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As imple active control method is described which extends the possibilities of ax ylophone bar.I ta llows the performer to modify the vibration of its structure, unlikepost-processing effects involving loudspeakers. These variations change the characteristics of the partials radiated by the bar.T he xylophone bar,m ade of composite material, is equipped with twoactuators and one sensor in PVDF (polyvinylidene fluoride), the mass and stiffness of which do not modify the mechanical characteristics. Ac ontroller in af eedback loop is executed on am idrange digital signal processor.I ti sc omposed of as um of second order band-pass filters. The selection of the controller coefficients relies on the measured transfer function between the input of the controller and the output of the sensor.F irst the active control method is designed to modify the resonance peaks of as imple model of ax ylophone bar,w hose transfer function is as uperposition of three eigenmodes. Then it is applied to the real system. It is illustrated by increasing and reducing the amplitudes and/or frequencies of the first resonances, and by modifying the tuning of the xylophone bar.

Introduction

Hybridising musical instruments with active control offers twoessential advantages to musicians: first it expands the range of sound that the instrument can produce, and then it modifies the sound radiated by the instrument itself so that the timbre does not depend on an external transmitter. Fort hese reasons, the last 20 years have seen important advances in active musical instruments.

Early studies carried out by Besnainou [START_REF] Besnainou | Modal stimulation: as ound synthesis new approach[END_REF][START_REF] Besnainou | Transforming the voice of musical instruments by active control of the sound radiation[END_REF], used PID (Proportional-Integral-Derivative)c ontrol in af eedback loop to modify the vibration modes of musical instruments equipped with piezoelectric transducers. With collaborators [START_REF] Chollet | Modification de la résonance de Helmholtz de la guitare par contrôle actif[END_REF][START_REF] Boutin | Physical parameters of the violin bridge changed by active control[END_REF][START_REF] Boutin | Physical parameters of an oscillator changed by active control: application to axylophone bar[END_REF], he changed the Helmholtz resonance characteristics of aguitar,the rocking motion of aviolin bridge and the first bending modes of axylophone bar.

Other studies have focused on the eigenmodes of vibrating strings. Berdahl and Smith [START_REF] Berdahl | Active damping of av ibrating string[END_REF] modified the damping of an electric guitar string using an integral controller in the feedback loop. They [START_REF] Berdahl | Inducing unusual dynamics in acoustic musical instruments[END_REF] also suggested an optimal adaptive method to control the amplitude of the string displacement, and applied it in simulation to induce newd ynamics in as tring model. In the Magnetic Resonator Piano, McPherson [START_REF] Mcpherson | The magnetic resonator piano: Electronic augmentation of an acoustic grand piano[END_REF] used electromagnetic solenoids to change the sound levela nd the frequencyo ft he first partials of each string, relative to the fundamental. The method requires only one sensor belowt he soundboard and afi lter bank. The actuators are controlled using optical sensors which measure the position of the piano keys.

Active control methods were also applied to percussive instruments. Rollow [START_REF] Rollow | Active control of spectral detail radiated by an air-loaded impacted membrane[END_REF] modified the first eigenmodes of ak ettledrum. The membrane wase quipped with four accelerometers. Four drivers were mounted in aplane parallel to that of the membrane. Their vibrations were coupled by the closed volume of air between the membrane and the drivers. The duration of the first partials were extended or shortened, using feed-forward control which assured system stability.I nt he Feed-Drum,L upone and Seno [START_REF] Lupone | Gran cassa and the adaptive instrument feed-drum[END_REF] allowed the performer to modify the sustain of partials with feedback proportional control. This bass drum was only provided with one pair of transducers: ap iezoceramic sensor wasplaced on the rim of the membrane and aloudspeaker waslocated belowthe membrane. Va nW alstijn and Rebelo [START_REF] Va Nw Alstijn | The prosthetic conga: towards an actively controlled hybrid musical instrument[END_REF] suggested amethod that modifies the sound radiated by ac onga. The membrane vibration was measured using ac ontact microphone at one point of the surface and wasdrivenbyone loudspeaker mounted inside the instrument. In the feedback loop, an equalising filter cancelled the membrane natural resonances and added virtual resonances with desired characteristics.

In this paper,anew method is suggested which requires only one pair of piezoelectric transducers. Acontroller located in afeedback loop is implemented in aDSP (digital signal processor). It assigns desired frequencies and amplitudes to resonances of avibrating structure. UnlikePID controllers, the transfer function of the controller tends to zero at lowand high frequencies and the bandwidth of the resonance peaks can be modified by the performer.T hus no selective band-pass filter is required to preservedistant modes from unwanted modifications. As aresult the controller has relatively loworder and does not need to be run by high-speed processor: the sample frequencyofthe DSP is 48.8 kHz.

The suggested method is applied to the first bending modes of axylophone bar equipped with transducers. The system is described in the next section. The position of the actuators allows modifications on odd bending modes rather than even bending modes. Fort his reason only the modes 1a nd 3a re modified. The subsequent modes are considerably damped compared to the first three modes, so that the corresponding overtones do not significantly contribute to the radiated sound, as explained by Bork [START_REF] Bork | Practical tuning of xylophone bars and resonators[END_REF]. So theyw ould require substantial modifications to change the sound of the bar,involving apower larger than the regulator and actuators could supply.I nc onsequence the subsequent modes are kept unchanged. In Section 3, as imple model is established and the method to choose the controller coefficients is detailed. This method is illustrated and discussed in Section 4through three experiments which showt hat the performer can apply independent modifications to the characteristics of the modes of the xylophone bar.The first twoexperiments aim at modifying successively the amplitudes and the frequencies of the modes 1a nd 3w ithout changing the other characteristics and the nearest modes. In the third, the controller changes the tuning of the bar.

System

Xylophone bar

The xylophone bar used in the experiment wasm ade by the second author.The faces are of carbon fibre. The core is composed of ballasts at both extremities and of polymeric foam in the middle (Figure 1a). This composite material makes the mass at least ten times lighter than the mass of at ypical xylophone bar,m ade of maple, spruce or tropical wood, and having the same fundamental frequency.

The length of the bar is significantly larger than its width and thickness, so that the first vibration modes are bending modes along this dimension, subsequently called x.T he xylophone bar features as light curvature of radius 1.3 m and an undercut on its lower face. Twoelastic cords come across twoh oles drilled sideways to support the bar.T he holes, located at 6cmfrom each extremity of the bar,are close to the nodal lines of the first bending mode of the bar,asshown by the Chladni pattern in Figure 1b, and also to nodal lines of the third bending mode. Consequently the amplitude of these modes is little attenuated by the cords. Because of the elasticity of the cords, the boundary conditions of the bar are assumed to be free-free in first approximation likeatypical xylophone bar,assuggested by Chaigne and Doutaut [START_REF] Chaigne | Numerical simulations of xylophones. I. Time-domain modeling of the vibrating bars[END_REF].

In aprevious study,Chaigne et al. [START_REF] Chaigne | Tuning of xylophone bars: influence of curvature and inhomogeneities[END_REF] showed that the sandwich composition of the bar and its inhomogeneity result in an unusual tuning: 1:2.7:4.9 instead of 1:3:9 or 1:4:9, while the slight curvature does not significantly affect the frequencyofthe partials. From Fletcher and Rossing [START_REF] Fletcher | The physics of musical instruments[END_REF], the frequencys eparation between the first two partials is usually adjusted by reducing the thickness at the centre of the bar.However the thickness of the xylophone bar in composite wastoo small to be reduced further.

Transducers

Twopiezoelectric actuators made of PVDFare attached to the lower face of the bar as shown in the lower picture of Figure 1a. Each has an extremity glued at the centre and the other extremity at an edge of the undercut. The curvature of the bar reduces the angle between the actuators and the perpendicular to the bar at the fixing points, and therefore increases the bending moment applied by the actuators.

Due to the bar symmetry,t he median plane x = L/2, L being the length of the bar,i sa na ntinode for the odd eigenmodes, and anode for the even eigenmodes. In addition as shown by Suit'sn umerical model [START_REF] Suits | Basic physics of xylophone and marimba bars[END_REF], the strain of the first three eigenmodes is small near the edge of the undercut. Thus the actuators location is not adapted to modify the second eigenmode, and justifies the purpose of modifying rather the first and third ones. To this end, the twoactuators are supplied with the same voltage.

The xylophone bar has only one sensor,a lso made of PVDF,glued on the upper face of the bar.The charge difference between its faces is proportional to the strain. Thus the ideal position to observethe first and third modes is the middle of the bar,s ymmetrically about the antinode line x = L/2. However, to not disturb the musician'sp erformance, the sensor is movedtowards one end of the bar.In order to observethe first and third bending modes, the sensor is not centred on their nodal lines, previously identified by the first author [START_REF] Boutin | Méthodes de contrôle actif d'instruments de musique: cas de la lame de xylophone et du violon[END_REF] using the Chladni method.

Thanks to the geometrical and mechanical characteristics of the bar and the transducers, see Table I, the voltage required by the actuators to act on the first bending modes is relatively low, around 10 V.

Feedback loop

Acontroller is placed in afeedback loop between the sensor and the pair of actuators. It is implemented in aDSP.

As shown in the block diagram in Figure 2, the sensor is connected to the controller via one input of the DSP, henceforth called u 1 .T he other input of the DSP,h enceforth called u 2 is used to measure the closed-loop transfer functions. When the inputs of the DSP are connected to the output without anys ystem in-between, the measured gain, subsequently called K DSP ,is0.8 and the delay, τ DSP , is equal to 287 µs and corresponds to 14 sample periods. Both characteristics are constant overaf requencyr ange including the first three eigenmodes.

AU SART( Universal Synchronous Asynchronous Re-ceiverT ransmitter)c onnection is set up between the DSP and ac omputer.I ta llows the user to modify the coefficients of the controller while it is running.

The output levelo ft he DSP is limited to 3V.I ti sn ot enough to apply audible modifications to the sound radiated by the xylophone bar.C onsequently,a na mplifier is inserted in the feedback loop downstream of the DSP.I ts gain, equal to 75, is constant overt he frequencyr ange of interest and the phase difference between its input and its output is negligible.

Method

Transfer functions

In order to modify the frequencyand the sustain of the first partials, the suggested method seeks acontroller which assigns the desired characteristics to the resonance peaks of the system (xylophone bar and transducers). The twoi nputs of the system, f h and u act ,a re respectively the force of the mallet and the voltage supplied to the twoactuators (close-up of the block diagram in Figure 2).The output y is the voltage between the faces of the sensor.

The system is thus described by twotransfer functions:

G 1 = Y/F h = H sens G 10 and G 2 = Y/U act = H sens G 20 H act ,
where F h , U act and Y are the Laplace transforms of f h , u act and y. G 10 is the transfer function between the external force F h and the strain of the sensor. G 20 is the transfer function between the distributed force applied by the actuators and the strain of the sensor. H sens and H act are the transfer functions of the sensor and the actuators.

In the feedback loop, the DSP is composed of three blocks. One is the transfer function of the controller H corr and the twoo ther describe the gain K DSP and the delay τ DSP introduced in §2.3. The DSP output signal is amplifiedb yt he constant gain K amp before feeding the actuators. The sensor is connected to the input u 1 of the DSP. The other input, u 2 ,isused in the following to measure the closed-loop transfer function in order to choose the controller characteristics and is set to 0while the performer is playing.

The controller aims at assigning the desired characteristics to the peaks of the closed-loop transfer function G 0 cl , defined as the quotient Y/F h while U 2 = 0a nd givenb y the equation

G cl0 = Y F h U 2 =0 = G 1 1 -G 2 Ke -sτ DSP H corr .
(1) K = K amp • K DSP is the constant gain introduced by the DSP and the amplifier in the feedback loop. The coefficients of H corr are chosen in order to apply the desired characteristics to the peaks of G cl0 .Asshown in Equation (1),t heyd epend on the values of the twot ransfer functions G 1 and G 2 Ke -sτ DSP .The experimental setups used to identify them are subsequently described.

Transfer function between the impact hammer and the sensor

In order to measure G 1 ,the xylophone bar is impacted by a 10 gminiature hammer (5800SL, Dytran, CA, USA). The force sensor of the hammer has aresonance frequencyof 300 kHz, which is much higher than the frequencies of the considered modes. Its extremity,m ade of steel, has a2 .5 mm diameter allowing punctual impacts in first approximation. To maket he external force repeatable, the hammer is attached to al ever which rotates on an axis parallel to the face of the bar,s ee Figure 3. Thanks to a horizontal stop bar,t he hammer is always released from the same position without initial speed. The direction of the leverand the height of the axis are adjusted so that the hammer applies af orce normal to the upper face of the bar at the impact point, on its median line y = 0. Thus this force essentially excites the bending modes. Arubber band attached to the horizontal stop bar damps the hammer drop, prevents bounces and makes the impact shorter.

To check howthe position of the impact affects the amplitudes and frequencies of the free vibrating eigenmodes in the transfer function G 1 ,t wo measurements are carried out, by hitting the xylophone bar first at the centre (131 mm, 0mm) and then in the position (97mm, 0mm). In each case, the impacts are fare nough from the nodes of mode 1, as shown by the Chladni pattern in Figure 1b, and mode 3, so that both bending modes are excited. For each position, 10 impacts are applied to the bar.The hammer and sensor signals are recorded with an acquisition card (NI9 234, National Instrument, Texas, USA), sampled at 6.4 kHz and normalized, dividing the measurements by the maximum value of the hammer signal. f h and y are the averages of these signals. The transfer functions are givenb yt he quotient between the cross power spectrum of f h and y, S f h ,y and the power spectrum of f h , S f h ,f h .T he magnitudes and phases corresponding to both impact positions are plotted in Figure 4, as well as the coherence corresponding to the central impact, defined by |S f h ,y | 2 /(S f h ,f h S y,y ), S y,y being the power spectrum of y. All subsequent transfer functions measured with this experimental setup are defined relative to the same reference 0dB, which depends on the sensor piezoelectric constant.

When the impact is off-centre, the magnitude of G 1 (dashed black curvei nF igure 4) shows three significant peaks corresponding to the first bending modes of the bar. Table II. Characteristics of the peaks corresponding to the first three bending modes of the system (xylophone bar and transducers), for twoi mpact positions (A:1 31 mm, 0mm) and (B: 97 mm, 0mm).For each peak, the Q-factor Q is estimated by the quotient between the resonance frequency f R and the bandwidth Δ at -3dB. A:Amplitude. As expected, the second peak is attenuated when the hammer hits the bar at the centre. Fort his measurement, the experimental setup is repeatable to measure the peaks of interest, as shown by the coherence (greyc urvei nF igure 4),w hich exceeds 0.99 overt he intervals [400 Hz, 600 Hz], [1313 Hz, 1400 Hz] and [2200, 2600 Hz]. Belowthe second peak frequency, the coherence slightly decreases around an anti-resonance in 1.3 kHz. The other minima of coherence are multiples of 50 Hz, frequencyof the mains in France.

The impact position affects the relative amplitudes of the peaks and their contribution at the frequencyo ft he nearest peaks. In consequence, the peak frequencies in the measured transfer function are also potentially changed when the impact position is modified. However, the first three modes are well separated. Indeed the peak bandwidths at -3dBare much smaller than the frequencyseparation between them. This explains whyt he frequency variations of the peaks are small, less than 0.3%, when the impact position is offset by 34 cm from the centre.

Another peak, located about 520 Hz, is due to the location of the actuators. Since theyare not perfectly symmetric about the transversal plane x = L/2, theyapply asymmetric prestressing to the bar,which separates the first resonance peak into twoc omponents of very close frequencies. To not damage the bar in composite, it waschosen to leave the actuators at their initial positions. To measure the transfer function G 2 Ke -2jfτ DSP (solid curves in Figure 5b), the amplitude of the voltage source is set to 100 mV.Inorder to identify the range overwhich the system (xylophone bar and transducers)i sl inear,t he transfer function is also measured at larger amplitudes. No modification of the transfer function is observed be-low2 50 mV.F or higher values, the amplitude of u act exceeds 15 V. Then the behaviour of the actuators becomes non-linear and the measured transfer function is distorted around the first and third resonance frequencies. In the following measurements, the amplitude of the source is adjusted so that u act is maintained below15V.

Between 600 Hz and 1300 Hz, the gain of the transfer function G 2 Ke -2jfτ DSP is lowa nd has comparable level with the electronic noise in the experimental setup. Thus the precision of the phase givenbythe spectrum analyser overt his range is significantly reduced. Howevera round the three main peaks, the noise leveli sm uch lower than the measured gain, by more than 10 dB, so that accurate measurements of their characteristics can be achieved.

As expected, the actuators mostly excite the odd bending modes because theya re supplied with the same voltage. The gains of the amplifier and DSP,and the piezoelec- tric constant of the actuators are included in the curves of Figure 5b, so that the characteristics of the peaks are different from those shown in Figure 4and Table II. However the difference between the first and the third resonance frequencies of G 2 Ke -sτ DSP and the ones of G 1 when the impact is applied at the centre is less than 0.5%. Thus, from Equation (1),t he controller will apply approximately the same variations to the transfer functions G cl0 and to the transfer function G cl ,between the input U 2 of the DSP and the sensor signal, which is defined by

G cl = Y U 2 F h =0 = G 2 Ke -sτ DSP 1 -G 2 Ke -sτ DSP H corr , ( 2 
)
as shown by the block diagram in Figure 2. Subsequently, the controller is chosen to change the resonance characteristics of G cl .T omeasure this transfer function, the sensor is connected to the input U 1 of the DSP,a nd the voltage source to the summing point in the input U 2 of the DSP. The spectrum analyser measures simultaneously the voltage source and the sensor signal and deduces the transfer function G cl .

The spurious peak previously measured above the first resonance of G 1 (Figure 4) is also observed on the curve of Figure 5b, in 529.7 Hz. In section 4, the variations applied to the first peak will be restrained in order to keep unchanged the characteristics of this peak.

Model

In order to discuss the method to choose H corr and the influence of its coefficients on the closed-loop transfer function, the controller is first applied to amodel of the system (xylophone bar and transducers). Since the xylophone bar has complexg eometry and inhomogeneous structure, the model is described by its eigenmodes rather than its physical properties. Its transfer function Ĝ is as um of three second-order band-pass resonant filters Ĝk ,corresponding to the first three bending modes of the bar.Each filter Ĝk is characterized by four coefficients:

G max k , f k , Q k and ϕ k , Ĝ = 1≤k≤3 Ĝk , ( 3 
) with Ĝk (jω) = jω 2πf k Q k G max k 1 + jω 2πf k Q k + jω 2πf k 2 e jϕ ck , 1 ≤ k ≤ 3. ( 4 
)
The coefficients G max k , f k and Q k are identified to the amplitude, frequencya nd Q-factor of the kth peak of G 2 Ke -sτ DSP and ϕ k is identified to its phase in f k .M agnitude and phase of Ĝ are plotted in Figure 5b (dashed curves)and compared to G 2 Ke -sτ DSP .Since the frequency separations between the peaks of resonance are much larger than their bandwidths at -3dB, the first and third peaks of the model and the ones of the real system have comparable characteristics: their amplitudes, frequencies and bandwidths differ by less than 0.01 dB, 0.2 Hz and 0.2 Hz respectively.The second resonance peak of G 2 Ke -sτ DSP is relatively smaller.Inconsequence the differences between its characteristics and the ones of the model are larger: 2.1 dB, 1.0 Hz and 2.1 Hz. Since this peak is not modified by the controller,t hese differences have no consequences on the choice of its coefficients

Controller

In this section, the method to determine the coefficients of the controller is described, in order to apply the desired variations to the peaks of the model transfer function. In the vicinity of the kth resonance frequency, k ∈{ 1 , 3 } , Ĝis approximately equal to Ĝk since the contribution of the nearest filters is negligible (less than 46 dB smaller). A second-order band-pass resonant filter is designed to apply to the peak the desired variations of amplitude and frequency. Its transfer function H k is specified by its resonance frequency f ck ,i ts quality factor Q ck ,i ts maximum gain H max k and its phase ϕ ck at the frequency f ck ,

H k (jω) = jω 2πf ck Q ck H max k 1 + jω 2πf ck Q ck + jω 2πf ck 2 e jϕ ck ,k ∈{1,3}.(5)
The controller H corr is the sum of the filters H k .For each filter,the Q-factor is set to alarge enough value such that the gain |H k | is negligible compared to | Ĝ| at the nearest resonance frequencies. Thus, in the vicinity of the resonance frequency

f ck of H k ,the closed-loop transfer func- tion is Ĝcl = Ĝ 1 -ĜH corr ≈ Ĝk 1 -Ĝk H k (6)
The coefficients of H k are chosen through the four following steps: I-the resonance frequency f ck is set to the desired frequencyofpeak k; II -the phase ϕ ck is chosen to cancel the phase of the open-loop transfer function Ĝk H k at the desired frequency f ck :

ϕ ck = -2n k π -arg Ĝk (2jπf ck , ( 7 
)
where n k is the smallest integer such that ϕ ck ≤ 0. Thus, from Equation ( 6 

H max k = 1 | Ĝk (2jπf ck | 1 - | Ĝk (2jπf ck | G max k
assigns the desired amplitude G max k at the desired frequency f ck . IV -the Q-factor Q ck allows bandwidth modifications of peak k.The influence of this coefficient on the closed-loop transfer function is discussed in the next paragraphs while the controller aims at modifying the amplitude of the first peak (Figure 6) and its frequency(Figure 7). Forap ositive amplitude variation of the closed-loop peak, as Q c1 rises, the bandwidth of the peak decreases, as shown by vertical lines in the right part of Figure 6a. In contrast, for areduction of amplitude of the peak (left part of Figure 6a)the bandwidth increases as Q c1 rises.

Large values of Q c1 also reduce undesired effects produced by large modifications of amplitude. Indeed raising |H max 1 | increases the gain of filter H 1 and the variations it applies to the nearest peaks. These unwanted modifications are reduced by decreasing the bandwidth of H 1 i.e. by raising Q c1 .However,asdescribed above,such amodification affects in turn the peak bandwidth.

Furthermore, when the controller reduces the peak amplitude, the gain | Ĝcl | has alocal minimum in f c1 when Q c1 exceeds alimiting value. The white contour (top left corner of Figures 6a, 6b and6c)gives this value in function of the amplitude variation. Forlarger Q c1 ,the local maxima of | Ĝcl | are movedawayfrom the desired position, involving errors in amplitude and frequency. In contrast, while the controller givesamaximum in f c1 ,i.e. belowthe contour,t he amplitude and frequencyo ft he peak reach the desired values without significant errors (Figures 6b and6c).

In the case of modification of frequency, the peak bandwidth decreases as the desired variation rises, as shown by horizontal lines in Figure 7a. However, for ag iven variation of frequency, see vertical lines in Figure 7a, when Q c1 increases, | Ĝcl | is modified on an arrower frequency range and is less attenuated around the initial frequencyof the peak. Thus the bandwidth of the resonance peak of Ĝcl includes abroader interval of frequency.

As Q c1 rises further,the modification undergone by | Ĝcl | on either side of the initial peak is not significant. Thus | Ĝcl | has al ocal maximum close to the initial peak fre-quency, another close to the desired frequency, and alocal minimum between them. This feature is observed in the top right and left corners of Figures 7a, 7b and 7c limited by white contours. Then the bandwidth of the peak is reduced again. As shown in Figure 7a, while the absolute value of frequencyvariation, |Δf 1 |,islarger than 1.4%, the bandwidth reaches amaximum value when Q c1 is between 7, when Δf 1 = ±6%, and 62, when Δf 1 = ±1.4%. The bandwidth remains larger than 3Hzwhen Q c1 is between 7.5 and 12.5 (region between horizontal dashed lines in Figure 7a). Forfrequencyv ariations lower than 0.3%, the bandwidth is little affected by the controller and its value, greater than 6Hz, is closer to its value in open-loop, equal to 6.8 Hz.

In the areas above the white contours, when the desired frequencym ovesa wayf rom its initial value, the amplitude of the local minimum between the initial and the desired peak decreases. In particular,the difference of amplitude between this minimum and the desired peak exceeds 3dBwhen |Δf 1 | passes from ±0.8% to ±1.3%. Thus the measured bandwidth is reduced. This explains the sudden transition observed in horizontal lines in the top part of Figure 7a.

Figures 7b and7c showt he amplitude and frequency errors, err Amp (indB) and err Freq (in%), as the desired frequencyi sm odified. While Q c1 is below5 00, the amplitude variation of the peak is always larger than -0.7dB. When the initial peak is not alocal maximum of | Ĝcl |,i.e. belowt he white contours, the errors increase as the frequencyvariation |Δf k | rises, see horizontal lines. Interestingly,when Q c1 is greater than 1.3, both amplitude and frequencyerrors reach amaximum and then slightly decrease when the frequencyv ariation is further increased. As an example, when Q c1 = 10, the maximal errors are 5.3 dB for err Amp and 0.53% for |err Freq |,a nd theya re obtained when Δf c1 = 2% for err Amp ,and when Δf c1 = 1.4% for |err Freq | (see intersection between dashed lines in Figures 7b and7c).

To illustrate the influence of Q c1 ,the closed-loop transfer function is calculated, with controllers designed to modify the amplitude of the first peak (Figure 8a)a nd its frequency( Figure 8b). H Amp1 and H Amp1 aim at increasing the amplitude of the first peak by 15 dB without changing its frequency. The only difference between these controllers is their Q-factor,e qual to 3a nd 100 respectively. Theyapply the desired variation with no significant error of amplitude and frequency. However, in agreement with Figure 6a, H Amp1 givesan arrower peak than H Amp1 ,s ee dark greycurves of Figure 8a.

Controllers H Amp2 , H Amp2 and H Amp2 aim at reducing the peak amplitude by 15 dB without changing its frequency. Their only difference is the value of their Qfactors: Q c1 = 3f or H Amp2 ,0 .001 for H Amp2 and 20 for H Amp2 .A ss hown by the solid and dashed pale curves of Figure 8a, the bandwidth of the peak gets wider when the Q-factor of the controller increases from 0.001 to 3. However for the highest value Q c1 = 20, the peak is turned into alocal minimum, see black dotted curve. and H Amp1 (dashed dark grey) aim at increasing the amplitude by 15 dB and only differ by their Q-factor,e qual to 3a nd 100 respectively. H Amp2 (solid pale grey), H Amp2 (dashed pale grey) and H Amp2 (dashed black)a im at decreasing the amplitude by 15 dB and only differ by their Q-factor,e qual to 3, 0.001 and 20 respectively.( b) Transfer functions Ĝ (solid black)a nd Ĝcl with controllers designed to modify the peak frequencywithout changing its amplitude: (solid dark grey) and (dashed dark grey) aim at increasing the frequencyby1semi-tone. H Freq2 (solid pale grey), H Freq2 (dashed pale grey) aim at decreasing the frequency by 1s emi-tone. H Freq1 and H Freq2 differ from H Freq1 and H Freq2 only by their Q-factors, equal to 100 and 10 respectively.F or each controller,t he amplitude and the frequencyo ft he peak of Ĝcl are written on the curve.

With H Amp2 and H Amp2 ,the amplitudes of the first peak of Ĝcl are equal to the desired value and their frequencies are movedbyless than 0.06%. Forlarger reduction of amplitude, the contribution of subsequent peaks at the desired frequency f c1 has more impact on the characteristics of the peaks and introduces greater errors. With H Amp2 ,since the twom axima of Ĝcl are moveda wayf rom the desired characteristics, the errors in amplitude and frequencya re significant: err Amp ≥ 3.9dBand err Freq ≥ 2.7%.

H Freq1 and H Freq2 aim at modifying the frequencyofthe first peak of Ĝcl by +5.9% (+1s emi-tone)a nd -5.6% (-1s emi-tone)r espectively without changing its amplitude, see solid curves of Figure 8b.Their Q-factors are set to 10. H Freq1 and H Freq2 differ from H Freq1 and H Freq2 only by their Q-factors, equal to 100. With these controllers, the errors of frequencyand amplitude are reduced to 0% and less than 0.1 dB respectively.However the peak bandwidth is also significantly reduced and the closed-loop transfer function has another maximum near the initial frequency, as shown by the dashed curves of Figure 8b.These observations are consistent with the results giveninFigure 7.

Stability

From Equation ( 6) the stability of the model depends on the roots of the polynomial D -N,where N and D are the numerator and the denominator of the open-loop transfer function ĜH corr .Since Ĝ is asuperposition of three eigenmodes and H corr is composed of twos econd-order bandpass filters, D is apolynomial of degree 10. In general the constant delay introduced by the DSP and the controller coefficients ϕ ck , k ∈{ 1 ,3 }add an on-zero phase to the open-loop transfer function, which cancels only at the desired frequencies f ck .Consequently,the polynomial N has complexc oefficients. Hwang and Tripathi [START_REF] Hwang | Generalisation of the Routh-Hurwitz criterion and its applications[END_REF] showt hat the polynomial |D -N| 2 has real coefficients, the same zeroes as D -N and twice its degree i.e. 20. Then to investigate the closed-loop stability,the Routh-Hurwitz criterion is applied to |D -N| 2 .The 20 resulting inequations give sufficient conditions of stability on the eight controller coefficients. In general, each condition depends on several coefficients multiplying each other and raised to different powers between 0and 20. In consequence no analytic solution can be found. Suitable coefficients can still be deduced from testing the system of inequations for al arge range of values.

Additional assumptions specifict ot he current model makethe resolution easier.Indeed in the open-loop transfer function, since the distance between the peaks is much larger than their bandwidth, around f ck ,t he contribution of the nearest peaks is negligible. Therefore, in first approximation, the poles of Ĝcl are the zeroes of 1 -Ĝk H k , k ∈{ 1 ,3 } ,i .e. the zeroes of D k -N k , N k and D k ,b eing the numerator and the denominator of Ĝk H k .Then the Routh-Hurwitz criterion, subsequently applied to both 8th degree polynomials |D 1 -N 1 | 2 and |D 3 -N 3 | 2 ,gives two independent systems of eight inequations each. Their resolution is faster than the previous one.

We study the system stability in asimple case, where the controller modifies the amplitude of the first peak butnot its frequency. The controller is composed of only one filter.Its resonance frequencyisf 1 =495.7Hzand its phase coefficient is givenb yE quation [START_REF] Berdahl | Inducing unusual dynamics in acoustic musical instruments[END_REF].T he stability conditions were tested by varying Q c1 and H max1 ,inthe ranges [0.01, 1000] and [-1000, 1000] respectively,with astep of 0.01. The closed-loop system is stable for all tested values of Q c1 ,and for H max 1 < 12.12. This limiting value is equal to 1/G max 1 and makes Ĝcl tend to +∞ at the frequency f 1 . This is in agreement with Equation (6).

Application to the xylophone bar

The method previously described is illustrated by applying three different modifications to the first and third modes of the real system (xylophone bar and transducers).

Preliminary steps

Determining the controller

In practice the controller has the same design as the one used to control the model. It is asum of twosecond-order band-pass filters H 1 and H 3 associated to the first and third bending modes of the system. Theyare defined by Equation [START_REF] Boutin | Physical parameters of an oscillator changed by active control: application to axylophone bar[END_REF].For each filter,the coefficients are chosen through four experimental steps. I-the resonance frequency f ck is set to the desired frequency. II -the phase coefficient ϕ ck is chosen to makethe openloop transfer function real at the frequency f ck .T hus the denominator of G cl ,given by Equation ( 2),isalso real:

1 -G 2 Ke -2jπf ck τ DSP H corr ≈ 1 -|G 2 |KH max k , ( 8 
)
and its value is adjusted by

H max k .
The experimental setup used to findt he phase coefficient is shown in Figure 5a. The external voltage U 2 and the force F h are equal to zero. As wept sinusoidal voltage is applied at the input U 1 of the DSP,c onnected to the controller.T he open-loop transfer function G 2 Ke -2jπfτ DSP H corr is givenbythe spectrum analyser, which measures both the voltage source and the sensor output. H max k is temporarily set to 1. The value of Q ck should be large enough to makethe bandwidths of H 1 and H 3 much smaller than the frequencys eparations f 2 -f 1 = 833 Hz and f 3 -f 2 = 1060 Hz, as shown in Figure 5b, so that the gains |H k | have no significant influence on the nearest peaks. Also Q ck should be kept as small as possible for tworeasons mentioned in §3.3.IV:

• to prevent the resonance peak from becoming al ocal minimum when its amplitude is reduced, • to attenuate the amplitude of the initial peak as much as possible when its frequencyismodified. In practice Q ck is typically set to 10, so that the bandwidths of H 1 and H 3 are approximately 50 Hz and 240 Hz.

Then the phase coefficient is adjusted to set the phase of the measured transfer function in f ck to 0 • ,a ss uggested by Equation [START_REF] Berdahl | Inducing unusual dynamics in acoustic musical instruments[END_REF].

In practice, the samples at the output of the DSP are stored in ab u ff er.T hen the phase coefficient is approximated by 2πf ck N s /F s , N s being the length of the buffer and F s the sample rate of the DSP.Thus, the maximal error of phase, πf ck /F s ,isproportional to the desired frequency f ck . III -The coefficient H max k is deduced from the measurement of the closed-loop transfer function G cl .I ti sm easured using the experimental setup shown in Figure 2: the sensor output Y is connected to the input U 1 of the DSP and asweeping voltage source is applied to the summing point, at the input U 2 of the DSP. G cl is givenbythe spectrum analyser which simultaneously measures the voltage source in U 2 and the sensor signal Y .T hen H max k is set to zero and is increased in absolute value until G cl reaches the desired amplitude at the frequency f ck . IV -The Q-factor Q ck .Asexplained in §3.3.IV,for large variations of amplitude, the value Q ck is raised in order to reduce the gain |H k | at the frequencies of the nearest peaks. However Q ck must remain belowal imiting value to prevent unwanted variations of bandwidth on the considered peak.

Calibration

In the real system (xylophone bar and transducers), the performer selects ranges of values which guarantee the system stability through au ser-created preset. It involves increasing the coefficient H max k of each filter from zero, so that the gain of the closed-loop transfer function at the desired resonance frequencies rises and the damping of the partials in the radiated sound decreases. As mentioned in §3.3.III, when the coefficient H max k tends to 1/| Ĝk |,t he amplitude of the closed-loop transfer function tends to +∞ at the desired frequency f ck .Then the oscillation of the bar starts to diverge, the amplitude of the strain reaches alimit, and non-harmonic modes are excited. This extreme situation does not cause anydamage on the xylophone bar,because the power of the actuators is too low. Before reaching this nonlinear behaviour,the bar passes through aselfoscillating state that can be of musical interest for the performer.

Thus the calibration step allows performers to impose an upper limit to coefficients H max k corresponding to the minimum damping desired for each partial of the sound.

Modifications of amplitudes

The first experiment aims at applying the same amplitude variations to the first and third peaks of G cl ,defined as the closed-loop transfer function between the input U 2 of the DSP and the sensor signal Y ,w ithout changing the resonance frequencies. Four controllers are determined to reduce their amplitude by 10 dB and 5dBa nd then to increase them by 5dBa nd 10 dB. Fore ach controller,t he coefficients of the filters H 1 and H 3 are shown in Table III.

The values of f ck are the frequencies of peaks 1a nd 3m easured on Figure 5b.A se xpected, the coefficients H max k are negative for amplitude reductions and positive for increases and theyrise as the desired variation grows. Forb oth reductions, the Q-factor is reduced from its initial value, equal to 10, in order to decrease the closed-loop gain on both sides of the peaks. On the contrary when the peaks are increased, the Q-factor is raised so that the peaks 1a nd 3a re increased overan arrower bandwidth and the nearest peaks are unchanged.

The delay is givenbythe length of the buffer which collects samples at the DSP output. Fore ach controller,i ts value is the same because changing H max k does not modify the phase of the filter in f ck .The closed-loop transfer functions, G cl (Figures 9a and9b)were measured around both considered peaks using as pectrum analyser and as inusoidal voltage source connected in the input U 2 of the DSP, as shown in the setup in Figure 2. The electronic noise due to the experimental setup wasreduced in the measured curves using aSavitzky-Golay smoothing filter of order 25 [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF]. Thus the curves are readily compared to the closedloop transfer function G cl0 ,m easured between the force of the impact hammer and the sensor signal, and averaged over10recordings, as described below. The smoothing filter does not change the frequencyand the amplitude of the peaks significantly.Indeed in the absence of controller the measured peaks 1and 3(black curveinFigure 9) are modified by less than 0.06% (1 cent)infrequencyand 0.4 dB in amplitude compared to the values measured in Figure 5b.

With the controllers, the frequencyofpeak 1appears to be modified by less than 0.1% compared to its initial value. When the amplitude of peak 3i si ncreased, its frequency variation is less than 0.08%. It reaches larger values, up to 0.99% (16.5 cents), when the controller aims at reducing its amplitude by 10 dB. Indeed as the frequencymoves away from f c3 ,the controller gain decreases. Then the amplitude reduction caused by the controller also decreases. In consequence for substantial reductions of the peak, the closed-loop gain has alocal minimum close to f c3 and the local maximum is significantly movedw hen the desired reduction is -10 dB. Controllers with smaller Q-factor reduce this effect buta lso increase the modifications of the nearest peaks of G cl .

In each experiment, the differences between the measured amplitudes and the desired values are less than 0.5 dB. Smaller differences are achievedw ith am ore accurate adjustment of the coefficients H max k .

We measure the modifications applied by each controller to the peaks of

G cl0 = Y/F h | U 2 =0
,w here Y and F h are the Laplace transforms of the sensor signal and the hammer force and U 2 is the DSP input connected to the summing point. The experimental setup is described in §3.1.1. We apply 10 impacts at the centre of the bar which is an ode for the second mode. Thus the second peak of G cl0 has asmall amplitude and its variation caused by the controllers does not affect the characteristics of the first and third peaks. Consequently the variations of these peaks can be compared with the variations previously measured on the peaks of G cl .T he transfer function G cl0 is given by the quotient S f h ,y /S f h ,f h ,where y and f h are the averages over10recordings of the sensor signal and the hammer force, and S x,y denotes the cross power spectrum of x and y.The transfer functions around the peaks 1and 3are shown in Figures 9c and9d. The frequencyofpeaks 1and 3differ from their initial values by less than 0.3%. These variations have the same order of magnitude as the discrimination threshold of human hearing, estimated at 0.2% by Fastl and Zwicker [START_REF] Fastl | Psychoacoustics: facts and models[END_REF].

The measured variations of amplitude are smaller than the desired values because the peak locations of

G cl = Y/U 2 | F h =0 are slightly different from the ones of G cl0 = Y/F h | U 2 =0
.Then, at the peak frequencies, the gains of the controllers differ from the values needed to apply the desired correction. Again, decreasing the Q-factors Q ck reduces these errors buta lso modifies the characteristics of the nearest peaks.

As aresult, the controllers apply desired amplitude variations, between -10 dB and +10 dB, to the first and third resonance peaks of the system (xylophone bar and transducers)s imultaneously with relative frequencyv ariations smaller than 1%. When the bar is impacted at its centre by ah ammer,t he amplitudes of the free vibrating eigenmodes are increased with an error smaller than 1.8 dB in amplitude and 0.25% in frequency. However, in case of amplitude reductions, the measured amplitude variations are smaller than the expected values. The error reaches 6dBwhen the desired variation is -10 dB.

Modifications of first frequency

The second experiment aims at changing the frequencyof the first peak without modifying its amplitude. The frequencies assigned to the first peak are less than that of the spurious peak, initially located in 529.7 Hz (Figure 5b) in order to minimize its modifications. The desired frequencyvariations are -5.6%, -2.8%, +2.9% and +5.9%, so that the pitch of the note is modified by -1/2t one, -1/4tone, +1/4 tone and +1/2 tone. To findthe controller coefficients, we measure the open-loop transfer function G 2 Ke -2jπfτ DSP H corr using the block diagram of Figure 5a. Table IV.Coefficients of controllers designed to modify the first peak frequencyb y-1 / 2t one, -1/4t one, +1/4 tone and +1/2 tone. H 1 assigns the desired amplitude at the desired frequency, while H 1 aims at reducing the initial peak of the closed-loop transfer function. H 1 is only used when the peak frequencyi s increased. N s1 and N s1 are the buffers' lengths associated to the filters H 1 and H 1 .T heys et the phase coefficients of the controllers.

- The curves of G cl ,s hown in Figures 10a and10b, are measured with aspectrum analyser using the experimental setup of Figure 2, and then are smoothed using aSavitzky-Golay filter of order 15, which does not change the frequencyand amplitude of the peaks significantly. This experiment wascarried out twodays after the previous one. Va riations of room temperature and relative humidity slightly modified the first peak characteristics compared to measurements shown in Figure 9a; by 3.5 cents in frequencyand 0.2 dB in amplitude. The controller coefficients are giveninT able IV.

Fore ach controller,t he filter H 1 is centred on the desired frequency. Its bandwidth must be large enough to attenuate the closed-loop gain at the initial frequency, equal to 494.4 Hz. When the frequencyi sd ecreased, the value assigned to the Q-factor is set to 29. Smaller values would induce significant modifications on the subsequent peak of initial frequency5 29.7 Hz. Fort his reason, as the desired frequencyg ets closer to 529.7 Hz, the Q-factor is increased. Consequently the closed-loop gain is less attenuated at the initial peak frequency. In order to impose al arger reduction, as econd filter H 1 with negative coefficient H max 1 is used to attenuate the initial peak in 494.4 Hz.

With each controller,t he measured variations of the peaks of G c1 differ from the desired ones by less than 0.1% in frequencyand 0.4 dB in amplitude. As expected, the bandwidth of the considered peak decreases as the frequencyv ariation increases in absolute value. Smaller values of Q c1 compensate for this bandwidth reduction butincrease the errors in amplitude and frequency. During these experiments, the third peak characteristics are subjected to small frequencyand amplitude variations, less than 0.13% (3.1 Hz)a nd 1.9 dB, not audible according to Fastl and Zwicker [START_REF] Fastl | Psychoacoustics: facts and models[END_REF].

The transfer functions G cl0 obtained with each controller are displayed in Figures 10c and10d. The relative error between the measured and the desired frequencyo f the first peak is less than 0.2%. The largest variations observed on the third peak, less than (7.8 Hz)i nf requency and 2.7 dB in amplitude, are hardly audible according to Fastl and Zwicker [START_REF] Fastl | Psychoacoustics: facts and models[END_REF]. Howeverthe amplitude variations of the first peak are much larger than those of G cl ,e specially for large frequencyvariations.

To get frequencyv ariations larger than one semi-tone, higher values of H max 1 are required. Then alarger amplifiergain is necessary to provide the actuators with the required voltage.

In this experiment, the controllers apply frequencyvariations between -1/2tone and +1/2 tone to the first peak of the closed-loop transfer function. Its amplitude variation remains below0 .4 dB. When the bar is impacted by ahammer at its centre, the measured frequencyvariations differ from the expected values by less than 0.2%. However the peak amplitude is subject to larger errors, up to 2.8 dB.

Simultaneous modifications of frequencies and amplitudes

In this experiment twoc ontrollers are used to modify the tuning of the xylophone bar in composite. The first is intended to move the third peak to the nominal frequency of D7 and the second to the nominal frequencyo fE 7, i.e. 2349 Hz and 2489 Hz respectively,using A440 tuning in equal temperament. Thus the musical interval between partials 1and 3isapproximately twooctavesand one minor third in the first case, and twoo ctavesa nd one major third in the second. The controllers also increase the level of the first and the third peaks by 7. using the experimental setup of Figure 2. The curves are smoothed using aSavitzky-Golay filter of order 15, which does not change the frequencya nd the amplitude of the peaks significantly (Figures 11a andb).E ach controller assigns the desired frequencyv ariations with no significant error (less than 1.5 cent). The difference between the measured amplitudes and the desired values are less than 0.2 dB for the first peak and 0.7 dB for the third peak. Fore ach controller,t he closed-loop transfer function

G cl0 = Y/F h | U 2 =0
is measured using the impact hammer and the experimental setup described in §3.1.1. The measured curves of magnitude and phase are plotted in Figures 11c and11d. In each case, the third resonance frequencies of G cl0 and G cl differ by less than 1Hz. Also the first peak frequencyi sc hanged by less than 0.3 Hz compared to its initial value without controller.T he differences between the desired amplitudes and the measured values are less than 1.7 dB for the first peak and 1.0 dB for the third peak. Thus these errors have the same order of magnitude as the ones previously measured on G cl .

Finally the system without controller and then with each of both controllers is excited four times by using amallet. In order to compare the amplitude and frequencyv ariations of the peaks to those measured in G cl0 ,t he impact is applied at the same position as the impact of the hammer,i .e. at the centre of the xylophone bar.T he radiated sound is recorded in an arbitrary position in the near-field of the bar.The microphone is located 20 cm away from the impact point, forms an angle of 60 • with the axis perpendicular to the upper face of the bar in its centre, and an azimuth of 0 • with the bar axis.

Fore ach configuration (without controller,w ith first controller and with second controller), the four waveforms are normalised so that their maximum value is 1, and their spectra are calculated with afrequencyresolution of 0.1 Hz. The standard deviations of the peaks' frequencies are less than 0.15 cents for the first peak, and 0.8 cents for the second and third peaks. The maximum deviation is always reached in the absence of controller.The standard deviations of the peaks' amplitudes are less than 0.3 dB, 0.2 dB and 0.5 dB for the first, the second and the third peak respectively.These values showthat the characteristics of the first three peaks are highly repeatable. Figure 12 shows the spectra of the average waveforms, and the amplitudes and frequencies of these peaks.

Both controllers slightly reduce the fundamental frequencyo ft he recorded sound by ah ardly audible variation, less than 0.3% i.e. about 5cents. With each controller, the frequencydifference between the third partial and the desired value, less than 0.03%, is not significant.

The peak amplitudes differ from the expected values by 2.4 and 2.5 dB for the fundamental and by 4.8 and 4.4 dB for the third partial. These errors are very sensitive to the position of the impact and the microphone. Indeed in the radiated sound, the relative difference of levelbetween the partials has strong angular dependence.

In this experiment, the controllers have modified the tuning of the xylophone bar: the frequencyseparation between the first and the third partials has been consecutively set to twooctavesand one minor third and twooctavesand one major third. The sustain of these partials has also been extended by increasing the amplitude of the first and third peaks of the closed loop transfer function by 7.5 dB and 10 dB. The sound samples are available on the LAM website [START_REF] Website | [END_REF].

Conclusion

In this paper we have described asimple method of active control that can enhance the acoustic possibilities of axylophone bar made of composite material. It uses mid-range DSP and amplifier,with regular specifications. It only requires one pair of transducers -t wo actuators supplied with the same voltage and one sensor -t he positions of which were adjusted to not disturb the performer.

The active control method designs controllers composed of second order band-pass filters. Each filter is used to modify the frequencya nd amplitude of one resonance of the system.

Such controllers were applied to as imple model of a xylophone bar.T heya chievedi ndependent variations of frequencyand amplitude on the first resonance peak. Modifications of the controller'sQ-factor also induced changes on the peak bandwidth.

The stability of the closed-loop system wasi nvestigated using the Routh-Hurwitz criterion. In general, it does not give analytic conditions on the controller coefficients. Howeveri ti sh elpful to test if the closed-loop system is stable with ag iven controller.I np ractice, the performer can also determine controller coefficients for which the system is stable through apreliminary calibration step.

The method wasi llustrated by decreasing and increasing the first and third resonance peaks of the xylophone bar by up to 10 dB and the first peak frequencyb yu pt o one semi-tone. It wast hen used to modify the tuning of the xylophone bar.

This active control technique offers several significant interesting possibilities to the performers. First it allows him to modify the frequencya nd the relative levelo ft he partials in the radiated sound. Thus it provides the performer with an ew musical instrument whose possibilities are increased. In addition, the performer can adjust the degree of modification applied by the controller to the resonances of the structure. In consequence, with such a method, he keeps his playing technique unchanged when no controller is applied and gradually adapts it as the extent of modification increases.

This method can be applied to the vibrating structure of other musical instruments and may also help to investigate their sound quality.
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Figure 1 .

 1 Figure 1. (a) The xylophone bar in composite equipped with transducers. (b) Close-up on the position of one elastic cord and one nodal line of the first bending mode, observed using the Chladni method. The other nodal line has as ymmetric position about the middle of the bar (x = L/2).The third bending mode also features twonodal lines at the same positions.

Figure 2 .

 2 Figure 2. Block diagram of the closed-loop, composed of the system (xylophone bar and transducers), the DSP and the amplifier. s stands for Laplace variable. The twoactuators are supplied with the same voltage u act .T he upper case variables, F h , U act , Y , U 1 and U 2 are the Laplace transforms of the time signals f h , u act , y, u 1 and u 2 previously defined. G 10 is the transfer function between the external force F h and the strain of the sensor faces. G 20 is the transfer function between the distributed force applied by the actuators and the strain of the sensor. H sens and H act are the transfer functions of the sensor and the actuators, and G 1 and G 2 are the twotransfer functions of the system (xylophone bar and transducers).

Figure 3 .

 3 Figure 3. Experimental setup used to measure transfer functions of the xylophone bar.The impacts are applied first at the centre (131 mm, 0mm) and then in (97mm, 0mm).

Figure 4 .

 4 Figure 4. Magnitude (upper part)a nd phase (lower part)o ft he transfer function G 1 ,w hen an impact is applied at the centre of the bar (131 mm, 0mm) (solid black)a nd off-centre (97mm, 0mm) (dashed black). The coherence corresponding to central impact (grey) is read on the linear axis at the right-hand side of the upper part of the figure. All curves are plotted as afunction of the frequencyd isplayed on al ogarithmic scale. Fore ach impact position, the characteristics of the peaks corresponding to the first three bending modes are giveninT able II.

  3.1.2. Open-loop transfer function in the absence of controller The transfer function G 2 Ke -sτ DSP ,i nt he denominator of Equation (1),i st he open-loop transfer function when H corr = 1, see Figure 2. To measure it, as inusoidal voltage is supplied to the input U 1 of the controller,t he gain (H corr )ofwhich is temporarily set to 1. The input U 2 of the DSP is set to 0. The sensor is disconnected from the DSP. The frequencyo ft he voltage source sweeps the range of interest [450 Hz, 3.2 kHz]. The transfer function is calculated by aspectrum analyser which simultaneously records the supply voltage and the sensor signal. The experimental setup is described by the block diagram in Figure 5a.

Figure 5 .

 5 Figure 5. (a) Block diagram of the experimental setup used to measure G 2 Ke -2jfτDSP .(b) Comparison between the magnitudes (upper part)and the phases (lower part)ofthe measured transfer function G 2 Ke -2jfτDSP (solid curves)and of the model Ĝ (dashed curves)described in §3.2. The curves are plotted as afunction of the frequencydisplayed on alogarithmic scale. The frequencies, amplitudes, bandwidths at -3dB, Δf -3dB ,and Q-factors, Q,refer to the peaks of the measured transfer function G 2 Ke -2jfτDSP . The Q-factors are estimated by the quotient between the resonance frequencies and the bandwidths at -3dB.

Figure 6 .

 6 Figure 6. Influence of the Q-factor of the first filter of the controller on the bandwidth (a),the amplitude (b) and the frequency (c) of the first peak in the closed-loop transfer function Ĝcl .The controller aims at modifying the amplitude of the first peak, located in 495.7 Hz without changing its frequency. err Amp is the difference (indB) between the measured peak amplitude and the expected value, and err Freq is the relative error (in% )b etween the measured peak frequencya nd the expected value. Above the white contour, | Ĝcl | has al ocal minimum at the desired frequency.

Figure 7 .

 7 Figure 7. Influence of the Q-factor of the first filter of the controller on the bandwidth (a),the amplitude (b) and the frequency (c) of the first peak in the closed-loop transfer function Ĝcl .The controller aims at modifying the frequencyo ft he first peak, located in 495.7 Hz without changing its amplitude. err Amp is the difference (indB) between the measured peak amplitude and the expected value, and err Freq is the relative error (in%)between the measured peak frequencyand the expected value. ForaQ-factor between 7.5 and 12.5, the bandwidth of the peak is larger than 3Hz. When its value is 10, the amplitude error is maximal when the frequencyvariation Δf 1 is equal to 2%, and the frequencyerror |err Freq | is maximal when Δf 1 = 1.4%, see dashed lines in (b) and (c).The white contour shows the threshold above which | Ĝcl | has another local maximum around the initial peak frequency.

Figure 8 .

 8 Figure 8. (a) Transfer functions Ĝ (solid black)and of the closedloop model Ĝcl with controllers designed to modify the peak amplitude without changing its frequency: H Amp1 (solid dark grey) and H Amp1 (dashed dark grey) aim at increasing the amplitude by 15 dB and only differ by their Q-factor,e qual to 3a nd 100 respectively. H Amp2 (solid pale grey), H Amp2 (dashed pale grey) and H Amp2 (dashed black)a im at decreasing the amplitude by 15 dB and only differ by their Q-factor,e qual to 3, 0.001 and 20 respectively.( b) Transfer functions Ĝ (solid black)a nd Ĝcl with controllers designed to modify the peak frequencywithout changing its amplitude: (solid dark grey) and (dashed dark grey) aim at increasing the frequencyby1semi-tone. H Freq2 (solid pale grey), H Freq2 (dashed pale grey) aim at decreasing the frequency by 1s emi-tone. H Freq1 and H Freq2 differ from H Freq1 and H Freq2 only by their Q-factors, equal to 100 and 10 respectively.F or each controller,t he amplitude and the frequencyo ft he peak of Ĝcl are written on the curve.

Figure 9 .

 9 Figure 9. Closed-loop transfer functions G cl ,(a) and (b) and G cl0 , (c) and (d) measured with four different controllers designed to apply amplitude variations of -10 dB, -5dB, +5dBand +10 dB to the first peak, (a) and (c),a nd to the third peak, (b) and (d). The rest of the transfer function (not shown in the figure)i snot modified.

Figure 10 .

 10 Figure 10. Closed-loop transfer functions G cl ,( a) and (b),a nd G cl0 ,( c) and (d),m easured with four different controllers designed to modify the first peak frequency, (a) and (c),b y-1 / 2 tone, -1/4tone, +1/4 tone and +1/2 tone, without changing the third peak, (b) and (d).T he rest of the transfer function (not shown in the figure)isnot modified.

Figure 11 .

 11 Figure 11. Closed-loop transfer functions G cl ,( a) and (b),a nd G cl0 ,(c) and (d),with no controller (solid black), and then with twod i ff erent controllers: the first (pale grey) is intended to decrease the third peak frequencyt o2 349 Hz, nominal frequency of D7, and the second (dark grey) to increase it to 2489 Hz, nominal frequencyo fE 7, as shown in (b) and (d).T heyb oth aim at adding 7.5 dB to the first peak and 10 dB to the third peak. The rest of the transfer function (not shown in the figure)i snot modified.

Figure 12 .

 12 Figure 12. Sound spectrum recorded 20 cm away from centre of xylophone bar with no controller (solid black)a nd with two different controllers: the first (grey) is designed to decrease the third peak frequencyt o2 349 Hz and the second (dashed black) to increase it to 2489 Hz. Theyboth aim at adding 7.5 dB to the first peak and 10 dB to the third peak. The curves are plotted as a function of the frequencydisplayed on alogarithmic scale.

Table I .

 I Composition and geometry of the xylophone bar equipped with transducers.

	Faces Core Total mass	Carbon fibre Centre: polymeric foam Extremities: ballast in polymer 24 g
	Geometry of the bar:	
	Arc length Width Height Undercut length Radius of curvature 1.3 m 262 mm 53 mm 4mmatthe centre 10 mm at both extremiies 162 mm
	Positions of the transducers: Sensor Extremities at x = 167 mm and 197 mm. Width = 6mm Actuator 1E xtr.atx=50 mm and 131 mm Actuator 2E xtr.atx=131 mm and 212 mm Width = 48 mm (both actuators)

  ),a tt he desired frequency f ck ,t he denominator of Ĝcl is 1 -| Ĝk |H max k .Its value is real and can be adjusted by the value of H max k . III -the coefficient H max k .From the expression of the denominator of Ĝcl ,s ee Equation (6),i fH max k grows from zero, the closed-loop gain in f ck also rises, and tends to +∞ when H max k = 1/| Ĝk |.IfH max k decreases from zero, then the closed-loop transfer function is also reduced and tends to 0w hen H max

k tends to -∞.F rom Equation (

6

), the value

Table III .

 III Coefficients of controllers designed to apply amplitude variations of -10 dB, -5dB, +5dBa nd +10 dB to peaks 1a nd 3. N s1 and N s3 are the buffers' lengths associated to the filters H 1 and H 3 .Theyset the phase coefficients of the controllers.

			-10 dB	-5dB	+5dB	+10 dB
	H 1	H max1 f c1 Q c1 N s1	-51 495.7 44 -17 495.7 37 37	12 495.7 100 37	21 495.7 100 37
	H 3	H max3 f c 3 Q c3 N s3	-28 2388.9 44 -6 2388.9 13 13	71 1 2388.9 2388.9 100 100 13 13

Table V .

 V 5 dB and 10 dB respectively.Theyare composed of twofilters whose coefficients are giveninT able V.Fore ach controller,t he closed-loop transfer functionG cl = Y/U 2 | F h =0is measured with as pectrum analyser Coefficients of controllers designed to modify simultaneously the amplitudes of peaks 1a nd 3( by 7.5 dB and 10 dB) and to move the frequencyofpeak 3(to 2349 Hz and 2489 Hz). N s1 and N s3 are the buffers' lengths associated to the filters H 1 and H 3 .Theyset the phase coefficients of the controllers.

			2349 Hz	2489 Hz
	H 1	H max1 f c1 Q c1 N s1	16 494.5 100 37	16 494.5 100 37
	H 3	H max3 f c3 Q c3 N s3	16 2349.0 100 16	33 2489.0 100 7
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