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We study the qualitative behavior of a model to represent local regulation in a metabolic network. The model is based on the end-product control structure introduced in [A.

1. Introduction. Metabolic networks are an important part of cells and understanding how they operate is an important issue whether in the context of human health or biotechnology. A significant number of methods for analyzing metabolic networks focus on the analysis of their equilibrium regimes. Among these methods, two emblematic and well-known in the study of metabolic networks are Flux Balance Analysis (FBA) [START_REF] Orth | What is flux balance analysis?[END_REF] (see also Metabolic Flux Analysis [START_REF] Varma | Metabolic flux balancing: basic concepts, scientific and practical use[END_REF]) and Metabolic Control Analysis (MCA) [START_REF] Heinrich | Mathematical analysis of multienzyme systems. II. steady state and transient control[END_REF][START_REF] Kacser | The control of flux[END_REF][START_REF] Rapoport | A linear steady-state treatment of enzymatic chains: A mathematical model of glycolysis of human erythrocytes[END_REF][START_REF] Reder | Metabolic control theory: a structural approach[END_REF].

From the point of view of dynamical systems, these methods of metabolic network analysis make the implicit assumption that the metabolic network not only has an unique equilibrium regime, but that it is stable. Given the high predictive power of some methods based on this assumption, it can be considered that it is empirically validated at least at the level of cell populations.

While this assumption of the existence of equilibrium regimes is undoubtedly fundamental in a large number of methods, and very useful in practice, the identification of the conditions that guarantee it is nonetheless essential. However, beyond the theoretical aspect, the conditions that ensure its validity determine our ability to intervene on metabolic networks, whether in therapeutic perspectives or in the context of biotechnologies. Indeed, it is decisive to know whether the hypothesis of quasistationarity is preserved when, for example, certain enzymes are inhibited by drugs in the case of medical treatments or when a new pathway is added to the network in the context of biotechnologies and synthetic biology.

More fundamentally, knowing under which assumptions the metabolic network satisfies the quasi-stationarity assumption is a determining element in the analysis of the genetic regulation of metabolic networks. The question is vast and has already been addressed many times in the literature under different assumptions [START_REF] Baldazzi | Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in escherichia coli[END_REF][START_REF] Kuntz | Model reduction of genetic-metabolic networks via time scale separation[END_REF][START_REF] Waldherr | Dynamic optimization of metabolic networks coupled with gene expression[END_REF]. Modeling metabolic networks coupled with gene expression has been a subject of active research during the last decade [START_REF] Baldazzi | Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in escherichia coli[END_REF][START_REF] Goelzer | Cell design in bacteria as a convex optimization problem[END_REF][START_REF] Kuntz | Model reduction of genetic-metabolic networks via time scale separation[END_REF][START_REF] Lerman | In silico method for modelling metabolism and gene product expression at genome scale[END_REF][START_REF] Liu | Regulatory dynamic enzyme-cost flux balance analysis: A unifying framework for constraint-based modeling[END_REF][START_REF] Waldherr | Dynamic optimization of metabolic networks coupled with gene expression[END_REF]. Yet faced problems in metabolic modeling are large scale of models [START_REF] Anderson | Model decomposition and reduction tools for large-scale networks in systems biology[END_REF][START_REF] Gerdtzen | Non-linear reduction for kinetic models of metabolic reaction networks[END_REF][START_REF] Lopez-Zazueta | Analytical reduction of nonlinear metabolic networks accounting for dynamics in enzymatic reactions[END_REF][START_REF] Lopez-Zazueta | Dynamical reduction of linearized metabolic networks through quasi steady state approximation[END_REF][START_REF] Radulescu | Robust simplifications of multiscale biochemical networks[END_REF], nonlinear kinetics [START_REF] Horn | General mass action kinetics[END_REF][START_REF] Savageau | Biochemical systems analysis: I. some mathematical properties of the rate law for the component enzymatic reactions[END_REF][START_REF] Voit | 150 years of the mass action law[END_REF] and stochasticity [START_REF] Kim | The validity of quasi-steady-state approximations in discrete stochastic simulations[END_REF][START_REF] Rao | Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the gillespie algorithm[END_REF].

Time-scale separation and the Quasi Steady State Assumption (QSSA) have been proposed as useful approaches to reduce deterministic models of metabolic networks [START_REF] Goeke | A constructive approach to quasi-steady state reductions[END_REF][START_REF] Lopez-Zazueta | Analytical reduction of nonlinear metabolic networks accounting for dynamics in enzymatic reactions[END_REF][START_REF] Lopez-Zazueta | Dynamical reduction of linearized metabolic networks through quasi steady state approximation[END_REF], as well as for stochastic models of biochemical reactions and genetic networks [START_REF] Samad | Stochastic modelling of gene regulatory networks[END_REF][START_REF] Kim | The validity of quasi-steady-state approximations in discrete stochastic simulations[END_REF][START_REF] Rao | Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the gillespie algorithm[END_REF]. Also, the reduction through time-scale separation and QSSA has been applied to deterministic models of metabolic-genetic networks [START_REF] Baldazzi | Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in escherichia coli[END_REF][START_REF] Kuntz | Model reduction of genetic-metabolic networks via time scale separation[END_REF][START_REF] Waldherr | Dynamic optimization of metabolic networks coupled with gene expression[END_REF]. The method consists of dividing the states in two groups: the fast species (metabolites) and the slow species (macromolecules, gene products). Then, a deterministic model can be reduced using techniques for singularly perturbed systems (e.g. the theorems of Tikhonov [START_REF] Khalil | Nonlinear systems[END_REF][START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF][START_REF] Tikhonov | Differential Equations[END_REF] and Fenichel [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF][START_REF] Verhulst | Singular perturbation methods for slow-fast dynamics[END_REF]). The solution of the reduced system approximates the solution of the original system if some conditions are satisfied. One of these is asymptotic stability for the fast part of the system when the slow species are assumed to be constant.

In particular, the question of the stability of metabolic pathways with negative feedback loops has been considered in the past [START_REF] Allwright | A global stability criterion for simple control loops[END_REF][START_REF] Arcak | Diagonal stability of a class of cyclic systems and its connection with the secant criterion[END_REF][START_REF] Chaves | Dynamics of complex feedback architectures in metabolic pathways[END_REF][START_REF] Mees | Periodic metabolic systems: oscillations in multiple-loop negative feedback biochemical control networks[END_REF][START_REF] Meslem | Lyapunov function for irreversible linear metabolic pathways with allosteric and genetic regulation[END_REF][START_REF] Meslem | Stability analysis for bacterial linear metabolic pathways with monotone control system theory[END_REF][START_REF] Tyson | The dynamics of feedback control circuits in biochemical pathways[END_REF][START_REF] Wang | Conditions for global stability of monotone tridiagonal systems with negative feedback[END_REF]. This leads some authors to characterize the stability properties of linear metabolic pathways transforming an initial substrate into a final product of interest through n elementary enzymatic reactions and where the concentration of the last metabolite, i.e. the end-product, negatively modulates the activity of the first enzyme. In this context, the authors mainly tried to identify the conditions that ensure the stability (in the Lyapunov sense) of such linear pathways with negative feedback. The first studies have mainly investigated the stability properties of the linearization of the system associated with its equilibrium point.

The purpose of this work is to present a generic model that represents allosteric regulation for a repressible enzyme, i.e., allosteric inhibition. For a repressible enzyme, the presence of the effector molecule enhances the binding of a repressor molecule to the operator gene that regulates the enzyme coding, and transcription is blocked [START_REF] Jacob | Genetic regulatory mechanisms in the synthesis of proteins[END_REF][START_REF] Tyson | The dynamics of feedback control circuits in biochemical pathways[END_REF]. The fraction of the operator region free of repressor corresponds to a monotone decreasing function with respect to the metabolite effector concentration. Moreover, these reactions occur quickly and are therefore at equilibrium [START_REF] Tyson | The dynamics of feedback control circuits in biochemical pathways[END_REF]. In the limit case, we can consider that the monotone decreasing function is a step function (see Figure 1).

For this purpose, we introduce a model that represents local regulation in a metabolic pathway and study its dynamical behavior. The model is based on the end-product control structure introduced in [START_REF] Goelzer | Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of bacillus subtilis[END_REF] (see also [START_REF] Goelzer | Towards the modular decomposition of the metabolic network[END_REF]). In this class of local regulation, the metabolite effector is the end product of the pathway and enzyme synthesis of the pathway is induced when the concentration of the effector decreases. In a first stage, we consider that enzyme concentrations remain constant with the purpose of using a slow-fast system approach.

Indeed, the experiments indicate that quasi-steady state exist at the scale of a cell population. However, to assess the stability of metabolic systems is challenging due to the large scale of models and their non-linear dynamics. Even if it is classic in the engineering context to consider that stability is an expected or even necessary property, other behaviors of the system may also be acceptable from the standpoint of the functioning of a dynamic system, as for example the fact that the system oscillates about an average value. Besides, multistability and oscillatory dynamics can emerge In the case of a repressible enzyme, the fraction of the operator region free of repressor correspond to a monotone decreasing function. The reactions that block transcription occur fast, which in a limit case can be represented as a step function.

in metabolic pathways under gene regulation [START_REF] Samad | Stochastic modelling of gene regulatory networks[END_REF][START_REF] Fung | A synthetic gene-metabolic oscillator[END_REF][START_REF] Wang | Conditions for global stability of monotone tridiagonal systems with negative feedback[END_REF][START_REF] Oyarzún | Multistability and oscillations in genetic control of metabolism[END_REF][START_REF] Chaves | Dynamics of complex feedback architectures in metabolic pathways[END_REF].

In the context of cells, where the stochasticity is very large, fluctuations due to these oscillations would not necessarily be a problem. In this paper, we thus take the counterpart of the classic approach by considering that the negative feedback is high. We will obtain by considering a limit case, i.e. by assuming that the feedback is an ON/OFF type mechanism, conditions ensuring the existence of an oscillatory regime.

In Section 2, we describe the model of local regulation. In order to represent the stiffness of allosteric regulation, we consider a deterministic model of a linear metabolic pathway with an input-feedback that switches between two modes (ON and OFF) according to the concentration of the metabolite effector. The fluxes among the metabolites are generalized so that kinetics can be nonlinear, only respecting some monotonicity conditions.

In Section 3, we define a differential inclusion for the switched system following the theory of Filippov for discontinuous systems [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]. We prove that, under some conditions, the solution of the differential inclusion can converge uniformly and asymptotically to an equilibrium point, remain in equilibrium at the sliding mode or oscillate around the sliding mode.

In Section 4, we present an example of a metabolic pathway with Michaelis-Menten reversible reactions. Finally, in Section 5, we show that the solution of the switched system is the limit of function sequences with smooth or piecewise linear inputs that tend towards an ON / OFF type mechanism.

Model of local regulation.

In this Section we introduce the feedback model studied through the text, which is based on the end-product control structure proposed in [START_REF] Goelzer | Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of bacillus subtilis[END_REF] (see also [START_REF] Goelzer | Towards the modular decomposition of the metabolic network[END_REF]). The model corresponds to a metabolic pathway where the end product is the metabolite effector.

We consider the model as a slow-fast system, where metabolites are the fast species and enzymes the slow species. In order to analyze the stability conditions for the fast part of the system according to Tikhonov's Theorem [START_REF] Khalil | Nonlinear systems[END_REF][START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF][START_REF] Tikhonov | Differential Equations[END_REF][START_REF] Verhulst | Singular perturbation methods for slow-fast dynamics[END_REF], we assume that enzyme concentrations are constant.

u(X n ) X 1 X 2 . . . X n f 1 f 2 f n-1 ν n f n Fig. 2. End-product control structure.
The ODE describing the concentration of metabolites in the pathway of Figure 2 is

dX 1 dt = u(X n ) -f 1 (X 1 , X 2 ) -µ • X 1 (2.1)
dX 2 dt = f 1 (X 1 , X 2 ) -f 2 (X 2 , X 3 ) -µ • X 2 . . . dX n dt = f n-1 (X n-1 , X n ) -ν n f n (X n ) -µ • X n ,
where u : R n → [0, ∞) is the input function, µ ≥ 0 the growth rate and ν n ≥ 0 an output rate. In this case we consider that allosteric regulation acts on the input flux of the pathway, which can be interpreted as the regulation of the enzyme activity leading to the input by the metabolite effector X n (the end-product of the pathway).

In order to simplify the notation we define

f (u, X, µ, ν n ) :=      u(X n ) -f 1 (X 1 , X 2 ) -µ • X 1 f 1 (X 1 , X 2 ) -f 2 (X 2 , X 3 ) -µ • X 2 . . . f n-1 (X n-1 , X n ) -ν n f n (X n ) -µ • X n      .
Then, Equation (2.1) can be rewritten as

dX dt = f (u, X, µ, ν n ).
We assume that kinetics of the metabolic pathway in Figure 2 can be nonlinear, but they respect some monotonicity conditions that are established in Assumption 1. The monotonicity condition implying that functions f i are strictly increasing with respect to the first entry assures the flux from the input to the end-product of the pathway. On the other hand, we consider that reactions can be reversible, but this is not imposed as a condition. Therefore, functions f i are supposed to be decreasing (but not strictly) with respect to the second entry. Assumption 1. For every i = 1, . . . , n -1 assume (i)

f i : [0, ∞) × [0, ∞) → R and f n (X n ) : [0, ∞) → R are continuous functions, (ii) f i (X i , X i+1
) is strictly increasing w.r.t. X i and f n (X n ) is strictly increasing w.r.t. X n , i.e.

f i (X i , X i+1 ) < f i (X i , X i+1 ) ∀X i < X i , ∀X i+1 ∈ [0, ∞), f n (X n ) < f n (X n ) ∀X n < X n , (iii) f i (X i , X i+1 ) is decreasing w.r.t. X i+1 , i.e. f i (X i , X i+1 ) ≤ f i (X i , X i+1 ) ∀X i+1 < X i+1 , ∀X i ∈ [0, ∞), (iv) f i (0, X i+1 ) ≤ 0 for all X i+1 ∈ [0, ∞), (v) f i (X i , 0) ≥ 0 for all X i ∈ [0, ∞) and
(vi) and f n (0) = 0.

3. Hybrid model. We consider the limit case where allosteric regulation can be represented by a step function, which can be understood as the induction or repression of the enzyme activity (see Figure 1). For this purpose, we assume the input of system (2.1) to be a step function that depends on the concentration of X n the metabolite effector with respect to K > 0 a threshold value:

u[X n ] := k 1 if X n < K 0 if K < X n . (3.1)
Through the text, we refer to k 1 as the constant input ON and 0 as the constant input OFF.

Hence, we suppose that the enzyme activity leading to the input is induced if the concentration of the metabolite effector is under a threshold K (i.e. X n < K), and it is repressed when the concentration of the metabolite effector is over the threshold (i.e. K < X n ).

3.1. Oscillatory system. Switching the input allows to keep the concentration of the metabolite effector X n as close as possible to the threshold K. Indeed, the input is OFF when the metabolite effector concentration exceeds the threshold, which allows a decrease of the flux pathway and of X n concentration consequently. Reciprocally, the input is ON if the metabolite effector concentration is under the threshold, which leads to an increment of the flux pathway and X n concentration.

The next Theorem 3.1 states that, if the constant input ON is enough large and the sliding mode is not attained, then the switching leads to an oscillatory behavior in all the states of the system. Theorem 3.1. Under Assumption 1, consider the system

dX dt = f (u[X n ], X, µ, ν n ) (3.2)
with initial conditions X i (t 0 ) ≥ 0, i = 1, 2, . . . , n, K > 0, k 1 > 0, µ ≥ 0, ν n ≥ 0, µ + ν n > 0 and the input u[X n ] defined in (3.1).

Suppose that there exist positive values

Y * 1 , Y * 2 , . . . , Y * n-1 such that 0 = f 1 (Y * 1 , Y * 2 ) -f 2 (Y * 2 , Y * 3 ) -µ • Y * 2 0 = f 2 (Y * 2 , Y * 3 ) -f 3 (Y * 3 , Y * 4 ) -µ • Y * 3 . . . 0 = f n-1 (Y * n-1 , K) -ν n f n (K) -µ • K and that n-1 i=1 µ • Y * i + µ • K + ν n f n (K) < k 1 . (3.3)
Then, there is an absolutely continuous function X = (X 1 , X 2 , . . . , X n ) that satisfies equation (3.2) for a.e. t ∈ [t 0 , ∞) and right uniqueness holds in

[t 0 , ∞) × [0, ∞) n .
Furthermore, if there is t * ≥ t 0 such that X i (t * ) = Y * i for every i = 1, 2, . . . , n -1 and X n (t * ) = K, then the switched system (3.2) remains at sliding mode, i.e., for all t ≥ t * , X i (t) = Y * i for every i = 1, 2, . . . , n -1 and X n (t) = K. Otherwise, the switched system

(3.2) oscillates around (Y * 1 , Y * 2 , . . . , Y * n-1 , K).
In other words, X i has an oscillatory trajectory that takes the value Y * i infinitely many times for every i = 1, 2, . . . , n -1 and X n has an oscillatory trajectory that takes the value K infinitely many times.

The proof of Theorem 3.1 is in Subsection 3.3. In the next subsection we present some results necessary to it.

Systems with constant inputs.

To prove Theorem 3.1, it is useful to analyze the metabolic pathway system (2.1) when the input is a constant function. In this section, we introduce several lemmas for systems with constant inputs that are used in the proof of Theorem 3.1. The proofs of all Lemmas are in Appendix B. Definition 3.2. We say that a vector

X = (X 1 , X 2 , . . . , X n ) ∈ R n is nonnegative if X i ≥ 0 for all i = 1, 2, . . . , n. Reciprocally, a vector X = (X 1 , X 2 , . . . , X n ) ∈ R n is positive if X i > 0 for all i = 1, 2, . . . , n.
The next lemma states that, in case of having a nonnegative constant input, system (2.1) is positively invariant. Moreover, if the system has a nonnegative equilibrium point, this delimits the boundary of some invariant regions.

Lemma 3.3. Under Assumption 1, consider the system dX dt = f (I, X, µ, ν n ),
where I indicates a constant input function with value I ≥ 0, ν n ≥ 0 and µ ≥ 0. Then,

Ω 1 := [0, ∞) × [0, ∞) × • • • × [0, ∞)
is positively invariant under the flux X. Moreover, suppose that the system above has a nonnegative equilibrium point

X * := (X * 1 , X * 2 , . . . , X * n ).
Then, the subsets

Ω 2 := [0, X * 1 ] × [0, X * 2 ] × • • • × [0, X * n ], Ω 3 := [X * 1 , ∞) × [X * 2 , ∞) × • • • × [X * n , ∞), Ω 4 := {X * 1 } × {X * 2 } × • • • × {X * n },
are positively invariant under the flux X.

The next proposition claims that if system (2.1) with a nonnegative constant input has a nonnegative equilibrium point, then, this is globally uniformly asymptotically stable. The proof is divided in two cases. In the case when µ > 0, the proof consists on defining a Lyapunov function that is bounded by a positive definite function. Then, using an extension of the LaSalle invariance principle [START_REF] Orlov | Discontinuous systems: Lyapunov analysis and robust synthesis under uncertainty conditions[END_REF], the result is concluded.

In the other case, when µ = 0 and ν n > 0, the proof follows the ideas of the particular case with Michaelis-Menten kinetics presented in Proposition 8 of [START_REF] Ndiaye | Global stability of reversible enzymatic metabolic chains[END_REF]. Using that the Jacobian is a column diagonally dominant matrix due to the monotonicity conditions of Assumption 1, it is proved that the equilibrium point is globally attractive and also locally asymptotically stable (see Appendix A).

Proposition 3.4. Under Assumption 1, consider the system

dX dt = f (I, X, µ, ν n ), (3.4)
with initial conditions X i (t 0 ) ≥ 0 for every i = 1, 2, . . . , n, the constant input I ≥ 0, µ ≥ 0, ν n ≥ 0 and 0 < µ + ν n .

If system (3.4) has a nonnegative equilibrium point X * := (X * 1 , X * 2 , . . . , X * n ), then X * is globally uniformly asymptotically stable (GUAS).

Proof. First suppose that 0 < µ. Define the Lyapunov norm-like function

V (X) := n i=1 |X i -X * i |,
where X := (X 1 , X 2 , . . . X n ). The function V is continuous, nonnegative and V (X) = 0 if and only if X = X * (i.e. V is positive definite).

According to Lemma 3.3, X i (t) ∈ [0, ∞) for every t ≥ t 0 , i = 1, 2, . . . , n. Then, as a consequence of the monotonicity of the functions f i established in Assumption 1 and the existence of the equilibrium point, it follows,

V (X) ≤ - n i=1 µ • |X i -X * i | Defining W (X) := n i=1 µ•|X i -X * i |, we have that W (X) is a continuous nonnegative function such that W (X) = 0 if and only if X = X * and V (X) ≤ -W (X).
Therefore, by means of an extension of LaSalle invariance principle (see Theorem 3.3 in [START_REF] Orlov | Discontinuous systems: Lyapunov analysis and robust synthesis under uncertainty conditions[END_REF]), we conclude that X * is globally uniformly asymptotically stable.

The proof for the case µ = 0 and 0 < ν n is in Appendix A.

The next Lemma 3.5 states an order for the metabolic pathways with constant inputs. In other words, it compares two systems of the form (2.1) with constant inputs, according to the input values and their initial conditions.

Moreover, Lemma 3.6 asserts an order for nonnegative equilibrium points of two systems of the form (2.1) with positive constant inputs.

Finally, Lemma 3.7 states that if a system of the form (2.1) with constant input has a nonnegative equilibrium point, then there is also a system of the form (2.1) with a larger constant input that has a larger (entry by entry) equilibrium point. Lemma 3.5. Under Assumption 1, consider two systems

dX dt = f (I 1 , X, µ, ν n ) dY dt = f (I 2 , Y, µ, ν n ),
with constant inputs that satisfy

0 ≤ I 2 ≤ I 1 ,
ν n ≥ 0, µ ≥ 0 and initial conditions X(t 0 ) and Y (t 0 ), respectively, such that

0 ≤ Y i (t 0 ) ≤ X i (t 0 ) ∀i = 1, 2, . . . , n. If I 2 < I 1 , then Y i (t) < X i (t) ∀t ∈ (t 0 , ∞), ∀i = 1, 2, . . . , n.
Moreover, if

I 1 = I 2 and Y i (t 0 ) < X i (t 0 ) for every i = 1, 2, . . . , n, there is T > t 0 such that Y i (t) < X i (t) ∀t ∈ (t 0 , T ), ∀i = 1, 2, . . . , n,
and

Y i (t) ≤ X i (t) ∀t ∈ [T, ∞), ∀i = 1, 2, . . . , n.
Lemma 3.6. Under Assumption 1, consider the following systems

dX dt = f (I 1 , X, µ, ν n ), (3.5) dY dt = f (I 2 , Y, µ, ν n ), (3.6)
where ν n ≥ 0 and µ ≥ 0 and the constant inputs satisfy

0 ≤ I 2 < I 1 .
Suppose that systems (3.5) and (3.6) have nonnegative equilibrium points X

* := (X * 1 , X * 2 , . . . , X * n ) and Y * := (Y * 1 , Y * 2 , . . . , Y * n ), respectively. Then, Y * i < X * i ∀i = 1, 2, . . . , n.
Lemma 3.7. Under Assumption 1, suppose that there is a nonnegative vector

X * := (X * 1 , X * 2 , . . . , X * n ) such that f (I 1 , X * , µ, ν n ) = 0, with I 1 > 0, ν n ≥ 0 and µ ≥ 0.
Then, for any ε > 0, there exist

I ∈ (I 1 , I 1 + ε)
and a nonnegative vector X := (X 1 , X 2 , . . . , X n ) such that

X * i < X i ∀i = 1, . . . , n and 
f (I, X , µ, ν n ) = 0.
3.3. Solution existence and right uniqueness. In this section we will prove the existence and right uniqueness of an absolutely continuous solution for the switched system (3.2). For this purpose, we use the theory of differential inclusions of Filippov [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]. Definition 3.8. We say that for the equation

dx dt = f (t, x)
right uniqueness holds at a point (t 0 , x 0 ) if there exists t 1 > t 0 such that each two solutions of this equation satisfying the condition x(t 0 ) = x 0 coincide on the interval t 0 ≤ t ≤ t 1 or on the part of this interval on which they are both defined. Moreover, right uniqueness holds in a domain D (open or closed) if for each point (t 0 , x 0 ) ∈ D every two solutions satisfying the condition x(t 0 ) = x 0 coincide on each interval t 0 ≤ t ≤ t 1 on which they both exist and lie in this domain [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF].

Definition 3.9. We define the sign as a function sgn : R → {-1, 0, 1} such that

sgn(x) :=      -1 if x < 0 0 if x = 0 1 if x > 0 .
The purpose of Lemma 3.10 and Lemma 3.11 is to analyze the behavior of the switched system (3.2) when its last state (metabolite X n ) takes the value K at which the systems switches. This unequivocally defines the value taken by the entry of the switched system (3.2) in the differential inclusion, allowing to conclude in Proposition 3.12 that right uniqueness holds for its solution.

Lemma 3.10. Under Assumption 1, consider the system

dX dt = f (I, X, µ, ν n ),
with I ≥ 0, µ ≥ 0 and ν n ≥ 0. Suppose that for some m ∈ {1, 2, . . . , n -1}

Ẋi (t 0 ) = 0 ∀i > m.
Then, there exists ε > 0 such that

sgn( Ẋi (t)) = sgn( Ẋm (t)) ∀t ∈ (t 0 , t 0 + ε), ∀i > m.
Lemma 3.11. Under Assumption 1, let k 1 > 0, µ ≥ 0, ν n ≥ 0 and consider the systems

d X dt = f (k 1 , X, µ, ν n ) dZ dt = f (0, Z, µ, ν n ),
with the same initial conditions

X i (t 0 ) = Z i (t 0 ) ∀i = 1, 2, . . . , n.
Assume that there is m ∈ {2, 3, . . . , n} such that

˙ X m (t 0 ) = Żm (t 0 ) = 0.
Then, there exists ε > 0 such that

sgn( ˙ X n (t)) = sgn( Żn (t)) ∀t ∈ (t 0 , t 0 + ε).
Proposition 3.12 (Existence and uniqueness). Under Assumption 1, consider the system

dX dt = f (u[X n ], X, µ, ν n ) (3.7) with initial conditions X i (t 0 ) ≥ 0, i = 1, 2, . . . , n, K > 0, k 1 > 0, µ ≥ 0, ν n ≥ 0 and the input u[X n ] defined in (3.1).
Then, there exists an absolutely continuous function X that satisfies (3.7) for almost every (a.e.) t ∈ [t 0 , ∞) and right uniqueness holds in

[t 0 , ∞) × [0, ∞) n . Proof. Consider the differential inclusion dX dt ∈ F(t, X) with F(t, X) :=      f (k 1 , X, µ, ν n ) if X n < K f (0, X, µ, ν n ) if K < X n f (α • k 1 , X, µ, ν n ) : α ∈ [0, 1] if X n = K .
For every (t, X) ∈ [0, ∞) × R n + , F(t, X) satisfies the basic conditions [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]: F(t, X) is nonempty, bounded, closed, convex and upper semi-continuous in (t, X) according to Lemma 3, p.67 of [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]. Then, there exists an absolutely continuous function X that satisfies (3.7) for a.e. t ∈ [t 0 , ∞).

Right uniqueness follows from the fact that for every t ∈ [t 0 , ∞) the derivative of an absolutely continuous solution can only take a single value which is given in agreement with the differential inclusion. Indeed, the derivative is uniquely determined in a neighborhood of any t such that X n (t) = K.

On the other hand, if X n (t ) = K and there is m ∈ {2, 3, . . . , n} such that Ẋm (t ) = 0, by Lemma 3.11, there is only one valid definition for Ẋ in (t , t + ε), because the options with input k 1 and 0 has the same sign in Ẋn in (t , t + ε), and therefore, one of this will fail to the restriction regarding the value of X n with respect to K. And the option with an input α • k 1 can only be taken in a complete interval when the system has reached an equilibrium, which cannot be the case since we are supposing Ẋm (t ) = 0.

Finally, if X n (t ) = K and Ẋi (t ) = 0 for every i ∈ {2, 3, . . . , n}, then the system takes the value Y * satisfying Y * n = K, which corresponds to the equilibrium of a system with input α • k 1 for some α ∈ R. If 1 ≤ α, then Ẋ1 (t ) ≤ 0 according to Lemma 3.6. Then, by Lemma 3.10, X n (t) ≤ K for t ∈ (t , t + ε) with any of the inputs k 1 or 0. Therefore, the system takes the mode with input k 1 . If α ∈ (0, 1), the options with inputs k 1 ans 0 fail because

0 = α • k 1 -f 1 (Y * 1 , Y * 2 ) -µ • Y * 1 < k 1 -f 1 (Y * 1 , Y * 2 ) -µ • Y * 1 , -f 1 (Y * 1 , Y * 2 ) -µ • Y * 1 = -α • k 1 < 0,
which, according to Lemma 3.11, means for the system with input k 1 that K < X n (t) for t ∈ (t , t + ε) and for the system with input 0 that X n (t) < K for t ∈ (t , t + ε), which contradicts the inclusion. Therefore, the systems remains at equilibrium in sliding mode.

Finally, we have the elements to prove Theorem 3.1.

Proof of Theorem 3.1. If there exists t * ≥ t 0 such that X i (t * ) = Y * i for ever i = 1, 2, . . . , n, then the switched system (3.2) remains at the sliding mode, i.e., X i (t) = Y * i for all t ≥ t * (see the proof of Proposition 3.12). To continue with the proof, without loss of generality, we assume that X(t) = Y * for every t ≥ t 0 . Consider the ODE systems

d X dt = f (k 1 , X, µ, ν n ), (3.8) dY dt = f (α • k 1 , Y, µ, ν n ), (3.9) dX dt = f (I, X , µ, ν n ), (3.10) dZ dt = f (0, Z, µ, ν n ), (3.11) 
where, in agreement with hypothesis (3.3),

α := 1 k 1 n-1 i=1 µ • Y * i + µ • K + ν n f n (K) < 1
and, by virtue of Lemma 3.7, I ∈ (α • k 1 , k 1 ) is an input such that system (3.10) has an equilibrium point X * := (X * 1 , . . . , X * n ) satisfying Y * i < X * i for all i = 1, 2, . . . , n -1 and

K < X * n . (3.12)
Suppose that X n (t 0 ) = K. Since X(t 0 ) = Y * , as a consequence of Lemma 3.10 and Proposition 3.12, X n either increase or decrease after t 0 . We will suppose that it decreases, i.e. X n (t) < K for t ∈ (t 0 , t 0 + ε) and we will reset the initial condition in such way that X n (t 0 ) < K to continue with the demonstration. The reciprocal case when X n increases after t 0 can be proved analogously.

Hence, let X n (t 0 ) < K and consider system (3.8) and (3.10) with the same initial conditions, i.e., X(t 0 ) = X (t 0 ) = X(t 0 ). According to Proposition 3.4 the equilibrium point X * is GUAS. Then, (3.12) implies that there exists t > t 0 such that K < X n (t ).

On the other hand, since I < k 1 , according to Lemma 3.5, X bounds X . Then,

K < X n (t ) < X n (t )
and we can assure that there exist t 1 ∈ (t 0 , t 1 ) such that

X n (t) < K ∀t ∈ (t 0 , t 1 ), X n (t 1 ) = K, X n (t) > K ∀t ∈ (t 1 , t ). (3.13)
Hence, according to Lemma 3.10 and Proposition 3.12,

X n (t) = X n (t) for a.e. t ∈ [t 0 , t 1 ].
Moreover, by continuity,

X n (t 1 ) = X n (t 1 ) = K, Ẋn (t 1 ) = ˙ X n (t 1 ) ≥ 0.
Now consider system (3.11) with initial condition Z(t 1 ) = X(t 1 ). Since we have supposed that X(t) = Y * for every t ≥ t 0 , it follows by Lemma 3.10, Proposition 3.12 and the inequality (3.13) that

K < Z n (t) ∀t ∈ (t 1 , t 1 + ε), X n (t) = Z n (t) for a.e. t ∈ [t 1 , t 1 + ε],
for some ε > 0. In other words, system (3.2) has switched at t 1 and follows the dynamics of system (3.11) in an interval [t 1 , t 1 + ε].

Using similar arguments for the GUAS equilibrium point of system (3.11), 0, it can be proved that system (3.2) switches at a point t 2 > t 1 and returns to the dynamics of (3.8). The oscillatory behavior of X i around Y * i for i = 1, 2, . . . , n -1 can be proved by induction using as induction hypothesis that X j oscillates around Y * j for every j = i + 1, . . . , n -1 and X n oscillates around K.

3.4. Stable system. In this Section, we present and prove Theorem 3.13 that states some conditions under which the switched system (3.14) converges uniformly and asymptotically to an equilibrium point.

The switched systems (3.2) and (3.14) are the same, but in Theorem 3.13 we consider that the constant input ON is equal to or lower than the threshold value also considered in Theorem 3.1. Or that this threshold is not defined (because there is not a positive sliding mode) and that the system with the constant input ON has a nonnegative equilibrium point. Theorem 3.13. Under Assumption 1, consider the switched system

dX dt = f (u[X n ], X, µ, ν n ) (3.14) with initial conditions X i (t 0 ) ≥ 0, i = 1, 2, . . . , n, K > 0, k 1 > 0, µ ≥ 0, ν n ≥ 0, µ + ν n > 0 and the input u[X n ] defined in (3.1).
Suppose that one of the following conditions is satisfied: i) There exist positive values

Y * 1 , Y * 2 , . . . , Y * n-1 such that 0 = f 1 (Y * 1 , Y * 2 ) -f 2 (Y * 2 , Y * 3 ) -µ • Y * 2 0 = f 2 (Y * 2 , Y * 3 ) -f 3 (Y * 3 , Y * 4 ) -µ • Y * 3 . . . 0 = f n-1 (Y * n-1 , K) -ν n f n (K) -µ • K,
and

k 1 ≤ n-1 i=1 µ • Y * i + µ • K + ν n f n (K).
ii) There are not positive values

Y * 1 , Y * 2 , . . . , Y * n-1 such that 0 = f 1 (Y * 1 , Y * 2 ) -f 2 (Y * 2 , Y * 3 ) -µ • Y * 2 0 = f 2 (Y * 2 , Y * 3 ) -f 3 (Y * 3 , Y * 4 ) -µ • Y * 3 . . . 0 = f n-1 (Y * n-1 , K) -ν n f n (K) -µ • K,
and the system with constant input

d X dt = f (k 1 , X, µ, ν n ) (3.15) has a nonnegative equilibrium point X * := ( X * 1 , X * 2 , . . . , X * n ), X * i ≥ 0 for all i = 1, 2, . . . , n.
Then, there is an absolutely continuous solution X = (X 1 , X 2 , . . . , X n ) that satisfies equation (3.14) for a.e. t ∈ (t 0 , ∞) and right uniqueness holds in

[t 0 , ∞)×[0, ∞) n .
Furthermore, if there is t * ≥ t 0 such that X i (t * ) = Y * i for every i = 1, 2, . . . , n -1 and X n (t * ) = K, then the switched system (3.14) remains at sliding mode, i.e., X i (t) = Y * i for every i = 1, 2, . . . , n -1 and X n (t) = K for all t ≥ t * . Otherwise, X * is globally uniformly asymptotically stable (GUAS) for the switched system (3.14).

The proof of Theorem 3.13 is given at the end of this section. The following Lemma 3.14 allows to prove in Theorem 3.13 that the system of the form (2.1) and the constant input ON has an equilibrium point lower or equal (entry by entry) to the equilibrium point corresponding to the sliding mode of the switched system (3.14).

On the other hand, in Lemma 3.15 it is shown that the switched system is bounded by any system of the form (2.1) with constant input larger or equal to the constant input ON. Lemma 3.14. Under Assumption 1, suppose that there is a positive vector X

* := (X * 1 , X * 2 , . . . , X * n ) (0 < X * i for all i = 1, . . . , n) such that 0 = f 1 (X * 1 , X * 2 ) -f 2 (X * 2 , X * 3 ) -µ • X * 2 0 = f 2 (X * 2 , X * 3 ) -f 2 (X * 3 , X * 4 ) -µ • X * 3 . . . 0 = f n-1 (X * n-1 , X * n ) -ν n f n (X * n ) -µ • X * n , with µ ≥ 0, ν n ≥ 0.
Then, for any X n ∈ (0, X * n ), there are unique X 1 , X 2 , . . . , X n-1 such that 0 ≤ X i < X * i , for all i = 1, 2, . . . , n, and

0 = f 1 (X 1 , X 2 ) -f 2 (X 2 , X 3 ) -µ • X 2 0 = f 2 (X 2 , X 3 ) -f 2 (X 3 , X 4 ) -µ • X 3 . . . 0 = f n-1 (X n-1 , X n ) -ν n f n (X n ) -µ • X n , Lemma 3.15.
Under Assumption 1, consider the switched system

dX dt = f (u[X n ], X, µ, ν n ),
with initial conditions X i (t 0 ) ≥ 0, i = 1, 2, . . . , n, K > 0, k 1 > 0, µ ≥ 0, ν n ≥ 0 and the input u[X n ] defined in (3.1). Then, the system

d X dt = f (I, X, µ, ν n )
with constant input I ≥ k 1 and initial conditions X(t 0 ) = X(t 0 ), upper bounds the switched system. In other words,

X i (t) ≤ X i (t) ∀t 0 ≤ t, ∀i = 1, 2, . . . , n.
Moreover, the system

dZ dt = f (0, Z, µ, ν n )
with constant input 0 < k 1 and initial conditions Z(t 0 ) = X(t 0 ), lower bounds the switched system, i.e.,

Z i (t) ≤ X i (t) ∀t 0 ≤ t, ∀i = 1, 2, . . . , n.
Note 1. Lemma 3.15 can also be applied to the switched system of Theorem 3.1.

There are now all the components necessaries to prove Theorem 3.13.

Proof of Theorem 3.13. The existence and uniqueness of the solution follow by Proposition 3.12. To prove that X * is GUAS for the switched system (3.14), we first consider the case where i) is satisfied. Define

α := 1 k 1 n-1 i=1 µ • Y * i + µ • K + ν n f n (K) .
Notice that 1 ≤ α. First suppose that 1 < α and consider the system

dY dt = f (α • k 1 , Y, µ, ν n ), (3.16) which has the positive equilibrium point Y * := (Y * 1 , Y * 2 , . . . , Y * n-1 , K)
. By Proposition 3.4, Y * is globally uniformly asymptotically stable (GUAS) for (3.16). Moreover, system (3.15) has also an equilibrium point X * according to Lemma 3.14, because k 1 < α • k 1 . Moreover, by Lemma 3.5,

X i (t) < Y i (t) ∀t 0 ≤ t, ∀i = 1, 2, . . . , n,
X * is a GUAS equilibrium point for system (3.15) by Proposition 3.4 and X * n < K by Lemma 3.6. Then,there exists T ≥ t 0 large enough such that

X n (t) < K ∀t ≥ T.
On the other hand, according to Lemma 3.15, the switched system (3.14) is bounded by the system with constant input (3.15). That is to say,

X i (t) ≤ X i (t) ∀t 0 ≤ t, ∀i = 1, 2, . . . , n.
Therefore,

X i (t) ≤ X n (t) < K ∀T ≤ t.
Then, the switched system (3.14) is in the regime of the system with constant input (3.15) in the interval [T, ∞). Therefore, X * is a GUAS equilibrium point for the switched system (3.14).

For the case α = 1, suppose there is not t ≥ t 0 such that X n (t) ≤ K for all t ≥ t . Then it can be proved that the switched system (3.14) oscillates around the sliding mode (Y * 1 , Y * 2 , . . . , Y * n-1 , K) (in a similar way as in Theorem 3.1). This implies the existence of t ≥ t 0 such that X i (t ) ≤ Y * i for every i = 1, 2, . . . , n -1 and X n (t ) ≤ K. But according to Lemma 3.3, system (3.15) 

is invariant in [0, Y * 1 ] × [0, Y * 2 ] × • • • × [0, Y * n-1 ] × [0, K], because X * i = Y * i for i = 1, 2, .
. . , n -1 and X * = K. Hence, X n (t) ≤ K for every t ≥ t , which contradicts our supposition.

We conclude that, when α = 1, there is t ≥ t 0 such that X n (t) ≤ K for all t ≥ t . Then the switches system (3.14) follows the regime of system (3.15) and converges to the sliding mode (Y * 1 , Y * 2 , . . . , Y * n-1 , K), which is equal to the equilibrium point X * of system (3.15). Now suppose that point i) is not satisfied. Then, point ii) holds by hypothesis. Moreover, X * n < K according to Lemma 3.14. Hence, there exists T ≥ t 0 large enough such that X n (t) < K for every t ≥ T . But, by Lemma 3.15, the switched system (3.14) is bounded by the system with constant input k 1 (3.15), i.e.

X i (t) ≤ X i (t) ∀t 0 ≤ t.
In particular,

X n (t) ≤ X n (t) < K ∀T ≤ t.
Therefore, the switched system (3.14) has the dynamics of system (3.15) in the interval [T, ∞) and converges uniformly and asymptotically to X * .

4.

Example with Michaelis-Menten reversible reactions. We show an example of the switched system (3.2) (or system (3.14)) with 3 metabolites and Michaelis-Menten reversible reactions. Let

u[X 3 ] := k 1 if X 3 < K 0 if K < X 3 . f 1 (X 1 , X 2 ) := k 2 X 1 -l 2 X 2 m 2 X 1 + n 2 X 2 + K 2 , f 2 (X 2 , X 3 ) := k 3 X 2 -l 3 X 3 m 3 X 2 + n 3 X 3 + K 3 , f 3 (X 3 ) := ν n X 3 X 3 + K n , f (u[X 3 ], X, µ, ν n ) :=   u[X 3 ] -f 1 (X 1 , X 2 ) -µX 1 f 1 (X 1 , X 2 ) -f 2 (X 2 , X 3 ) -µX 2 f 2 (X 2 , X 3 ) -ν n f 3 (X 3 ) -µX 3   , for some k 1 > 0, K > 0, µ ≥ 0, ν n ≥ 0 and 0 < µ + ν n .
Consider the ODE systems

dX dt = f (u[X 3 ], X, µ, ν n ), (4.1) d X dt = f (k 1 , X, µ, ν n ) (4.2) dY dt = f (α • k 1 , Y, µ, ν n ), (4.3) dZ dt = f (0, Z, µ, ν n ), (4.4)
where

α := 1 k 1 n-1 i=1 µ • Y * i + µ • K + ν n f n (K) .
4.1. Oscillatory system. Figure 3 and Figure 4 show two examples of the oscillatory behavior described in Theorem 3.1. In both cases, the constant input ON of the switched system (4.1) is larger enough to satisfy the inequality in (3.3). Moreover, we observe that the solution of the switched system (4.1) is bounded between the solution of system (4.2) with the constant input ON and the solution of system (4.4) with the constant input OFF, as stated in Lemma 3.15.

Notice that even when system (4.2) with the constant input ON has no positive equilibrium point, the switched system (4.1) oscillates around the sliding mode (see Figure 4). All parameters are equal to 1 except for k 1 = 3, νn = 0.2, µ = 0.1 and K = 1.5. The initial conditions are X 1 (0) = 7, X 2 (0) = 5 and X 3 (0) = 3. The switched system (4.1) oscillates around the sliding mode (Y * 1 , Y * 2 , K), which is the equilibrium point of system (4.3). Moreover, the switched system (4.1) is bounded between systems (4.2) and (4.4), which converge both to their respective equilibrium points. All parameters are equal to 1 except for k 1 = 0.3, νn = 0.2, µ = 0 and K = 1.5. The initial conditions are X 1 (0) = 7, X 2 (0) = 5 and X 3 (0) = 3. The switched system (4.1) oscillates around the sliding mode (Y * 1 , Y * 2 , K), which is the equilibrium point of system (4.3). Moreover, the switched system (4.1) is bounded between systems (4.2) and (4.4). However, system (4.2) has not a positive equilibrium point and then it is not stable. System (4.4) converges to 0. 4.2. Stable system. In Figure 5, Figure 6 and Figure 7 there are three examples of the stabilization of the switched system (4.1) as stated in Theorem 3.13.

Figure 5 depicts the case when system (4.3) with constant input α • k 1 has a positive equilibrium point and 1 < α (i.e. i) is satisfied). In this case, the constant input ON is small enough to let the system stabilize and do not oscillate around the sliding mode. Notice that the equilibrium point of the switched system (4.1) is uniformly asymptotically stable and lower (entry by entry) than the equilibrium point related to the sliding mode (i.e. Y * the equilibrium point of system (4.3)).

In Figure 6, condition i) is not satisfied, but ii) holds. That is to say, the system related to the sliding mode (4.3) has not a nonnegative equilibrium point (it has an point, but its first entry is negative) and system (4.2) with the constant input ON has a positive equilibrium point. In this case, the switched system (4.1) converges uniformly and asymptotically to the equilibrium point of system (4.2).

The case when the switched system (4.1) reaches the sliding mode is represented in Figure 7. Here the constant input ON is such that system (4.2) has an equilibrium point satisfying X * n = K. The switched system (4.1) converges uniformly and asymptotically to the sliding mode Y * = X * .

Finally, as stated in Lemma 3.15, in the three examples it can be observed that the solution of the switched system (4.1) is upper and lower bounded by system (4.2) and system (4.4), the solutions of the systems with the constant inputs ON and OFF, respectively. All parameters are equal to 1 except for k 1 = 1, νn = 0.2, µ = 0.1 and K = 1.5. The initial conditions are X 1 (0) = 7, X 2 (0) = 5 and X 3 (0) = 3. The switched system (4.1) converges to the equilibrium point of system (4.2), because k 1 < α • k 1 . Moreover, the switched system (4.1) is bounded between systems (4.2) and (4.4), which converge both to their respective equilibrium points. System 

= n-1 i=1 µ • Y * i + µ • K + νnfn(K) ∼ 1.
78, νn = 0.2, µ = 0.1 and K = 1.5. The initial conditions are X 1 (0) = 7, X 2 (0) = 5 and X 3 (0) = 3. The switched system (4.1) converges to the sliding mode, which is the equilibrium point of systems (4.2) and (4.3), because α = 1. Moreover, the switched system (4.1) is bounded between systems (4.2) and (4.4), which converge both to their respective equilibrium points.

5. Continuous feedback systems. The purpose of this Section is to exhibit some sequences of equations of the form (2.1) with continuous inputs whose solutions converge pointwise to the solution of the switched system (3.2) (equal to system (3.14)). This follows the idea of considering the switching input (3.1) as the limit case of allosteric regulation processes that occur very fast (see Section 1 and Figure 1). 5.1. Smooth input. In Proposition 5.1, we introduce a sequence of equations of the form (2.1) with smooth inputs. The purpose is that the smooth inputs converge to the step function defined by the switching input (3.1). For this, sigmoid functions of the form

k 1 1 + Xn K m
However, a sigmoid input would not allow the system to enter to the mode like the switched system. For this reason, the sigmoid function is multiplied by the Gaussian function

(2 • α -1) • exp - X n -K σ 2 + 1 .
Proposition 5.1. Under Assumption 1, consider the switched system 

dX dt = f (u[X n ], X, µ, ν n ) with initial conditions X i (t 0 ) ≥ 0, i = 1, 2, . . . , n, K > 0, k 1 > 0, µ ≥ 0, ν n ≥
0 = f 1 (Y * 1 , Y * 2 ) -f 2 (Y * 2 , Y * 3 ) -µ • Y * 2 0 = f 2 (Y * 2 , Y * 3 ) -f 3 (Y * 3 , Y * 4 ) -µ • Y * 3 . . . 0 = f n-1 (Y * n-1 , K) -ν n f n (K) -µ • K,
and define

α := 1 k 1 n-1 i=1 µ • Y * i + µ • K + ν n f n (K) .
For every m ∈ N, let ϕ m := (ϕ m 1 , ϕ m 2 , . . . , ϕ m n ) be the solution for the continuous differential equation

dϕ m dt = f U σ m (ϕ m n ), ϕ m , µ, ν
where

U σ m (ϕ m n ) := k 1 1 + ϕ m n K m • (2 • α -1) • exp - ϕ m n -K σ 2 + 1 ,
σ is a small real number and the initial conditions ϕ m i (t 0 ) = X i (t 0 ) for all i = 1, 2, . . . , n.

Therefore, for a.e. t ∈ [t 0 , ∞),

lim m→∞,σ→0 ϕ m i (t, σ) = X i (t) ∀i = 1, 2, . . . , n.
Proof. Notice that lim m→∞,σ→0

U σ m (ϕ m n ) =      k 1 if ϕ m n < K 0 if ϕ m n > K α • k 1 if ϕ m n = K .
The result follows from Lemma 3 in Section 7, Chapter 2 (p. 82) of [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF].

Example 1. Consider the switched system (4.1) with Michaelis-Menten kinetics introduced in Section 4. 

= n-1 i=1 µ • Y * i + µ • K + νnfn(K) ∼ 1.
78, νn = 0.2, µ = 0.1, K = 1.5 and σ = 10 -6 . The initial conditions are X 1 (0) = 13.34, X 2 (0) = 2.68 and X 3 (0) = 1.35.

5.2. Piecewise linear input. In Proposition 5.2, we introduce a sequence of equations with continuous inputs (even so not everywhere differentiable). The idea is to approximate the step function defined by the switching input (3.1) by a sequence of piecewise linear functions of the form

L ε X n :=      k 1 if X n < K -ε k1 2•ε (K + ε -X n ) if K -ε ≤ X n ≤ K + ε 0 if X n > K + ε
with ε a small positive number. However, the input L ε above would not allow the functions of the sequence to enter to the sliding mode like the switched system. For these reason, a slightly more elaborate piecewise linear function is defined Proposition 5.2. 6. Discussion and Conclusions. In this work, a model to represent allosteric regulation in a metabolic pathway is presented. In this approach, the enzymes are considered to have slow dynamics and to be therefore constant. Metabolites have faster dynamics and a ODE system based on an end-product control structure [START_REF] Goelzer | Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of bacillus subtilis[END_REF][START_REF] Goelzer | Towards the modular decomposition of the metabolic network[END_REF] is studied.

Considering that allosteric processes occur very fast, the mechanist of regulation is supposed to act as a switched feedback control that is modulated according to the concentration of the end-product of the metabolic pathway. Then, a differential inclusion is defined for the discontinuous switched system and the existence and right uniqueness of an absolutely continuous solution is proved.

Moreover, the qualitative behavior of the absolutely continuous solution is analyzed and three possible trajectories are observed:

• There is a positive sliding mode and the switched system reaches it. Then the switched system stabilizes at the sliding mode.

• There is a positive sliding mode and the constant input ON is larger than a threshold defined by the sliding mode. Then the switched system oscillates around the sliding mode. • The system with the constant input ON has a positive equilibrium point and the switched system converges uniformly and asymptotically to this, because the constant input ON is smaller than the threshold defined by the positive sliding mode (in this case the equilibrium point of the switched system is equal to or lower than the sliding mode entry by entry), or because there is no positive sliding mode. It has also been shown that the solution of the differential inclusion can be approximated by a sequence of solutions to continuous differential equations (with smooth or piecewise-linear continuous inputs).

Finally, the results obtained with this approach are potentially useful for reducing a genetic-metabolic network with slow and fast dynamics using the theory of singularly perturbed system.

Appendix A. Proof of Proposition 3.4 when µ = 0 and ν n > 0.

Proof. Define the (Lyapunov) norm-like function

V (X) := n i=1 |X i -X * i |.
V is nonnegative and V (X) = 0 if and only if X i = X * i for every i = 1, . . . , n. Moreover,

V = n i=1 Ẋi • sgn(X i -X * i ).
On the other hand, the existence of the equilibrium point guarantees f i (X * i , X * i+1 ) = I ∀i = 1, . . . , n -1,

ν n f n (X * n ) = I.
Then, after some algebraic computations we obtain V ≤0

Therefore, V (X) is decreasing. This implies that the trajectories of X are bounded, since the distance to the nonnegative equilibrium point X * is nonincreasing. On the other hand, the Jacobian of (3.4) is a compartmental matrix for every X thanks to the monotonicity of the functions f i established Assumption 1. By Theorem 5 in [START_REF] Jacquez | Qualitative theory of compartmental systems[END_REF], every orbit of (3.9) tends to the equilibrium set, i.e. the equilibrium X * is globally attractive.

J(X) =           -∂f1 ∂X1 - ∂f1 

  Fig.1. In the case of a repressible enzyme, the fraction of the operator region free of repressor correspond to a monotone decreasing function. The reactions that block transcription occur fast, which in a limit case can be represented as a step function.

Fig. 3 .

 3 Fig. 3. Solution for systems (4.1)-(4.4) and candidate Lyapunov function for (4.2) and (4.3).All parameters are equal to 1 except for k 1 = 3, νn = 0.2, µ = 0.1 and K = 1.5. The initial conditions are X 1 (0) = 7, X 2 (0) = 5 and X 3 (0) = 3. The switched system (4.1) oscillates around the sliding mode (Y * 1 , Y * 2 , K), which is the equilibrium point of system (4.3). Moreover, the switched system (4.1) is bounded between systems (4.2) and (4.4), which converge both to their respective equilibrium points.
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 4 Fig. 4. Solution for systems (4.1)-(4.4) and candidate Lyapunov function for (4.2) and (4.3).All parameters are equal to 1 except for k 1 = 0.3, νn = 0.2, µ = 0 and K = 1.5. The initial conditions are X 1 (0) = 7, X 2 (0) = 5 and X 3 (0) = 3. The switched system (4.1) oscillates around the sliding mode (Y * 1 , Y * 2 , K), which is the equilibrium point of system (4.3). Moreover, the switched system (4.1) is bounded between systems (4.2) and (4.4). However, system (4.2) has not a positive equilibrium point and then it is not stable. System (4.4) converges to 0.
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 5 Fig. 5. Solution for systems (4.1)-(4.4) and candidate Lyapunov function for (4.2) and (4.3).All parameters are equal to 1 except for k 1 = 1, νn = 0.2, µ = 0.1 and K = 1.5. The initial conditions are X 1 (0) = 7, X 2 (0) = 5 and X 3 (0) = 3. The switched system (4.1) converges to the equilibrium point of system (4.2), because k 1 < α • k 1 . Moreover, the switched system (4.1) is bounded between systems (4.2) and (4.4), which converge both to their respective equilibrium points. System (4.3) converges to its positive equilibrium point (Y * 1 , Y * 2 , K).
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 67 Fig. 5. Solution for systems (4.1)-(4.4) and candidate Lyapunov function for (4.2) and (4.3).All parameters are equal to 1 except for k 1 = 1, νn = 0.2, µ = 0.1 and K = 1.5. The initial conditions are X 1 (0) = 7, X 2 (0) = 5 and X 3 (0) = 3. The switched system (4.1) converges to the equilibrium point of system (4.2), because k 1 < α • k 1 . Moreover, the switched system (4.1) is bounded between systems (4.2) and (4.4), which converge both to their respective equilibrium points. System (4.3) converges to its positive equilibrium point (Y * 1 , Y * 2 , K).
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 8 Fig. 8. The switched system (4.1) oscillates around the sliding mode (Y *1 , Y * 2 , K). Functions ϕ m approximate X as m → ∞ and σ → 0. All parameters are equal to 1 except for k 1 = 3, νn = 0.2, µ = 0.1, K = 1.5 and σ = 10 -6 . The initial conditions are X 1 (0) = 13.34, X 2 (0) = 2.68 and X 3 (0) = 1.35.
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 9 Fig. 9. The switched system (4.1) converges to an equilibrium point inferior to the sliding mode (Y *1 , Y * 2 , K). Functions ϕ m approximate X as m → ∞ and σ → 0. All parameters are equal to 1 except for k 1 = 1.6, νn = 0.2, µ = 0.1, K = 1.5 and σ = 10 -6 . The initial conditions are X 1 (0) = 13.34, X 2 (0) = 2.68 and X 3 (0) = 1.35.
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 10 Fig. 10. The switched system (4.1) converges to the sliding mode (Y * 1 , Y * 2 , K). Functions ϕ m approximate X as m → ∞ and σ → 0. All parameters are equal to 1 except for k 1 =

Fig. 11 .

 11 Fig. 11. The switched system (4.1) oscillates around the sliding mode (Y *1 , Y * 2 , K). Functions ψ ε approximate X as ε → 0. All parameters are equal to 1 except for k 1 = 3, νn = 0.2, µ = 0.1 and K = 1.5. The initial conditions are X 1 (0) = 13.34, X 2 (0) = 2.68 and X 3 (0) = 1.35.
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 12 Fig. 12. The switched system (4.1) converges to an equilibrium point inferior to the sliding mode (Y *1 , Y * 2 , K). Functions ψ ε approximate X as ε → 0. All parameters are equal to 1 except for k 1 = 1.6, νn = 0.2, µ = 0.1 and K = 1.5. The initial conditions are X 1 (0) = 13.34, X 2 (0) = 2.68 and X 3 (0) = 1.35.

Fig. 13 .

 13 Fig. 13. The switched system (4.1) converges to the sliding mode(Y * 1 , Y * 2 , K). Functions ψ ε approximate X as ε → 0. All parameters are equal to 1 except for k 1 = n-1 i=1 µ • Y * i + µ • K + νnfn(K) ∼ 1.78, νn = 0.2, µ = 0.1 and K = 1.5. The initial conditions are X 1 (0) = 13.34, X 2 (0) = 2.68 and X 3 (0) = 1.35.
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Proposition 5.2. Under Assumption 1, consider the switched system

with initial conditions X i (t 0 ) ≥ 0, i = 1, 2, . . . , n, K > 0, k 1 > 0, µ ≥ 0, ν n ≥ 0 and the input u[X n ] defined in (3.1).

Suppose that there are positive values Y * 1 , Y * 2 , . . . , Y * n-1 such that

and define

For every m ∈ N, let ψ ε (t) := (ψ ε 1 , ψ ε 2 , . . . , ψ ε n ) be the solution for the continuous differential equation

where

ε is a small number and the initial conditions

The result follows from Lemma 3 in Section 7, Chapter 2 (p. 82) of [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF].

Example 2. Consider the switched system (4.1) with Michaelis-Menten kinetics introduced in Section 4.

Moreover, since f n is strictly increasing w.r.t. X n , ν n ∂fn ∂Xn = 0. Then, the Jacobian J is out-flow connected. Hence, by Theorem 3 in [START_REF] Jacquez | Qualitative theory of compartmental systems[END_REF], J is nonsingular. By the Gershgorin Disc Theorem, a column diagonally dominant nonsingular matrix is stable. Therefore, X * is locally asymptotically stable. But, since X * is also globally attractive, we conclude that X * is globally asymptotically stable. Finally, since system (3.4) is autonomous, X * is globally uniformly asymptotically stable.

Appendix B. Proofs of Lemmas.

Proof of Lemma 3.3. Using the monotonicity conditions set in Assumption 1 for the functions f i , it can be proved that Ω j is invariant showing that X(t) points into Ω j on the boundary of Ω j for every j = 1, 2, 3, 4.

Proof of Lemma 3.6. We will first prove that Y * n < X * n by contradiction. Suppose that X * n ≤ Y * n . We will prove by induction that X * i ≤ Y * i for all i = 1, 2, . . . , n -1 as well.

First, since f n is strictly increasing and 0 ≤ µ, this implies

But f n-1 is decreasing w.r.t. to the second entry and

Hence, since f n-1 is strictly increasing w.r.t. to the first entry,

The induction hypothesis is that for some m < n -1 it is satisfied

We will prove that X * m ≤ Y * m . The existence of the equilibrium points guarantees that

But, by the induction hypothesis,

Thus,

where the second inequality is due to hypothesis of induction X * m+1 ≤ Y * m+1 and to that f m is decreasing w.r.t. the second entry. Moreover, since f m is strictly increasing w.r.t. the first entry, we conclude that

Therefore, we have proved by induction that assuming

But, since f n is strictly increasing, 0 ≤ ν n and 0 ≤ µ, this leads to conclude

which contradicts the hypothesis of that I 2 < I 1 . We conclude that Y * n < X * n . With similar arguments as above, we prove that Y * i < X * i for every i = 1, 2, . . . , n -1. Proof of Lemma 3.7. We have that

Then, since f n-1 is continuous and strictly increasing w.r.t. the first entry,

By the continuity of f n and f n-1 , it follows that

Then, there exists X * n < X n such that

By induction it can be proved that for any sequence {X

This satisfies, because f n is strictly increasing,

and lim j→∞ I α(j) = I 1 .

We conclude that, for any 0 < ε, there exists

for all i = 1, . . . , n and

Proof of Lemma 3.5. Define

The first conclusion of the Lemma follows from the fact that the sets

On the other hand, if I 1 = I 2 and Y i (t 0 ) < X i (t 0 ) for every i = 1, 2, . . . , n, then, by the continuity of Z, there is ε > 0 such that for all i = 1, 2, . . . , n

With similar arguments as above, it can be proved that R n + is positively invariant under the flow of Z.

Proof of Lemma 3.10. The proof can be done by induction over m, i.e., first proving the Lemma when m = n -1, assuming the Lemma as the induction hypothesis for some m + 1 and proving it for the case m.

Proof of Lemma 3.11. By hypothesis,

Suppose that sgn( ˙ X n (t 0 )) < 0. Then, by the continuity of ˙ X n and Żn , there exist ε 1 and ε 2 such that

Analogously, if 0 < sgn( ˙ X n (t 0 )), by the continuity of ˙ X n and Żn , there exist ε 1 and ε 2 such that

where ε := min{ε 1 , ε 2 }. But the inequality above contradicts Lemma 3.5, since 0 < k 1 .

We cannot suppose there exist ε 1 and ε 2 such that

because this leads to conclude that the systems are at equilibrium in [t 0 , t 0 + ε). But this contradicts the hypothesis, as it was assume Żm (t 0 ) = ˙ X m (t 0 ) = 0 for some m ∈ {1, 2, . . . , n}. Now suppose sgn( ˙ X n (t 0 )) = 0 and there exist ε 1 and ε 2 such that 0 < sgn( ˙ X n (t)) ∀t ∈ (t 0 , t 0 + ε 1 ), sgn( Żn (t)) < 0 ∀t ∈ (t 0 , t 0 + ε 2 ).

(One option is to say that this contradicts Proposition 3.12 (existence of solution theorem of Filippov, Theorem 1, p. 77 in [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]), another option is as follows).

According to the hypothesis, ˙ X m (t 0 ) = Żm (t 0 ) = 0 for some 1 < m < n. Without loss of generality, assume that ˙ X i (t 0 ) = Żi (t 0 ) = 0 for every m < i Hence, let us assume that there is 0

This implies, according to Lemma 3.10,

that contradicts the supposition sgn( Żn (t)) < 0 ∀t ∈ (t 0 , t 0 + ε 2 ).

Analogously, by Lemma 3.10, assuming

We conclude that is false that sgn( ˙ X n (t 0 )) = 0 and there exist ε 1 and ε 2 such that 0 < sgn( ˙ X n (t)) ∀t ∈ (t 0 , t 0 + ε 1 ), sgn( Żn (t)) < 0 ∀t ∈ (t 0 , t 0 + ε 2 ).

Proof of Lemma 3.14. Consider any X n ∈ (0, X * n ). According to Assumption 1,

n-1 , X n ) Then, since f n-1 is strictly increasing w.r.t. the first entry, there exists an unique X n-1 ∈ (0, X * n-1 ) such that

The proof follows by induction.

Proof of Lemma 3.15. The trivial case where the hybrid system X never switches follows from Lemma 3.5. Now suppose that the hybrid system switches. By the continuity of X n , there exists a countable N := {0, 1, 2, . . . , k} ⊂ N and values {t j } j∈N ⊂ R + , with t j < t j+1 for every j ∈ N, such that the switched system is under a single regime in any interval (t j , t j+1 ) for every j ∈ N (i.e. X n (t) ≤ K for all t ∈ (t j , t j+1 ) or K < X n (t) for all t ∈ (t j , t j+1 )).

It can be proved by induction, using Lemma 3.5, that for every j ∈ N, X i (t) ≤ X i (t) ∀t ∈ (t j , t j+1 ), ∀i = 1, 2, . . . , n.

Furthermore, by continuity of X i and X i , X i (t j ) ≤ X i (t j ) ∀i = 1, 2, . . . , n,∀j ∈ N.