is	the	period-of-interest	for	all	analyses.	(B)	In	this	design,	neural	activity	
dedicated	 to	 stimulus	 or	 temporal	 predictions	 processing	 are	 dissociable	 based	 on	 their	 temporal	
dynamics	(3	Hz	vs.	1.5	Hz,	respectively).	(C-E)	Behavioral	results	in	the	listen	condition:	(C)	Element-
weight	 profiles	 for	 targets	 (black)	 and	 distractors	 (grey)	 as	 a	 function	 of	 element	 position	 in	 the	
sequence.	 (D).	 Averaged	 contribution	 of	 targets	 and	 distractors	 to	 the	 decision.	 Element	 weights	
were	pooled	 separately	across	 targets	and	distractors,	excluding	 the	 first	 target	and	 last	distractor	
(dashed	square	in	panel	C).	(E)	Element-weight	profiles	for	targets	(black)	and	distractors	(grey)	as	a	
function	of	tone	frequency.	(Shaded)	error	bars	indicate	s.e.m.	Star	indicates	significant	difference	(n	
=	19;	paired	t-tests;	p	<	.05).	
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Figure	2.	Listen:	Neural	correlates	of	(top)	the	3-Hz	melody	and	(bottom)	covert	temporal	predic-
tions.	 (A-B)	Whole-brain	 statistical	maps	 of	 (A)	 phase-phase	 (PLV)	 and	 (B)	 phase-amplitude	 (PAC)	
coupling	estimates	for	listen	correct	trials.	Coupling	estimates	were	respectively	computed	between	
the	phase	of	the	(top)	3-Hz	melody	or	(bottom)	1.5-Hz	beat	dynamics,	and	specific	brain	rhythms	(see	
titles).	(C-D)	Detail	of	the	phase-amplitude	coupling	estimates	in	(C)	right	associative	auditory	(rAA)	
and	(D)	left	sensorimotor	(lSM)	cortex,	in	the	4-50	Hz	range.	Shaded	error	bars	indicate	s.e.m.	Shaded	
vertical	bars	highlight	significant	effects	(n	=	19;	one-tail	t-tests	against	zero	(A-B)	or	paired	t-tests	(C-
D);	p	<	.05,	FDR	corrected).	

	

	

Figure	 3.	 Listen:	 Frequency-specific	 directional	 interactions	 between	 right	 associative	 auditory	
(rAA)	and	left	sensorimotor	(lSM)	cortex.	(A)	Directed	functional	connectivity	between	rAA	and	lSM	
in	 the	 1-50	 Hz	 range,	 for	 listen	 correct	 trials.	 Shaded	 vertical	 bars	 highlight	 significant	 effects.	 (B)	
Schematic	of	the	significant	results	depicted	in	(A)	(n	=	19;	paired	t-tests;	p	<	.05,	FDR	corrected).	
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Figure	 4.	Behavioral	 differences	 between	 listen	 and	 tracking.	 (A)	 Average	 categorization	 perfor-
mance	in	listen	and	tracking.	(B).	Averaged	contribution	of	targets	and	distractors	to	the	decision	in	
the	 listen	 (grey)	 and	 tracking	 (white)	 conditions.	 Element	 weights	 were	 pooled	 separately	 across	
targets	 and	 distractors,	 excluding	 the	 first	 target	 and	 last	 distractor.	 Error	 bars	 indicate	 s.e.m.	
Stars/n.s.	indicate	significant/non-significant	differences	(n	=	19;	paired	t-tests;	p	<	.05).	

	

Figure	 5.	 Tracking:	 Neural	 correlates	 of	 (top)	 the	 3-Hz	 melody	 and	 (bottom)	 overt	 temporal	
predictions.	Whole-brain	statistical	maps	of	(A)	phase-phase	(PLV)	and	(B-C)	phase-amplitude	(PAC)	
coupling	 estimates	 for	 tracking	 correct	 trials.	 Coupling	 estimates	 were	 respectively	 computed	
between	 the	phase	of	 the	 (top)	3-Hz	melody	or	 (bottom)	1.5-Hz	beat	dynamics,	 and	 specific	brain	
rhythms	(see	titles;	n	=	19;	one-tail	t-tests	against	zero;	p	<	.05,	FDR	corrected).	
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Figure	 6.	Tracking:	 Frequency-specific	 directional	 interactions	 between	 right	 associative	 auditory	
(rAA),	 left	 sensorimotor	 (lSM)	 and	 right	 sensorimotor	 (rSM)	 cortex.	 (A)	 Directed	 functional	
connectivity	between	(left)	rAA	and	lSM,	(middle)	rAA	and	rSM,	and	(right)	lSM	and	rSM,	in	the	1-50	
Hz	range	for	tracking	correct	trials.	Shaded	vertical	bars	highlight	significant	effects.	(B)	Schematic	of	
the	main	significant	results	depicted	in	(A)	(n	=	19;	paired	t-tests;	p	<	.05,	FDR	corrected).	

	

	

Figure	7.	Modulation	of	the	neural	correlates	of	temporal	predictions	with	condition	and	accuracy.	
(A-B)	 Whole-brain	 statistical	 maps	 of	 the	 contrast	 between	 1.5-Hz	 beat	 phase-phase	 coupling	
estimates	(A)	in	tracking	versus	listen	correct	trials,	and	(B)	in	tracking	correct	versus	incorrect	trials	
(n	=	19;	paired	t-tests,	p	<	.05,	FDR	corrected).	
	


