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ABSTRACT
Background  Soft-tissue sarcomas (STSs) are 
heterogeneous and aggressive tumors, with high 
metastatic risk. The immunologic constant of rejection 
(ICR) 20-gene signature is a signature of cytotoxic immune 
response. We hypothesized that ICR might improve the 
prognostic assessment of early-stage STS.
Methods  We retrospectively applied ICR to 1455 non-
metastatic STS and searched for correlations between ICR 
classes and clinicopathological and biological variables, 
including metastasis-free survival (MFS).
Results  Thirty-four per cent of tumors were classified as 
ICR1, 27% ICR2, 24% ICR3, and 15% ICR4. These classes 
were associated with patients’ age, pathological type, 
and tumor depth, and an enrichment from ICR1 to ICR4 
of quantitative/qualitative scores of immune response. 
ICR1 class was associated with a 59% increased risk of 
metastatic relapse when compared with ICR2-4 class. 
In multivariate analysis, ICR classification remained 
associated with MFS, as well as pathological type and 
Complexity Index in Sarcomas (CINSARC) classification, 
suggesting independent prognostic value. A prognostic 
clinicogenomic model, including the three variables, 
was built in a learning set (n=339) and validated in an 
independent set (n=339), showing greater prognostic 
precision than each variable alone or in doublet. Finally, 
connectivity mapping analysis identified drug classes 
potentially able to reverse the expression profile of poor-
prognosis tumors, such as chemotherapy and targeted 
therapies.
Conclusion  ICR signature is independently associated 
with postoperative MFS in early-stage STS, independently 
from other prognostic features, including CINSARC. We 
built a robust prognostic clinicogenomic model integrating 
ICR, CINSARC, and pathological type, and suggested 
differential vulnerability of each prognostic group to 
different systemic therapies.

BACKGROUND
Soft-tissue sarcomas (STSs) are rare and 
aggressive tumors with high metastatic risk. 
They constitute a heterogeneous group with 
at least 100 different pathological subtypes.1 

Despite complete surgical resection of the 
tumor, ~50% of patients with early-stage STS 
develop metastatic relapse within 5 years,2 
from which they will die. The results of adju-
vant chemotherapy remain conflicting, with 
negative results from the largest randomized 
study, but positive results in term of relapses in 
meta-analyses. Today, adjuvant chemotherapy 
is not a standard treatment in adult-type STS: 
it can be proposed in high-risk situations 
(high-grade, deep-seated tumor, and tumor 
size  >5 cm) after a shared decision-making 
with the patient. Improving the prognostic 
factors is crucial in order to better define 
the role, if any, of adjuvant chemotherapy by 
better selecting the ‘high-risk’ patients who 
will benefit from this potentially toxic strategy.

Currently, the prognostic assessment in 
early-stage STS is mainly driven by three 
tumor factors: pathological grade (most 
commonly based on the Federation Française 
des Centers de Lutte Contre le Cancer (FNCLCC) 
grading system3), pathological size, and 
depth.1 The grade is the most influential for 
the decision of adjuvant chemotherapy, but 
displays several limitations making imperfect 
the predictions. Since the 2000s, advances in 
high-throughput expression profiling tech-
nologies such as DNA microarrays4 allowed 
to tackle the molecular heterogeneity of 
cancers. In STS, they led to the refinement 
of molecular classification of certain sarcoma 
types5 and the development of prognostic 
signatures.6 Initial studies suggested the 
potential prognostic value of multigene 
signatures in STS, but were based on rela-
tively small sample numbers and lacked vali-
dation set.7 8 Today, the most developed one 
is the 67-gene CINSARC signature.9 This 
signature, mainly based on genes involved 
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in mitosis and maintenance of chromosomes integrity, 
classifies the tumors into high or low risk of relapse and 
outperforms the performances of pathological grade. 
The Genomic Grade Index (GGI), initially identified in 
breast cancer, is another proliferation-based prognostic 
signature that refines the prediction of metastasis-free 
survival in operated STS.10 11 Such signatures might 
reconcile the interest of adjuvant chemotherapy in STS, 
and two prospective clinical trials recently launched by 
the French Sarcoma Group are testing this hypothesis 
around CINSARC (NCT03805022, NCT04307277). 
Other reported prognostic signatures were mainly related 
to tumor hypoxia.12–14

In parallel, recent data suggested that the immune 
system might impact the outcome of patients with 
STS,15 16 and clinical trials testing immunotherapy are 
ongoing.17 Based on the notion that the composition of 
tumor-infiltrating immune cells and/or their functional 
orientation might impact the clinical outcome, immune 
multigene prognostic/predictive signatures have been 
developed,18 notably in breast,19 20 lung,21 and colon22 
cancers. One of them is the immunologic constant of 
rejection (ICR) signature,23 which reflects the strength of 
the cytotoxic response. This 20-gene signature includes 
genes involved in Th-1 signaling (IFNG, TBX21, CD8A/B, 
IL12B, STAT1, and IRF1), Th-1 chemoattraction (such 
as the CXCR3 and CCR5 ligands, respectively, CXCL9 
and CXCL10, and CCL5), cytotoxic functions (GNLY, 
PRF, GZMA, GZMB, and GZMH), immune checkpoints 
(IDO1, CTLA4, CD274/PDL1, PDCD1/PD1), and inhi-
bition of T-cell function (FOXP3). In breast cancer, we 
showed that ICR added prognostic information to the 
current proliferation-based signatures, to which its inte-
gration improved the prognostication.24 Regarding STS, 
recent studies reported immune gene signatures associ-
ated with survival. The Cancer Genome Atlas (TCGA) 
study was the first one to suggest an association between 
infiltration score of immune cell types and survival in 
STS.25 Several other prognostic immune signatures were 
then reported.26–30 To our knowledge, none of them is 
currently used in clinical practice.

Here, we retrospectively applied the ICR signature 
to a dataset of 1455 non-metastatic STS, and searched 
for correlations between ICR-based classification and 
clinicopathological and biological variables, including 
metastasis-free survival (MFS).

METHODS
STS samples and gene expression profiling
We retrospectively gathered clinicopathological and 
mRNA expression data of clinical STS samples from 16 
public datasets.9 25 31–44 Data were collected from the 
National Center for Biotechnology Information (NCBI)/
GenBank GEO, Genomic Data Commons (GDC, https://​
portal.gdc.cancer.gov/), and ArrayExpress databases and 
authors’ websites (online supplemental file 1). The selec-
tion of datasets was based on the availability of clinical 

and expression data, including the expression level of 20 
genes included in the ICR signature. Samples had been 
profiled using DNA microarrays or RNA-sequencing. 
The pooled dataset contained 1455 clinical samples of 
primary STS.

Gene expression data analysis
The pre-analytic processing first included normalization 
of each dataset separately, by using robust multichip 
average with the non-parametric quantile algorithm for 
the raw Affymetrix data and quantile normalization for 
the available processed non-Affymetrix microarray data. 
Normalization was done in R using Bioconductor and 
associated packages. Then, we mapped hybridization 
probes across the different technological platforms as 
reported.45 When multiple probes mapped to the same 
GeneID, we retained the one with the highest variance 
in each dataset. We log2-transformed the already normal-
ized TCGA RNAseq data. Next, the batch effects were 
corrected across the 16 studies using standardization. 
Briefly, for each expression value in each study separately, 
all values were transformed by subtracting the mean of 
the gene in that dataset divided by its SD, mean and SD 
being measured on leiomyosarcoma samples.

We then applied several multigene signatures to each 
dataset separately. First, the ICR classifier based on 
consensus clustering (CC) analysis of the expression levels 
of 20 immune genes (namely, CCL5, CD274, CD8A, CD8B, 
CTLA4, CXCL9, CXCL10, FOXP3, GNLY, GZMA, GZMB, 
GZMH, IDO1, IFNG, IL12B, IRF1, PDCD1, PRF1, STAT1, 
and TBX21) as previously described.23 We applied several 
other expression signatures: CINSARC,9 TP53 activation 
pathway signature,46 MAPK-mut score, reflection of the 
degree of MAPK deregulation,23 and many immunity-
related signatures, including the metagenes associated 
with the T-cell-inflamed signature (TIS),47 the tertiary 
lymphoid structures (TLS) signature,48 the signatures of 
24 different innate and adaptative immune cell subpop-
ulations defined by Bindea et al49 the cytolytic activity 
score,50 the pathway activation score of interferon-α 
(IFNα), IFNγ, and tumor necrosis factor-α (TNFα),46 
and the antigen processing machinery (APM) score.51 
Briefly, the CINSARC classifier was based on Spearman 
correlation to the nearest centroid using genes, data, and 
parameters described by authors.9 The MAPK-mut score, 
the signatures of TIS, TLS, and 24 immune cell subpop-
ulations, the cytolytic activity and APM scores23 47–51 
were based on a Z-score metagene using the gene lists 
described in each respective study. The pathway activation 
scores were measured with data and methodology using 
binary regression model described by authors.46 Finally, 
to explore more in depth the biological features related 
to the two prognostic groups defined by our clinicog-
enomic model and to broaden the therapeutic perspec-
tives, we applied a supervised analysis to the largest 
dataset, the French Sarcoma Group series,9 divided in 
a learning set (n=148) and a validation set (n=141). In 
the learning set, we compared the tumor expression 
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profiles between the ‘poor-prognosis’ (n=76) and ‘good-
prognosis’ (n=72) groups using a moderated t-test and 
the following significance thresholds, p<1%, q<1%, and 
IFCI  >2. The resulting 252-gene signature was analyzed 
using Gene Set Enrichment Analysis (GSEA)52 applied to 
the 50 hallmark gene sets from the Molecular Signatures 
Database (MSigDB). We also submitted it to Connectivity 
Map (CMap) algorithm against L1000 profiles/signatures 
present in the CMap dataset (https://clue.io/cmap), 
which catalog the transcriptional responses of human 
cells to a variety of chemical or genetic perturbations. 
The resulting connectivity scores (CSs) reflect the level 
of agreement between the tested signature and the L1000 
profiles/signatures. Analysis was limited to the chemical 
perturbations by 2919 drugs/compounds with known 
mechanisms of action and targets through 54 cultured 
human cell lines (38,516 signatures). Typically, a drug is 
considered potentially useful for treating a B group tumor 
if the drug-induced differential gene expression profile 
is negatively correlated with the differentially expressed 
genes between the B versus A tumor groups. Because 
each drug might have been used through multiple (from 
2 to 381) different culture conditions, we focused our 
analysis on the drug classes used in at least 50 conditions, 
and computed for each class the average of normalized 
connectivity scores (average ncs) and assessed its statis-
tical significance by one sample Student’s t-test.

Statistical analysis
Correlations between tumor classes and clinicopatholog-
ical variables were analyzed using the one-way analysis of 
variance or the Fisher’s exact test when appropriate. MFS 
was calculated from the date of diagnosis until the date 
of distant relapse or death from any cause, whichever 
occurred first. Follow-up was measured from the date of 
diagnosis to the date of last news for event-free patients. 
Survivals were calculated using the Kaplan-Meier method 
and curves were compared with the log-rank test. Univar-
iate and multivariate prognostic analyses were done using 
Cox regression analysis (Wald test). The variables tested 
in univariate analysis included patients’ age and gender, 
pathological tumor type, grade, and size, tumor depth and 
site, the CINSARC-based risk (high vs low) and the ICR-
based classification. Multivariate analysis incorporated all 
variables with a p value inferior to 5% in univariate anal-
ysis. We then built a clinicogenomic model based on the 
variables retained in multivariate analysis as follows. The 
patients’ population was divided into randomly selected 
learning and validation sets. In the learning set, and 
by starting from the three variables (pathological type, 
CINSARC, and ICR) found as significant in multivariate 
analysis, we searched for the best variable combination 
associated with MFS by using Akaike information crite-
rion (AIC) stepwise regression analysis: those variables 
were then combined to build the clinicogenomic model. 
This classifier defined two groups of patients defined as 
‘good-prognosis group’ and ‘poor-prognosis group’. Its 
robustness was then tested in the remaining validation 

set. The likelihood ratio (LR) tests were used to assess 
the prognostic information provided beyond that of each 
variable included in the model, assuming a X2 distribu-
tion. Changes in the LR values (LR-ΔX2) quantified the 
relative amount of information of one model compared 
with another. A resampling scheme was used to generate 
100,000 random learning and validation sets allowing to 
test the clinicogenomic model in each validation set and 
to measure the proportion of random sets with significant 
p value for MFS. A diagram of analytic workflow (online 
supplemental file 2) summarizes all analyses.

RESULTS
STS population and ICR classification
We analyzed 1455 clinical samples of STS primary 
tumors. Patients’ and tumor characteristics are summa-
rized in table 1. The median patients’ age was 63 years 
(range 2–93) and 49% were females. The most frequent 
tumor sites were extremities, then internal trunk; 84% of 

Table 1  Clinicopathological characteristics

Characteristics N (%)

Median age (range), years 63 (2–93)

Sex

 � Female 333 (49%)

 � Male 348 (51%)

Tumor site

 � Extremity 208 (42%)

 � Head and neck 9 (2%)

 � Internal trunk 195 (39%)

 � Superficial trunk 84 (17%)

Pathological type

 � Leiomyosarcoma 341 (24%)

 � Liposarcoma 476 (33%)

 � Undifferentiated sarcoma 330 (23%)

 � Myxofibrosarcoma 105 (7%)

 � Other 177 (12%)

Depth

 � Deep 195 (84%)

 � Superficial 37 (16%)

Pathological tumor size, median (range), 
cm

9 (1.2–39.5)

Pathological FNCLCC grade

 � 1–2 165 (41%)

 � 3 240 (59%)

CINSARC risk

 � Low 763 (52%)

 � High 692 (48%)

FNCLCC, Fédération Nationale des Centres de Lutte Contre le 
Cancer.

https://clue.io/cmap
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tumors were deeply seated, below, or through the super-
ficial fascia. As expected, the most frequent pathological 
types were liposarcomas (LPS), leiomyosarcomas (LMS) 
and undifferentiated pleomorphic sarcomas (UPS). The 
median pathological tumor size on the operative spec-
imen was 9 cm. The FNCLCC pathological grade 3 was the 
most represented (59%), and 48% of samples were classi-
fied as high risk according to CINSARC. ICR classification 
defined 491 tumors as ICR1 (34%), 390 as ICR2 (27%), 
353 as ICR3 (24%), and 221 as ICR4 (15%), with progres-
sive increase of the enrichment of the immune signature 
from ICR1 to ICR4.

ICR classification and clinicopathological and biological 
correlations
Differences were observed between the four ICR classes 
regarding the patients’ age (p=1.4E–04), the tumor depth 
(p=4.42E–02), and the pathological type (p=2.55E–10; 

online supplemental file 3): ICR1 class was associated with 
younger age, tumors deeply located, and less frequent 
UPS and myxofibrosarcoma types. No difference was 
found regarding the gender, the tumor site, the patho-
logical tumor size and grade, and the CINSARC risk.

We also searched for correlations between these classes 
and immune-related factors and other expression signa-
tures such as CINSARC (figure  1; online supplemental 
files 4 and 5). The lymphocyte infiltration percentage 
positively increased with increasing ICR classes (p=4.63E–
04). We also found strong positive correlations (p<1.00E–
06) with several immune gene expression signatures: 
the cytolytic activity score50 which increased from ICR1 
to ICR4, as did the activation score of IFNα, IFNγ, and 
TNFα pathways,46 the TLS signature,48 the T-cell-inflamed 
signature,47 and the APM score.51 This immune pattern 
was further confirmed and refined using the Bindea’s 

Figure 1  Correlations of ICR classes with immunity-related parameters. For each ICR class, they indicated the percentage 
of samples with lymphocyte infiltrate (A), metagene expression scores of B-cells (B), T-cells (C), Th1 cells (D), CD8 +T cells 
(E), cytotoxic cells (F), activated dendritic cells (DC) (G), Tγδ cells (H), macrophages (I), activation score of IFNα (J), IFNγ (K), and 
TNFα (L) pathways, TIS (M) and TLS (N) signatures, antigen processing machinery score (O), and the cytolytic activity score 
(P). The p values are indicated (Fisher’s exact test or analysis of variance test when appropriate). APMS, Antigen Processing 
Machinery Score; DC, dendritic cell; IFN, interferon; Th1, T helper 1; TIS, T-cell-inflamed signature; TLS, tertiary lymphoid 
structure; TNF, tumor necrosis factor.
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signatures for 24 immune cell subsets,49 showing a strong 
enrichment from ICR1 to ICR4 for T-cells, cytotoxic 
T-cells, CD8+ T cells, T-helper cells, Tγδ cells, B-cells, 
activated dendritic cells, macrophages, neutrophils, and 
eosinophils. Of note, for all tested signatures, a continuum 
was present between the four classes. Regarding the 
other non-immune signatures tested, no correlation was 
found with the CINSARC classification (high vs low risk), 
whereas the activation score of TP53 pathway decreased 
from ICR1 to ICR4, as well as the MAPK-mut score, as 
previously reported.23

ICR classification and MFS
MFS data were available for 678 operated patients. With 
a median follow-up of 32 months (range 1–222), 209 
patients displayed a metastatic relapse, and the 5-year 
MFS was 63% (95% CI 59% to 68%; figure 2A). No differ-
ence in MFS was observed between the ICR2, 3, and 4 
classes (p=0.259, log-rank test; online supplemental file 
6). These classes were thus pooled in an ICR2-4 class that 
we compared with ICR1 class in the subsequent analyses. 
These two classes were associated with the patients’ age 
(p=4.65E−06), the tumor depth (p=1.92E−02), and the 
pathological type (p=2.59E−11; table 2).

In univariate analysis (table  3), they were associated 
with MFS: patients in the ICR1 class showed shorter 5-year 
MFS (51%, 95% CI 44% to 60%) than patients in the 
ICR2-4 class (69%, 95% CI 64% to 74%; p=1.00E−03, log-
rank test; figure 2B), representing a 59% increased risk of 
event (HR=1.59, 95% CI 1.20 to 2.08; p=1.11E−03, Wald 
test; table 3). The other variables associated with shorter 
MFS included the pathological type (p=1.35E−06) and 
CINSARC classification (p=2.03E−10). In multivariate 
analysis (table 3), ICR classification remained associated 
with MFS (p=3.54E−03, Wald test), as well as pathological 
type and CINSARC, suggesting independent prognostic 
value. As shown in figure  2C, there was a relationship 
between ICR classification and MFS within each CINSARC 
class: the 5-year MFS was 79% (95% CI 73% to 85%) in 

the ‘CINSARC-low/ICR2-4’ group vs 61% (95% CI 50% to 
75%) in the ‘CINSARC-low/ICR1’ group, and 56% (95% 
CI 48% to 64%) in the ‘CINSARC-high/ICR2-4’ group vs 
40% (95% CI 31% to 53%) in the ‘CINSARC-high/ICR1’ 
group (p=5.24E−11; log-rank test). Similarly, ICR classifi-
cation was associated with the clinical outcome of patients 
in each of the three major pathological types (online 
supplemental file 7): LMS (p=0.075), LPS (p=2.18E−02), 
and UPS (p=0.079). Of note, in the 181 TCGA samples 
informative for both lymphocyte infiltration and ICR, the 
lymphocyte infiltration, a relatively simple measure of 
immune response, was not associated with MFS (p=0.920) 
in univariate analysis, whereas ICR classification was asso-
ciated (p=7.14E−03).

Construction of a prognostic clinicogenomic model
Starting from the three variables (pathological type, 
CINSARC, and ICR) found as significant in multivariate 
analysis, we then built a prognostic clinicogenomic model 
in a randomly defined learning set of 339 samples and 
tested its robustness in the validation set of 339 remaining 
samples. In the learning set, the three variables were 
retained after AIC stepwise regression analysis and thus 
included in the clinicogenomic model. Of note, the same 
variables were retained by using shrinkage methods such 
as Lasso (Least Absolute Shrinkage and Selection) and 
Ridge regression (data not shown). As expected, this model 
displayed prognostic value in the learning set (figure 3A), 
with 48% 5-year MFS (95% CI 40% to 57%) in the ‘poor-
prognosis’ group (n=178) and 76% (95% CI 68% to 85%) 
in the ‘good-prognosis’ group (n=161; p=7.23E−08, log-
rank test). The ROC AUC, measured using the R package 
timeROC (V.0.4), was 0.708 (p<1.00E−06, estimated 
using bootstrap resampling). Importantly, this prognostic 
value was maintained in the independent validation set, 
suggesting its robustness (figure  3B): the 5-year MFS 
was 55% (95% CI 47% to 64%) in the ‘poor-prognosis’ 
group (n=169) and 77% (95% CI 69% to 85%) in the 
‘good-prognosis’ group (n=170; p=9.13E−07, log-rank 

Figure 2  Metastasis-free survival (MFS) in patients with soft-tissue sarcoma (STS) according to the immunologic constant of 
rejection (ICR) signature. Kaplan-Meier MFS curves in all patients (A),according to the ICR classification (B), and according to 
the four groups based on both ICR classes and CINSARC (C). The p values for the log-rank test are indicated.
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test). Here, the ROC AUC was 0.659 (p=1.49E−04, esti-
mated using bootstrap resampling). In the validation 
set, the clinicogenomic model provided more prog-
nostic information than the models with pathological 
type alone (LR-ΔX2=20.22, p=4.08E−05), with CINSARC 
alone (LR-ΔX2=18.96, p=2.04E−03), with ICR alone 
(LR-ΔX2=31.18, p=8.64E−06), and with combined patho-
logical type and CINSARC (LR-ΔX2=5.54, p=1.86E−02; 
online supplemental file 8). Analysis of the 100,000 
random validation sets showed statistical significance of 
the model in 97% of iterations (p=9.88E−324, binomial 
test), further reinforcing its robustness.

Biological and therapeutic correlates of the two prognostic 
groups
We compared the gene expression profiles of the two 
model-based prognostic groups in the French Sarcoma 
Group samples9: 252 genes (118 overexpressed and 
134 underexpressed in the poor-prognosis group) were 
identified as differentially expressed in the learning set 

and were validated in the validation set (online supple-
mental file 9). This 252-gene signature was submitted 
to GSEA applied to the 50 hallmark pathway signa-
tures. Twenty-six pathways were significant (p≤0.01 and 
q≤0.01; online supplemental files 10 and 11): those 
associated with the poor-prognosis group included, for 
example, E2F targets, G2M checkpoint, MYC targets, 
DNA repair, mitotic spindle, MTORC signaling, and 
glycolysis, whereas those associated with the good-
prognosis group included many signatures related 
to immune response such as IFN gamma response, 
allograft rejection, and TNF alpha signaling via NFKB, 
and metabolism and differentiation.

From the CMap database, we extracted 38,516 
ranked gene lists corresponding to signatures induced 
by 2919 drugs and tested their correlation with our 
ranked 252-gene signature. A significant negative or 
positive correlation (q≤0.05) was obtained for 7211 
signatures. Because each drug might have been used 

Table 2  ICR classification and correlations with clinicopathological characteristics

Characteristics N

ICR1 ICR2-4

P value*n=491 (34%) n=964 (66%)

Median age (range), years 604 57.76 (2–91) 63.86 (11–93) 4.65E−06

Sex

 � Female 333 106 (54%) 227 (47%) 0.0853

 � Male 348 89 (46%) 259 (53%)

Tumor site

 � Extremity 208 58 (40%) 150 (43%) 0.782

 � Head and neck 9 2 (1%) 7 (2%)

 � Internal trunk 195 57 (39%) 138 (39%)

 � Superficial trunk 84 28 (19%) 56 (16%)

Depth

 � Deep 195 61 (94%) 134 (80%) 1.92E−02

 � Superficial 37 4 (6%) 33 (20%)

Pathological type

 � Leiomyosarcoma 341 119 (25%) 222 (23%) 2.59E−11

 � Liposarcoma 476 151 (31%) 325 (34%)

 � Undifferentiated sarcoma 330 86 (18%) 244 (26%)

 � Myxofibrosarcoma 105 25 (5%) 80 (8%)

 � Other 177 100 (21%) 77 (8%)

Pathological tumor size, median (range), cm 241 10 (1.6–39.5) 9 (1.2–36) 0.113

Pathological FNCLCC grade

 � 1–2 165 52 (40%) 113 (41%) 0.92

 � 3 240 78 (60%) 162 (59%)

CINSARC risk

 � Low 763 242 (49%) 521 (54%) 0.0963

 � High 692 249 (51%) 443 (46%)

*Student’s t-test for continuous variables and Fisher’s exact test for discrete variables.
FNCLCC, Fédération Nationale des Centers de Lutte Contre le Cancer.

https://dx.doi.org/10.1136/jitc-2021-003687
https://dx.doi.org/10.1136/jitc-2021-003687
https://dx.doi.org/10.1136/jitc-2021-003687
https://dx.doi.org/10.1136/jitc-2021-003687
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through multiple (from 2 to 381) different culture 
conditions, we focused our analysis on the drug classes 
used in at least 50 conditions; we computed for each 
class the average of normalized connectivity scores 
(mean ncs) and assessed its statistical significance. 
Thirty drug classes were significant (p≤0.05; table 4): 
two classes (adrenergic receptor agonist and acetylcho-
line receptor antagonist) showed positive correlation 
with our 252-gene signature, suggesting potential ther-
apeutic value in the good-prognosis group, whereas 
28 showed negative correlation suggesting potential 
therapeutic value in the poor-prognosis group. The 
top 10 classes, in terms of decreasing absolute value of 
average ncs, included inhibitors of HDAC, CDK, AKT, 
topoisomerase, MTOR, FGFR, EGFR, VEGFR, ATPase, 

tyrosine kinase. Other classes comprised PI3K, PDGFR, 
KIT, MET, Src, or JAK inhibitors.

DISCUSSION
The absence of accurate prognostic/predictive features 
in patients with STS and the scarcity and heterogeneity 
of disease explain in part the difficulty to demonstrate 
the benefit, if any, of adjuvant chemotherapy. Given the 
potential prognostic value of immune parameters in STS 
and that of ICR signature in breast cancer, we tested its 
prognostic value in a series of operated STS samples. We 
demonstrated that ICR, reflect of an antitumor cytotoxic 
immune response, defines clinically and biologically 
relevant classes of STS. The signature is associated with 

Table 3  Univariate and multivariate prognostic analyses for MFS

Characteristics

Univariate Multivariate

N HR (95% CI) P value N HR (95% CI) P value*

Age (years) 371 1.00 (0.99 to 1.01) 0.902

Gender

 � Male vs female 371 1.02 (0.70 to 1.49) 0.909

Tumor site

 � Head and neck vs 
extremity

382 0.00 (0.00 to Inf) 0.66

 � Internal trunk vs 
extremity

0.77 (0.50 to 1.18)

 � Superficial trunk vs 
extremity

0.81 (0.47 to 1.40)

Depth

 � Superficial vs deep 196 0.78 (0.38 to 1.61) 0.495

Pathological type

 � Liposarcoma vs 
leiomyosarcoma

678 0.48 (0.35 to 0.67) 1.35E−06 678 0.58 (0.41 to 0.81) 1.51E−03

 � Myxofibrosarcoma vs 
leiomyosarcoma

0.45 (0.24 to 0.86) 678 0.52 (0.27 to 0.98) 4.44E−02

 � Other vs 
leiomyosarcoma

0.21 (0.08 to 0.57) 678 0.25 (0.09 to 0.69) 7.65E−03

 � Undifferentiated sarcoma vs 
leiomyosarcoma

0.43 (0.30 to 0.61) 678 0.47 (0.33 to 0.68) 4.40E−05

Pathological tumor 
size, cm

210 1.00 (0.96 to 1.04) 0.898

Pathological FNCLCC 
grade

 � 3 vs 1–2 307 1.43 (0.95 to 2.17) 0.088

CINSARC risk

 � High vs low 678 2.48 (1.87 to 3.28) 2.03E−10 678 2.19 [1.65 to 2.92) 8.14E−08

ICR classification

 � 1 vs 2–3 678 1.59 (1.20 to 2.08) 1.11E−03 678 1.52 (1.15 to 2.00) 3.54E−03

*Wald test.
FNCLCC, Fédération Nationale des Centres de Lutte Contre le Cancer; ICR, immunologic constant of rejection; MFS, metastasis-free survival 
.



8 Bertucci F, et al. J Immunother Cancer 2022;10:e003687. doi:10.1136/jitc-2021-003687

Open access�

clinicopathological and immunity-related tumor charac-
teristics, and more importantly with MFS, refining the 
prognostic value of CINSARC. We built a robust clinicog-
enomic model combining pathological type, ICR, and 
CINSARC, and suggested potential targeted therapies 
in the poor-prognosis group. To our knowledge, this is 
the largest series reporting the prognostic value of an 
immune signature and of a clinicogenomic predictor in 
patients with early-stage STS.

The ICR signature was previously defined in breast 
cancer. The scarcity of STS explains the relatively small 
number of samples profiled in previous prognostic 
studies of molecular profiling, 310 in the largest one.9 
To overcome this problem, we pooled 16 public sets 
including the multicentric prospective TCGA series 
representing a total of 1455 operated primary cancers. 
The whole series displayed the expected clinicopatho-
logical characteristics, including poor prognosis with 
63% 5-year MFS. Our approach allowed avoiding any 
problem of overfitting since none of the STS samples 
had been used to generate the signature. More than 
760 patients were informative for MFS, allowing the 
test of our prognostic hypothesis in multivariate anal-
ysis and to build and validate a robust prognostic model 
in independent datasets. Moreover, the whole-genome 
expression data provided opportunity to apply several 
gene signatures and modules potentially relevant 
to STS, including the CINSARC signature nowadays 
recognized as more prognostic than the pathological 
grade, as well as to search for potential therapeutic 
vulnerabilities in the two prognostic groups.

ICR classification defined 34% of STS samples as ICR1, 
27% as ICR2, 24% as ICR3, and 15% as ICR4. There was 
an immunological continuum with an enrichment from 
ICR1 to ICR4 of scores reflecting the presence of an effi-
cient antitumor immune response. These latter included 
not only the lymphocyte infiltrate and signatures of 

immune cell types, such as T-cells, cytotoxic T-cells, CD8+ 
T cells, T-helper cells, Tγδ cells, and antigen-presenting 
cells, but also more functional scores, such as those of 
IFNγ pathway activation, cytolytic activity, antigen presen-
tation, and scores predictive for response to ICI (TIS and 
TLS). The decrease of TP53 pathway activation score46 
observed from ICR1 to ICR4 agreed with the higher 
rate of inactivating TP53 mutations reported in ICR4 in 
breast cancer23 and in ‘immune-high’ classes (D and E) 
of STS.26 Such immune continuum, previously reported in 
breast cancer,24 suggested the biological relevance of ICR 
in STS.

The ICR classes did not correlate with the CINSARC 
classes, nor with two major prognostic features of STS 
(pathological grade and size). ICR1 class was associ-
ated with younger age, deep location, and less frequent 
UPS and myxofibrosarcoma types. Similar data have 
been reported with lower immune scores in younger 
patients, female patients, and UPS.30 Of note, propor-
tions of the four ICR classes were not different between 
the myxofibrosarcoma and UPS types, whereas they 
were different between the other pathological types 
and myxofibrosarcoma or UPS type (data not shown), 
in agreement with the molecular similarities between 
myxofibrosarcoma and UPS.25 This low degree of 
correlation with the major prognostic variables of STS 
suggested a possible prognostic complementarity. The 
four ICR classes displayed different MFS, but no signif-
icant difference existed between ICR2, 3, and 4 that 
were thus merged (ICR2-4). The ICR1 class displayed 
shorter 5-year MFS than the ICR2-4 class (51% vs 69%, 
respectively: HR for relapse equal to ~1.6). Importantly, 
such prognostic value was independent of CINSARC, 
suggesting that the immune response (reflected by 
ICR) and the tumor cell proliferation (reflected by 
CINSARC) provide complementary prognostic infor-
mation in STS. Interestingly, the 5-year MFS of patients 

Figure 3  Metastasis-free survival (MFS) in patients with soft-tissue sarcoma according to the clinicogenomic model integrating 
the pathological type, CINSARC, and immunologic constant of rejection (ICR). Kaplan-Meier MFS curves in the learning set 
(A) and the validation set (B). The p values for the log-rank test are indicated.
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classified as CINSARC-low/ICR1 was similar to that 
of patients classified as CINSARC-high/ICR2-4 (61% 
vs 56%, respectively). This is a major finding since 
CINSARC remains to date the most promising prog-
nostic signature of STS. Of note, the lymphocyte infil-
tration, relatively simple measure of immune response, 
was not associated with MFS, whereas ICR classifica-
tion, a more complex measure of immune response, 
was associated with MFS, as already observed in breast 
cancer.24

Our results refine the literature data. The immune 
tumor microenvironment of STS has been little studied 
to date,16 but the presence of tumor-infiltrating lympho-
cytes and expression of immune checkpoints has been 
associated with clinical outcome.53–56 For example, 
the high density of CD20+ lymphocytes was an inde-
pendent favorable prognostic indicator for survival,54 
as was the high density of CD8+ T cells in a series of 
110 patients with UPS independently from the patho-
logical grade.27 By contrast, macrophages have been 

Table 4  Predicted candidate drugs for each prognostic group according to CMap

Drug class
Cultured cell 
lines tested (n)

Mean normalized 
connectivity scores (95% CI) P value*

Prognostic group candidate 
for this drug class

Adrenergic receptor agonist 82 0.40 (0.16 to 0.63) 1.11E−03  � Good-prognosis group

Acetylcholine receptor 
antagonist

75 0.31 (0.06 to 0.56) 1.70E−02  � Good-prognosis group

Dopamine receptor 
antagonist

203 −0.24 (−0.40 to 0.08) 3.61E−03  � Poor-prognosis group

DNA inhibitor 103 −0.31 (−0.55 to 0.07) 1.12E−02  � Poor-prognosis group

Retinoid receptor agonist 76 −0.35 (−0.62 to 0.08) 1.26E−02  � Poor-prognosis group

Bcr-Abl inhibitor 92 −0.37 (−0.62 to 0.11) 5.53E−03  � Poor-prognosis group

Aurora kinase inhibitor 90 −0.42 (−0.69 to 0.15) 2.65E−03  � Poor-prognosis group

Calcium channel blocker 104 −0.42 (−0.64 to 0.21) 1.99E−04  � Poor-prognosis group

Abl inhibitor 108 −0.49 (−0.72 to 0.26) 5.11E−05  � Poor-prognosis group

NFKB inhibitor 72 −0.52 (−0.76 to 0.27) 7.51E−05  � Poor-prognosis group

JAK inhibitor 79 −0.52 (−0.79 to 0.24) 3.35E−04  � Poor-prognosis group

Glucocorticoid receptor 
agonist

102 −0.53 (−0.73 to 0.33) 1.11E−06  � Poor-prognosis group

FLT3 inhibitor 103 −0.56 (−0.80 to 0.32) 8.98E−06  � Poor-prognosis group

PDGFR inhibitor 134 −0.58 (−0.78 to 0.39) 1.26E−08  � Poor-prognosis group

KIT inhibitor 96 −0.63 (−0.87 to 0.39) 7.22E−07  � Poor-prognosis group

Src inhibitor 76 −0.65 (−0.91 to 0.39) 4.28E−06  � Poor-prognosis group

RAF inhibitor 58 −0.65 (−0.95 to 0.35) 6.01E−05  � Poor-prognosis group

MEK inhibitor 88 −0.66 (−0.91 to 0.41) 1.14E−06  � Poor-prognosis group

PI3K inhibitor 182 −0.67 (−0.84 to 0.50) 7.61E−13  � Poor-prognosis group

IKK inhibitor 55 −0.67 (−0.97 to 0.36) 4.96E−05  � Poor-prognosis group

Tyrosine kinase inhibitor 63 −0.70 (−0.97 to 0.42) 3.59E−06  � Poor-prognosis group

ATPase inhibitor 81 −0.71 (−0.93 to 0.50) 2.41E−09  � Poor-prognosis group

VEGFR inhibitor 196 −0.73 (−0.88 to 0.58) 3.05E−18  � Poor-prognosis group

EGFR inhibitor 381 −0.77 (−0.87 to 0.66) 1.15E−37  � Poor-prognosis group

FGFR inhibitor 58 −0.77 (−1.04 to 0.50) 4.86E−07  � Poor-prognosis group

MTOR inhibitor 131 −0.81 (−1.00 to 0.63) 1.37E−14  � Poor-prognosis group

Topoisomerase inhibitor 136 −0.89 (−1.06 to 0.72) 7.29E−19  � Poor-prognosis group

AKT inhibitor 60 −0.99 (−1.20 to 0.78) 1.84E−13  � Poor-prognosis group

CDK inhibitor 129 −1.09 (−1.24 to 0.94) 5.76E−28  � Poor-prognosis group

HDAC inhibitor 148 −1.19 (−1.27 to 1.11) 5.63E−62  � Poor-prognosis group

*One sample Student’s t-test.
AKT, protein kinase B; CDK, cyclin-dependant kinase; EGFR, epidermal growth factor receptor; HDAC, histone deacetylase; MTOR, 
mechanistic target of rapamycin kinase; VEGFR, vascular endothelial growth factor receptor.
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associated with an immune-hostile tumor microenvi-
ronment promoting the progression of STS.55 57 We 
recently showed the independent unfavorable prog-
nostic value of PDL1 mRNA expression in localized 
STS.58 The gene expression of 93 immune checkpoints 
and membrane markers of immune cells, tested in 
253 STS (synovial sarcoma, myxoid LPS, sarcoma with 
complex genomic, and GIST),59 was heterogeneous 
between the pathological types and is associated with 
MFS for a few genes in certain types in univariate 
analysis. Further evidence of the prognostic value of 
immune variables in STS was provided by multigene 
signatures. The first one reported by TCGA showed the 
association of infiltration score of immune cell types, 
estimated using Bindea’s signatures,49 with survival in 
certain pathological types,25 but no multivariate anal-
ysis was done. A similar approach, based on the compo-
sition of tumor microenvironment estimated using the 
MCP-Counter deconvolution tool, defined five biolog-
ically and clinically relevant classes: two classes were 
‘immune-low’ (A and B), two were ‘immune-high’ 
(D and E), and one was highly vascularized (class C). 
Class E, characterized by the presence of TLS and 
rich in B-cells, was associated with better survival in 
multivariate analysis including the clinicopathological 
factors and with response to PD1 blockade.26 However, 
CINSARC was not included in the multivariate analysis. 
Similarly, the CIBERSORT signatures of 22 immune 
cell types, assessed in 253 STS,59 showed heteroge-
neous profiles between the four pathological types 
represented and prognostic value for a few of them, 
but no multivariate analysis was done. In a reanalysis 
of the TCGA dataset, an association between shorter 
overall survival and lower immune scores, CD4+ T cells 
and CD8+ T cells estimated using ESTIMATE and 
TIMER deconvolution algorithms was reported.30 In 
a study dedicated to UPS, two groups (‘immune-high’ 
and ‘immune-low’) were identified from gene expres-
sion profiles and confirmed at the proteomic level.27 
When compared with the ‘immune-low’ group, the 
‘immune-high’ group showed longer overall survival, 
higher tumor mutational burden, and lower copy 
number alterations rate, and lower sensitivity to FGFR 
inhibition. No multivariate prognostic analysis was 
done. Thus, to our knowledge, our series is the largest 
one reported to date showing the independent prog-
nostic value of an immune signature in adult-type STS. 
Our ICR signature is different from the deconvolution 
algorithms such as MCP-Counter.26 A comparison of 
their prognostic value in the same series of samples is 
warranted. MCP-Counter provides a quantification of 
the absolute abundance of eight immune cell (B-cells, 
T-cells, CD8+ T cells, cytotoxic lymphocytes, NK 
cells, monocytic lineage, myeloid dendritic cells, and 
neutrophils) and two stromal cell populations (endo-
thelial cells and fibroblasts) in heterogeneous tissues, 
whereas ICR in addition provides a functional orienta-
tion (Th1, chemokine, cytotoxicity, adhesion) of the 

immune contexture.18 Furthermore, ICR (20 genes) 
includes a smaller number of genes than MCP-Counter 
(101 genes), which should facilitate its clinical applica-
tion. Both methods, based on the bulk transcriptomics, 
have the drawback of losing the spatial organization. 
We also applied our ICR signature to publicly available 
RNA-seq data of primary and transplant STS developed 
in mice (50 samples, including 13 baseline samples 
untreated with radiotherapy and anti-PD1 drug) from a 
high-mutation mouse model of sarcoma60: in this study, 
the authors showed that the baseline transplant tumors 
from mice exhibited enrichment of immune-related 
pathways and resembled the ‘immune-high’ E class 
described by Petitprez et al26), while baseline primary 
tumors resembled the less inflamed sarcoma immune 
classes. In agreement with this study, we found that 
ICR score/class was associated with the type of base-
line samples (online supplemental file 12): ICR score 
was higher in transplant tumors (n=4) than in primary 
tumors (n=9; p=0.036, Wilcoxon’s test) and only 25% 
of transplant tumors were classified as ICR1 vs 89% of 
primary tumors (p=0.052, Fisher’s exact test).

Given the independent prognostic value of ICR, we 
built a clinicogenomic model combining ICR and the two 
other variables significant in multivariate analysis (patho-
logical type and CINSARC). Each of them provided a 
biological and prognostic information complementary 
from the others, leading to greater prognostic precision 
for the clinicogenomic model than for each variable 
alone or in doublet. The potential of clinicogenomic 
models over clinical or genomic models alone has been 
reported in breast cancer with models such as ROR-P,61 
or recently RSClin.62 In STS too, recent clinicogenomic 
models have been published as nomograms through 
analysis of immune genes in the TCGA series, but without 
effort of validation in an independent set.28–30 Our model 
is the first one to show robustness in a validation set (339 
samples), in which we confirmed better prediction accu-
racy than that achieved by using either clinical data or 
genomic signature alone.

CMap analysis identified potential therapeutic 
avenues in each prognostic group based on our model. 
Systemic therapies potentially more efficient in the 
poor-prognosis patients included chemotherapy and 
targeted therapies. Chemotherapy corresponded to 
topoisomerase inhibitors such as anthracyclines that 
represent the blackbone of chemotherapy for STS. 
The most significant targeted therapy was the class 
of HDAC (histone deacetylase) inhibitors (HDIs). 
These latter are epigenetic-modifying agents that 
inhibit sarcoma growth and progression in vitro and 
in vivo by inducing tumor cell apoptosis, causing cell 
cycle arrest, impairing tumor invasion, and preventing 
metastasis.63 Preclinical studies have also revealed that 
HDIs can sensitize sarcomas to chemotherapy, targeted 
therapies and immunotherapy, and clinical trials are 
ongoing either as monotherapy or in combination in 
sarcomas. Other targeted therapies included notably 

https://dx.doi.org/10.1136/jitc-2021-003687
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vascular endothelial growth factor receptor (VEGFR) 
inhibitors such as pazopanib already marketed in 
non-adipocyte sarcomas or regorafenib under devel-
opment in STS,64 and many drugs under clinical trials 
in patients with STS such as CDK inhibitors,65 FGFR 
inhibitors,27 66 AKT inhibitor,67 or mTOR inhibitor.68 
CMap analysis, based on analysis of cultured cancer 
cell lines cannot directly predict potential sensitivity to 
immune therapy. However, it may be anticipated that 
the good-prognosis tumors, which were associated with 
many signatures related to cytotoxic immune response 
and expression of genes involved in T-cell exhaustion 
(CD160, CTLA4, EOMES and IKZF1, HAVCR2, TIGIT, 
etc) should more benefit from immune checkpoint 
inhibitors than the poor-prognosis tumors.

CONCLUSION
In conclusion, we showed that the 20-gene ICR signature 
is associated with postoperative MFS of patients with early-
stage STS independently from other prognostic features 
such as CINSARC, the most promising prognostic signa-
ture reported to date. We built a clinicogenomic model 
integrating ICR, CINSARC, and pathological type: it 
showed a robust prognostic value, and in silico analysis 
suggested differential vulnerability of each prognostic 
group to different systemic therapies. The strength of our 
results lies in (1) the number of 678 samples that, to our 
knowledge, makes our series the largest prognostic gene 
expression study reported so far in early-stage STS; (2) its 
originality, being the first one describing ICR signature in 
STS; (3) the biological and clinical relevance of ICR clas-
sification and its independent prognostic value; (4) the 
small number of genes in ICR (20 genes), which should 
facilitate its clinical application by using other tests appli-
cable to formaldehyde-fixed paraffin-embedded samples 
as done with CINSARC69; and (5) the construction of a 
robust clinicogenomic model that provides more individ-
ualized prognostic information than either clinicopath-
ological or genomic data alone. Limitations include the 
retrospective nature of our series and associated statistical 
biases, and heterogeneity with several different patholog-
ical types, and regarding CMap analysis, the possibility of 
false positives among the potentially useful drugs iden-
tified. Of course, analysis of larger series, retrospective, 
then prospective, is warranted to confirm our observation 
and to assess each pathological type independently, as 
well as analysis of STS preclinical models. The perspec-
tives are therapeutic. If validated, ICR or our clinicog-
enomic model should help to better select the patients 
candidate to adjuvant chemotherapy and might thus 
help reconcile the disparate results of adjuvant/neoad-
juvant chemotherapy in STS. Furthermore, since ICR 
has been associated with the response to ICIs in other 
cancers,70 good-prognosis patients with high ICR score 
(ICR four notably) might be suitable for testing immuno-
therapy. Poor-prognosis patients with low ICR score are 
less suitable for immunotherapy, but more candidates to 

chemotherapy and/or targeted therapies, such as those 
suggested by CMap analysis.
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