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Summary
A simple active control method is described which extends the possibilities of a xylophone bar. It allows the
performer to modify the vibration of its structure, unlike post-processing effects involving loudspeakers. These
variations change the characteristics of the partials radiated by the bar. The xylophone bar, made of composite
material, is equipped with two actuators and one sensor in PVDF (polyvinylidene fluoride), the mass and stiffness
of which do not modify the mechanical characteristics. A controller in a feedback loop is executed on a mid-
range digital signal processor. It is composed of a sum of second order band-pass filters. The selection of the
controller coefficients relies on the measured transfer function between the input of the controller and the output
of the sensor. First the active control method is designed to modify the resonance peaks of a simple model of
a xylophone bar, whose transfer function is a superposition of three eigenmodes. Then it is applied to the real
system. It is illustrated by increasing and reducing the amplitudes and/or frequencies of the first resonances, and
by modifying the tuning of the xylophone bar.

PACS no. 43.40.Vn, 43.75.Kk, 43.75.Tv

1. Introduction

Hybridising musical instruments with active control offers
two essential advantages to musicians: first it expands the
range of sound that the instrument can produce, and then
it modifies the sound radiated by the instrument itself so
that the timbre does not depend on an external transmitter.
For these reasons, the last 20 years have seen important
advances in active musical instruments.

Early studies carried out by Besnainou [1, 2], used PID
(Proportional-Integral-Derivative) control in a feedback
loop to modify the vibration modes of musical instruments
equipped with piezoelectric transducers. With collabora-
tors [3, 4, 5], he changed the Helmholtz resonance charac-
teristics of a guitar, the rocking motion of a violin bridge
and the first bending modes of a xylophone bar.

Other studies have focused on the eigenmodes of vibrat-
ing strings. Berdahl and Smith [6] modified the damping of
an electric guitar string using an integral controller in the
feedback loop. They [7] also suggested an optimal adap-
tive method to control the amplitude of the string displace-
ment, and applied it in simulation to induce new dynam-
ics in a string model. In the Magnetic Resonator Piano,
McPherson [8] used electromagnetic solenoids to change
the sound level and the frequency of the first partials of
each string, relative to the fundamental. The method re-
quires only one sensor below the soundboard and a filter
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bank. The actuators are controlled using optical sensors
which measure the position of the piano keys.

Active control methods were also applied to percussive
instruments. Rollow [9] modified the first eigenmodes of
a kettledrum. The membrane was equipped with four ac-
celerometers. Four drivers were mounted in a plane paral-
lel to that of the membrane. Their vibrations were coupled
by the closed volume of air between the membrane and the
drivers. The duration of the first partials were extended or
shortened, using feed-forward control which assured sys-
tem stability. In the Feed-Drum, Lupone and Seno [10]
allowed the performer to modify the sustain of partials
with feedback proportional control. This bass drum was
only provided with one pair of transducers: a piezoce-
ramic sensor was placed on the rim of the membrane and
a loudspeaker was located below the membrane. Van Wal-
stijn and Rebelo [11] suggested a method that modifies the
sound radiated by a conga. The membrane vibration was
measured using a contact microphone at one point of the
surface and was driven by one loudspeaker mounted inside
the instrument. In the feedback loop, an equalising filter
cancelled the membrane natural resonances and added vir-
tual resonances with desired characteristics.

In this paper, a new method is suggested which requires
only one pair of piezoelectric transducers. A controller lo-
cated in a feedback loop is implemented in a DSP (digital
signal processor). It assigns desired frequencies and am-
plitudes to resonances of a vibrating structure. Unlike PID
controllers, the transfer function of the controller tends to
zero at low and high frequencies and the bandwidth of the
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resonance peaks can be modified by the performer. Thus
no selective band-pass filter is required to preserve distant
modes from unwanted modifications. As a result the con-
troller has relatively low order and does not need to be run
by high-speed processor: the sample frequency of the DSP
is 48.8 kHz.

The suggested method is applied to the first bending
modes of a xylophone bar equipped with transducers. The
system is described in the next section. The position of
the actuators allows modifications on odd bending modes
rather than even bending modes. For this reason only the
modes 1 and 3 are modified. The subsequent modes are
considerably damped compared to the first three modes,
so that the corresponding overtones do not significantly
contribute to the radiated sound, as explained by Bork
[12]. So they would require substantial modifications to
change the sound of the bar, involving a power larger than
the regulator and actuators could supply. In consequence
the subsequent modes are kept unchanged. In Section 3,
a simple model is established and the method to choose
the controller coefficients is detailed. This method is il-
lustrated and discussed in Section 4 through three experi-
ments which show that the performer can apply indepen-
dent modifications to the characteristics of the modes of
the xylophone bar. The first two experiments aim at mod-
ifying successively the amplitudes and the frequencies of
the modes 1 and 3 without changing the other character-
istics and the nearest modes. In the third, the controller
changes the tuning of the bar.

2. System

2.1. Xylophone bar
The xylophone bar used in the experiment was made by
the second author. The faces are of carbon fibre. The core
is composed of ballasts at both extremities and of poly-
meric foam in the middle (Figure 1a). This composite ma-
terial makes the mass at least ten times lighter than the
mass of a typical xylophone bar, made of maple, spruce
or tropical wood, and having the same fundamental fre-
quency.

The length of the bar is significantly larger than its width
and thickness, so that the first vibration modes are bending
modes along this dimension, subsequently called x. The
xylophone bar features a slight curvature of radius 1.3m
and an undercut on its lower face. Two elastic cords come
across two holes drilled sideways to support the bar. The
holes, located at 6 cm from each extremity of the bar, are
close to the nodal lines of the first bending mode of the
bar, as shown by the Chladni pattern in Figure 1b, and also
to nodal lines of the third bending mode. Consequently the
amplitude of these modes is little attenuated by the cords.
Because of the elasticity of the cords, the boundary con-
ditions of the bar are assumed to be free-free in first ap-
proximation like a typical xylophone bar, as suggested by
Chaigne and Doutaut [13].

In a previous study, Chaigne et al. [14] showed that the
sandwich composition of the bar and its inhomogeneity
result in an unusual tuning: 1:2.7:4.9 instead of 1:3:9 or

Figure 1. (a) The xylophone bar in composite equipped with
transducers. (b) Close-up on the position of one elastic cord and
one nodal line of the first bending mode, observed using the
Chladni method. The other nodal line has a symmetric position
about the middle of the bar (x = L/2). The third bending mode
also features two nodal lines at the same positions.

1:4:9, while the slight curvature does not significantly af-
fect the frequency of the partials. From Fletcher and Ross-
ing [15], the frequency separation between the first two
partials is usually adjusted by reducing the thickness at the
centre of the bar. However the thickness of the xylophone
bar in composite was too small to be reduced further.

2.2. Transducers

Two piezoelectric actuators made of PVDF are attached to
the lower face of the bar as shown in the lower picture of
Figure 1a. Each has an extremity glued at the centre and
the other extremity at an edge of the undercut. The cur-
vature of the bar reduces the angle between the actuators
and the perpendicular to the bar at the fixing points, and
therefore increases the bending moment applied by the ac-
tuators.

Due to the bar symmetry, the median plane x = L/2,
L being the length of the bar, is an antinode for the odd
eigenmodes, and a node for the even eigenmodes. In addi-
tion as shown by Suit’s numerical model [16], the strain
of the first three eigenmodes is small near the edge of
the undercut. Thus the actuators location is not adapted
to modify the second eigenmode, and justifies the purpose
of modifying rather the first and third ones. To this end,
the two actuators are supplied with the same voltage.

The xylophone bar has only one sensor, also made of
PVDF, glued on the upper face of the bar. The charge dif-
ference between its faces is proportional to the strain. Thus
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the ideal position to observe the first and third modes is the
middle of the bar, symmetrically about the antinode line
x = L/2. However, to not disturb the musician’s perfor-
mance, the sensor is moved towards one end of the bar. In
order to observe the first and third bending modes, the sen-
sor is not centred on their nodal lines, previously identified
by the first author [17] using the Chladni method.

Thanks to the geometrical and mechanical characteris-
tics of the bar and the transducers, see Table I, the voltage
required by the actuators to act on the first bending modes
is relatively low, around 10V.

2.3. Feedback loop

A controller is placed in a feedback loop between the sen-
sor and the pair of actuators. It is implemented in a DSP.

As shown in the block diagram in Figure 2, the sensor
is connected to the controller via one input of the DSP,
henceforth called u1. The other input of the DSP, hence-
forth called u2 is used to measure the closed-loop transfer
functions. When the inputs of the DSP are connected to
the output without any system in-between, the measured
gain, subsequently called KDSP, is 0.8 and the delay, τDSP,
is equal to 287 µs and corresponds to 14 sample periods.
Both characteristics are constant over a frequency range
including the first three eigenmodes.

A USART (Universal Synchronous Asynchronous Re-
ceiver Transmitter) connection is set up between the DSP
and a computer. It allows the user to modify the coeffi-
cients of the controller while it is running.

The output level of the DSP is limited to 3V. It is not
enough to apply audible modifications to the sound radi-
ated by the xylophone bar. Consequently, an amplifier is
inserted in the feedback loop downstream of the DSP. Its
gain, equal to 75, is constant over the frequency range of
interest and the phase difference between its input and its
output is negligible.

3. Method

3.1. Transfer functions

In order to modify the frequency and the sustain of the first
partials, the suggested method seeks a controller which as-
signs the desired characteristics to the resonance peaks of
the system (xylophone bar and transducers). The two in-
puts of the system, fh and uact, are respectively the force
of the mallet and the voltage supplied to the two actuators
(close-up of the block diagram in Figure 2). The output y
is the voltage between the faces of the sensor.

The system is thus described by two transfer functions:
G1 = Y/Fh = HsensG10 andG2 = Y/Uact = HsensG20Hact,
where Fh, Uact and Y are the Laplace transforms of fh, uact
and y. G10 is the transfer function between the external
force Fh and the strain of the sensor. G20 is the transfer
function between the distributed force applied by the ac-
tuators and the strain of the sensor. Hsens and Hact are the
transfer functions of the sensor and the actuators.

In the feedback loop, the DSP is composed of three
blocks. One is the transfer function of the controller Hcorr

Table I. Composition and geometry of the xylophone bar equip-
ped with transducers.

Faces Carbon fibre
Core Centre: polymeric foam

Extremities: ballast in polymer
Total mass 24 g

Geometry of the bar:
Arc length 262 mm
Width 53 mm
Height 4 mm at the centre

10 mm at both extremiies
Undercut length 162 mm
Radius of curvature 1.3 m

Positions of the transducers:
Sensor Extremities at x = 167mm

and 197mm. Width = 6mm
Actuator 1 Extr. at x = 50mm and 131mm
Actuator 2 Extr. at x = 131mm and 212mm

Width = 48mm (both actuators)

Figure 2. Block diagram of the closed-loop, composed of the sys-
tem (xylophone bar and transducers), the DSP and the amplifier.
s stands for Laplace variable. The two actuators are supplied with
the same voltage uact. The upper case variables, Fh, Uact, Y , U1

and U2 are the Laplace transforms of the time signals fh, uact,
y, u1 and u2 previously defined. G10 is the transfer function be-
tween the external force Fh and the strain of the sensor faces.G20

is the transfer function between the distributed force applied by
the actuators and the strain of the sensor. Hsens and Hact are the
transfer functions of the sensor and the actuators, and G1 and G2

are the two transfer functions of the system (xylophone bar and
transducers).

and the two other describe the gain KDSP and the delay
τDSP introduced in §2.3. The DSP output signal is ampli-
fied by the constant gain Kamp before feeding the actua-
tors. The sensor is connected to the input u1 of the DSP.
The other input, u2, is used in the following to measure the
closed-loop transfer function in order to choose the con-
troller characteristics and is set to 0 while the performer is
playing.

The controller aims at assigning the desired character-
istics to the peaks of the closed-loop transfer function G0

cl,

410



Boutin et al.: Modifying resonances of xylophone bar ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 101 (2015)

defined as the quotient Y/Fh while U2 = 0 and given by
the equation

Gcl0 =
Y

Fh U2=0
=

G1

1 − G2Ke−sτDSPHcorr
. (1)

K = Kamp · KDSP is the constant gain introduced by the
DSP and the amplifier in the feedback loop. The coeffi-
cients of Hcorr are chosen in order to apply the desired
characteristics to the peaks of Gcl0. As shown in Equation
(1), they depend on the values of the two transfer func-
tions G1 and G2Ke−sτDSP . The experimental setups used to
identify them are subsequently described.

3.1.1. Transfer function between the impact hammer
and the sensor

In order to measureG1, the xylophone bar is impacted by a
10 g miniature hammer (5800SL, Dytran, CA, USA). The
force sensor of the hammer has a resonance frequency of
300 kHz, which is much higher than the frequencies of
the considered modes. Its extremity, made of steel, has
a 2.5mm diameter allowing punctual impacts in first ap-
proximation. To make the external force repeatable, the
hammer is attached to a lever which rotates on an axis
parallel to the face of the bar, see Figure 3. Thanks to a
horizontal stop bar, the hammer is always released from
the same position without initial speed. The direction of
the lever and the height of the axis are adjusted so that the
hammer applies a force normal to the upper face of the
bar at the impact point, on its median line y = 0. Thus
this force essentially excites the bending modes. A rubber
band attached to the horizontal stop bar damps the hammer
drop, prevents bounces and makes the impact shorter.

To check how the position of the impact affects the am-
plitudes and frequencies of the free vibrating eigenmodes
in the transfer function G1, two measurements are car-
ried out, by hitting the xylophone bar first at the centre
(131mm, 0mm) and then in the position (97mm, 0mm).
In each case, the impacts are far enough from the nodes
of mode 1, as shown by the Chladni pattern in Figure 1b,
and mode 3, so that both bending modes are excited. For
each position, 10 impacts are applied to the bar. The ham-
mer and sensor signals are recorded with an acquisition
card (NI 9234, National Instrument, Texas, USA), sam-
pled at 6.4 kHz and normalized, dividing the measure-
ments by the maximum value of the hammer signal. fh
and y are the averages of these signals. The transfer func-
tions are given by the quotient between the cross power
spectrum of fh and y, Sfh,y and the power spectrum of fh,
Sfh,fh . The magnitudes and phases corresponding to both
impact positions are plotted in Figure 4, as well as the co-
herence corresponding to the central impact, defined by
|Sfh,y|2/(Sfh,fhSy,y), Sy,y being the power spectrum of y.
All subsequent transfer functions measured with this ex-
perimental setup are defined relative to the same reference
0 dB, which depends on the sensor piezoelectric constant.

When the impact is off-centre, the magnitude of G1

(dashed black curve in Figure 4) shows three significant
peaks corresponding to the first bending modes of the bar.

Figure 3. Experimental setup used to measure transfer functions
of the xylophone bar. The impacts are applied first at the centre
(131mm, 0mm) and then in (97mm, 0mm).

Figure 4. Magnitude (upper part) and phase (lower part) of the
transfer function G1, when an impact is applied at the centre of
the bar (131mm, 0mm) (solid black) and off-centre (97mm,
0mm) (dashed black). The coherence corresponding to central
impact (grey) is read on the linear axis at the right-hand side of
the upper part of the figure. All curves are plotted as a function
of the frequency displayed on a logarithmic scale. For each im-
pact position, the characteristics of the peaks corresponding to
the first three bending modes are given in Table II.

Table II. Characteristics of the peaks corresponding to the first
three bending modes of the system (xylophone bar and trans-
ducers), for two impact positions (A: 131mm, 0mm) and (B:
97mm, 0mm). For each peak, the Q-factorQ is estimated by the
quotient between the resonance frequency fR and the bandwidth
Δ at −3 dB. A: Amplitude.

fR A Q Δ

Peak 1 493.3Hz 12.4 dB 43.0 11.5Hz
A Peak 2 1329.0Hz -9.0 dB 41.6 31.9Hz

Peak 3 2382.2Hz 10.9 dB 24.8 95.9Hz

Peak 1 492.0Hz 13.7 dB 86.2 5.7Hz
B Peak 2 1326.0Hz 19.1 dB 63.4 20.9Hz

Peak 3 2378.0Hz -3.0 dB 29.6 80.4Hz

As expected, the second peak is attenuated when the ham-
mer hits the bar at the centre. For this measurement, the
experimental setup is repeatable to measure the peaks of
interest, as shown by the coherence (grey curve in Fig-
ure 4), which exceeds 0.99 over the intervals [400Hz,
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600Hz], [1313Hz, 1400Hz] and [2200, 2600Hz]. Be-
low the second peak frequency, the coherence slightly de-
creases around an anti-resonance in 1.3 kHz. The other
minima of coherence are multiples of 50Hz, frequency of
the mains in France.

The impact position affects the relative amplitudes of
the peaks and their contribution at the frequency of the
nearest peaks. In consequence, the peak frequencies in the
measured transfer function are also potentially changed
when the impact position is modified. However, the first
three modes are well separated. Indeed the peak band-
widths at −3 dB are much smaller than the frequency sep-
aration between them. This explains why the frequency
variations of the peaks are small, less than 0.3%, when the
impact position is offset by 34 cm from the centre.

Another peak, located about 520Hz, is due to the loca-
tion of the actuators. Since they are not perfectly symmet-
ric about the transversal plane x = L/2, they apply asym-
metric prestressing to the bar, which separates the first res-
onance peak into two components of very close frequen-
cies. To not damage the bar in composite, it was chosen to
leave the actuators at their initial positions.

3.1.2. Open-loop transfer function in the absence of
controller

The transfer function G2Ke−sτDSP , in the denominator of
Equation (1), is the open-loop transfer function when
Hcorr = 1, see Figure 2. To measure it, a sinusoidal volt-
age is supplied to the input U1 of the controller, the gain
(Hcorr) of which is temporarily set to 1. The inputU2 of the
DSP is set to 0. The sensor is disconnected from the DSP.
The frequency of the voltage source sweeps the range of
interest [450Hz, 3.2 kHz]. The transfer function is calcu-
lated by a spectrum analyser which simultaneously records
the supply voltage and the sensor signal. The experimental
setup is described by the block diagram in Figure 5a.

To measure the transfer function G2Ke−2jfτDSP (solid
curves in Figure 5b), the amplitude of the voltage source
is set to 100mV. In order to identify the range over which
the system (xylophone bar and transducers) is linear, the
transfer function is also measured at larger amplitudes.
No modification of the transfer function is observed be-
low 250mV. For higher values, the amplitude of uact ex-
ceeds 15V. Then the behaviour of the actuators becomes
non-linear and the measured transfer function is distorted
around the first and third resonance frequencies. In the fol-
lowing measurements, the amplitude of the source is ad-
justed so that uact is maintained below 15V.

Between 600Hz and 1300Hz, the gain of the transfer
function G2Ke−2jfτDSP is low and has comparable level
with the electronic noise in the experimental setup. Thus
the precision of the phase given by the spectrum analyser
over this range is significantly reduced. However around
the three main peaks, the noise level is much lower than
the measured gain, by more than 10 dB, so that accurate
measurements of their characteristics can be achieved.

As expected, the actuators mostly excite the odd bend-
ing modes because they are supplied with the same volt-
age. The gains of the amplifier and DSP, and the piezoelec-

Figure 5. (a) Block diagram of the experimental setup used to
measure G2Ke−2jfτDSP . (b) Comparison between the magnitudes
(upper part) and the phases (lower part) of the measured transfer
function G2Ke−2jfτDSP (solid curves) and of the model Ĝ (dashed
curves) described in §3.2. The curves are plotted as a function of
the frequency displayed on a logarithmic scale. The frequencies,
amplitudes, bandwidths at −3 dB, Δf−3 dB, and Q-factors, Q, re-
fer to the peaks of the measured transfer function G2Ke−2jfτDSP .
The Q-factors are estimated by the quotient between the reso-
nance frequencies and the bandwidths at −3 dB.

tric constant of the actuators are included in the curves of
Figure 5b, so that the characteristics of the peaks are dif-
ferent from those shown in Figure 4 and Table II. However
the difference between the first and the third resonance fre-
quencies of G2Ke−sτDSP and the ones of G1 when the im-
pact is applied at the centre is less than 0.5%. Thus, from
Equation (1), the controller will apply approximately the
same variations to the transfer functions Gcl0 and to the
transfer function Gcl, between the input U2 of the DSP and
the sensor signal, which is defined by

Gcl =
Y

U2 Fh=0
=

G2Ke−sτDSP

1 − G2Ke−sτDSPHcorr
, (2)

as shown by the block diagram in Figure 2. Subsequently,
the controller is chosen to change the resonance character-
istics of Gcl. To measure this transfer function, the sensor
is connected to the input U1 of the DSP, and the voltage
source to the summing point in the input U2 of the DSP.
The spectrum analyser measures simultaneously the volt-
age source and the sensor signal and deduces the transfer
function Gcl.

The spurious peak previously measured above the first
resonance of G1 (Figure 4) is also observed on the curve
of Figure 5b, in 529.7Hz. In section 4, the variations ap-
plied to the first peak will be restrained in order to keep
unchanged the characteristics of this peak.
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3.2. Model

In order to discuss the method to choose Hcorr and the in-
fluence of its coefficients on the closed-loop transfer func-
tion, the controller is first applied to a model of the system
(xylophone bar and transducers). Since the xylophone bar
has complex geometry and inhomogeneous structure, the
model is described by its eigenmodes rather than its phys-
ical properties. Its transfer function Ĝ is a sum of three
second-order band-pass resonant filters Ĝk, corresponding
to the first three bending modes of the bar. Each filter Ĝk is
characterized by four coefficients: Gmaxk , fk, Qk and ϕk,

Ĝ =
1≤k≤3

Ĝk, (3)

with

Ĝk(jω) =

jω
2πfkQk

Gmaxk

1 + jω
2πfkQk

+ jω
2πfk

2
e jϕck , 1 ≤ k ≤ 3. (4)

The coefficients Gmaxk , fk and Qk are identified to the
amplitude, frequency and Q-factor of the kth peak of
G2Ke−sτDSP and ϕk is identified to its phase in fk. Mag-
nitude and phase of Ĝ are plotted in Figure 5b (dashed
curves) and compared to G2Ke−sτDSP . Since the frequency
separations between the peaks of resonance are much
larger than their bandwidths at −3 dB, the first and third
peaks of the model and the ones of the real system
have comparable characteristics: their amplitudes, fre-
quencies and bandwidths differ by less than 0.01 dB,
0.2Hz and 0.2Hz respectively. The second resonance peak
ofG2Ke−sτDSP is relatively smaller. In consequence the dif-
ferences between its characteristics and the ones of the
model are larger: 2.1 dB, 1.0Hz and 2.1Hz. Since this
peak is not modified by the controller, these differences
have no consequences on the choice of its coefficients

3.3. Controller

In this section, the method to determine the coefficients of
the controller is described, in order to apply the desired
variations to the peaks of the model transfer function. In
the vicinity of the kth resonance frequency, k ∈ {1, 3},
Ĝ is approximately equal to Ĝk since the contribution of
the nearest filters is negligible (less than 46 dB smaller). A
second-order band-pass resonant filter is designed to ap-
ply to the peak the desired variations of amplitude and fre-
quency. Its transfer function Hk is specified by its reso-
nance frequency fck, its quality factor Qck, its maximum
gain Hmaxk and its phase ϕck at the frequency fck,

Hk(jω) =

jω
2πfckQck

Hmaxk

1 + jω
2πfckQck

+ jω
2πfck

2
e jϕck , k ∈ {1, 3}. (5)

The controller Hcorr is the sum of the filters Hk. For each
filter, the Q-factor is set to a large enough value such that
the gain |Hk| is negligible compared to |Ĝ| at the nearest

resonance frequencies. Thus, in the vicinity of the reso-
nance frequency fck of Hk, the closed-loop transfer func-
tion is

Ĝcl = Ĝ 1 − ĜHcorr ≈ Ĝk

1 − ĜkHk

(6)

The coefficients ofHk are chosen through the four follow-
ing steps:
I – the resonance frequency fck is set to the desired fre-
quency of peak k;
II – the phase ϕck is chosen to cancel the phase of the
open-loop transfer function ĜkHk at the desired frequency
fck:

ϕck = −2nkπ − arg Ĝk(2jπfck , (7)

where nk is the smallest integer such that ϕck ≤ 0. Thus,
from Equation (6), at the desired frequency fck, the de-
nominator of Ĝcl is 1−|Ĝk|Hmaxk . Its value is real and can
be adjusted by the value of Hmaxk .
III – the coefficientHmaxk . From the expression of the de-
nominator of Ĝcl, see Equation (6), if Hmaxk grows from
zero, the closed-loop gain in fck also rises, and tends to
+∞ when Hmaxk = 1/|Ĝk|. If Hmaxk decreases from zero,
then the closed-loop transfer function is also reduced and
tends to 0 when Hmaxk tends to −∞. From Equation (6),
the value

Hmaxk =
1

|Ĝk(2jπfck|
1 − |Ĝk(2jπfck|

Gmaxk

assigns the desired amplitude Gmaxk at the desired fre-
quency fck.
IV – the Q-factor Qck allows bandwidth modifications of
peak k. The influence of this coefficient on the closed-loop
transfer function is discussed in the next paragraphs while
the controller aims at modifying the amplitude of the first
peak (Figure 6) and its frequency (Figure 7).

For a positive amplitude variation of the closed-loop
peak, as Qc1 rises, the bandwidth of the peak decreases,
as shown by vertical lines in the right part of Figure 6a. In
contrast, for a reduction of amplitude of the peak (left part
of Figure 6a) the bandwidth increases as Qc1 rises.

Large values of Qc1 also reduce undesired effects pro-
duced by large modifications of amplitude. Indeed raising
|Hmax1 | increases the gain of filter H1 and the variations
it applies to the nearest peaks. These unwanted modifica-
tions are reduced by decreasing the bandwidth of H1 i.e.
by raising Qc1. However, as described above, such a mod-
ification affects in turn the peak bandwidth.

Furthermore, when the controller reduces the peak am-
plitude, the gain |Ĝcl| has a local minimum in fc1 whenQc1

exceeds a limiting value. The white contour (top left cor-
ner of Figures 6a, 6b and 6c) gives this value in function of
the amplitude variation. For larger Qc1, the local maxima
of |Ĝcl| are moved away from the desired position, involv-
ing errors in amplitude and frequency. In contrast, while
the controller gives a maximum in fc1, i.e. below the con-
tour, the amplitude and frequency of the peak reach the
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Figure 6. Influence of the Q-factor of the first filter of the con-
troller on the bandwidth (a), the amplitude (b) and the frequency
(c) of the first peak in the closed-loop transfer function Ĝcl. The
controller aims at modifying the amplitude of the first peak, lo-
cated in 495.7Hz without changing its frequency. errAmp is the
difference (in dB) between the measured peak amplitude and the
expected value, and errFreq is the relative error (in %) between
the measured peak frequency and the expected value. Above
the white contour, |Ĝcl| has a local minimum at the desired fre-
quency.

Figure 7. Influence of the Q-factor of the first filter of the con-
troller on the bandwidth (a), the amplitude (b) and the frequency
(c) of the first peak in the closed-loop transfer function Ĝcl. The
controller aims at modifying the frequency of the first peak, lo-
cated in 495.7Hz without changing its amplitude. errAmp is the
difference (in dB) between the measured peak amplitude and the
expected value, and errFreq is the relative error (in %) between the
measured peak frequency and the expected value. For a Q-factor
between 7.5 and 12.5, the bandwidth of the peak is larger than
3Hz. When its value is 10, the amplitude error is maximal when
the frequency variation Δf1 is equal to 2%, and the frequency er-
ror |errFreq| is maximal whenΔf1 = 1.4%, see dashed lines in (b)
and (c). The white contour shows the threshold above which |Ĝcl|
has another local maximum around the initial peak frequency.

desired values without significant errors (Figures 6b and
6c).

In the case of modification of frequency, the peak band-
width decreases as the desired variation rises, as shown by
horizontal lines in Figure 7a. However, for a given vari-
ation of frequency, see vertical lines in Figure 7a, when
Qc1 increases, |Ĝcl| is modified on a narrower frequency
range and is less attenuated around the initial frequency of
the peak. Thus the bandwidth of the resonance peak of Ĝcl

includes a broader interval of frequency.
AsQc1 rises further, the modification undergone by |Ĝcl|

on either side of the initial peak is not significant. Thus
|Ĝcl| has a local maximum close to the initial peak fre-

quency, another close to the desired frequency, and a local
minimum between them. This feature is observed in the
top right and left corners of Figures 7a, 7b and 7c lim-
ited by white contours. Then the bandwidth of the peak is
reduced again. As shown in Figure 7a, while the absolute
value of frequency variation, |Δf1|, is larger than 1.4%, the
bandwidth reaches a maximum value whenQc1 is between
7, when Δf1 = ±6%, and 62, when Δf1 = ±1.4%. The
bandwidth remains larger than 3Hz when Qc1 is between
7.5 and 12.5 (region between horizontal dashed lines in
Figure 7a). For frequency variations lower than 0.3%, the
bandwidth is little affected by the controller and its value,
greater than 6Hz, is closer to its value in open-loop, equal
to 6.8Hz.

In the areas above the white contours, when the desired
frequency moves away from its initial value, the ampli-
tude of the local minimum between the initial and the de-
sired peak decreases. In particular, the difference of ampli-
tude between this minimum and the desired peak exceeds
3 dB when |Δf1| passes from ±0.8% to ±1.3%. Thus the
measured bandwidth is reduced. This explains the sudden
transition observed in horizontal lines in the top part of
Figure 7a.

Figures 7b and 7c show the amplitude and frequency
errors, errAmp (in dB) and errFreq (in %), as the desired fre-
quency is modified. While Qc1 is below 500, the ampli-
tude variation of the peak is always larger than −0.7 dB.
When the initial peak is not a local maximum of |Ĝcl|, i.e.
below the white contours, the errors increase as the fre-
quency variation |Δfk| rises, see horizontal lines. Interest-
ingly, whenQc1 is greater than 1.3, both amplitude and fre-
quency errors reach a maximum and then slightly decrease
when the frequency variation is further increased. As an
example, when Qc1 = 10, the maximal errors are 5.3 dB
for errAmp and 0.53% for |errFreq|, and they are obtained
when Δfc1 = 2% for errAmp, and when Δfc1 = 1.4% for
|errFreq| (see intersection between dashed lines in Figures
7b and 7c).

To illustrate the influence of Qc1, the closed-loop trans-
fer function is calculated, with controllers designed to
modify the amplitude of the first peak (Figure 8a) and its
frequency (Figure 8b). HAmp1 and H �

Amp1 aim at increas-
ing the amplitude of the first peak by 15 dB without chang-
ing its frequency. The only difference between these con-
trollers is their Q-factor, equal to 3 and 100 respectively.
They apply the desired variation with no significant error
of amplitude and frequency. However, in agreement with
Figure 6a, H �

Amp1 gives a narrower peak than HAmp1, see
dark grey curves of Figure 8a.

Controllers HAmp2, H �
Amp2 and H ��

Amp2 aim at reduc-
ing the peak amplitude by 15 dB without changing its
frequency. Their only difference is the value of their Q-
factors: Qc1 = 3 for HAmp2, 0.001 for H �

Amp2 and 20 for
H ��

Amp2. As shown by the solid and dashed pale curves of
Figure 8a, the bandwidth of the peak gets wider when the
Q-factor of the controller increases from 0.001 to 3. How-
ever for the highest valueQc1 = 20, the peak is turned into
a local minimum, see black dotted curve.
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Figure 8. (a) Transfer functions Ĝ (solid black) and of the closed-
loop model Ĝcl with controllers designed to modify the peak am-
plitude without changing its frequency: HAmp1 (solid dark grey)
and H �

Amp1 (dashed dark grey) aim at increasing the amplitude
by 15 dB and only differ by their Q-factor, equal to 3 and 100
respectively. HAmp2 (solid pale grey), H �

Amp2 (dashed pale grey)
and H ��

Amp2 (dashed black) aim at decreasing the amplitude by
15 dB and only differ by their Q-factor, equal to 3, 0.001 and
20 respectively. (b) Transfer functions Ĝ (solid black) and Ĝcl

with controllers designed to modify the peak frequency without
changing its amplitude: (solid dark grey) and (dashed dark grey)
aim at increasing the frequency by 1 semi-tone.HFreq2 (solid pale
grey), H �

Freq2 (dashed pale grey) aim at decreasing the frequency
by 1 semi-tone. H �

Freq1 and H �
Freq2 differ from HFreq1 and HFreq2

only by their Q-factors, equal to 100 and 10 respectively. For
each controller, the amplitude and the frequency of the peak of
Ĝcl are written on the curve.

WithHAmp2 andH �
Amp2, the amplitudes of the first peak

of Ĝcl are equal to the desired value and their frequencies
are moved by less than 0.06%. For larger reduction of am-
plitude, the contribution of subsequent peaks at the desired
frequency fc1 has more impact on the characteristics of
the peaks and introduces greater errors. WithH ��

Amp2, since
the two maxima of Ĝcl are moved away from the desired
characteristics, the errors in amplitude and frequency are
significant: errAmp ≥ 3.9 dB and errFreq ≥ 2.7%.

HFreq1 andHFreq2 aim at modifying the frequency of the
first peak of Ĝcl by +5.9% (+1 semi-tone) and −5.6%
(−1 semi-tone) respectively without changing its ampli-
tude, see solid curves of Figure 8b. Their Q-factors are set
to 10.H �

Freq1 andH
�
Freq2 differ fromHFreq1 andHFreq2 only

by their Q-factors, equal to 100. With these controllers, the
errors of frequency and amplitude are reduced to 0% and
less than 0.1 dB respectively. However the peak bandwidth
is also significantly reduced and the closed-loop transfer

function has another maximum near the initial frequency,
as shown by the dashed curves of Figure 8b. These obser-
vations are consistent with the results given in Figure 7.

3.4. Stability

From Equation (6) the stability of the model depends on
the roots of the polynomialD−N , whereN andD are the
numerator and the denominator of the open-loop transfer
function ĜHcorr. Since Ĝ is a superposition of three eigen-
modes and Hcorr is composed of two second-order band-
pass filters, D is a polynomial of degree 10. In general the
constant delay introduced by the DSP and the controller
coefficients ϕck, k ∈ {1, 3} add a non-zero phase to the
open-loop transfer function, which cancels only at the de-
sired frequencies fck. Consequently, the polynomialN has
complex coefficients. Hwang and Tripathi [18] show that
the polynomial |D−N |2 has real coefficients, the same ze-
roes asD−N and twice its degree i.e. 20. Then to investi-
gate the closed-loop stability, the Routh-Hurwitz criterion
is applied to |D − N |2. The 20 resulting inequations give
sufficient conditions of stability on the eight controller co-
efficients. In general, each condition depends on several
coefficients multiplying each other and raised to different
powers between 0 and 20. In consequence no analytic so-
lution can be found. Suitable coefficients can still be de-
duced from testing the system of inequations for a large
range of values.

Additional assumptions specific to the current model
make the resolution easier. Indeed in the open-loop trans-
fer function, since the distance between the peaks is much
larger than their bandwidth, around fck, the contribution
of the nearest peaks is negligible. Therefore, in first ap-
proximation, the poles of Ĝcl are the zeroes of 1 − ĜkHk,
k ∈ {1, 3}, i.e. the zeroes of Dk − Nk, Nk and Dk, be-
ing the numerator and the denominator of ĜkHk. Then the
Routh-Hurwitz criterion, subsequently applied to both 8th
degree polynomials |D1 −N1|2 and |D3 −N3|2, gives two
independent systems of eight inequations each. Their res-
olution is faster than the previous one.

We study the system stability in a simple case, where the
controller modifies the amplitude of the first peak but not
its frequency. The controller is composed of only one fil-
ter. Its resonance frequency is f1 = 495.7Hz and its phase
coefficient is given by Equation (7). The stability condi-
tions were tested by varying Qc1 and Hmax1, in the ranges
[0.01, 1000] and [−1000, 1000] respectively, with a step of
0.01. The closed-loop system is stable for all tested values
ofQc1, and forHmax1 < 12.12. This limiting value is equal
to 1/Gmax1 and makes Ĝcl tend to +∞ at the frequency f1.
This is in agreement with Equation (6).

4. Application to the xylophone bar

The method previously described is illustrated by applying
three different modifications to the first and third modes of
the real system (xylophone bar and transducers).
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4.1. Preliminary steps

4.1.1. Determining the controller

In practice the controller has the same design as the one
used to control the model. It is a sum of two second-order
band-pass filtersH1 andH3 associated to the first and third
bending modes of the system. They are defined by Equa-
tion (5). For each filter, the coefficients are chosen through
four experimental steps.
I – the resonance frequency fck is set to the desired fre-
quency.
II – the phase coefficient ϕck is chosen to make the open-
loop transfer function real at the frequency fck. Thus the
denominator of Gcl, given by Equation (2), is also real:

1 − G2Ke−2jπfckτDSPHcorr ≈ 1 − |G2|KHmaxk , (8)

and its value is adjusted by Hmaxk .
The experimental setup used to find the phase coef-

ficient is shown in Figure 5a. The external voltage U2

and the force Fh are equal to zero. A swept sinusoidal
voltage is applied at the input U1 of the DSP, con-
nected to the controller. The open-loop transfer func-
tion G2Ke−2jπfτDSPHcorr is given by the spectrum analyser,
which measures both the voltage source and the sensor
output. Hmaxk is temporarily set to 1. The value of Qck

should be large enough to make the bandwidths of H1 and
H3 much smaller than the frequency separations f2 − f1

= 833Hz and f3 − f2 = 1060Hz, as shown in Figure 5b,
so that the gains |Hk| have no significant influence on the
nearest peaks. AlsoQck should be kept as small as possible
for two reasons mentioned in §3.3.IV:
• to prevent the resonance peak from becoming a local

minimum when its amplitude is reduced,
• to attenuate the amplitude of the initial peak as much as

possible when its frequency is modified.
In practiceQck is typically set to 10, so that the bandwidths
of H1 and H3 are approximately 50Hz and 240Hz.

Then the phase coefficient is adjusted to set the phase of
the measured transfer function in fck to 0◦, as suggested
by Equation (7).

In practice, the samples at the output of the DSP are
stored in a buffer. Then the phase coefficient is approxi-
mated by 2πfckNs/Fs, Ns being the length of the buffer
and Fs the sample rate of the DSP. Thus, the maximal error
of phase, πfck/Fs, is proportional to the desired frequency
fck.
III – The coefficient Hmaxk is deduced from the measure-
ment of the closed-loop transfer function Gcl. It is mea-
sured using the experimental setup shown in Figure 2: the
sensor output Y is connected to the input U1 of the DSP
and a sweeping voltage source is applied to the summing
point, at the input U2 of the DSP. Gcl is given by the spec-
trum analyser which simultaneously measures the voltage
source in U2 and the sensor signal Y . Then Hmaxk is set
to zero and is increased in absolute value until Gcl reaches
the desired amplitude at the frequency fck.
IV – The Q-factor Qck. As explained in §3.3.IV, for large
variations of amplitude, the value Qck is raised in order

Table III. Coefficients of controllers designed to apply amplitude
variations of −10 dB, −5 dB, +5 dB and +10 dB to peaks 1 and
3. Ns1 and Ns3 are the buffers’ lengths associated to the filters
H1 and H3. They set the phase coefficients of the controllers.

−10 dB −5 dB +5 dB +10 dB

Hmax1 -51 -17 12 21
H1 fc1 495.7 495.7 495.7 495.7

Qc1 4 4 100 100
Ns1 37 37 37 37

Hmax3 -28 -6 7 11
H3 fc3 2388.9 2388.9 2388.9 2388.9

Qc3 4 4 100 100
Ns3 13 13 13 13

to reduce the gain |Hk| at the frequencies of the nearest
peaks. However Qck must remain below a limiting value
to prevent unwanted variations of bandwidth on the con-
sidered peak.

4.1.2. Calibration

In the real system (xylophone bar and transducers), the
performer selects ranges of values which guarantee the
system stability through a user-created preset. It involves
increasing the coefficient Hmaxk of each filter from zero,
so that the gain of the closed-loop transfer function at the
desired resonance frequencies rises and the damping of the
partials in the radiated sound decreases. As mentioned in
§3.3.III, when the coefficient Hmaxk tends to 1/|Ĝk|, the
amplitude of the closed-loop transfer function tends to+∞
at the desired frequency fck. Then the oscillation of the bar
starts to diverge, the amplitude of the strain reaches a limit,
and non-harmonic modes are excited. This extreme situa-
tion does not cause any damage on the xylophone bar, be-
cause the power of the actuators is too low. Before reach-
ing this nonlinear behaviour, the bar passes through a self-
oscillating state that can be of musical interest for the per-
former.

Thus the calibration step allows performers to impose
an upper limit to coefficients Hmaxk corresponding to the
minimum damping desired for each partial of the sound.

4.2. Modifications of amplitudes

The first experiment aims at applying the same amplitude
variations to the first and third peaks of Gcl, defined as the
closed-loop transfer function between the input U2 of the
DSP and the sensor signal Y , without changing the reso-
nance frequencies. Four controllers are determined to re-
duce their amplitude by 10 dB and 5 dB and then to in-
crease them by 5 dB and 10 dB. For each controller, the
coefficients of the filtersH1 andH3 are shown in Table III.

The values of fck are the frequencies of peaks 1 and
3 measured on Figure 5b. As expected, the coefficients
Hmaxk are negative for amplitude reductions and positive
for increases and they rise as the desired variation grows.
For both reductions, the Q-factor is reduced from its ini-
tial value, equal to 10, in order to decrease the closed-loop
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gain on both sides of the peaks. On the contrary when the
peaks are increased, the Q-factor is raised so that the peaks
1 and 3 are increased over a narrower bandwidth and the
nearest peaks are unchanged.

The delay is given by the length of the buffer which col-
lects samples at the DSP output. For each controller, its
value is the same because changingHmaxk does not modify
the phase of the filter in fck. The closed-loop transfer func-
tions, Gcl (Figures 9a and 9b) were measured around both
considered peaks using a spectrum analyser and a sinu-
soidal voltage source connected in the inputU2 of the DSP,
as shown in the setup in Figure 2. The electronic noise
due to the experimental setup was reduced in the measured
curves using a Savitzky-Golay smoothing filter of order 25
[19]. Thus the curves are readily compared to the closed-
loop transfer function Gcl0, measured between the force
of the impact hammer and the sensor signal, and averaged
over 10 recordings, as described below. The smoothing fil-
ter does not change the frequency and the amplitude of the
peaks significantly. Indeed in the absence of controller the
measured peaks 1 and 3 (black curve in Figure 9) are mod-
ified by less than 0.06% (1 cent) in frequency and 0.4 dB in
amplitude compared to the values measured in Figure 5b.

With the controllers, the frequency of peak 1 appears to
be modified by less than 0.1% compared to its initial value.
When the amplitude of peak 3 is increased, its frequency
variation is less than 0.08%. It reaches larger values, up
to 0.99% (16.5 cents), when the controller aims at reduc-
ing its amplitude by 10 dB. Indeed as the frequency moves
away from fc3, the controller gain decreases. Then the am-
plitude reduction caused by the controller also decreases.
In consequence for substantial reductions of the peak, the
closed-loop gain has a local minimum close to fc3 and the
local maximum is significantly moved when the desired
reduction is −10 dB. Controllers with smaller Q-factor re-
duce this effect but also increase the modifications of the
nearest peaks of Gcl.

In each experiment, the differences between the mea-
sured amplitudes and the desired values are less than
0.5 dB. Smaller differences are achieved with a more ac-
curate adjustment of the coefficients Hmaxk .

We measure the modifications applied by each con-
troller to the peaks of Gcl0 = Y/Fh|U2=0, where Y and
Fh are the Laplace transforms of the sensor signal and
the hammer force and U2 is the DSP input connected to
the summing point. The experimental setup is described in
§3.1.1. We apply 10 impacts at the centre of the bar which
is a node for the second mode. Thus the second peak of
Gcl0 has a small amplitude and its variation caused by the
controllers does not affect the characteristics of the first
and third peaks. Consequently the variations of these peaks
can be compared with the variations previously measured
on the peaks of Gcl. The transfer function Gcl0 is given
by the quotient Sfh,y/Sfh,fh , where y and fh are the aver-
ages over 10 recordings of the sensor signal and the ham-
mer force, and Sx,y denotes the cross power spectrum of x
and y. The transfer functions around the peaks 1 and 3 are
shown in Figures 9c and 9d.

Figure 9. Closed-loop transfer functionsGcl, (a) and (b) andGcl0,
(c) and (d) measured with four different controllers designed to
apply amplitude variations of −10 dB, −5 dB, +5 dB and +10 dB
to the first peak, (a) and (c), and to the third peak, (b) and (d).
The rest of the transfer function (not shown in the figure) is not
modified.

The frequency of peaks 1 and 3 differ from their initial
values by less than 0.3%. These variations have the same
order of magnitude as the discrimination threshold of hu-
man hearing, estimated at 0.2% by Fastl and Zwicker [20].

The measured variations of amplitude are smaller than
the desired values because the peak locations of Gcl =
Y/U2|Fh=0 are slightly different from the ones of Gcl0 =
Y/Fh|U2=0. Then, at the peak frequencies, the gains of the
controllers differ from the values needed to apply the de-
sired correction. Again, decreasing the Q-factors Qck re-
duces these errors but also modifies the characteristics of
the nearest peaks.

As a result, the controllers apply desired amplitude vari-
ations, between −10 dB and +10 dB, to the first and third
resonance peaks of the system (xylophone bar and trans-
ducers) simultaneously with relative frequency variations
smaller than 1%. When the bar is impacted at its centre
by a hammer, the amplitudes of the free vibrating eigen-
modes are increased with an error smaller than 1.8 dB in
amplitude and 0.25% in frequency. However, in case of
amplitude reductions, the measured amplitude variations
are smaller than the expected values. The error reaches
6 dB when the desired variation is −10 dB.

4.3. Modifications of first frequency

The second experiment aims at changing the frequency of
the first peak without modifying its amplitude. The fre-
quencies assigned to the first peak are less than that of
the spurious peak, initially located in 529.7Hz (Figure 5b)
in order to minimize its modifications. The desired fre-
quency variations are −5.6%, −2.8%, +2.9% and +5.9%,
so that the pitch of the note is modified by −1/2 tone,
−1/4 tone, +1/4 tone and +1/2 tone. To find the controller
coefficients, we measure the open-loop transfer function
G2Ke−2jπfτDSPHcorr using the block diagram of Figure 5a.
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Figure 10. Closed-loop transfer functions Gcl, (a) and (b), and
Gcl0, (c) and (d), measured with four different controllers de-
signed to modify the first peak frequency, (a) and (c), by −1/2
tone, −1/4 tone, +1/4 tone and +1/2 tone, without changing the
third peak, (b) and (d). The rest of the transfer function (not
shown in the figure) is not modified.

Table IV. Coefficients of controllers designed to modify the first
peak frequency by −1/2 tone, −1/4 tone, +1/4 tone and +1/2
tone. H1 assigns the desired amplitude at the desired frequency,
while H �

1 aims at reducing the initial peak of the closed-loop
transfer function. H �

1 is only used when the peak frequency is
increased. Ns1 and N �

s1 are the buffers’ lengths associated to the
filters H1 and H �

1. They set the phase coefficients of the con-
trollers.

-1/2 tone -1/4 tone +1/4 tone +1/2 tone

Hmax1 153 54 124 142
H1 fc1 466.7 480.3 508.9 523.8

Qc1 29 29 100 50
Ns1 66 62 27 35

H �
max1 -51 -51

H �
1 f �

c1 not relevant 494.4 494.4
Q�

c1 4 4
N �

s1 37 37

The curves of Gcl, shown in Figures 10a and 10b, are
measured with a spectrum analyser using the experimental
setup of Figure 2, and then are smoothed using a Savitzky-
Golay filter of order 15, which does not change the fre-
quency and amplitude of the peaks significantly.

This experiment was carried out two days after the pre-
vious one. Variations of room temperature and relative hu-
midity slightly modified the first peak characteristics com-
pared to measurements shown in Figure 9a; by 3.5 cents
in frequency and 0.2 dB in amplitude. The controller coef-
ficients are given in Table IV.

For each controller, the filter H1 is centred on the de-
sired frequency. Its bandwidth must be large enough to at-
tenuate the closed-loop gain at the initial frequency, equal
to 494.4Hz. When the frequency is decreased, the value

assigned to the Q-factor is set to 29. Smaller values would
induce significant modifications on the subsequent peak
of initial frequency 529.7Hz. For this reason, as the de-
sired frequency gets closer to 529.7Hz, the Q-factor is
increased. Consequently the closed-loop gain is less at-
tenuated at the initial peak frequency. In order to im-
pose a larger reduction, a second filter H �

1 with negative
coefficient H �

max1 is used to attenuate the initial peak in
494.4Hz.

With each controller, the measured variations of the
peaks of Gc1 differ from the desired ones by less than
0.1% in frequency and 0.4 dB in amplitude. As expected,
the bandwidth of the considered peak decreases as the fre-
quency variation increases in absolute value. Smaller val-
ues ofQc1 compensate for this bandwidth reduction but in-
crease the errors in amplitude and frequency. During these
experiments, the third peak characteristics are subjected to
small frequency and amplitude variations, less than 0.13%
(3.1Hz) and 1.9 dB, not audible according to Fastl and
Zwicker [20].

The transfer functions Gcl0 obtained with each con-
troller are displayed in Figures 10c and 10d. The relative
error between the measured and the desired frequency of
the first peak is less than 0.2%. The largest variations ob-
served on the third peak, less than (7.8Hz) in frequency
and 2.7 dB in amplitude, are hardly audible according to
Fastl and Zwicker [20]. However the amplitude variations
of the first peak are much larger than those of Gcl, espe-
cially for large frequency variations.

To get frequency variations larger than one semi-tone,
higher values of Hmax1 are required. Then a larger ampli-
fier gain is necessary to provide the actuators with the re-
quired voltage.

In this experiment, the controllers apply frequency vari-
ations between −1/2 tone and +1/2 tone to the first peak
of the closed-loop transfer function. Its amplitude varia-
tion remains below 0.4 dB. When the bar is impacted by
a hammer at its centre, the measured frequency variations
differ from the expected values by less than 0.2%. How-
ever the peak amplitude is subject to larger errors, up to
2.8 dB.

4.4. Simultaneous modifications of frequencies and
amplitudes

In this experiment two controllers are used to modify the
tuning of the xylophone bar in composite. The first is in-
tended to move the third peak to the nominal frequency
of D7 and the second to the nominal frequency of E�7,
i.e. 2349Hz and 2489Hz respectively, using A440 tuning
in equal temperament. Thus the musical interval between
partials 1 and 3 is approximately two octaves and one mi-
nor third in the first case, and two octaves and one major
third in the second. The controllers also increase the level
of the first and the third peaks by 7.5 dB and 10 dB respec-
tively. They are composed of two filters whose coefficients
are given in Table V.

For each controller, the closed-loop transfer function
Gcl = Y/U2|Fh=0 is measured with a spectrum analyser
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Table V. Coefficients of controllers designed to modify simulta-
neously the amplitudes of peaks 1 and 3 (by 7.5 dB and 10 dB)
and to move the frequency of peak 3 (to 2349Hz and 2489Hz).
Ns1 and Ns3 are the buffers’ lengths associated to the filters H1

and H3. They set the phase coefficients of the controllers.

2349Hz 2489Hz

Hmax1 16 16
H1 fc1 494.5 494.5

Qc1 100 100
Ns1 37 37

Hmax3 16 33
H3 fc3 2349.0 2489.0

Qc3 100 100
Ns3 16 7

using the experimental setup of Figure 2. The curves are
smoothed using a Savitzky-Golay filter of order 15, which
does not change the frequency and the amplitude of the
peaks significantly (Figures 11a and b). Each controller
assigns the desired frequency variations with no signifi-
cant error (less than 1.5 cent). The difference between the
measured amplitudes and the desired values are less than
0.2 dB for the first peak and 0.7 dB for the third peak.

For each controller, the closed-loop transfer function
Gcl0 = Y/Fh|U2=0 is measured using the impact hammer
and the experimental setup described in §3.1.1. The mea-
sured curves of magnitude and phase are plotted in Figures
11c and 11d. In each case, the third resonance frequencies
of Gcl0 and Gcl differ by less than 1Hz. Also the first peak
frequency is changed by less than 0.3Hz compared to its
initial value without controller. The differences between
the desired amplitudes and the measured values are less
than 1.7 dB for the first peak and 1.0 dB for the third peak.
Thus these errors have the same order of magnitude as the
ones previously measured on Gcl.

Finally the system without controller and then with each
of both controllers is excited four times by using a mallet.
In order to compare the amplitude and frequency varia-
tions of the peaks to those measured in Gcl0, the impact
is applied at the same position as the impact of the ham-
mer, i.e. at the centre of the xylophone bar. The radiated
sound is recorded in an arbitrary position in the near-field
of the bar. The microphone is located 20 cm away from the
impact point, forms an angle of 60◦ with the axis perpen-
dicular to the upper face of the bar in its centre, and an
azimuth of 0◦ with the bar axis.

For each configuration (without controller, with first
controller and with second controller), the four waveforms
are normalised so that their maximum value is 1, and
their spectra are calculated with a frequency resolution of
0.1Hz. The standard deviations of the peaks’ frequencies
are less than 0.15 cents for the first peak, and 0.8 cents
for the second and third peaks. The maximum deviation is
always reached in the absence of controller. The standard
deviations of the peaks’ amplitudes are less than 0.3 dB,
0.2 dB and 0.5 dB for the first, the second and the third

Figure 11. Closed-loop transfer functions Gcl, (a) and (b), and
Gcl0, (c) and (d), with no controller (solid black), and then with
two different controllers: the first (pale grey) is intended to de-
crease the third peak frequency to 2349Hz, nominal frequency
of D7, and the second (dark grey) to increase it to 2489Hz, nom-
inal frequency of E�7, as shown in (b) and (d). They both aim
at adding 7.5 dB to the first peak and 10 dB to the third peak.
The rest of the transfer function (not shown in the figure) is not
modified.

Figure 12. Sound spectrum recorded 20 cm away from centre
of xylophone bar with no controller (solid black) and with two
different controllers: the first (grey) is designed to decrease the
third peak frequency to 2349Hz and the second (dashed black)
to increase it to 2489Hz. They both aim at adding 7.5 dB to the
first peak and 10 dB to the third peak. The curves are plotted as a
function of the frequency displayed on a logarithmic scale.

peak respectively. These values show that the characteris-
tics of the first three peaks are highly repeatable. Figure 12
shows the spectra of the average waveforms, and the am-
plitudes and frequencies of these peaks.

Both controllers slightly reduce the fundamental fre-
quency of the recorded sound by a hardly audible varia-
tion, less than 0.3% i.e. about 5 cents. With each controller,
the frequency difference between the third partial and the
desired value, less than 0.03%, is not significant.

The peak amplitudes differ from the expected values by
2.4 and 2.5 dB for the fundamental and by 4.8 and 4.4 dB
for the third partial. These errors are very sensitive to the
position of the impact and the microphone. Indeed in the
radiated sound, the relative difference of level between the
partials has strong angular dependence.
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In this experiment, the controllers have modified the
tuning of the xylophone bar: the frequency separation be-
tween the first and the third partials has been consecutively
set to two octaves and one minor third and two octaves and
one major third. The sustain of these partials has also been
extended by increasing the amplitude of the first and third
peaks of the closed loop transfer function by 7.5 dB and
10 dB. The sound samples are available on the LAM web-
site [21].

5. Conclusion

In this paper we have described a simple method of active
control that can enhance the acoustic possibilities of a xy-
lophone bar made of composite material. It uses mid-range
DSP and amplifier, with regular specifications. It only re-
quires one pair of transducers – two actuators supplied
with the same voltage and one sensor – the positions of
which were adjusted to not disturb the performer.

The active control method designs controllers com-
posed of second order band-pass filters. Each filter is used
to modify the frequency and amplitude of one resonance
of the system.

Such controllers were applied to a simple model of a
xylophone bar. They achieved independent variations of
frequency and amplitude on the first resonance peak. Mod-
ifications of the controller’s Q-factor also induced changes
on the peak bandwidth.

The stability of the closed-loop system was investi-
gated using the Routh-Hurwitz criterion. In general, it does
not give analytic conditions on the controller coefficients.
However it is helpful to test if the closed-loop system is
stable with a given controller. In practice, the performer
can also determine controller coefficients for which the
system is stable through a preliminary calibration step.

The method was illustrated by decreasing and increas-
ing the first and third resonance peaks of the xylophone
bar by up to 10 dB and the first peak frequency by up to
one semi-tone. It was then used to modify the tuning of
the xylophone bar.

This active control technique offers several significant
interesting possibilities to the performers. First it allows
him to modify the frequency and the relative level of the
partials in the radiated sound. Thus it provides the per-
former with a new musical instrument whose possibili-
ties are increased. In addition, the performer can adjust
the degree of modification applied by the controller to the
resonances of the structure. In consequence, with such a
method, he keeps his playing technique unchanged when
no controller is applied and gradually adapts it as the ex-
tent of modification increases.

This method can be applied to the vibrating structure of
other musical instruments and may also help to investigate
their sound quality.

References

[1] C. Besnainou: Modal stimulation: a sound synthesis new
approach. Proc. International Symposium on Musical
Acoustics ISMA 95, Dourdan, France, 1995, 434–438.

[2] C. Besnainou: Transforming the voice of musical instru-
ments by active control of the sound radiation. Proc. Inter-
national Symposium on Active Control of Sound and Vi-
bration ACTIVE 99, Fort Lauderdale, USA, 1999, 1317–
1321.

[3] R. Chollet, G. Aeberli, C. Besnainou: Modification de la
résonance de Helmholtz de la guitare par contrôle actif.
Actes du 5ème Congrès Français d’Acoustique CFA 00,
Lausanne, Suisse, 2000, 248–250.

[4] H. Boutin, C. Besnainou: Physical parameters of the violin
bridge changed by active control. J. Acoust. Soc. Am. 123
(2008) 3656.

[5] H. Boutin, C. Besnainou: Physical parameters of an oscil-
lator changed by active control: application to a xylophone
bar. Proc. 11th International Conference on Digital Audio
Effects DAFX 08, Espoo, Finland, 2008, 173–176.

[6] E. Berdahl, J. O. Smith: Active damping of a vibrating
string. Proc. International Symposium on Active Control of
Sound and Vibration ACTIVE 2006, Adelaide, Australia,
2006.

[7] E. Berdahl, J. O. Smith: Inducing unusual dynamics in
acoustic musical instruments. Proc. International Confer-
ence on Control Applications CCA 2007, Singapore, 2007,
1336–1341.

[8] A. McPherson: The magnetic resonator piano: Electronic
augmentation of an acoustic grand piano. J. New Music
Res. 39 (2010) 189–202.

[9] J. D. Rollow: Active control of spectral detail radiated by an
air-loaded impacted membrane. PhD thesis, Pennsylvania
State University, 2003.

[10] M. Lupone, L. Seno: Gran cassa and the adaptive instru-
ment feed-drum. – In: Computer Music Modeling and Re-
trieval. Springer, Berlin, Heidelberg, 2006, 149–163.

[11] M. Van Walstijn, P. Rebelo: The prosthetic conga: towards
an actively controlled hybrid musical instrument. Proc. In-
ternational Computer Music Conference, Barcelona, Spain,
2005, 786–789.

[12] I. Bork: Practical tuning of xylophone bars and resonators.
Appl. Acoust. 46 (1995) 103–127.

[13] A. Chaigne, V. Doutaut: Numerical simulations of xylo-
phones. I. Time-domain modeling of the vibrating bars. J.
Acoust. Soc. Am. 101 (1997) 539–557.

[14] A. Chaigne, M. Bertagnolio, C. Besnainou: Tuning of xy-
lophone bars: influence of curvature and inhomogeneities.
Proc. International Symposium on Musical Acoustics
ISMA 01, Perugia, Italia, 2001, 2, 531–534.

[15] N. H. Fletcher, T. D. Rossing: The physics of musical in-
struments. Springer-Verlag, New York Inc., 1988. chapter
19.3, Tuning the Bars, 539-542.

[16] B. H. Suits: Basic physics of xylophone and marimba bars.
Am. J. Phys. 69 (2001) 743–750.

[17] H. Boutin: Méthodes de contrôle actif d’instruments de
musique: cas de la lame de xylophone et du violon. PhD
thesis, Université Pierre et Marie Curie, 2011.

[18] H. H. Hwang, P. C. Tripathi: Generalisation of the Routh-
Hurwitz criterion and its applications. Electron. Lett. 6
(1970) 410–411.

[19] A. Savitzky, M. J. E. Golay: Smoothing and differentiation
of data by simplified least squares procedures. Analytical
Chemistry 36 (1964) 1627–1639.

[20] H. Fastl, E. Zwicker: Psychoacoustics: facts and models.
Springer-Verlag, Berlin, 2001.

[21] Website of LAM, Institut d’Alembert UPMC Univ. Paris
6. http://www.lam.jussieu.fr/Membres/Boutin/sons.html,
2011.

420

http://www.ingentaconnect.com/content/external-references?article=0003-2700(1964)36L.1627[aid=15992]
http://www.ingentaconnect.com/content/external-references?article=0003-2700(1964)36L.1627[aid=15992]
http://www.lam.jussieu.fr/Membres/Boutin/sons.html

