
HAL Id: hal-03583447
https://hal.science/hal-03583447

Submitted on 1 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Head and Body/Tail Pancreatic Carcinomas Are Not
the Same Tumors

David Birnbaum, François Bertucci, Pascal Finetti, Daniel Birnbaum, Emilie
Mamessier

To cite this version:
David Birnbaum, François Bertucci, Pascal Finetti, Daniel Birnbaum, Emilie Mamessier. Head
and Body/Tail Pancreatic Carcinomas Are Not the Same Tumors. Cancers, 2019, 11 (4), pp.497.
�10.3390/cancers11040497�. �hal-03583447�

https://hal.science/hal-03583447
https://hal.archives-ouvertes.fr


cancers

Article

Head and Body/Tail Pancreatic Carcinomas Are Not
the Same Tumors

David Jérémie Birnbaum 1,2,3,*, François Bertucci 1,2,4, Pascal Finetti 1, Daniel Birnbaum 1 and
Emilie Mamessier 1

1 Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068,
CNRS UMR725, Aix-Marseille Université, 13273 Marseille, France; bertuccif@ipc.unicancer.fr (F.B.);
finettip@ipc.unicancer.fr (P.F.); daniel.birnbaum@inserm.fr (D.B.); emilie.mamessier@inserm.fr (E.M.)

2 Faculté de Médecine, Aix-Marseille Université, 13385 Marseille, France
3 Département de Chirurgie Générale et Viscérale, AP-HM, 13015 Marseille, France
4 Département d’Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France
* Correspondence: david.birnbaum10@gmail.com; Tel.: +33-4-91-22-34-77

Received: 7 February 2019; Accepted: 2 April 2019; Published: 8 April 2019
����������
�������

Abstract: The association between pancreatic ductal adenocarcinoma (PDAC) location (head vs.
Body/Tail (B/T)) and clinical outcome remains controversial. We collected clinicopathological and
gene expression data from 249 resected PDAC samples from public data sets, and we compared
data between 208 head and 41 B/T samples. The 2-year overall survival (OS) was better for the
head than for the B/T PDACs (44 vs. 27%, p = 0.043), especially when comparing tumors with
similar TNM classification (T3/4N0M0: 67% vs. 17%, p = 0.002) or from the same molecular class
(squamous subtype: 31% vs. 0%, p < 0.0001). Bailey’s molecular subtypes were differentially
distributed within the two groups, with the immunogenic subtype being underrepresented in the
“B/T” group (p = 0.005). Uni- and multivariate analyses indicated that PDAC anatomic location was
an independent prognostic factor. Finally, the supervised analysis identified 334 genes differentially
expressed. Genes upregulated in the “head” group suggested lymphocyte activation and pancreas
exocrine functions. Genes upregulated in the “B/T” group were related to keratinocyte differentiation,
in line with the enrichment for squamous phenotype. We identified a robust gene expression signature
(GES) associated with B/T PDAC location, suggesting that head and B/T PDAC are different. This
GES could serve as an indicator for differential therapeutic management based on PDAC location.

Keywords: pancreatic cancer; tumor location; expression profiling; prognosis; survival

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a major public health problem worldwide with
260,000 deaths annually [1], and its incidence is rising [2]. PDAC has the highest mortality rate of all
human cancers [3]. Complete surgical removal of the tumor, followed by adjuvant chemotherapy,
is the only curative treatment. However, less than 20% of patients are eligible for surgery [4]. The
inoperability and the poor prognosis are due to late diagnosis rapid tumor progression (>50% of
patients display metastases at diagnosis) [5], early recurrences after resection [6,7], and resistance
to systemic therapies. Despite considerable research efforts during the past 20 years, conventional
treatment approaches, including surgery, radiation, chemotherapy, and a combination of these, have
achieved limited impact. Even after such treatments, most of the patients relapse and succumb from
their disease. Molecular studies revealed that this poor benefit might be explained, at least in part, by
the high heterogeneity found in pancreatic tumors.

Many studies have demonstrated that cancers of the right and left colons have different molecular
characteristics [8–14], suggesting that carcinogenesis in a tissue may differ with tumor location. The
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clinical and biological symptoms are also often related to the location of the tumor. Because the
pancreas is also subdivided in multiple anatomic regions—the uncinate process, the head, body, and
tail—a long-lasting debate has been initiated to know whether PDAC location could have an impact on
the developing tumor [15,16]. The fact that cell composition (Langerhans islets), fatty tissue infiltration,
innervation, blood supply, and the frequency of the different types of pancreatic tumor (branch duct
intrapapillary mucinous carcinoma tumor, mucinous cystic neoplasms) are slightly different between
the head and the body/tail (B/T) zones of the pancreas legitimates the question. Studies focusing on
the association between PDAC location (head vs. B/T) and clinical outcome (overall survival and
disease-free survival) are extremely controversial [17–19]. Some of them reported that, at diagnosis,
according to tumor stage, the survival of PDAC located in the B/T is better than the postoperative
survival of PDAC located in the head [20,21]. In contrast, other studies showed that survival is similar
between B/T and head tumor locations [16,22–26]. Finally, the SEER data (Surveillance, Epidemiology
and End Results Program by the National Cancer Institute) [27], which has gathered the highest
number of PDACs to date (1973–2002), showed that patients with a tumor located in the B/T have a
worse survival than those with tumor located in the head (3-year survival: 3.9% vs. 6.2%) [20], and
have a higher proportion of distant stage diseases (72.7% in B/T PDAC vs. 39.2% in head PDAC) [20].
This was recently confirmed in the Australian Pancreatic Cancer Genome Initiative (APGI) cohort (OS
in B/T: 12.1 months versus Head: 22.0 months) [28].

Through in-depth molecular characterization, large-scale genomics provides the opportunity to
address such a “long-lasting question”. Here, to determine whether head and B/T PDACs are similar
or different diseases, we have studied clinicopathological and gene expression data of 249 resected
pancreatic carcinoma samples, including 208 head and 41 B/T tumors.

2. Materials and Methods

2.1. Gene Expression Data Sets

We collected clinicopathological and gene expression data of 264 clinical pancreatic carcinoma
samples from four public data sets, including 249 operated primary cancer samples with informed
cancer localization (Supplementary Table S1).

2.2. Preanalytic Gene Expression Data Processing

Before analysis, gene expression data were processed. First, each data set was normalized
separately: quantile normalization for the available processed data from Illumina set and Robust
Multichip Average (RMA) [29] with the nonparametric quantile algorithm as normalization parameter
for the raw Affymetrix data. Normalization was done in R using Bioconductor and associated packages.
Second, we mapped hybridization probes across the technological microarray platforms represented in
these data sets. We used NetAffx Annotation files to update the Affymetrix gene chips annotations, and
both SOURCE and EntrezGene (Homo sapiens gene information db, release from 9 December 2008) to
retrieve and update the non-Affymetrix gene chips annotations. Then, all probes were mapped based
on their EntrezGeneID. In the case of multiple probes mapped to the same EntrezGeneID, the one
with the highest variance in a particular dataset was selected to represent the EntrezGeneID. For the
TCGA and Bailey’s data, we used the available normalized RNA-Seq data that we log2-transformed.
Samples of the four sets were pooled for unsupervised analysis by using COMBAT (empirical Bayes)
as batch effect removal method, included in the inSilicoMerging R/Bioconductor package. The merged
set included 14,531 genes in log2-transformed data. The accuracy of normalization was verified by
principal component analysis (PCA) (Supplementary Figure S1). Hierarchical clustering was done
using Cluster program and displayed using Treeview [30].
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2.3. Gene Expression Data Analysis

We first defined the molecular subtypes of pancreatic cancer samples in each data set
separately as defined in the original publications: the three Collisson’s subtypes [31] were classical,
quasi-mesenchymal, and exocrine-like; the two Moffitt’s epithelial subtypes [32] were basal-like
and classical; the two Moffitt’s stromal subtypes were normal and activated; and the four Bailey’s
subtypes [33] were squamous, pancreatic progenitor, immunogenic, and ADEX. Then, we applied the
20 Gatza’s activation pathway signature [34] and the 64 immune and stroma cell types classifiers using
the xCell web tool [35]. Finally, to identify a gene expression signature able to distinguish PDAC of the
head from PDAC of the body/tail of the pancreas, we applied a supervised analysis using learning and
validation sets. The learning set included 137 samples of the TCGA data set, including samples from
116 patients in the “head group” and samples from 21 patients in the “B/T group”. To identify the
differentially-expressed genes, a moderated t-test analysis was applied to expression levels of each gene
using linear models with empirical Bayes statistic included in the limma R package [36]. Genes were
considered as significantly differentially expressed if they showed an absolute fold change ≥2,
a p-value ≤ 5%, and a q-value ≤ 25%. The classification model was then computed using a
metagene-based approach with the significant genes and statistics for ponderation. Using a cut-off of 0,
samples were classified as “head-like” or “body/tail-like”. Robustness of the resulting classification
model was assessed in the independent validation set (n = 112 samples, including 92 head samples,
and 20 B/T samples), i.e., the three remaining sets Analyses were done in R and associated packages.
Ontology analyses were performed using DAVID Bioinformatics Resources 6.8 [37].

2.4. Statistical Analysis

Overall survival (OS) was calculated from the date of diagnosis to the date of death from pancreatic
cancer. Follow-up was measured from the date of diagnosis to the date of last news for living patients.
Survivals were calculated using the Kaplan–Meier method and were compared with the log-rank
test. Uni- and multivariate prognostic analyses were done using Cox regression analysis (Wald
test). All statistical tests were two-sided at the 5% level of significance. We followed the reporting
REcommendations for tumor MARKer prognostic studies (REMARK criteria) [38].

3. Results

3.1. Patients’ Characteristics

A total of 249 PDAC samples were included in the analysis. Their clinicopathological and
molecular data are summarized in Table 1. Briefly, the median age was 66 years (range 32–90) and
117 patients (47%) were female. Most tumors were of ductal type (n = 219, 88%) and were classified
as AJCC stage II tumors (n = 209, 84%). Following the TNM classification, most samples were pT3
tumors (n = 148; 79%), most had at least one lymph node involved (n = 162; 67%), but only 10 had
detectable metastases at diagnosis (4%). Within the whole population, 26 tumors (10%) were located in
the tail, 15 (6%) in the body, and 208 (84%) in the head of the pancreas. The 2-year OS of the whole
population was 41% (95% CI: 0.33–0.49), with a median follow-up of 11 months (range: 0–156.4).

Samples were then characterized at the molecular level. The Bailey’s classification identified
the four subtypes: ADEX (21%), immunogenic (18%), pancreatic progenitor (22%), and squamous
(39%). Regarding the Colisson’s classification, 47%, 35%, and 18% of PDACs were classified as classical,
exocrine-like, and quasi-mesenchymal, respectively. According to the Moffitt’s “Tumor” classification,
45% of samples were basal-like and 5% were classical. The Moffitt’s “Stroma” classification was
distributed as activated (63%) and normal (37%).
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Table 1. Clinicopathological and molecular characteristics of patients in the whole population and in
each location group.

Characteristics N All
Pancreas Cancer Site p-Value StatisticBody/Tail Head

Age at diagnosis, years 0.198 0.56
≤60 79 79 (32%) 9 (22%) 70 (34%) (0.22–1.27)
>60 170 170 (68%) 32 (78%) 138 (66%)
Sex 0.733 0.86

Female 117 117 (47%) 18 (44%) 99 (48%) (0.41–1.78)
Male 132 132 (53%) 23 (56%) 109 (52%)

Pathological tumor size
(pT) 0.049

pT1 10 10 (5%) 5 (16%) 5 (3%)
pT2 24 24 (13%) 4 (13%) 20 (13%)
pT3 148 148 (79%) 22 (71%) 126 (81%)
pT4 5 5 (3%) 0 (0%) 5 (3%)

Pathological lymph node
status (pN) 0.001 3.3

Negative 79 79 (33%) 22 (56%) 57 (28%) (1.53–7.1)
Positive 162 162 (67%) 17 (44%) 145 (72%)

Metastases 0.063 0.28
Negative 239 239 (96%) 37 (90%) 202 (97%) (0.06–1.4)
Positive 10 10 (4%) 4 (10%) 6 (3%)

AJCC stage 0.048
1 25 25 (10%) 7 (17%) 18 (9%)
2 209 209 (84%) 30 (73%) 179 (86%)
3 5 5 (2%) 0 (0%) 5 (2%)
4 10 10 (4%) 4 (10%) 6 (3%)

Pathological grade 0.808
1 21 21 (9%) 2 (5%) 19 (9%)
2 137 137 (57%) 23 (57%) 114 (57%)
3 81 81 (34%) 15 (38%) 66 (33%)
4 2 2 (1%) 0 (0%) 2 (1%)

Bailey subtypes 0.006
ADEX 52 52 (21%) 7 (17%) 45 (22%)

Immunogenic 45 45 (18%) 1 (2%) 44 (21%)
Pancreatic progenitor 56 56 (22%) 14 (34%) 42 (20%)

Squamous 96 96 (39%) 19 (46%) 77 (37%)
Collisson subtypes 0.065

Classical 118 118 (47%) 24 (59%) 94 (45%)
Exocrine-like 87 87 (35%) 8 (20%) 79 (38%)

Quasi-mesenchymal 44 44 (18%) 9 (22%) 35 (17%)
Moffitt subtypes,

“Tumor” 0.395 1.4

Basal-like 112 112 (45%) 21 (51%) 91 (44%) (0.65–2.8)
Classical 137 137 (55%) 20 (49%) 117 (56%)

Moffitt subtypes,
“Stroma” 0.007 3.1

Activated 154 154 (63%) 32 (82%) 122 (60%) (1.26–8.72)
Normal 90 90 (37%) 7 (18%) 83 (40%)

Follow-up median,
months (min-max) 245 11.17 (0–156.4) 9.63 (0.03–60.25) 10.97 (0–156.4)

2-Year OS (95% CI) 245 41% (0.33–0.49) 27% (0.14–0.49) 44% (0.36–0.54) 0.044

ADEX aberrantly differentiated endocrine exocrine; AJCC American Joint Committee on Cancer; CI confidence
interval; OS overall survival.

3.2. Clinicopathological and Molecular Characteristics According to Anatomic Location

Patients were divided in two groups based on the tumor anatomic location: “head” or “B/T” of
the pancreas. A total of 208 patients (84%) had a “head” PDAC and 41 (16%) had a “B/T” PDAC.
As shown in Table 1, patients from the “B/T group” were older (p = 0.039) than patients from the “head
group”, had more pT1 tumors (p = 0.049), less pathological lymph node involvement (p = 0.001), less
tumors from ductal type (p = 0.015), and less stage 2 tumors (p = 0.04). No difference between the two
groups was observed concerning the tumor grade.
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In molecular term, all Bailey’s molecular subtypes were represented in both “head” and “B/T”
tumors. However, the distribution was significantly different, notably the immunogenic subtype was
almost absent from the “B/T group” (p = 0.0058). Accordingly, the immunogenic subtype was more
frequent in the “head group” than in the “B/T group” (p = 0.0058). No significant difference was
observed between the two location groups regarding the Collison’s subtypes and the Moffit’s tumor
subtypes. By contrast, there was more Moffit’s activated stroma subtype in the “B/T group” than in the
“head group” (p = 0.006).

3.3. OS According to Anatomic Location and Prognostic Analysis

Median OS was 21.9 months (range: 1–156) in the “head group” and 14.1 months (range: 1–60) in
the “B/T group”, and the respective 2-year OS were 44% (95% CI: 0.36–0.54) with a median follow-up
of 11 months, versus 27% (95% CI: 0.14–0.49) with a median follow-up of 9.6 months, revealing longer
survival in the “head group” than in the “B/T group” (p = 0.0439; Figure 1A).
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Figure 1. Overall survival in Head or Body/Tail tumors. Kaplan–Meier overall survival (OS) curves
according to PDAC location (A). All pancreatic ductal adenocarcinoma (PDAC) and (B) T1/2 N0 M0
tumors. (C) T3/4N0M0 tumors. (D) T3/4 N1 M0 tumors. T1/2N1M0 tumors have less than 10 samples in
total and were not graphed). Head samples are in yellow. Body/Tail samples are in blue. The p-values
(log-rank test) for the comparison between the two classes within each molecular subtype are indicated.

We then compared the prognostic value of the head versus B/T anatomic location with that of
other clinicopathological variables and molecular subtype classifiers (Bailey, Collisson, and Moffitt).
In univariate analysis (Table 2), the pN status (p = 0.0078), the PDAC location (p = 0.0453), the Bailey
(p = 0.006), and Moffitt (“Tumor” p = 0.00076 and “Stroma” p = 0.0002) classifiers were associated
with OS (Wald test). The hazard ratio (HR) for death was 0.63 (95% CI: 0.41–0.99) in the head vs. B/T
classes. In multivariate analysis, the PDAC location (p = 0.0047), the pN status (p = 0.0028), Moffitt
tumor (p = 0.0497), and stroma classifiers (p = 0.0232) remained significant, suggesting independent
prognostic value.

Since AJCC TNM staging is the major prognostic factor used in clinical practice, we analyzed OS
in comparable situations, i.e., in groups matched according to the TNM staging. The “head group”
conserved a better 2-year OS (67%) than the “B/T group” (17%) when looking at tumors classified as
T3-4N0M0 (p = 0.002; Figure 1B–D).
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Table 2. Uni- and multivariate Cox regression analyses for overall survival (validation set).

Characteristics
Univariate Multivariate

N HR (95%CI) p-Value N HR (95%CI) p-Value

Age at diagnosis >60 vs. ≤60 245 0.93 (0.63–1.37) 0.708
Sex male vs. female 245 1.13 (0.78–1.62) 0.516
Pathological type other vs. ductal 245 1.12 (0.62–1.99) 0.711

Pathological tumor size (pT)
2 vs. 1 183 1.78 (0.37–8.66) 0.290
3 vs. 1 2.49 (0.61–10.24)
4 vs. 1 5.88 (0.81–42.62)

Pathological lymph node
status (pN) 1 vs. 0 237 1.77 (1.16–2.7) 0.008 230 2.04 (1.28–3.27) 0.003

Metastases 1 vs. 0 245 1.71 (0.74–3.92) 0.207

AJCC stage
2 vs. 1 245 2.14 (0.99–4.63) 0.083
3 vs. 1 4.98 (1.01–24.50)
4 vs. 1 3.50 (1.16–10.61)

Pathological grade
2 vs. 1 241 1.47 (0.59–3.69) 0.056 230 1.38 (0.52–3.61) 0.516
3 vs. 1 2.33 (0.92–5.89) 230 1.86 (0.71–4.89) 0.209
4 vs. 1 2.52 (0.49–13.13) 230 3.61 (0.66–19.82) 0.140

Pancreatic tumor site head vs. body/tail 245 0.63 (0.41–0.99) 0.045 230 0.46 (0.27–0.79) 0.005

KRAS mutation MT vs. WT 137 1.2 (0.68–2.13) 0.534

KRAS mutation, exon12
G12D vs. WT 137 1.53 (0.79–2.98) 0.317
G12R vs. WT 1.03 (0.39–2.72)
G12V vs. WT 0.63 (0.26–1.57)

Bailey subtypes
Immunogenic vs. ADEX 245 0.92 (0.50–1.70) 0.006 230 1.64 (0.75–3.6) 0.216
Pancreatic progenitor vs. ADEX 0.97 (0.54–1.73) 230 1.43 (0.68–3) 0.345
Squamous vs. ADEX 1.87 (1.13–3.10) 230 1.81 (0.8–4.1) 0.152

Collisson subtypes Exocrine-like vs. Classical 245 1.13 (0.74–1.70) 0.131 230 1.75 (0.98–3.12) 0.057
Quasi-mesenchymal vs. Classical 1.64 (1.01–2.66) 230 1.12 (0.63–2.01) 0.698

Moffitt subtypes, “Tumor” Classical vs. Basal-like 245 0.53 (0.37–0.77) 0.001 230 0.55 (0.31–1) 0.050
Moffitt subtypes, “Stroma” Normal vs. Activated 240 0.46 (0.3–0.69) 0.0002 230 0.58 (0.36–0.93) 0.023

ADEX: aberrantly differentiated endocrine, CI confidence interval, HR hazard ratio; p-value in bold: statistically significant.
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We looked at how the molecular classification could affect the survival in each of the two location
groups. Notably, tumors from the “squamous” subtype from the Bailey’s classification had a worse
overall survival when the tumor was from the “B/T group” than from the “head group” (2-years
OS: 0% versus 31%, p < 0.0001) (Figure 2). It was not possible to conclude for the immunological
subtype because “B/T” tumors included only one case. No difference in OS was observed with the
other molecular subtypes according to the PDAC location.
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Figure 2. OS in the validation set according to Head or Body/Tail in the different Bailey’s molecular
subtypes. Kaplan–Meier OS curves according to PDAC location (Head vs. B/T) and the molecular
subtypes defined by Bailey (A) Squamous, (B) ADEX, and (C) Immunogenic, and (D) Pancreatic
progenitor. The p-values (log-rank test) for the comparison between the two classes within each
molecular subtype are indicated.

3.4. Head versus Body/Tail Gene Expression Signature

To identify a gene expression signature (GES) of “head” versus “B/T” PDAC, we used the TCGA
cohort as a learning set (n = 137) and the other sets pooled as a validation set (n = 112). A total of
334 genes were differentially expressed, including 278 (83%) genes upregulated and 56 (17%) genes
downregulated in the “head group” compared to the “B/T group” (Supplementary Tables S2 and S3).
A “location” classifier was then built from this gene list, and as expected, accurately classified the B/T
samples according to their actual location (Fisher’s exact test, p < 0.0001). Importantly, its robustness
as a classifier for B/T samples was confirmed in the independent validation set (p = 0.0009, Fisher’s
exact test) (Figure 3).
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Figure 3. Establishment of the 334-gene expression signature between Head and B/T tumors based on
the learning and validation sets. (A) Volcano plot identifying 334 genes differentially expressed (GES)
between Head and B/T tumors. This volcano plot was obtained using a moderated t-test, p < 5% &
q < 25%, |FC| > 2× between the Head and B/T tumors (left). The GES was used to classify the samples
from the TCGA learning set (right). (B) Classification of the samples from each of the three validation
sets using the 334 GES. (C) Contingency analyses of the classification in the learning and validation sets
using the 334 GES identified from the learning set.

Regarding the 278 genes identified as upregulated in the “head group” (Supplementary Tables S2
and S3), two major pathways were noticeable. The first one was related to immune response
activation (p < 0.0001), more specifically involving genes from inflammatory response (p < 0.0001),
adaptive immune response (p < 0.0001), G-protein-coupled receptor signaling pathway (p < 0.0001),
transmembrane receptor protein tyrosine kinase signaling (p < 0.0001), cell surface receptor signaling
(p < 0.0001), and cellular defense response (p < 0.0001) pathways. Such activation of “Immune-related”
pathways is coherent with above-mentioned enrichment of the immunogenic subtype in the “head
group”. The immune signature showed a strong immune infiltrate, more specifically involving
upregulation of mRNA related to unconventional γδ-T cells (p < 0.0001), to the presence of a cytotoxic
activity potentially at work and B-cells-related markers (p < 0.003). Finally, numerous cytokines,
chemokines, and related receptors were secreted in “head” tumors and involved in immune cell
recruitment and function (p < 0.0001).

The second major pathway upregulated in the “head” PDAC was related to pancreas function,
notably triglyceride catabolic process (p < 0.0001), proteolysis (p < 0.0001), and digestion (p < 0.0001)
process. These genes were related to pancreatic secretion (p < 0.0001), fat, protein and vitamin digestion
and absorption (p < 0.0001), and glycolysis/gluconeogenesis/drug metabolism (p < 0.01).

Regarding the 56 genes identified as downregulated in the “head” compared to “B/T” PDAC
(Supplementary Tables S2 and S3), associated pathways were involved in epidermis development and
keratinocyte differentiation (p < 0.0001), more specifically to squamous tumors differentiation. Some
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of the downregulated genes were also related to the nervous system, notably dopaminergic synaptic
transmission (p < 0.0001) and positive regulation of calcium ion import (p < 0.0001) that function as
regulators of pancreas endocrine function, such as glucagon synthesis and positive regulation of cAMP
biosynthetic process (p < 0.0001). Finally, several genes were related to tumor aggressiveness in “B/T”
tumors, including genes involved in cellular proliferation, survival, and epithelial to mesenchymal
transition. Some of these genes are associated components of the EGFR and/or ERBB and/or TP53
pathways. Other genes are involved in the regulation of cell proliferation and local invasion and the
acquisition of drug resistance mechanisms and/or TGF-β-induced EMT.

3.5. Correlation between “Head” vs. “Body/Tail” Locations and Immune and Stromal Signatures

Because tissues are complex mixtures consisting of numerous noncancerous cell types, we searched
for correlation between “head” vs. “body/tail” transcriptomic profiles and a variety of innate and
adaptive immune cells, stromal cells, and many other cell types that are found in the tumor. For
this, we used the XCELL [35] and the Gatza [39] gene expression signatures. In brief, the Gatza gene
signature-based data aims at identifying enrichment for distinct oncogenic pathway activities; the
XCELL gene signature-based data allow identifying immune and stromal cell types present within
the tumor.

Those signatures showed correlations between the “head” transcriptional PDAC profile
and the T and B immune infiltrates (CD8pos_Tcm, CD4pos_T.cells, naive_B.cells, B.cells, and
Memory_B.cells) as well as some antigen-presenting cells (pDC, aDC, and B cells). Accordingly,
the Microenvironment_Score (p = 0.0005) and Immune_Score (p = 0.0006) were significantly correlated
with the “head” PDAC (Supplementary Table S4). By contrast, the “B/T” PDAC transcriptional profile
was correlated with Keratinocytes (p = 0.0007), Epithelial_cells (p = 0.0017), Smooth_muscle (p = 0.0123),
and TGFβ (p = 0.0299) gene signature-based profiles. As mentioned earlier, these signatures are
suggestive of ongoing epithelial-to-mesenchymal transition (EMT) process. Altogether, these results
confirmed the results of our “location” GES in term of differential pathways involved in the “head”
versus “B/T” PDAC.

4. Discussion

Currently, the AJCC TNM classification is the only prognostic factor used in clinical practice
to assess survival of resected PDAC and guide treatments decision. However, recent data suggest
that PDAC localized in the “head” might have a better survival than PDAC localized in the “B/T”
zone of the pancreas [20,27]. So far, this information is not taken into account when using the TNM
classification. Still, the association between PDAC location and survival has been the subject of a
longstanding debate, which is not completely settled yet. Here, we reported longer 2-year OS in
“head” PDAC than in “B/T” PDAC. It has been hypothesized that “head” PDAC comes to clinical
attention earlier than “B/T” PDC due to early detectable symptoms, such as high carbohydrate antigen
19-9 (CA19-9) positivity or painless jaundice (caused by tumor obstruction of the bile ducts, which
pass through the head of the pancreas). Thus, clinicians are prompt to perform abdominal imaging
that will reveal the underlying tumor, and may thus deal with “earlier” stages of PDAC tumors.
In contrast, tumors of the body and tail do not produce jaundice, and therefore most often come to
clinical attention later, once weight loss and/or abdominal pain become apparent [20,27,40]. However,
reciprocally, patients primarily diagnosed with pancreatic “B/T” cancer are associated with much more
pain, higher serum albumin level, higher carcinoembryonic antigen (CEA), and higher metastasis
rate. Whatever the cause of detection, at diagnosis, “B/T” PDAC corresponds to larger tumors that
bear numerous molecular alterations, suggesting a later stage of disease evolution [20,41–48]. They
are also more heterogeneous at the genomic level [49]. To avoid bias that can affect survival, we
compared tumors with the same histological TNM classification. We confirmed that “B/T” PDAC has
the worst 2-year OS for T3 and T4 N0 M0 tumors. This was not significant in the other groups, most
certainly due to an inadequate number of samples in the analyzed groups despite our large cohort.
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In multivariate analysis, the pN status, the PDAC location and the Moffitt subtypes were the only
three significant factors. The stratified hazard ratio (HR) for death was 0.46 (95% CI 0.27–0.79) in the
head versus B/T classes. We thus confirmed than PDAC localization is an independent prognostic
factor when compared with the molecular subtype classifications. Of note, the location remained
an independent prognostic factor in multivariate analysis when analysis was limited to the ductal
tumors only (data not shown). We cannot exclude that this difference in survival might be inherent
to other characteristics. We may however rule out the impact of the surgical procedure associated to
the location (distal pancreatectomy versus pancreaticoduodenectomy). Indeed, when considering
the survival of PDAC according to the molecular subtype classification (Figure 2B–D, n = 150 cases),
there was no significant difference in survival between the Head and the B/T groups except for the
Squamous subtype. If location and associated surgery only had an impact on survival, it would have
been detectable for all molecular subtypes of PDAC, and not the Squamous subtype only. It is also
possible that the molecular differences related to the head versus B/T locations are not tackled by the
molecular subtypes.

Overall, we were interested in defining the differential gene expression signature related to PDAC
location. A recent study used pre-established “genes programs” issued from the PDAC classification of
Bailey [33] to conduct a similar analysis [28]. It showed that the location in the “B/T” was associated with
the squamous subtype of PDAC, the molecular subtype with the worse clinical outcome. In addition
to this finding, we reported a worst survival for squamous tumors localized in the B/T as compared to
the ones isolated from the “head” of the pancreas. This means that, independently from the squamous
classification, the PDAC location has a prognostic impact. To go further with minimal induced bias
(which can be introduced using pre-established gene programs), we did a global supervised analysis
on a large learning dataset, then validated the obtained GES on an independent set. By doing so, we
qualitatively identified the transcriptional difference between the two PDAC anatomic locations.

In line with the shorter survival of B/T tumors, our GES analysis between “head” and “B/T” PDAC
revealed that B/T tumors were probably more aggressive tumors, being highly proliferative and more
prone to EMT. The higher proliferation rate could explain why “B/T” tumors often display bigger size
at diagnosis [28]. Tumor recurrence might also be related to this EMT-prone status [28]. Interestingly,
these effects (proliferation and EMT status) seem to be amenable to EGFR and or ERBB2 regulation.
TNS4, NTSR1, and PNCK are three genes involved in these pathways. Tensin-4 (or TNS4) functions as an
oncogene and promotes cell proliferation and/or motility in numerous solid tumors, including pancreatic
cancer [50], gastric cancer, hepatocellular carcinoma, and colorectal cancers. TNS4 is upregulated by
EGF-induced ERK1/2 activity and KRAS, and as a retro-control loop, TNS4 regulates EGFR expression.
Similarly, NTSR1, which belongs to the large superfamily of G-protein coupled receptors, was shown
to promote tumor invasion by accelerating EMT [50]. NTSR1 could also affect cancer cells proliferation.
High NTSR1 expression is associated with pancreatic ductal adenocarcinoma [51] and is a poor
prognosis factor. Finally, PNCK, a member of the calcium/calmodulin-dependent protein kinase family
of protein serine/threonine kinases, was shown to induce ligand-independent EGFR degradation. High
expression of PNCK resulted in increased proliferation, clonal growth, cell cycle progression, and
trastuzumab resistance in ERBB2-positive tumor cells [52–54]. Altogether, those three genes deserve
more attention and might represent attractive therapeutic targets for “B/T” PDAC.

Because Langerhans islet concentration is much higher in the tail than in the head of the pancreas,
theoretically, patients with pancreatic “B/T” cancer are more prone to have islet dysfunction and
subsequent diabetes. Data comparing the onset of pancreatic cancer-induced diabetes between “head”
and “B/T” PDAC are limited. Here, we have shown that the endocrine functions of the pancreas seem
to be relatively more efficient in the “B/T” than in the “head” PDAC. Even in the presence of the
growing tumor, the endocrine cells, notably insulin-secreting cells, seem to maintain their function.
Insulin-positive endocrine cells seem to be “refractory” to malignant progression. This can explain why
postoperative diabetes is higher in patients receiving distal (B/T) pancreatectomy than in those treated
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with pancreaticoduodenectomy [8,55] and the delayed diagnosis of “B/T” tumors in the absence of any
detectable symptoms.

Another striking information related to our analysis was the absence of the immunological subtype
in “B/T” PDAC. This highlights a profound defect in the recruitment of leukocytes within “B/T” PDAC
and suggests that these tumors are probably noneligible for immune therapy-based treatment. The
obvious defect in immune response was mainly noticeable due to the absence of CD8 γδ−T cells and
B cells in “B/T” PDAC. Because this transcriptomic analysis results from the whole tumor piece, we
cannot know whether these cells were infiltrating or surrounding the tumor. These cells however
overexpressed immune checkpoint inhibitory molecules, such as PD1, BTLA, TNFSF14 (LIGHT), and
TIGIT, which are the sign of immune exhaustion or inhibition of tumor infiltrating lymphocytes.
Gamma-delta T cells are part of the unconventional T cells involved in the initiation and propagation
of immune responses. It is thus plausible that the reactivation of this cytotoxic immune infiltrate,
achievable with the help of immune checkpoint inhibitors and/or potent analogues with more or less
selective stimulatory activity for γδ-T cells (such as bromohydrin diphosphate (BrHPP), anti-KIR,
phosphoantigen, or ligation of NKG2D, for example), can benefit to “head” PDAC. As for many solid
tumors, boosting the immune system, especially with neoadjuvant therapeutic agents might be highly
beneficial for “head” PDAC.

5. Conclusions

In conclusion, we have identified a robust GES associated with B/T PDAC samples. The nature of
genes differentially expressed suggests that different therapeutic managements might be applied in
clinics depending on the “head” or the “B/T” location of tumor (Figure 4).
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