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Abstract

We show that for every graph G and every graph H obtained by subdividing
each edge of G at least Ω(log |V (G)|) times, H is nonrepetitively 3-colorable. In
fact, we show that Ω(log π′(G)) subdivisions per edge are enough, where π′(G) is
the nonrepetitive chromatic index of G. This answers a question of Wood and
improves a similar result of Pezarski and Zmarz that stated the existence of at least
one 3-colorable subdivision with a linear number of subdivision vertices per edge.

Mathematics Subject Classifications: 05C15

1 Introduction

A sequence s1 . . . s2n is a square if si = si+n for each i ∈ {1, . . . , n}. A sequence is
repetitive if it contains a consecutive subsequence that is a square and it is nonrepetitive
(or square-free) otherwise. For instance, the words hotshots, repetitive and alfalfa are
repetitive and the words total and minimize are nonrepetitive.

The work of Thue on nonrepetitive words is regarded as the starting point of com-
binatorics on words [15, 16] (see [4] for a translation in modern mathematical English).
He showed that there are infinite square-free sequences over three elements. Many gen-
eralizations and variations of this notion have been studied. In particular, the notion of
nonrepetitive coloring of graphs was introduced by Alon et al. [1] (see [17] for a recent
survey on this topic). We say that a coloring (either of the vertices or of the edges) of a
graph is nonrepetitive if the sequence of colors of any path is nonrepetitive. The nonrepet-
itive chromatic number (resp. nonrepetitive chromatic index ) of a graph, denoted by π(G)
(resp. π′(G)) is the smallest number of colors in a nonrepetitive coloring of the vertices
(resp. the edges) of the graph. Alon et al. showed that π′(G) is in O(∆2) where ∆ is the
maximum degree of G [1]. Different authors successively improved the upper bounds on
the nonrepetitive chromatic number and the nonrepetitive chromatic index and the best
known bound for the nonrepetitive chromatic number is also in O(∆2) [5, 7, 9, 13].
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Nonrepetitive colorings of subdivisions of graphs were also widely studied. We say
that a graph G′ is a subdivision of the graph G if G′ is obtained by replacing each edge
vw of G by a path P with endpoints v and w, where the new paths are pairwise internally
disjoints. If each edge is replaced by a path with at least d internal vertices then G′ is a
(> d)-subdivision of G. Barát and Wood proved that every graph has a nonrepetitively
4-colorable subdivision [2]. Pezarski and Zmarz reduced 4 to 3 [12] (solving a conjecture of
Grytczuk [8]). This result is a strong generalization of Thue’s result. In these two results,
the number of division vertices per edge is O(|V (G)|) or O(|E(G)|). Djumović et al.
showed that every graph has a nonrepetitively 5-colorable subdivision with O(log |V (G)|)
division vertices per edge [5]. Their result is in fact stronger than that since it holds
in the list-coloring setting, and they only require that each edge vw is subdivided at
least c log(deg(v) deg(w)) times for some constant c. In particular, it applies to every
subdivision with at least a certain number of division vertices per edge which was not the
case for the previous results. Finally, Wood proved that every graph has a nonrepetitively
5-colorable subdivision with O(log π(G)) division vertices per edge [17]. It is slightly
stronger since it implies the same bound of O(log ∆), but it does not hold in the list-
coloring setting and requires all the edges to be subdivided the same number of times. In
a recent survey Wood asked the following question.

Question 1. [17, Open Question 6.21] Does every graph G have a nonrepetitively 3-
colourable subdivision with O(log |V (G)|)) or even O(log π(G)) division vertices per edge?

In this article, we give a positive answer to the first part of this question. In fact, we
show that there exists a function f(n) = O(log n) such that any subdivision of any graph
G with at least f(π′(G)) subdivision per edge is nonrepetitively 3-colorable. Since π′(G) is
in O(∆2), the quantity O(log π′(G))) is smaller than O(log ∆)) which is itself smaller than
the suggested O(log |V (G)|)). However, log π′(G) can be arbitrarily larger than log π(G)
(let K1,t be the star over k + 1 vertices, then π(K1,t) = 2 and π′(K1,t) = t), so we are
not able to solve the second part of this question. The number of subdivision vertices
per edge that we require is 558 log2(n) + O(1). This result is optimal in the sense that
Ω(log n) division vertices are needed on some edges of any nonrepetitively O(1)-colorable
subdivision of Kn[10]. However, we expect the optimal multiplicative coefficient in front
of the log to be much smaller than 558.

Moreover, we show that any subdivision is nonrepetitively colorable as long as each
edge is subdivided at least a certain number of times. This is much stronger than showing
that there exists one nonrepetitively colorable subdivision. The results of [2] and [12] only
imply the existence of one nonrepetitively colorable subdivision with the desired property.
Our proof becomes much simpler if we only care about the existence of one nonrepetitively
3-colorable subdivision.

The article is organized as follows. We first provide in Section 2 some definitions and
recall some useful results from the literature. Then in Section 3, we show the existence of
a set of words that is needed for our main construction. In particular, we show that there
are sets of n-good words of exponential size. In Section 4, we use these sets of n-good
words to show our main result. The main idea is to start from a nonrepetitive coloring
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of the edges of a graph and to “encode” each color by a well-chosen n-good word. In
the last section, we discuss possible ways to improve the bound on the number of needed
subdivisions per edge.

The main idea is implicitly to generalize the notion of square-free morphism. A mor-
phism is a map h : Σ∗ → Σ∗ such that the image of each word is given by the concatenation
of the image of the letters. A square-free morphism is a morphism such that the image of
every square-free word is a square-free word. A directed graph is nonrepetitively colored
if the sequence of colors of every directed path is nonrepetitive. Given a directed graph
D, two sets of colors C and Σ, a nonrepetitive edge coloring φ : A(D) → C of D and a
square-free morphism h : C 7→ Σ. If we can subdivide D in such a way that the sequence
of colors of the subdivision of any edge e is h(φ(e)), then this subdivision is nonrepeti-
tively |Σ|-colorable1. We cannot use the same construction for undirected graphs because
the subdivision of an edge can appear in “the wrong direction” in a path. But if we can
find a square-free morphism such that the image of every square-free word is square-free
even if we replace the image of a letter with its mirror at any set of arbitrary positions,
then we can use the same idea. There are extra technicalities, since we show that it works
for any large enough subdivision. Naturally, the proof mostly relies on combinatorics on
words.

2 Preliminaries

A word is a finite sequence over a finite set that we call the alphabet. A factor of a word
is a contiguous subsequence of this word, that is, if there are two words p and s such that
w = pfs then f is a factor of w. If p (resp. s) is empty then f is also a prefix (resp. a
suffix ) of w. A prefix (resp. a suffix) of w is proper if it is not equal to w. The length of
a word u is denoted by |u|. A word u occurs in v at position p, if the factor of length |u|
of v that starts at position p is exactly u. The mirror image w of a word w is the word
obtained by reading w from right to left. We let w1 = w and w0 = w.

We recall the following result from Shur on the number of square-free ternary words.

Theorem 2 ([14]). For all n, let Csq(n) be the number of ternary square-free words of
length n. Then

lim sup
n→∞

Csq(n)
1
n > 1, 30175907 .

Since any factor of a square-free word is square-free, Csq is a submultiplicative function
(i.e., we have Csq(i + j) 6 Csq(i)Csq(j), for all i, j). By Fekete’s Lemma, we deduce the
following Corollary of Theorem 2.

Corollary 3. For all integer n > 1, Csq(n) > 1.3n.

We now recall Turán’s Theorem and a simple corollary.

1We might need one extra color to color the vertices from the original graph.
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Theorem 4 (Turán’s Theorem). Let G be any graph with n vertices, such that G is
Kr+1-free. Then the number of edges in G is at most

|E(G)| 6
(

1− 1

r

)
n2

2
.

Corollary 5. Any graph G contains an independent set of size at least
⌈

n
1+d(G)

⌉
where

d(G) is the average degree of G.

Proof. Let G be a graph of average degree d(G) and let H be the complement of G. Then
the number of edges of H is

|E(H)| = n(n− 1)

2
− |E(G)| = n(n− 1)

2
− nd(G)

2
=
n2

2

(
1− 1 + d(G)

n

)

>
n2

2

1− 1⌈
n

1+d(G)

⌉
− 1

 .

By Turán’s Theorem, this implies that H cannot be Kd n
1+d(G)e-free. Hence, G contains an

independent set of size
⌈

n
1+d(G)

⌉
as desired.

3 Good sets

Let σ = 1202120121021201021, σ = 1201021201210212021 be the mirror image and let
ρ = σ0σ. By construction ρ is a palindrome, |σ| = 19 and |ρ| = 39.

A word v is nice if ρvρ is square-free and contains only two occurrences of σ and two
occurrences of σ. The only occurrences of σ and σ are inside the two occurrences of ρ.
Let N be the set of nice words and for any integer n, let Nn be the set of nice words of
length n.

For all n > 7200, let ln be the lexicographically least word of the set Nn2. We show
in Lemma 14 that there exist nice words of every length at least 7200. So ln is properly
defined for any n > 7200.

A set of words S is mirror-free if for any word w from S such that w 6= w, w is not
in S. For any integer n > 7200, a set of words S ⊆ Nn is n-good if it is mirror-free and if
for all i ∈ {2n+ 100, . . . , 7n} and all u, v ∈ S such that u 6= v the words ρuρvρli, ρuρvρli,
ρuρvρli and ρuρvρli are square-free.

In Lemma 7, we show the central property of n-good set, but we first show the following
Lemma as a warm-up exercise.

Lemma 6. Let n > 7200 be an integer, S be an n-good set, u, v ∈ S and i > 2n+ 100 be
an integer then ρuρliρvρ is square-free.

2We only need to make an arbitrary choice to pick one element of each Nn, but we never use the fact
that ln is the lexicographically least word of Nn.

the electronic journal of combinatorics 28(4) (2021), #P4.19 4



Proof. Suppose, for the sake of contradiction, that ρuρliρvρ contains a square ww. First
remark, that since S is an n-good set ρuρliρ and ρliρvρ are both square-free. Hence there
exist a non-empty suffix x of ρu and a non-empty prefix y of vρ such that xρliρy is a
square.

Now liρ is not a factor of w since it contains only one occurrence of ρ and that li is
much longer than the gap between any other occurrences of ρ. For the same reason, ρli
is not a factor of w. There exists x′, y′ such that li = x′y′ and w = xρx′ = y′ρy. Since
|x′| + |y′| = |li| > 2n + 100, assume, without loss of generality that |x′| > n + 50. Then
|x′| > |y| and xp is a proper prefix of y′ρ which implies that there is a second occurrence
of ρ in y′ρ. This contradicts the fact that li is a nice word.

Lemma 7. Let k and n be two integers. Let S be an n-good set, Σ be an alphabet and
f : Σ 7→ S be an injective map. Then, for any square-free word w1 . . . wk ∈ Σk, any
sequence of integers (si)16i6k ∈ {2n + 100, . . . , 7n}k and any sequence (ri)16i6k ∈ {0, 1}k
the word

ρ

k∏
i=1

f(wi)ρlsiρf(wi)
ri
ρ = ρf(w1)ρls1ρf(w1)

r1
ρ . . . f(wk)ρlskρf(wk)

rk
ρ

is square-free.

Proof. Suppose, for the sake of contradiction, that ρ
∏k

i=1 f(wi)ρltiρf(wi)
ri
ρ contains a

square uu. There are x1, . . . , x3k ∈ N such that for all i,

f(wi)ρlsiρf(wi)
ri

= x3i−2ρx3i−1px3i .

It implies

ρ
k∏
i=1

f(wi)ρlsiρf(wi)
ri
ρ = ρx1ρx2ρ . . . ρx3kρ

and there are no other occurrences of σ and σ than the 3k+ 1 occurrences that are inside
the occurrences of ρ.

Let L = {li : i ∈ {2n+ 100, . . . , 7n}}. Then for any j, xj ∈ L if and only if j ≡ 2
mod 3. Since S is mirror-free, for any i, xi and xi+1 are different. Thus, by the definition
of n-good sets and by Lemma 6, for any i, ρxiρxi+1ρxi+2ρ is square-free. Thus there are
at least 3 occurrences of ρ in uu. For the rest of the proof assume that the middle of the
square uu does not cut any occurrence of σ. If this is not true, it implies that the middle
of the square uu does not cut any occurrence of σ, and the proof is identical (consider
the mirror of the whole world in which the middle of the square uu does not cut any
occurrence of σ). Then σ occurs at least twice in u.

Let l > 2 be the number of occurrences of σ in u. The occurrences of σ in the
two consecutive occurrences of u need to be matched, so in particular there are as many
occurrences of σ in the two occurrences of u. Hence, there exist an integer m ∈ {l, . . . , 3k+
1− l} such that

u = yσxm+1−lσ0σxm+2−lσ0σ . . . σ0σxm−1σ0σy′

= zσxm+1σ0σxm+2σ0σ . . . σ0σxm+l−1σ0σz′
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where y is a proper suffix of σxm−lσ0 (or a suffix of σ0, if m− l = 0), y′z = xmσ0 and z′

is a prefix of xm+lσ0 (or a prefix of ε, if m− l = 3k + 1). For any j, the factors between
the jth and the (j + 1)th occurences of σ in the two occurences of u are equal, that is,
for all j ∈ {0, . . . , l − 2},

xm+1−l+j = xm+1+j (1)

and
y = z and y′ = z′ . (2)

Recall that, for any j, xj ∈ L if and only if j ≡ 2 mod 3.
Let us first deal with the case l = 2. In this case,

u = yσxm−1σ0σy′ = zσxm+1σ0σz′ .

Then (2) implies xm−1 = xm+1 which is only possible if m ≡ 2 mod 3 (otherwise exactly
one of xm−1 and xm+1 is in L which contradicts the equality). Since m − 2 ≡ 0 mod 3,
|y| < n + 39. In deed, if m − 2 > 1, then y is a proper suffix of σxm−2σ0 and |y| <
|σxm−2σ0| = n + 39, and if m − 2 = 0, then y is a suffix of σ0 and |y| 6 20. A similar
argument based on m+ 2 ≡ 1 mod 3 leads to |z′| 6 n+ 20. Since xmσ0 = y′z, equation
(2) implies

|xm| = |y|+ |z′| − |σ0| < 2n+ 59 .

But m ≡ 2 mod 3 implies |xm| > 2n+ 100 which contradicts the previous equation.
Let us now take care of the case l > 3. We first show that l ≡ 0 mod 3. Recall, that

for all j, |xj| 6= n if and only if j ≡ 2 mod 3. Together with (1), it implies that for all
j ∈ {0, . . . , l− 2}, m+ 1− l+ j ≡ 2 mod 3 if and only if m+ 1 + j ≡ 2 mod 3. Thus if
m+ 1− l ≡ 2 mod 3 then m+ 1 ≡ 2 mod 3 and l ≡ 0 mod 3. If m+ 1− l ≡ 1 mod 3,
then m + 2 − l ≡ 2 mod 3 and m + 2 ≡ 2 mod 3 which also implies l ≡ 0 mod 3. If
m + 1 − l ≡ 0 mod 3, |xm+1−l| = |xm+2−l| = n which implies |xm+1| = |xm+2| = n and
m+ 1 ≡ 0 mod 3 and finally l ≡ 0 mod 3.

We have three distinct cases to consider.

Case m+1−l ≡ 1 mod 3: For every j ≡ 1 mod 3, xj = f(w(j+2)/3)
r(j+2)/3

. Thus for

all integer j, xm+1+3j−l = f(w(m−l)/3+1+j)
r(m−l)/3+1+j

and xm+1+3j = f(wm/3+1+j)
rm/3+1+j

.
By equation (1), for all j ∈ {0, . . . , l/3− 1},

f(w(m−l)/3+1+j)
r(m−l)/3+1+j

= f(wm/3+1+j)
rm/3+1+j

.

The function f is an injective map to S which is mirror-free, so the previous equation
implies that for all j ∈ {0, . . . , l/3− 1},

w(m−l)/3+1+j = wm/3+1+j .

This implies that there is a square in w which is a contradiction.
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Case m + 1− l ≡ 0 mod 3: We use the same idea as in the previous case with the
fact that for every j ≡ 0 mod 3, xj = f(wj/3)

rj/3
. In this case we obtain that for all

j ∈ {0, . . . , l/3− 1},
w(m+1−l)/3+j = w(m+1)/3+j .

This implies that there is a square in w which is a contradiction.

Case m + 1− l ≡ 2 mod 3: This case is almost identical to the previous ones. We
know that for every j ≡ 0 mod 3, xj = f(wj/3)

rj/3
. Moreover for all j, m+ 2− l+ 3t ≡ 0

mod 3. By the same argument, for all j ∈ {0, . . . , l/3− 1},

w(m+2−l)/3+j = w(m+2)/3+j .

This implies that there is a square in w which is a contradiction.

This property is essential to construct the nonrepetitive coloring of a subdivided graph.
The idea is to encode the colors of the edges of a nonrepetitive edge coloring of the initial
graph. Any vertex from the initial graph will be colored by 0 and the path corresponding
to any edge colored c in the original graph should receive the color sequence σf(c)ρliρf(c)σ
(with the li of the right length). The fact that we can choose a different li for every edge
means that we can find a valid encoding as long as the edge is subdivided enough. The
fact that we can replace the encoding of each wi by the mirror image of the encoding
means that we can take an arbitrary orientation of the subdivided edge to apply the
encoding to the corresponding path.

We also need a variant of this property. This variant will be useful for paths that start
and end in the subdivision of the same edge (i.e., paths that appear in the subdivision of
a cycle).

Lemma 8. Let k > 3 and n be two integers. Let S be an n-good set, Σ be an alphabet
and f : Σ 7→ S be an injective map. Let w1 . . . wk ∈ Σk be a square-free word such that
w2w3 . . . wkw1 is also square-free. Let (ti)16i6k ∈ {2n + 100, . . . , 7n}k be a sequence of
integers, and (ri)16i6k ∈ {0, 1}k be a sequence of 0 and 1. Let a and b be a pair of words

such that f(w1)ρlt1ρf(w1)
r1

= ab. Then the word

bρ

(
k∏
i=2

f(wi)ρltiρf(wi)
ri
ρ

)
a

= bρf(w2)ρlt2ρf(w2)
r2
ρf(w2)ρlt2ρf(w2)

r2
ρ . . . ρf(wk)ρltkρf(wk)

rk
ρa

is square-free.

Proof. Suppose, for the sake of contradiction, that bρ
(∏k

i=2 f(wi)ρltiρf(wi)
ri
ρ
)
a contains

a square uu.
Since w1w2 . . . wk and w2w3 . . . wkw1 are both square-free, Lemma 7 implies that

bρ
(∏k

i=2 f(wi)ρltiρf(wi)
ri
ρ
)

and ρ
(∏k

i=2 f(wi)ρltiρf(wi)
ri
ρ
)
a are also square-free. Thus

the first occurrence of u starts in b and the second occurrence ends in a. Assume, without
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loss of generality, that the middle of the square does not cut an occurrence of σ. Since
k > 3, we know that uu contains at least 8 occurrences of σ and by the same argument
as in the preivous proof it implies that the number of occurences of σ in u is a multiple
of 3. The number of σ is necessarily a multiple of 6 and it is also equal to 3k − x where
x ∈ {0, 1, 2} is the number of σ located in ab and ommited by uu. It implies that k is
even and x = 0 so uu contains all the occurences of σ.

From here, with an argument similar to the proof of Lemma 7 one easily shows that
for every i ∈

{
1, . . . , k

2
− 1
}

,
wi+1 = wk/2+i+1 .

Then one can similarily verify that f(wk/2+1)ρltk/2+1
ρf(wk/2+1)

rk/2+1
is necessarily a factor

of ab = f(w1)ρlt1ρf(w1)
r1

. This is only possible if w1 = wk/2+1. Thus, for every i ∈{
0, . . . , k

2
− 1
}

,
wi+1 = wk/2+i+1 .

This is a contradiction since w1 . . . wk is square-free.

3.1 Exponentially large good sets

We show in this subsection that there are exponentially many nice words of any length
and we use that to show that there are exponentially large n good sets.

Let h : Σ 7→ Σ∗, be the map such that

h(0) ={012102120210201021201210, 0121021202102012021201210} ,
h(1) ={120210201021012102012021, 1202102010210120102012021},
h(2) ={201021012102120210120102, 2010210121021201210120102} .

A word v is an image of w by h if v can be obtained by replacing each occurrence of any
letter i of w by any word of the corresponding set h(i). The set of images of w by h is
denoted by h(w). The authors of [3] introduced h and showed the following property.3

Theorem 9 ([3, Theorem 20]). For any square-free word w ∈ {0, 1, 2}∗ and any v ∈ h(w),
v is square-free.

We will use h to show that the set of nice words has exponential growth. First, we
need a few simple facts about h, σ and ρ.

Lemma 10. The following facts holds.

1. For any letters a, b, c ∈ {0, 1, 2}, v ∈ h(ab) and v′ ∈ h(c), the word v′ cannot occur
as an internal factor of v (i.e., the only possible occurrences of v′ are as suffix or
prefix).

2. For any a, b ∈ {0, 1, 2} and v ∈ h(ab), neither σ or σ are factor of v.

3In fact, the map that they used contains 4 words in each set and here we used only 2 of them.
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3. If a ∈ {1, 2}, b ∈ {0, 1, 2} \ {a} and v ∈ h(0ab), then the word ρv is square-free and
contains exactly one occurrence of σ and σ.

4. If a ∈ {1, 2}, b ∈ {0, 1, 2} \ {a} and v ∈ h(ba0), then the word vρ is square-free and
contains exactly one occurrence of σ and σ.

It is a bit tedious to verify the four claims of this Lemma by hand so we provide a
simple computer program that verifies Lemma 104.

The first of these 4 facts implies that images by h synchronize, that is, as long as
a factor of an image is of length at least 50 (the length of the images of two letters),
there is a unique way to split it into different images by h. These kinds of properties are
really useful to establish that an image of a square-free word by h does not contain any
large squares (i.e., squares that are large enough to allow us to use this synchronization
property). On the other hand, the other facts are quite useful to establish that there
are no short squares. With this lemma in hand, it is relatively simple to provide a proof
of Theorem 9 (which we will not do). We can use these facts to show that there are
exponentially many nice words.

Lemma 11. Let w ∈ {0, 1, 2}∗ be a word such that |w| > 4 and 10w01 is square-free.
Then any v ∈ h(0w0) is nice.

Proof. Let w and v be as in the Theorem statement. Let w1, . . . , wn ∈ {0, 1, 2} be such
that w1 . . . wn = 0w0 and for all i let vi ∈ h(wi) such that v = v1 . . . vn. Recall that
we need to show that ρvρ is square-free and contains only two occurrences of σ and two
occurrences of σ. By 2., 3. and 4. of Lemma 10, any occurrence of σ or σ is in ρ, so it
only remains to show that ρvρ is square-free.

Suppose, for the sake of contradiction, that there is a square in ρvρ, that is, there are
words x, y ∈ {0, 1, 2}∗ and u ∈ {0, 1, 2}+ such that ρvρ = xuuy. Theorem 9 implies that
uu cannot be a factor of v. One easily verifies that ρ is square-free. Thus x is a proper
prefix of ρ or y is a proper suffix of ρ. Assume, without loss of generality, that x is a
proper prefix of ρ. Let r be the nonempty suffix of ρ such that xr = ρ. Fact 3. of Lemma
10 implies that the square uu is not a factor of ρv1v2v3, thus |uu| > |v1v2v3| + 2 and v1
is a factor of u. Thus rv1 is a prefix of u. We have to distinguish between two different
cases depending on the length of r.

Case |r| > 4: By hypothesis |w| > 4 and |v2 . . . vn| > 5×24 > |v1|+2|ρ| > |v1rρ| which

gives |rv1| + |rvρ|
2

< |rv|. We deduce that the |rv1| first letters of the second occurrence
of u do not overlap with the final occurrence of ρ. This implies that rv1 is a factor of v.
From Fact 1. of Lemma 10, v1 can only appear as the image of 0, and thus r must appear
as the suffix of the image of a letter. However, it is easy to verify that r is not the suffix
of any image of a letter if |r| > 4 (it is enough to verify this with |r| = 4), which is a
contradiction.

4See the ancillary file verifying lemma4.cpp accessible with the arXiv version at https://arxiv.

org/abs/2102.00750.
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Case |r| 6 3: Then r is also the suffix of an image of 1 by h (since 021 is suffix of any
image of 1). There is v0 ∈ h(1) such that uu is also a factor of v0vρ. By hypothesis, w
was chosen such that 10w01 is square-free and Theorem 9 implies that there is no square
in v0v. Thus the square in v0vρ overlaps with the final occurrence of ρ. By symmetry of
the previous case, the square overlaps by at most 3 letters with the final occurrence of
ρ which implies that the square is also an image of 10w01 which is a contradiction since
any image of 10w01 by h is square-free by Theorem 9.

We can deduce an exponential lower bound on the size of Nn.

Theorem 12. For all n > 7200,

|Nn| >
1.01n

18905
.

Proof. Let P be the set of words over {0, 1, 2} such that for any w ∈ P , |w| > 4 and
10w01 is square-free. Lemma 11 implies that for all n

|Nn| > |{v ∈ {0, 1, 2}n|∃w ∈ P, v ∈ h(0w0)}| .

The set of images by h of two different words are disjoint, hence

|Nn| > |{w ∈ P |h(0w0) ∩ {0, 1, 2}n 6= ∅}| . (3)

Every letter has an image of length 24 and an image of length 25 by h. Thus for
any integer n > 12 × 24 × 25 = 7200 and any word u of length n

24
− 12 6 |u| 6 n

24
,

25|u| > n > 24|u| and u admits at least an image of size n by h. That is, for any
n > 7200,

{w ∈ P |h(0w0) ∩ {0, 1, 2}n 6= ∅ }| >
∣∣∣{w ∈ P | n

24
− 12 6 |0w0| 6 n

24

}∣∣∣ .
By symmetry, there are exactly Csq(n)

6
square-free words over {0, 1, 2} of length n

starting by 10.
A quick exhaustive search (a few minutes by hand) shows that every word avoiding 01

and starting with 0 has length at most 10. Since the longest square-free word over {1, 2}
has length 3, the longest square-free word avoiding 01 over {0, 1, 2} has length at most
13. From any square-free u word, we can obtain a square-free word ending with 01 by
deleting a 01-free suffix of length at most 12 from the end of u. Since there are at most
212 possible square-free suffixes to delete, there are at most 212 such word u that lead to
the same word by this process. Thus for every integer n, there are at least Csq(n)

6×212 ternary
square-free words of length between n− 12 and n starting with 10 and ending with 01.

We can now apply Corollary 3,

|{w ∈ P |h(0w0) ∩ {0, 1, 2}n 6= ∅ }| >
Csq(b n24c+ 2)

24576
>

1.3b
n
24

+2c

24576
>

1.01n

18905
.

Together with equation (3), we conclude |Nn| > 1.01n

18905
.
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We use the exponential lower bound to establish the existence of exponentially large
n-good sets, but first we show one more property of nice words.

Lemma 13. Let u, v ∈ N . If the word ρuρvρ is not square-free then u is a prefix of v or
v is a suffix of u. In particular, if |u| = |v| then u = v.

Proof. Let u, v ∈ N such that u 6= v. Let ww be a square in ρuρvρ. Since u and v are
nice, ρuρ and ρvρ are square-free. Hence the second occurrence of ρ is a factor of ww. We
also know that the only occurrences of σ in ρuρvρ (resp. of σ) are the three occurrences
inside each occurrence of ρ.

Suppose, for the sake of contradiction, that there are two non-empty words u1 and u2
such that u = u1u2, w is a suffix of ρu1 and a prefix of u2ρvρ. Since w contains ρ as a
factors and that there are exactly three occurrences of ρ this implies that w = ρu1 which
is a contradiction with the fact that u2ρvρ does not starts with ρ. By symmetry, we reach
a similar contradiction if we try to split v in v1v2.

Hence there exists ρ1, ρ2 such that ρ1ρ2 = ρ = σ0σ and w is a suffix of ρuρ1 and a
prefix of ρ2vρ. Assume, without loss of generality, that σ is a suffix of ρ2 (otherwise σ is
a prefix of ρ1 and the rest of the argument is symmetric). Since the only occurrence of σ
in ρuρ1 is inside ρ, we deduce that ρ2uρ1 = w. Since w is a prefix of ρ2vρ, u is a prefix of
v or v is a prefix of u.

We can finally show the existence of exponentially large n-good sets.

Lemma 14. For any n > 7200, there exists an n-good set S of size at least

|S| > 1.01n

40000(60n2 + 1)
.

Proof. Let N ′n be the set obtained by removing from Nn any prefix or suffix of every
li with i ∈ {2n + 100, . . . , 7n} and by keeping for each pair of mirror images only the
lexicographically smallest of the two. Each li is responsible for removing at most two
words from Nn so |N ′n| >

|Nn|−10n
2

> 1.01n

37810
− 5n. Since n > 7200, we can simplify the

bound

|N ′n| >
1.01n

40000
.

For any u, v ∈ N ′n, we say that u forbids v if u 6= v and for some i ∈ {n + 1, n +
2, . . . , 5n}, ρuρvρliρ, ρuρvρliρ, ρuρvρliρ or ρuρvρliρ contains a square.

We now count how many words v are forbidden by a given u.
Let u, v ∈ N ′n be such that u 6= v and ρuρvρliρ is not square-free. Lemma 13 implies

that both ρuρvρ and ρvρliρ are square-free (since u 6= v and v is not a prefix of li).
There is a non-empty suffix u′ of ρu and a non-empty prefix l′ of liρ such that the square
ww = u′ρvρl′. Moreover, there exist two non-empty words v1 and v2 such that σvσ = v1v2
and w = u′σ0v1 = v20σl

′. Indeed, the middle of the square cannot be located outside of
σvσ since there would be too many occurences of σ or σ on one side of the square. Finally,
remark that either v1 contains σ as a prefix or v2 contains σ as a suffix (both could be
true). In both cases, using the fact that there are only two other occurrences of σ and
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σ, we deduce that |w| = |vρ|. Thus v1 is a prefix of σliρ and v2 is a suffix of ρuσ and v
is uniquely determined by u, li and the position of the square. There are |vρ| = n + 39
possible positions, less than 5n possibles values for li, so u forbids at most (n+ 39)× 5n
words because of ρuρvρli. The count is similar for ρuρvρli, ρuρvρliρ and ρuρvρliρ, so u
forbids at most (n+ 39)× 5n× 4 words. This is upper bounded by 30n2 since n > 7200.

Let G be the graph whose vertices are the words from N ′n and such that two words
share an edge if one of them forbids the other one. The set of words corresponding to any
independent set of G is an n-good set. Let S be the set of words corresponding to the
largest independent set of G. Since every word forbids at most 30n2 words, the average
degree of the vertices of G is at most 60n2. By Corollary 5, there is an independent set
of size at least |N ′n|

60n2+1
. Thus |S| > 1.01n

40000(60n2+1)
.

4 The final construction

A graph G′ is a (> a,6 b)-subdivision of a graph G if G′ can be obtained by subdividing
each edge of G in at least a and at most b division vertices.

In Lemma 15, we use our results on n-goods sets to show that, if each edge of the
graph is subdivided enough, but not too much, then we can nonrepetitively 3-color the
resulting graph. To obtain Theorem 17, we then show that we can easily handle the edges
that have too many subdivision vertices.

Lemma 15. Let G be a graph and n > 7200 an integer such that π′(G) 6 1.01n

40000(60n2+1)
.

Then for any (> 4n+ 216,6 9n)-subdivision G′ of G,

π(G′) = 3 .

Proof. Let n, G and G′ be as in the lemma statement. Let C be a set of colors of size
π′(G) and φ be a nonrepetitive edge C-coloring of G.

By Lemma 14, there is an n-good set S such that |S| > π′(G). Let f be an injective
map from C to S. Let ~o be an arbitrary orientation of the edges of G.

Let φ′ : V (G′) 7→ {0, 1, 2} be the 3-coloring of the vertices of G′ such that

• every vertex of G′ that corresponds to an original vertex of G has color 0,

• for any edge e from G subdivided in (v1, . . . , vd) in G′ with the vi ordered according
to ~o(e), we let t = d − 116 − 2n and the sequence of colors (φ′(v1), . . . , φ

′(vd)) is
equal to σf(φ(e))ρltρf(φ(e))σ.

The equality |σf(φ(e))ρ|+ |pf(φ(e))σ| = 2|ρ|+ 2|σ|+ 2n = 2n+ 116 implies

|σf(φ(e))ρltρf(φ(e))σ| = d .

Thus φ′ is well-defined. Our goal is now to show that φ′ is nonrepetitive.
Since every edge of G is subdivided at least 4n+ 216 times and at most 9n times this

implies that for each edge of G subdivided into d vertices, 2n + 100 6 t 6 7n. So the
length of the li allows us to apply Lemma 7 and Lemma 8.
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Let p be a path in G′ whose two extremities do not belong to the subdivision of the
same edge of G. Then it is a subpath of the subdivision of some path in G. Let e1, . . . , ek
be this path of G. For all i ∈ {1, . . . , k}, let wi = φ(ei), let ri be 0 if ~o(ei) goes in the same
direction as the orientation of the path and ri = 1 otherwise. For all i ∈ {1, . . . , k}, let di
be the integer such that ei is subdivided into di vertices in G′ and let ti = di − 116− 2n.
Then by definition the sequence of colors of the path p from G′ is a factor of

ρ

k∏
i=1

f(wi)ρltiρf(wi)
ri
ρ .

Moreover, since φ is nonrepetitive, w1 . . . wp is square-free. By Lemma 7, p is nonrepeti-
tively colored by φ′.

Now we need to show that the same property holds if the two extremities of a path
p of G′ belong to the subdivision of the same edge. If the path is short and completely
contained in an edge then this is in fact solved as the previous case. Then the remaining
case is that p starts in the subdivision of an edge e1 of G, then leaves this subdivision,
and comes back to it by the other side. Let e1, e2, . . . , en, e1 be the edges of G whose
subdivision contains p. For all i ∈ {1, . . . , k}, let wi = φ(ei). For all i ∈ {1, . . . , k},
define ri and ti as in the previous case. Then there are two words a and b such that
f(w1)ρlt1ρf(w1)

r1
ρ = ab and such that the sequence of colors of p is a factor of

b

(
k∏
i=2

f(wi)ρltiρf(wi)
ri
ρ

)
a .

By Lemma 8, p is nonrepetitively colored by φ′.
We showed that every possible path of G′ is nonrepetitively colored by φ′ which implies

that φ′ is a nonrepetitive 3-coloring of G′.

Lemma 16. Let G be a graph and H be a subdivision of G then π′(H) 6 2π′(G) + 3.

Proof. Let φ be a nonrepetitive edge coloring of G over the set of colors C of size π′(G).
Let C ′ be the set of colors obtained by adding three new colors α, β, γ and for each color
c ∈ C a new color c′.

Let φ′ be an edge coloring of H such that for each edge e of G:

• if e is not subdivided in H then it has the same color in H and in G,

• if e is subdivided into two edges e1 and e2 then φ′(e1) = φ(e) and φ′(e2) = φ(e)′,

• if e is subdivided in k > 3 edges e1, . . . , ek, then φ′(e1) = φ′(ek) = φ(e) and the
sequence φ′(e2) . . . φ

′(ek−1) is a square-free word over {α, β, γ}.

It is easy to verify that if there is a square in φ′ then the colors inherited from φ form a
square on G.
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Theorem 17. Let G be a graph and c = max
{

29016, 8 log(2π′(G)+3)
log(1.01)

+ 216
}

. Then for any

(> c)-subdivision H of G,
π(H) = 3 .

Proof. Let n = max
{

7200, 2 log(2π′(G)+3)
log(1.01)

}
. This implies c = 4n+ 216.

Let G′ be a subdivision of G such that H is a (> 4n + 216,6 9n)-subdivision of
G′. Let us first show that there exists such a graph G′. For any integer x > 9n, let
γ(x) =

⌊
x

4n+217

⌋
− 1. If an edge e from G needs to be subdivided with x > 9n division

vertices in H, then we subdivide e with γ(x) vertices in G′ and we let e1, . . . , eγ(x)+1 be the
edges of G′ corresponding to the subdivision of G. If for all i ∈ {1, . . . , γ(x)}, we subdivide
ei with 4n + 216 vertices in H and we subdivide eγ(x)+1 with x − γ(x)(4n + 216) − γ(x)
vertices in H, then e is subdivived with γ(x)+γ(x)(4n+216)+x−γ(x)(4n+216)−γ(x) =
x subdivision vertices. One easily verifies that under the assumption that n > 7200,
4n + 216 6 x− γ(x)(4n + 216)− γ(x) 6 9n so H is a (> 4n + 216,6 9n)-subdivision of
G′ as desired.

By Lemma 16, 2π′(G) + 3 > π′(G′). Let us now show that we can apply Lemma 15 to
G′ and H. We can verify by simple computation that 40000(60n2 + 1) < 1.01n/2 for any
n > 7200 and

1.01n

40000(60n2 + 1)
> 1.01n/2 > 2π′(G) + 3 > π′(G′) .

So n verifies the conditions of Lemma 15. Since H is a (> 4n+ 216,6 9n)-subdivision of
G′ we can apply Lemma 15 and we conclude that

π(H) = 3

5 Improving the coefficient and open questions

We showed in Theorem 17 that there exists a function f(n) = 558 log2(n)+O(1) such that
for any graph G if there are at least f(π′(G)) division vertices per edge the resulting graph
is nonrepetitively 3-colorable. This result is optimal in the sense that Ω(log n) division
vertices are needed on some edges of any nonrepetitively O(1)-colorable subdivision of
Kn[10]. However, we can try to reduce the multiplicative constant 558. By being more
careful on the computations, we can replace 558 by 4

log2(γ(N ))
where γ(N ) is the growth

rate of the set of nice words. By using our lower bound of 1.01 on the growth rate of
the number of nice words (Theorem 12) we can take f(n) = 279 log2(n) + O(1). But we
expect the growth rate to be much closer to 1.3.

In fact, if instead of ρ = σ0σ we take any long enough square-free palindrome ρ′ = σ′0σ′

then it is easy to adapt the proof from [14] to show that the growth rate of the set of
square-free words that avoids σ′ and σ′ can be arbitrarily close to 1.3. It probably does not
change the growth rate to add the constraint that ρ′wρ′ be square-free for every element
w. However, we do not know how to prove this second point, but if it holds we can then
replace 1.01 by 1.3. This would allow to take f(n) = 10.56 log2(n) + O(1). We suspect
that the coefficient 10.56 would still be far from optimal.
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Let us finally mention a few remaining open questions. We solved the first part of
Wood’s question but the second part remains open.

Question 18. Does every graph G have a nonrepetitively 3-colourable subdivision with
O(log π(G)) division vertices per edge?

Our result improves the number of division vertices per edge over the result from
Pezarski and Zmarz [12]. We say that a coloring is α-free (resp. α+-free) if it does not
contain any repetition of exponent at least α (resp. greater than α). Hence, a coloring
is nonrepetitive if it is 2-free. Ochem and Vaslet also strengthened [12] by showing that

every graph can be subdivided into a graph that has a 7
4

+
-free 3-coloring and that this is

optimal [11]. It is natural to ask whether these two strengthenings can be combined.

Question 19. Does every graph G have a subdivision G′ with O(log |V (G)|)) division

vertices per edge such that G′ has a 7
4

+
-free 3-coloring?

A similar question can be asked for the two other results of [11, Theorem 3.1].

Question 20. Does every graph G have a subdivision G′ with O(log |V (G)|)) division

vertices per edge such that G′ has a 7
3

+
-free 2-coloring?

Does every graph G have a subdivision G′ with O(log |V (G)|)) division vertices per

edge such that G′ has a 3
2

+
-free 4-coloring?
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