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We are interested in creating statistical methods to provide informative
summaries of random fields through the geometry of their excursion sets. To
this end, we introduce an estimator for the length of the perimeter of ex-
cursion sets of random fields on R2 observed over regular square tilings. The
proposed estimator acts on the empirically accessible binary digital images of
the excursion regions and computes the length of a piecewise linear approxi-
mation of the excursion boundary. The estimator is shown to be consistent as
the pixel size decreases, without the need of any normalization constant, and
with neither assumption of Gaussianity nor isotropy imposed on the underly-
ing random field. In this general framework, even when the domain grows to
cover R2, the estimation error is shown to be of smaller order than the side
length of the domain. For affine, strongly mixing random fields, this trans-
lates to a multivariate Central Limit Theorem for our estimator when multiple
levels are considered simultaneously. Finally, we conduct several numerical
studies to investigate statistical properties of the proposed estimator in the
finite-sample data setting.

1. Introduction. Random fields play a central role in the study of several real-world phe-
nomena. In many applications, the excursion set of a random field (i.e., the subset of the
observation domain on which the random field exceeds a certain threshold) is observed—or
partially observed—and its geometry can be used to make meaningful inferences about the
underlying field. Such techniques have been used in disciplines such as astrophysics (Gott
et al., 1990; Ade et al., 2016), brain imaging (Worsley et al., 1992), and environmental sci-
ences (Angulo and Madrid, 2010; Lhotka and Kyselỳ, 2015; Frölicher, Fischer and Gruber,
2018). In certain cases, for example in landscape ecology, land-use analysis, and statistical
modeling, understanding the geometry of excursions is of primary importance (McGarigal,
1995; Nagendra, Munroe and Southworth, 2004; Bolin and Lindgren, 2015).

Lipschitz-Killing curvatures (abbreviated LKCs; also known as intrinsic volumes) form a
rich, well-known class of geometric summaries of stratified manifolds. Hadwiger’s charac-
terization theorem states that LKCs form a basis for all rigid motion invariant valuations
of convex bodies, which makes them central in the study of the geometry of random sets
(see, e.g., Schneider and Weil (2008)). From a theoretical point of view, probabilistic and
statistical properties of the LKCs of excursion sets have been widely studied in the last
decades (see, e.g., Adler and Taylor (2007)). For Gaussian random fields, the Euler-Poincaré
characteristic (a well-studied, topological LKC) is studied in Estrade and León (2016) and
Di Bernardino, Estrade and León (2017); the excursion volume (another LKC, better known
as the sojourn time for one-dimensional processes) is studied in Bulinski, Spodarev and Tim-
mermann (2012) and Pham (2013). The reader is also referred to Müller (2017) and Kratz and
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Vadlamani (2018) for a joint analysis of LKCs and to Meschenmoser and Shashkin (2013)
and Shashkin (2013) for functional central limit theorems.
LKCs have recently been used to create several statistical procedures including parametric
inference (Biermé et al., 2019; Di Bernardino and Duval, 2022) and tests of Gaussianity
(Di Bernardino, Estrade and León, 2017), isotropy (Cabaña, 1987; Fournier, 2018; Berzin,
2021), and symmetry of marginal distributions the underlying fields (Abaach, Biermé and
Di Bernardino, 2021). Di Bernardino, Estrade and Rossi (2020) quantifies perturbation via
the LKCs and provides a quantitative non-Gaussian limit theorem of the perturbed excursion
area behaviour. To further emphasise their importance, LKCs of excursions have deep links
to extreme value theory; these insights are summarized in Adler and Taylor (2007) and Azais
and Wschebor (2007). LKCs can thus provide meaningful and parsimonious summaries of
the spatial properties of the studied random fields.

In this manuscript, we focus on the two-dimensional setting—specifically, random fields de-
fined on R2 endowed with the standard Euclidean metric. In this case, there are exactly three
LKCs that can be leveraged to describe excursion sets of random fields in R2: the excursion
volume (i.e., the area), half the value of the perimeter of the excursion set, and the Euler-
Poincaré characteristic (which is equal to the number of connected components minus the
number of holes of the excursion set).

Most of the results presented in the previous literature are based on the empirically in-
accessible knowledge of the continuous random field X on a compact domain T ⊂ R2.
In practice, spatial data are often observed only at sampling locations on a discrete grid
{si,j : i, j ∈N0} ∩ T , and in such cases, the values of the random field at intermediate points
between the sampling locations are not empirically accessible. This regular lattice setting is
popular, for example, in the areas of remote sensing, computer vision, biomedical imaging,
surface meteorology. The datum at the sampling location si,j could conceivably be a floating
point number representing the value of the random field at si,j , however, it may be the case
that this level of precision is not available. One can also consider the more general case where
the accessible information at the sampling location si,j is a boolean value corresponding to
whether the random field evaluated at si,j falls within a predetermined interval—normally
[u,∞) for fixed u ∈ R. In this general case, one obtains a pixelated representation of the
excursion set of X at the fixed level u.

From these sparse-information, binary digital images of excursion sets, we aim in the present
work to infer the second Lipschitz-Killing curvature, i.e., the perimeter of the excursion set,
for a fixed level u. The perimeter is a particularly difficult quantity to estimate, since, in a
digital image, the boundary of an object is comprised of vertical and horizontal pixel edges,
which obviously does not correspond to the object’s true boundary. There exists a number
of algorithms for computing the perimeter of objects in hard segmented (i.e. binary) digital
images, many of which are summarized in Coeurjolly and Klette (2004) with further develop-
ments made in de Vieilleville, Lachaud and Feschet (2007). It seems, however, intractable to
evaluate the performance of these algorithms on excursion sets of two-dimensional random
fields. Biermé and Desolneux (2021) studies how the integrated perimeter of excursion sets
over a set of levels changes when considering discretized versions of the underlying station-
ary, isotropic random fields (i.e., those with translation- and rotation-invariant distributions).
This gives rise to a perimeter estimator for a single level, complete with its own probabilistic
analysis for isotropic random fields (see Biermé and Desolneux (2021) for further details).
The estimator is further analyzed and given explicit covariance formulas in Abaach, Biermé
and Di Bernardino (2021) for the case of complete spatial independence. Although this par-
ticular perimeter estimator is quite natural to study, it suffers from certain defects; namely,
an intrinsic inadequacy for anisotropic random fields.



PERIMETER ESTIMATION OF EXCURSION SETS 3

We introduce a class of estimators for the perimeter of objects in binary digital images, one of
which being particularly suitable for estimating the perimeter of excursion sets of anisotropic
random fields on R2. The elements of the class are uniquely associated to the choice of norm
that is used to measure a piecewise linear approximation of the excursion’s boundary. The
estimator derived from the work of Biermé and Desolneux (2021) arises as the element of
the proposed class associated to the 1-norm. The novel estimator associated to the 2-norm
(the primary focus of this paper) possesses the desirable property of multigrid convergence
(i.e., strong consistency as the pixel size tends to zero; see Theorem 1), which we extend
to convergence in mean (see Proposition 1). These general results hold under weak assump-
tions about the smoothness of the random field that do not include Gaussianity, nor isotropy.
As the domain grows to cover R2, sufficient conditions are given such that the error in the
estimation is of smaller order than the fluctuations of the perimeter—making the limiting dis-
tributions of the perimeter and the estimator identical. In particular, by further supposing that
the underlying random field is affine and strongly mixing (notions recalled in Section 3.2.2),
the estimator associated to the 2-norm is asymptotically normal with the same asymptotic
variance as perimeter itself (see Theorem 2).

The organization of the paper is as follows. Section 2 specifies key notions including: ex-
cursion sets, the hypotheses on the underlying random fields, the regular grid on which the
excursion sets are observed, and the novel class of considered perimeter estimators. In Sec-
tion 3, the statistical properties of the perimeter estimate based on the 2-norm are discussed
for a fixed domain (Section 3.1) and for a sequence of growing domains (Section 3.2). Sec-
tion 4 provides extensive numerical results to support and illustrate the theory developed
in Section 3. Proofs and auxiliary notions are postponed to Section 5. We conclude with a
discussion section. Some supplementary elements are provided in the Appendix Section.

2. Definitions and Notation. Let us begin by introducing some notation. Calligraphic font
is used to denote sets of isolated points in R2. For a set S ⊂ R2, its boundary is denoted
∂(S); its cardinality #(S); and its Lebesgue measure ν(S). We use H1 to denote the one-
dimensional Hausdorff measure, and Ck to denote the space of real-valued functions on R2

with k continuous derivatives. Between the nomenclatures sample paths and trajectories, we
choose to use the former when describing the realizations of a random field.
The following assumption ensures that the random objects that we consider are well defined.

ASSUMPTION 1. The real-valued stationary random field X = {X(s) : s ∈R2} defined on
a probability space (Ω,F ,P) has C2 sample paths.

DEFINITION 1 (Excursion set). Denote the excursion set of X at the level u ∈ R by
EX(u) := {s ∈ R2 :X(s) ≥ u}. For compact T ⊂ R2, we denote the restriction of EX(u)
and ∂

(
EX(u)

)
to T by

EX(T,u) := T ∩EX(u) and E∂
X(T,u) := T ∩ ∂

(
EX(u)

)
respectively. Finally, the quantity of interest in this paper:

P T
X(u) :=H1

(
E∂

X(T,u)
)
.

In Figure 1 (a), aC2 sample path of a Gaussian random fieldX is depicted in a square domain
T with the contours E∂

X(T,u) drawn on the domain for various levels u. In Figure 1 (b) and
(c), EX(u) is represented by the dark regions, for two different levels u.
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(a) (b) (c)

Fig 1: Panel (a): a C2 realization of a stationary, centered, Gaussian random field X with
covariance function rX(h) = exp(−||h||22) is depicted in the square-shaped observation win-
dow T = [−2.5,2.5]2 (generated using the R package RandomFields). Underneath the
sample path, the curves E∂

X(T,u) are drawn for different values of u. Panel (b) (resp. panel
(c)): the dark region EX(T,u) is shown for u= 0 (resp. u= 0.5).

In what follows, let

(1) T := [−t, t]2 ⊂R2,

for fixed t > 0. Before proceeding, it is helpful to specify additional assumptions on the
considered random fields.

ASSUMPTION 2. Let X1 and X2 denote the partial derivatives of X in the two principle
Cartesian directions in R2, and let X11 and X22 denote the corresponding second order par-
tials. For any u ∈R, the following three conditions hold almost surely:

1. X has no critical points in T at the level u.
2. The restriction of X to each face of the square boundary ∂(T ) has no local extrema at the

level u.
3. For k ∈ {1,2}, there are no s ∈ T such that X(s)− u=Xk(s) =Xkk(s) = 0.

Random fields that satisfy Assumptions 1 and 2 are almost surely suitably regular at the
level u in T as defined in Adler and Taylor (2007, Definition 6.2.1) which is useful when
considering the set

(2) YT
X(u) :=

⋃
k=1,2

{s ∈E∂
X(T,u) :Xk(s) = 0}.

Indeed, under Assumptions 1 and 2, it follows directly from Adler and Taylor (2007,
Lemma 6.2.3) that

(3) #
(
YT
X(u)

)
<∞, a.s.

Recall that the reach of a set S ⊂Rd is given by

(4) reach(S) := sup{δ ≥ 0 : ∀y ∈ Sδ ∃!x ∈ S nearest to y},
where Sδ =

{
y ∈Rd : ∃ x ∈ S s.t. ||x−y||2 ≤ δ

}
is the dilation of the set S by a radius δ ≥ 0

(see, e.g., Definition 11 in Thäle (2008)). Equations (3) and (4) will be useful later (see, for
example, Remark 4).

Recall that a curve γ ⊂R2 is connected if it cannot be expressed as the union of two disjoint
nonempty closed sets in R2. For sets B ⊆ A ⊆ R2, B is maximally connected in A if B is
connected and there does not exist a connected C ⊆A such that B ⊂C .
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DEFINITION 2. Let ΓT
X(u) be the set of maximally connected subsets of E∂

X(T,u).

ASSUMPTION 3. The random variables P T
X(u) and #

(
ΓT
X(u)

)
are in L1(Ω) for all u ∈R.

We emphasise that none of the assumptions stated thus far restrict to isotropic random fields.
Therefore, our results are applicable to anisotropic random fields—a crucial point that we
investigate numerically in Section 4.2.

In what follows, we study a novel estimator of the random quantity P T
X(u) for arbitrary but

fixed u ∈R, based only on the random field ZX(·;u) = {ZX(s;u) : s ∈R2} defined by

ZX(s;u) := 1{s∈EX(u)} = 1{X(s)≥u}, s ∈R2.

Note thatZX has dependent Bernoulli margins with parameter P
(
X(0)≥ u

)
. We will assume

that ZX(·;u) is empirically accessible only at sampling locations on a regular grid, one that
is defined in Section 2.1 below.

2.1. Sampling locations on a regular grid.

DEFINITION 3 (Square grid). Fix ϵ > 0, and define a square grid of points in R2 as

(5) G(T,ϵ) :=
{
si,j : i, j ∈N0

}
∩ T, with si,j := (−t+ iϵ,−t+ jϵ) ∈R2,

and with T and t as in Equation (1). Let M be the number of rows (which is consequentially
identical to the number of columns) of G(T,ϵ). Define the index set

I(T,ϵ) := {0, . . . ,M − 1} ⊂N0

and the random matrix ζ(T,ϵ)X (u) with binary elements

(6) ζ
(T,ϵ)
X,i,j(u) := ZX(si,j ;u) = 1{X(si,j)≥u}, i, j ∈ I(T,ϵ).

For m ∈N+, let us define

I(T,ϵ,m) := {i ∈ I(T,ϵ) : i≡ 0 (modm)}.

Notice that G(T,ϵ) = {si,j : i, j ∈ I(T,ϵ)}. We provide an illustration of G(T,ϵ) in Figure 2,
where the elements with indices in I(T,ϵ,m), with m= 2, are highlighted in red. We highlight
that our proposed estimator for P T

X(u) will be based only on the sparse observations ζ(T,ϵ)X,i,j(u)

for i, j ∈ I(T,ϵ) (see Section 2.2).

ϵ

T

s0,0

s0,1

s0,2

s1,0

s1,1

s2,0

Fig 2: An illustration of the quantities defined in Definition 3. The positions of the elements
of G(T,ϵ) in R2 are shown as circles, and the subset {si,j : i, j ∈ I(T,ϵ,m)} with m = 2 is
highlighted in red. Here, M = 6, and the side length of T is

√
ν(T ) = (M − 1)ϵ= 5ϵ.
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REMARK 1. The data matrix ζ(T,ϵ)X (u) in (6) can be represented as a binary digital image
as depicted in Figure 3 (b). In this framework, M corresponds to the pixel density or grid
size of the image (an integer number of pixels per distance of 2t, the side length of T ), and ϵ
corresponds to the pixel width. The quantities are related by |Mϵ− 2t| ≤ ϵ.

(a) (b)

Fig 3: Panel (a): EX(T,0.5), as shown in Figure 1 panel (c), superposed with the elements of
the grid G(T,ϵ) shown as black circles. Here, ϵ≈ 0.32. Panel (b): the binary matrix ζ(T,ϵ)X (0.5),
defined in (6), represented as a binary digital image (dark pixels corresponding to 1, and
white to 0).

2.2. Definition of the estimators. Here, we introduce a class of estimators of P T
X(u) that

use only the information contained in ζ(T,ϵ)X (u), defined in (6). Loosely speaking, ζ(T,ϵ)X (u)
is separated into submatrices, and in each submatrix the length of the line segment that ap-
proximately separates the 1’s from the 0’s is computed. In this way, the estimator obtained
depends on the choice of norm used.

DEFINITION 4 (Perimeter estimator). With || · ||p denoting the p-norm, for p ∈N+, define

(7) P̂
(p)
X (ϵ,m;T,u) := ϵ

∑
a∈I(T,ϵ,m)

∑
b∈I(T,ϵ,m)

∣∣∣∣(NX,h(a, b;u),NX,v(a, b;u)
)∣∣∣∣

p
,

where

NX,h(a, b;u) :=

(a+m−1)∧(M−1)∑
i=a

(b+m−1)∧(M−2)∑
j=b

|ζ(T,ϵ)X,i,j(u)−ζ
(T,ϵ)
X,i,j+1(u)|, a, b ∈ I(T,ϵ,m),

and

NX,v(a, b;u) :=

(a+m−1)∧(M−2)∑
i=a

(b+m−1)∧(M−1)∑
j=b

|ζ(T,ϵ)X,i,j(u)−ζ
(T,ϵ)
X,i+1,j(u)|, a, b ∈ I(T,ϵ,m).

Continuing from the framework discussed in Remark 1,NX,v (resp.NX,h) counts the number
of pixels in a subrectangle—of size at most m×m pixels—of T that differ in shade from the
neighbouring pixel to the right (resp. above). In other words, NX,v (resp. NX,h) provides a
count of significant vertical (resp. horizontal) pixel edges in the subrectangle.
By considering the estimator in (7) with norm p = 1, one recovers the estimator that is ex-
tensively studied in Biermé and Desolneux (2021) and Abaach, Biermé and Di Bernardino
(2021). It counts the number of pixel edges that separate pixels of different color, and rescales
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the count by ϵ. Thus, P̂ (1)
X (ϵ,m;T,u) will not depend onm, so we write P̂ (1)

X (ϵ;T,u) in place
of P̂ (1)

X (ϵ,m;T,u).

Figure 4 illustrates the behavior of the estimator in Equation (7) constructed with two differ-
ent norms, i.e., with p= 1 and p= 2.

(a) (b) (c)

Fig 4: Panel (a): the curve E∂
X(T,u) is shown in relation to the points in G(T,ϵ) in (5). Points

in the dark regions are assigned a value of 1 in the matrix ζ(T,ϵ)X (u), and points in white are
assigned a value of 0. The points outlined in red have indices in I(T,ϵ,m) with m = 2. In
effect, P̂ (1)

X (ϵ;T,u) is calculated by counting the pixel edges shown in green (see panel (b)),
whereas P̂ (2)

X (ϵ,2;T,u) is calculated by summing the lengths of the blue piecewise linear
curves (see panel (c)).

The estimator in (7) with norm p = 2 approximates the length of E∂
X(T,u) by the total

length of a set of line segments that approximate the curve (see Figure 4 (c)). The number
of possible orientations of each line segment grows with m; so does the length of each line
segment, which, loosely speaking, is on the order of mϵ. Therefore, it is not surprising that
P̂

(2)
X (ϵ,m;T,u) depends on m, and our statistical analysis in Section 3 therefore takes place

in the regime where m is large and mϵ is small. In Section 4.4, we provide an adaptive
method to select the hyperparameter m when ϵ is given as a feature of the data.

3. Main Results. The focus of this section is to prove convergence results for the estimator
P̂

(2)
X (ϵ,m;T,u). The statistical analysis is separated into two regimes. In Section 3.1, we

consider the domain T to be fixed and decrease the pixel width while sending m to infinity.
Section 3.2 studies the behaviour of the estimator on a sequence of growing domains. In
particular, in Section 3.2.1, we study the asymptotic relationships between ϵ, m, and the
Lebesgue measure of the sequence of domains, and provide sufficient conditions for good
convergence properties. We conclude with a multivariate Central Limit Theorem in the case
where multiple levels (u1, . . . , uk) are considered simultaneously under the assumption that
the underlying random fieldX is affine and strongly mixing (see Section 3.2.2 for the theorem
and the notions of affinity and strongly mixing).

3.1. On a fixed domain with decreasing pixel width. Here, we are interested in the be-
haviour of the estimator P̂ (2)

X (ϵ,m;T,u) in the case where the domain T = [−t, t]2 is fixed,
and the spacing between the locations of the observations in the matrix ζ(T,ϵ)X (u) tends to 0.
We proceed to show that the resulting perimeter estimate converges almost surely to P T

X(u)
and give the rate of convergence.
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THEOREM 1 (Almost sure consistency). Let (mn)n≥1 be a non-decreasing sequence in N+

tending to ∞ as n→∞. Let (ϵn)n≥1 be a sequence in R+ such that mnϵ
2/3
n converges to a

constant C ∈ R+ and that the vertices of T are contained in G(T,ϵn) for all n ∈ N+. Then,
under Assumptions 1 and 2, for fixed u ∈R, it holds that

gn
∣∣P̂ (2)

X (ϵn,mn;T,u)− P T
X(u)

∣∣ a.s.−→ 0, n→∞,

where (gn)n≥1 is any non-decreasing sequence such that gn = o(mn).

The proof of Theorem 1 is postponed to Section 5.

REMARK 2. Theorem 1 is a statement about the multigrid convergence (see, for instance,
Definition 2 of Coeurjolly and Klette (2004)) of P̂ (2)

X (ϵn,mn;T,u) to P T
X(u) as n→∞ for

almost all sample paths of the random field X . Unsurprisingly, the speed of this convergence
is O(1/mn).

Theorem 1 requires that the vertices of T are in G(T,ϵn) for all n ∈ N+, for example as
depicted in Figure 2. This prevents the possibility of there being long segments of E∂

X(T,u)

that remain close to the border of T so as to not pass between elements of G(T,ϵn). In addition,
it is supposed that the sequence (mn)n≥1 is asymptotically equivalent to (ϵ

−2/3
n )n≥1, which

gives the fastest possible rate of convergence of P̂ (2)
X (ϵn,mn;T,u) to P T

X(u). By relaxing
this condition, we obtain the following corollary.

COROLLARY 1. Under the conditions of Theorem 1, if the requirement that mnϵ
2/3
n → C

is relaxed to mnϵn → 0, it holds that

P̂
(2)
X (ϵn,mn;T,u)

a.s.−→ P T
X(u), n→∞.

The proof is postponed to Section 5. The following proposition shows that convergence in
L1(Ω) holds under slightly stronger assumptions. The proof can also be found in Section 5.

PROPOSITION 1 (Convergence in mean). Let (mn)n≥1 be a non-decreasing sequence in
N+ tending to ∞ as n→ ∞. Let (ϵn)n≥1 be a sequence in R+ such that mnϵn → 0 as
n→ ∞, and that the vertices of T are contained in G(T,ϵn) for all n ∈ N+. Then under
Assumptions 1, 2, and 3,∣∣P̂ (2)

X (ϵn,mn;T,u)− P T
X(u)

∣∣ L1

−→ 0, n→∞,

for any fixed u ∈R.

REMARK 3. It is shown in Proposition 5 of Biermé and Desolneux (2021) that for a random
field X satisfying Assumption 1, if, in addition, X is Gaussian, isotropic, and the supremum
of the first and second order partial derivatives of X in the domain T are in L1(Ω), then

(8) E[P̂ (1)
X (ϵ;T,u)]→ 4

π
E[P T

X(u)],

as ϵ→ 0. Proposition 1 is a stronger result under weaker assumptions on X . With neither
Gaussianity, nor isotropy imposed on X , it holds that

E[P̂ (2)
X (ϵ,m;T,u)]→ E[P T

X(u)],

as ϵ→ 0 and m→∞ under the constraint mϵ→ 0. Thus, the estimator P̂ (2)
X (ϵ,m;T,u) does

not suffer from the asymptotic bias factor of 4/π.
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3.2. On a growing domain with decreasing pixel width. In this section, the performance of
P̂

(2)
X (ϵn,mn;Tn, u) is investigated for sequences (ϵn)n≥1, (mn)n≥1, and (Tn)n≥1 satisfying
ϵn → 0,mn →∞, and Tn ↗R2 as n→∞. To manage the added complexity of the sequence
of growing domains, first define

Tn := {ns : s ∈ T},

such that Tn is a dilation of the fixed domain T = [−t, t]2. The side length of the square
domain Tn is then 2tn. The challenge then becomes determining sufficient asymptotic rela-
tions for the sequences (ϵn)n≥1 and (mn)n≥1 to ensure desirable statistical properties of our
estimator.

3.2.1. Asymptotics for the pixel width. We relate the domain size with an appropriate pixel
width by defining resolution in the context of excursion sets of random fields, inspired by the
notion of optical resolution.

DEFINITION 5 (Resolution). Define the random variable

ΛT
X(u) := min

{
reach

(
EX(T,u)

)
, reach

(
T \EX(u)

)
, reach

(
YT
X(u)

)}
.

For λ ∈ R+, we say that “ EX(u) is resolved by λ in T " whenever the random event {λ <
ΛT
X(u)} occurs.

This makes ΛT
X(u) a random geometrical description of EX(u) in the domain T : ΛT

X(u) is
the supremum of the set of λ ∈R+ such that one can roll a ball of radius λ along both sides
of the curve E∂

X(T,u), and that the distances between points in YT
X(u) are all at least 2λ.

Figure 5 clarifies some of the notions introduced in Definition 5. This definition allows us to
relate the domain size with the pixel width, since the estimation error can be bounded in the
case where EX(u) is resolved by mnϵn in Tn (see the proof of Theorem 1).

EX (u)

T

Fig 5: Illustration of the notions of reach and resolution in Definition 5. The reach of
EX(T,u) is greater than the radius, rgreen, of the small green circles with solid border. The
reach of T \ EX(u) is also greater than rgreen. Moreover, the minimum distance between
points in YT

X(u), highlighted in purple, exceeds 2rgreen. Therefore, EX(u) is resolved by
rgreen in T (see Definition 5). Conversely, it is clear that EX(u) is not resolved in T by the
radius of the larger orange circles with dashed border.

REMARK 4. Under Assumptions 1 and 2, the random sets EX(T,u) and T \EX(u) have
positive reach almost surely, since EX(u) and E−X(u) have a twice differentiable boundary
everywhere in T , almost surely, for all u ∈R. The intersection of these sets with the compact
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rectangle T guarantees that the reach of each is positive (see, e.g., Biermé et al. (2019, p.
541)). The minimum distance between points in YT

X(u) is positive by Equation (3) and the
compactness of T . Therefore, ΛT

X(u) in Definition 5 is almost surely positive for all u ∈ R.
Equivalently, for any u ∈R,

P
(
lim inf
λ→0

{
λ < ΛT

X(u)
})

= 1,

i.e., with probability 1, there exists a sufficiently small positive λ that resolves EX(u) in T .

With the notion of resolution established, we state an important convergence result for the
sequence of growing domains (Tn)n≥1 under general regularity assumptions.

PROPOSITION 2. Let X be a random field satisfying Assumptions 1, 2, and 3. Let (mn)n≥1

be a non-decreasing sequence in N+ such that mn/n→∞. Let (ϵn)n≥1 be a non-increasing
sequence in R+ satisfying ϵn =O

(
m

−3/2
n

)
. Moreover, suppose that 2t is an integer multiple

of ϵn for all n ∈N+, and P
(
mnϵn < ΛTn

X (u)
)
→ 1 as n→∞. Then for any u ∈R,

P̂
(2)
X (ϵn,mn;Tn, u)− P Tn

X (u)√
ν(Tn)

P−→ 0,

as n→∞.

The proof of Proposition 2 is postponed to Section 5.

REMARK 5. One example of a sequence (ϵn)n≥1 satisfying the constraints in Proposition 2
is constructed by letting ϵn be the largest element in the sequence (2t/k)k≥1 such that ϵn ≤
m

−3/2
n and P

(
ΛTn

X (u) ≤ mnϵn
)
≤ 1/n, where ΛTn

X (u) is defined in Definition 5. Such a
sequence (ϵn)n≥1 exists since P(ΛTn

X (u)≤ 0) = 0 for all n ∈ N+ as discussed in Remark 4.
The idea is to have the sequence λn :=mnϵn tend to 0 faster than the quantiles of ΛTn

X (u),
which is difficult to verify analytically. However, in practice, for a given realization ofEX(u),
one can estimate ΛT

X(u) by first estimating the reach of the sets EX(T,u) and T \ EX(u)
(see, e.g., Aamari et al. (2019)) and the vector coordinates of the points in YT

X(u), defined
in (2).

Proposition 2 establishes that for a large class of random fields, as the domain grows and
the grid spacing decreases, the error in the perimeter estimation is negligible compared to
the side length of the domain. Such a comparison is made possible by the conditions on the
sequences (mn)n≥1 and (ϵn)n≥1, since the indexing variable n is proportional to the side
length of Tn.

3.2.2. Asymptotic normality of the perimeter estimator. In this section, we prove a multi-
variate Central Limit Theorem for our estimator as stated in Theorem 2 below, based on the
results from Iribarren (1989). The interested reader is also referred to Cabaña (1987).

First, we recall two important notions regarding the random fields for which the theorem
applies. Recall that a random field X = {X(s) : s ∈ R2} is said to be affine if it is equal in
distribution to {Y (As) : s ∈ R2}, where Y is isotropic, and A is a positive-definite 2 × 2
matrix. Note that it is common in geostatistics literature to use the nomenclature geometric
anisotropy when referring to affine random fields (see, e.g., Chiles and Delfiner (2009)).
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In the case of X affine, a useful expression for E[P T
X(u)], when it exists, is provided in

Cabaña (1987, Section 1.1); that is,

(9) E[P T
X(u)] =

ellipse(λ1, λ2)

2π
E[P T

Y (u)],

with λ1 and λ1 denoting the eigenvalues of A, and ellipse(a,b) denoting the perimeter of an
ellipse with semi-minor and semi-major axes a and b.

Recall that X is said to be strongly mixing, or uniformly mixing, if there exists a function
ψ(ρ) :R+ →R+ tending to 0 as ρ→∞, such that for any two measurable sets S1, S2 ⊂R2

that satisfy inf{||s1 − s2||2 : s1 ∈ S1, s2 ∈ S2}=: ρ > 0, and for any events A1 and A2 in the
the sigma fields generated by {X(s) : s ∈ S1} and {X(s) : s ∈ S2} respectively, it holds that
|P(A1 ∩A2)− P(A1)P(A2)|<ψ(ρ).

Under the assumption that the underlying random field is affine and strongly mixing, we
prove the multivariate central limit theorem for our estimator. The proof of Theorem 2 is
postponed to Section 5.

THEOREM 2 (CLT for multiple levels). Let X be an affine, strongly mixing random field
satisfying Assumptions 1–3. With ∇X denoting the gradient of X , suppose that the joint
density function of (X,∇X) is bounded. Let k ∈ N+ and fix the vector u := (u1, . . . , uk) ∈
Rk such that ui ̸= uj for 1≤ i < j ≤ k. Let the sequences (mn)n≥1 and (ϵn)n≥1 satisfy the
constraints in Proposition 2 for all uj , with j = 1, . . . , k. Let

P̂
(2)
X (ϵn,mn;Tn,u) :=

(
P̂

(2)
X (ϵn,mn;Tn, u1), . . . , P̂

(2)
X (ϵn,mn;Tn, uk)

)
and

P Tn

X (u) :=
(
P Tn

X (u1), . . . , P
Tn

X (uk)
)
.

Then there exists a finite, non-degenerate (i.e., full-rank) covariance matrix Σ(u) such that

(10)
P̂

(2)
X (ϵn,mn;Tn,u)−E[P Tn

X (u)]√
ν(Tn)

d−→Nk

(
0,Σ(u)

)
, n→∞,

with E[P Tn

X (uj)] as in (9) for all uj , j = 1, . . . , k. The elements of Σ(u) are of the form

(11) Σij(u) =

∫
R2

Hs(ui, uj) ds,

where

Hs(ui, uj) =gs(ui, uj)E
[
||∇X(0)||2||∇X(s)||2

∣∣ X(0) = ui,X(s) = uj

]
− f(ui)f(uj)E

[
||∇X(0)||2

∣∣ X(0) = ui

]
E
[
||∇X(s)||2

∣∣ X(s) = uj

]
,

with f denoting the marginal density function of X , and gs, the joint density function of(
X(0),X(s)

)
.

As seen in the proof of Theorem 2, the rescaled limiting Gaussian distribution of our perime-
ter estimator—in our pixelated framework—coincides with that of P Tn

X (u), the true perimeter
in the continuous framework.

Corollary 2, stated below, provides a succinct set of conditions on X that imply the result of
Theorem 2. In particular, the additional assumption of Gaussianity of the underlying random
fields is introduced.
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COROLLARY 2. Suppose that there exists a positive-definite matrix A such that the random
field X is equal in distribution to {Y (As) : s ∈ R2}, for some C2, stationary, isotropic,
centered, Gaussian random field Y with covariance function r(h), h ∈R2. Define

Ψ(s) =max
{
|r(s)|, |r1(s)|, |r2(s)|, |r11(s)|, |r22(s)|, |r12(s)|

}
,

for s ∈R2, where ri := ∂r
∂si

and rij := ∂2r
∂si∂sj

for i, j ∈ {1,2}. Suppose further that Ψ(s)→ 0

as ||s||2 →∞,
∫
R2 |Ψ(s)| ds <∞, and

∫
R2 r(s) ds > 0. Then the result of Theorem 2 holds.

The proof can be found in Section 5. We remark that a vast literature exists on the asymp-
totic distribution of level functionals of Gaussian random fields (see, e.g., Wschebor (1985);
Meschenmoser and Shashkin (2013); Shashkin (2013); Di Bernardino, Estrade and León
(2017); Beliaev, McAuley and Muirhead (2020); Di Bernardino and Duval (2022)), in which
case, the asymptotic variance-covariance matrix in (11) can be written by projecting the
Gaussian functionals of interest onto the Itô-Wiener chaos (the interested reader is referred,
for instance, to Kratz and León (2001); Estrade and León (2016); Müller (2017); Kratz and
Vadlamani (2018); Berzin (2021)).

4. Simulation studies. In this section, we illustrate finite sample performances of our es-
timator P̂ (2)

X (ϵ,m;T,u) on simulated data. More precisely, we wish to showcase the re-
sults of Proposition 1 and Theorem 2. Furthermore, we aim to compare the estimators con-
structed from the norms p = 1 and p = 2 in (7). Our simulation studies are implemented
both for anisotropic (see Section 4.2) and isotropic (see Section 4.3) random fields. In ad-
dition, we provide an adaptive method for choosing the hyperparameter m for the estimator
P̂

(2)
X (ϵ,m;T,u) (see Section 4.4). The random fields used in each simulation are elements of

the class in Example 1 below.

EXAMPLE 1. Let Y be a stationary, isotropic, centered, Gaussian random field with covari-
ance function given by r(h) := exp(−||h||22), h ∈R2.
Let {X(s;σ1, σ2, θ) : s ∈ R2} be a random field equal in distribution to {Y (As) : s ∈ R2},
where

(12) A :=

[
σ1 0
0 σ2

][
cosθ sinθ

− sinθ cosθ

]
,

σ1, σ2 ∈ R+, σ1 ≥ σ2, and θ ∈ [0, π). In this way, X(·;σ1, σ2, θ) is affine with affinity pa-
rameters k = (1− σ22/σ

2
1)

1/2 and θ (see Cabaña (1987)). Notice that X(·;σ1, σ2, θ) is also
Gaussian with covariance function given by rX(h) := exp(−||Ah||22). AlthoughA is not nec-
essarily positive-definite, there exists a unique positive-definite matrix B with eigenvalues σ1
and σ2 such that ||Ah||2 = ||Bh||2 for all h ∈ R2. Note also that σ1 = σ2 if and only if X is
isotropic, in which case, X does not depend on θ.

Throughout Section 4, X(·;σ1, σ2, θ) and Y denote the random fields in Example 1. The
former is sometimes abbreviated as X , and the dependence on σ1, σ2, and θ should be un-
derstood implicitly.

4.1. A proxy for the true perimeter. In what follows, the R package RandomFields is
used to generate realizations of random fields on regular grids. However, when simulating
the random field X(·;σ1, σ2, θ) in this way, it is impossible to infer the exact value of P T

X(u)
for any level u ∈R due to the discretization of the domain T . To overcome this issue, a proxy
is used for the true perimeter. In Appendix B of Biermé and Desolneux (2021), the authors
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introduce an estimator that they show converges to P T
X(u) for any u ∈R. Moreover, the esti-

mator takes as its arguments the values of X , a random field with C2 sample paths, evaluated
on a regular grid, i.e., X(si,j) for i, j ∈ I(T,ϵ)—precisely the output of the simulation from
the RandomFields package. For a pixel width of ϵ, denote this estimator by P̃X(ϵ;T,u).
Notice that P̃X(ϵ;T,u) requires more information than P̂ (2)

X (ϵ,m;T,u). While P̃X has ac-
cess to the value of X evaluated on the regular square tiling G(T,ϵ), defined in (5), P̂ (2)

X only
has access to the binary black-and-white matrix ζ(T,ϵ)X (u), defined in (6).

Convergence of P̃X(ϵn;T,u) to P T
X(u) in L1(Ω) follows from the same arguments that we

use in the proof of our Proposition 1. Therefore, for any sequence (hn)n≥1,

(13)
∣∣hn − P̃X(ϵn;T,u)

∣∣ L1

−→ 0 ⇐⇒ hn
L1

−→ P T
X(u)

as n→∞.

4.2. The anisotropic case. None of the assumptions established thus far prohibit anisotropy.
In fact, all of the results developed in Section 3 are applicable to all of the random fields
parameterized as in Example 1. In Sections 4.2.1, 4.2.2, and 4.2.3, we consider such random
fields that are anisotropic (i.e., parametrized by σ1 ̸= σ2). To avoid confusion, we consistently
choose (σ1, σ2) = (2,0.5).

4.2.1. Mean perimeter estimate as a function of the angle θ. The random fields X in Ex-
ample 1 parametrized by (σ1, σ2) = (2,0.5) and several θ ∈ [0, π2 ] are simulated in the do-
main T = [−2.5,2.5]2, discretized into 256× 256 pixels. With ϵ denoting the resulting pixel
width, the performances of the estimators π

4 P̂
(1)
X (ϵ;T,u), P̂ (2)

X (ϵ,m;T,u) with m = 8, and
P̃X(ϵ;T,u), are compared at the level u= 0.5. For each of the several values of θ chosen in
[0, π2 ], 500 independent replications of X(·; 2,0.5, θ) are simulated in the domain T and the
mean of the estimates of P T

X(0.5) is plotted for each of the three estimators: π
4 P̂

(1)
X (ϵ;T,0.5)

(shown in green), P̂ (2)
X (ϵ,8;T,0.5) (shown in blue), and P̃X(ϵ;T,0.5) (shown in black) in

Figure 6 (c). Notice that E
[
π
4 P̂

(1)
X (ϵ;T,0.5)

]
clearly depends on θ, whereas E

[
P T
X(0.5)

]
(shown in red) does not. This expectation is computed via Equation (9) and the Gaussian
Kinematic Formula in Adler and Taylor (2007, Theorem 15.9.5). As can be seen in Figure 6,
the performance of P̂ (2)

X (ϵ,8;T,0.5) is comparable to that of the proxy P̃X(ϵ;T,0.5) in Sec-
tion 4.1.

4.2.2. Convergence in mean in the anisotropic case. Let ⌊·⌋ denote the floor function. For
n ∈N+, fix the domain T = [−2.5,2.5]2 and let

(14) Mn = ⌊10n3/2⌋, mn = n, and ϵn = 5/(Mn − 1),

so that the constraints in Theorem 1 and Proposition 1 are satisfied. Let X(·; 2,0.5,0) be the
random field in Example 1 associated to (σ1, σ2, θ) = (2,0.5,0). As noted in Remark 1, the
quantity Mn should be interpreted as the pixel density of the discretized domain T , and ϵn
should be understood as the corresponding pixel width. Figure 9 provides two illustrations
of EX(u), with u = 0.5, in the domain T ; one containing M2 ×M2 pixels, and another
containing of M3 ×M3 pixels. In this study, E[P T

X(0.5)] = 21.3 (computed via Equation (9)
and the Gaussian Kinematic Formula in Adler and Taylor (2007, Theorem 15.9.5)).

To illustrate the convergence of P̂ (2)
X (ϵn,mn;T,0.5) to P T

X(0.5) in L1(Ω), the left-hand
side of Equation (13) is shown numerically with hn = P̂

(2)
X (ϵn,mn;T,0.5). Figure 7 shows
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(a) θ = π
8 (b) θ = π

4 (c)

θ θ

Fig 6: Illustration of the effect of anisotropy on the perimeter length estimation. The
anisotropic random field X(·; 2,0.5, θ) is described in Example 1. Here, T = [−2.5,2.5]2

and ϵ = 5/255. Panels (a, b): a realization of EX(T,0.5) shown as the dark region for the
corresponding value of θ. The matrix A, defined in (12), maps the drawn ellipse to a cir-
cle. Panel (c): for several θ ∈ [0, π2 ], 500 independent realizations of X are simulated, and
the mean values of π

4 P̂
(1)
X (ϵ;T,0.5) (green squares), P̂ (2)

X (ϵ,8;T,0.5) (blue circles), and
P̃X(ϵ;T,0.5) (black triangles) are plotted. The mean estimates are shown in comparison
with E

[
P T
X(0.5)

]
= 21.3 (red reference line).

how the mean absolute error (MAE) of the approximation of P̃X(ϵn;T,0.5) (the proxy for
P T
X(0.5); see Section 4.1) by the estimator P̂ (2)

X (ϵn,mn;T,0.5) (shown in blue) approaches
0 as n→ ∞. There is no convergence result for the estimator π

4 P̂
(1)
X (ϵn;T,0.5) (shown in

green) since it is not well-suited for anisotropic random fields.

(a) n= 2 (b) n= 3 (c)

Fig 7: The case of decreasing pixel width with the domain T = [−2.5,2.5]2 fixed. Here,
u = 0.5; Mn, mn, and ϵn are given in (14); and X in Example 1, parametrized by
(σ1, σ2, θ) = (2,0.5,0), is anisotropic. Panel (a): the excursion set (shown as the dark region)
is generated using M2 ×M2 pixels, and the dashed red lines have a spacing of 2ϵ2, where
ϵ2 is the pixel width. Panel (b): the size of the image (measured in pixels) is M3 ×M3, and
the dashed red lines have a spacing of 3ϵ3, where ϵ3 is the pixel width. Panel (c): the approx-
imation of P̃X(ϵn;T,0.5) by π

4 P̂
(1)
X (ϵn;T,0.5) (green squares) and by P̂ (2)

X (ϵn,mn;T,0.5)
(blue circles) is shown for different values of n. For each n, the MAE of the approximations
are calculated from 500 independent replications of the process X .
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4.2.3. Asymptotic normality in the anisotropic case. To illustrate the Central Limit The-
orem for multiple levels (see Theorem 2), we compute P̂ (2)

X (ϵ,m;T,u) in a large domain
T = [−15,15]2 divided into 1024 × 1024 pixels, with m = 8, u = (0,0.25,0.5), and X
as in Example 1 with (σ1, σ2) = (2,0.5) and θ = π

4 . Figure 8 shows how the distribution
of the random vector P̂ (2)

X (ϵ,m;T,u) is close to a 3-variate normal distribution with mean
E[P T

X(u)] = (869,842,767) (computed via Equation (9)).

(a) (b)

Fig 8: An illustration of the asymptotic normality of our estimator for the anisotropic random
field X(·; 2,0.5, π4 ) in Example 1. We simulated 500 independent replications of the vector
P̂

(2)
X (ϵ,m;T,u) with u = (0,0.25,0.5), T = [−15,15]2, m= 8, ϵ= 30/1023. Panel (a): the

margins of P̂ (2)
X (ϵ,m;T,u) − E[P T

X(u)], rescaled using the sample variances, plotted on a
normal qq-plot. Panel (b): the squared Mahalanobis distance of P̂ (2)

X (ϵ,m;T,u) to E[P T
X(u)],

calculated via the sample covariance matrix of P̂ (2)
X (ϵ,m;T,u), plotted against the quantiles

of a χ2(3) random variable with 3 degrees of freedom.

For each component ui of u, we test the null hypothesis that P̂ (2)
X (ϵ,m;T,ui) follows a

Gaussian distribution using the Shapiro-Wilk test. The resulting p-values from the tests are
0.75, 0.17, and 0.43, respectively. Thus, the hypothesis of Gaussianity cannot be rejected at a
significant level for any margin of P̂ (2)

X (ϵ,m;T,u). Using the R package mvnormtest, we
test the null hypothesis that P̂ (2)

X (ϵ,m;T,u) follows a multivariate normal distribution with
a multivariate Shapiro-Wilk test. The test statistic corresponds to a p-value of 0.26, hence,
multivariate normality cannot be rejected at a significant level.

4.3. The isotropic case. In what follows, Y denotes the isotropic random field in Exam-
ple 1. This isotropic case allows for a fair comparison between the estimators π

4 P̂
(1)
Y (ϵ;T,u)

and P̂ (2)
Y (ϵ,m;T,u).

4.3.1. Convergence in mean in the isotropic case. The experiment in Section 4.2.2 is re-
peated for the isotropic random field Y . Figure 9 summarizes the new results. The MAE of
the approximation of P̃Y (ϵn;T,0.5) by P̂ (1)

Y (ϵn;T,0.5) (shown in green) tends to a positive
value, so by (13), π

4 P̂
(1)
Y (ϵn;T,0.5) does not converge to P T

Y (0.5) in L1(Ω), even though
E
[
π
4 P̂

(1)
Y (ϵn;T,0.5)

]
→ E

[
P T
Y (0.5)

]
as n→∞ (see Equation (8)). The interested reader is

referred to Theorem 3 in Biermé and Desolneux (2021). For reference, E[P T
Y (0.5)] = 15.6

(computed via the Gaussian Kinematic Formula in Adler and Taylor (2007, Theorem 15.9.5)).
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(a) n= 2 (b) n= 3 (c)

Fig 9: The case of decreasing pixel width and fixed domain T = [−2.5,2.5]2, where u= 0.5;
Mn, mn, and ϵn are given in (14); and Y is the isotropic random field in Example 1. See the
caption of Figure 7 for a more detailed description of each panel.

4.3.2. Asymptotic normality in the isotropic case. We repeat the experiment in Sec-
tion 4.2.3, which tests the asymptotic normality of our estimator, but now with Y as the
underlying random field. The p-values corresponding to the Gaussianity tests for the levels
u = 0, 0.25, and 0.5 are 0.43, 0.65, and 0.53, respectively. For the multivariate normality
test, the resulting p-value is 0.54. The same diagnostic plots in Section 4.2.3 are provided in
Figure 10 for this isotropic case.

(a) (b)

Fig 10: An illustration of the asymptotic normality of our estimator when considering the
isotropic random field Y in Example 1. We simulated 500 independent replications of the
vector P̂ (2)

Y (ϵ,m;T,u) with u = (0,0.25,0.5), T = [−15,15]2, m= 8, ϵ= 30/1023. See the
caption of Figure 8 for a description of each panel.

4.4. Hyperparameter selection. In practice, sampling locations often have a fixed spacing,
and it is not possible to further decrease the grid spacing in the discretization. In these cases,
the pixel width ϵ is a feature of the data. So, to use P̂ (2)

X (ϵ,m;T,u) (for an arbitrary modelX),
the hyperparameter m must be chosen appropriately. As a rule-of-thumb, empirical studies
suggest that it is reasonable to choose

(15) m=mT
X :=

⌊
Cϵ−2/3

⌋
,
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with

C := 0.42

(
ν(T )

Ncc +Nholes

)1/3

,

where Ncc (resp. Nholes) corresponds to the number of connected components (resp. holes)
of EX(T,u). For a sequence (ϵn)n≥1 tending to 0, the corresponding sequence (mn)n≥1

determined by (15) satisfies the asymptotic relationship required by Theorem 1.

In practice, the quantities Ncc and Nholes can be estimated by considering the sites in G(T,ϵ)

to be either 4-connected or 8-connected, and colouring each site based on its corresponding
value in ζ(T,ϵ)X (u).

Figures 11 and 12 showcase the performance of P̂ (2)
Y (ϵ,mT

Y ;T,0), with mT
Y as in (15), for

two different levels of discretization of the isotropic random field Y in Example 1.

(a) (b) (c)

Fig 11: Illustration of the influence of the hyperparameter m. The mean absolute percentage
error (MAPE) of several perimeter estimators is calculated for 10000 independent replica-
tions of the isotropic, Gaussian random field Y in Example 1, with T = [−10,10]2, u = 0,
and ϵ= 20/511. The proxy P̃Y (ϵ;T,0) is used to represent the true perimeter P T

Y (0) for each
sample path (see Section 4.1). Panel (a): one particular realization of EY (0) is depicted in T .
Shown for scale in the top-left of the image is a line segment with length 30ϵ. Panel (b): the
points plotted in black correspond to the MAPE of P̂ (2)

Y (ϵ,m;T,0) for various values of m.
The green horizontal line (0.36%) corresponds to the MAPE of π

4 P̂
(1)
Y (ϵ;T,0), which obvi-

ously does not depend on m. The red horizontal line (0.13%) corresponds to the MAPE of
P̂

(2)
Y (ϵ,mT

Y ;T,0), with mT
Y as in (15). Panel (c): the values of mT

Y computed from the 10000
independent replications of Y .
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(a) (b) (c)

Fig 12: See the caption of Figure 11 for a description of each panel. In this case,
T = [−2.5,2.5]2 and ϵ = 5/511. The MAPE of π

4 P̂
(1)
Y (ϵ;T,0) is 1.27%, and that of

P̂
(2)
Y (ϵ,mT

Y ;T,0) is 0.22%.

4.5. Behaviour of the perimeter estimator as a function of the level u. Differently from our
previous numerical studies, we illustrate the behaviour of P̂ (2)

Y (ϵ,mT
Y ;T,u) as a function of

the level u in Figure 13, where Y is the isotropic random field in Example 1. The same is
done for an anisotropic field X in Figure 14.

(a) (b)

Fig 13: Illustration of perimeter estimation for several levels u. The isotropic, Gaussian
random field Y in Example 1 is considered on T = [−2.5,2.5]2 with a discretization of
ϵ= 5/511. Panel (a): the sample mean of 1000 independent replications of P̂ (2)

Y (ϵ,mT
Y ;T,u)

plotted in red for several values of u, shown against E[P T
Y (u)] in black (computed via

the Gaussian Kinematic Formula in Adler and Taylor (2007, Theorem 15.9.5)). Panel
(b): the MAE of the approximation of P̃Y (ϵ;T,u) by P̂

(2)
Y (ϵ,mT

Y ;T,u) (red circles) and
π
4 P̂

(1)
Y (ϵ, ;T,u) (green squares).



PERIMETER ESTIMATION OF EXCURSION SETS 19

(a) (b) (c)

Fig 14: The same experiment as depicted in Figure 13, but using the anisotropic, Gaussian
random field X(·; 2,0.5,0) in Example 1. Panel (a): E[P T

X(u)], shown in black, is calculated
via Equation (9) and the Gaussian Kinematic Formula in Adler and Taylor (2007, Theo-
rem 15.9.5). Panel (b): the MAE of the approximation of P̃X(ϵ;T,u) by P̂ (2)

X (ϵ,mT
X ;T,u)

(red circles), π
4 P̂

(1)
X (ϵ, ;T,u) (green squares), and P̂ (1)

X (ϵ, ;T,u) (dark green triangles). Panel
(c): the MAE associated to P̂ (2)

X (ϵ,mT
X ;T,u) shown again on a more appropriate y-axis scale.

5. Proofs. This section provides detailed justifications for the theoretical results stated thus
far. The following definition is used throughout this section.

DEFINITION 6. For s ∈ R2, define the set B(l)
s := [0, l)2 + s, where “ + ” in this context

denotes the Minkowski sum. Let ϵ > 0 and m ∈N+. Define

VT
X(ϵ,m;u) := {si,j ∈ G(T,ϵ) : i, j ∈ I(T,ϵ,m), B(mϵ)

si,j ∩E∂
X(T,u) ̸= ∅}.

The following lemma allows us to bound #
(
VT
X(ϵ,m;u)

)
, which amounts to an upper bound

on the number of nonzero terms in the sum given by Equation (7). See Figure 16 in the
appendix for an illustration that complements Lemma 1.

LEMMA 1. Let X be a random field satisfying Assumption 1. For any ϵ > 0 and m ∈N+,

#
(
VT
X(ϵ,m;u)

)
≤ 4

(P T
X(u)

mϵ
+#

(
ΓT
X(u)

))
, a.s.

PROOF. The squares of side length mϵ in the set B := {B(mϵ)
si,j : i, j ∈ I(T,ϵ,m)} are disjoint

and cover T . For each γ ∈ ΓT
X(u), it is possible to find connected subsets of γ, namely βγ,1,

. . . , βγ,Mγ
, that satisfy

γ =

Mγ⋃
i=1

βγ,i,

where

Mγ :=
⌊H1(γ)

mϵ

⌋
+ 1,

and for all i ∈ {1, . . . ,Mγ},

H1(βγ,i)≤mϵ.
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Each βγ,i can intersect at most 4 elements of B. Since

E∂
X(T,u) =

⋃
γ∈ΓT

X(u)

Mγ⋃
i=1

βγ,i,

it follows that

#
(
VT
X(ϵ,m;u)

)
=#

(
{b ∈ B : b∩E∂

X(T,u) ̸= ∅}
)

≤ 4
∑

γ∈ΓT
X(u)

Mγ ≤ 4
(P T

X(u)

mϵ
+#

(
ΓT
X(u)

))
, a.s.

PROOF OF THEOREM 1. Let ω ∈ Ω be such that ΛT
X(ω)(u), defined in Definition 5, is pos-

itive (note that almost any ω ∈ Ω will suffice, as discussed in Remark 4). There exists
n0 ∈ N+ such that EX(ω)(u) is resolved by mnϵn in T for all n ≥ n0 (see Definition 5).

Fix si,j ∈ VT
X(ω)(ϵn,mn;u) and n ≥ n0. Let γ := B

(mnϵn)
si,j ∩ E∂

X(ω)(T,u). It follows from
our construction that YT

X(ω)(u)∩ γ contains at most one element, since the spacing between

points in YT
X(ω)(u) is larger than the diameter of B(mnϵn)

si,j . It also follows from our construc-
tion that γ is either connected, or the union of two maximally connected subsets. To see this,
note that the planar curvature of γ does not exceed 1/(mn0

ϵn0
) since mn0

ϵn0
is smaller than

the reach of both EX(ω)(T,u) and T \ EX(ω)(u). Therefore, the curve is bounded by the
planar arcs of radius mn0

ϵn0
as shown in Figure 15 (see Dubins (1961)). We aim to bound

the absolute difference between the length of γ and its contribution to P̂ (2)
X(ω)(ϵn,mn;T,u).

To this end, the two cases shown in Figure 15 are considered separately.

(Case 1)

si,j si+1,j

mnϵn

(Case 2)

si,j si+1,j

mnϵn

Fig 15: (Case 1) The curve γ shown in black is bounded by the planar arcs of radius mn0
ϵn0

shown in blue. (Case 2) Here, γ shown in black is not connected, and the only point in
YT
X(ω)(u)∩B

(mnϵn)
si+1,j is highlighted in purple.

Case 1: The curve γ is connected (see the left panel of Figure 15). The closure of γ can
be parametrized by a continuous injective vector function x : [0,1]→ R2. For α ∈ [0,1],
define

(16) TVk(α;si,j) :=

∫ α

0
|x′k(s)| ds, k ∈ {1,2},
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so that TVk(1;si,j) corresponds to the total variation of γ in the kth principle Cartesian
direction of R2. As a consequence of the coarea formula (Adler and Taylor, 2007, Equa-
tion (7.4.15)), the quantity ϵnNX(ω),h(i, j;u) (see Definition 4) is a Riemann sum that
approximates the definite integral TV1(1;si,j). The total error can therefore be bounded
above by

(17)
∣∣ϵnNX(ω),h(i, j;u)−TV1(1;si,j)

∣∣≤ 4ϵn,

as suggested by Figure 17, found in the appendix. Analogously,∣∣ϵnNX(ω),v(i, j;u)−TV2(1;si,j)
∣∣≤ 4ϵn.

Let

(18) l̂n(si,j) := ϵn
∣∣∣∣(NX(ω),v(i, j;u),NX(ω),h(i, j;u)

)∣∣∣∣
2
,

and we achieve the following bound by the triangle inequality

(19)
∣∣∣l̂n(si,j)− ∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2

∣∣∣≤ 4
√
2ϵn.

It is clear that

(20) ||x(1)− x(0)||2 ≤
∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2
,

since the computation of the left-hand side of Equation (20) involves the same integral as
in (16) but without the absolute values. In addition, let

l(α;si,j) :=

∫ α

0
||x′(s)||2 ds

denote the length of x(s) for s ∈ [0, α]. It follows from the definition of the derivative and
the reverse triangle inequality that for all α ∈ (0,1),∣∣∣∣ ∂∂α ∣∣∣∣(TV1(α;si,j),TV2(α;si,j)

)∣∣∣∣
2

∣∣∣∣≤ ∣∣∣∣(x′1(α), x′2(α))∣∣∣∣2 = ∂

∂α
l(α;si,j).

Therefore,

(21)
∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2
≤ l(1;si,j).

Since the curvature of γ is bounded above by the inverse of ΛT
X(ω)(u), we apply a well

known result from Schwartz (see Dubins (1961)) that guarantees that

(22) l(1;si,j)≤ a(si,j),

where a(si,j) is the length of the smallest planar arc with radius mn0
ϵn0

that has endpoints
x(0) and x(1). The Taylor expansion of the sine function shows the existence of K ∈ R+

independent of si,j and n such that

(23)
∣∣∣a(si,j)− ||x(1)− x(0)||2

∣∣∣≤K||x(1)− x(0)||32 ≤K(
√
2mnϵn)

3.

Assembling the bounds demonstrated in Equations (20), (21), and (22), we get

||x(1)− x(0)||2 ≤
∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2
≤ l(1;si,j)≤ a(si,j),

which in combination with (23) implies

(24)
∣∣∣l(1;si,j)− ∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2

∣∣∣≤K(
√
2mnϵn)

3.

Now, combining Equations (24) and (19) by the triangle inequality yields

(25)
∣∣∣l̂n(si,j)− l(1;si,j)

∣∣∣≤K(
√
2mnϵn)

3 + 4
√
2ϵn.
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Case 2: The curve γ has two connected components (see the right panel of Figure 15). Simi-
larly to Case 1, we parametrize the closure of each maximally connected subset of γ with
continuous injective vector functions x : [0,1] → R2 and y : [0,1] → R2. For α ∈ [0,1],
define

TVk(α;si,j) :=

∫ α

0

(
|x′k(s)|+ |y′k(s)|

)
ds, k ∈ {1,2}.

With l̂n(si,j) defined as in (18), Equation (19) holds. Now, consider the curve γ̃ :=

(B
(mnϵn)
si,j ∪ B(mnϵn)

si+1,j ) ∩ E∂
X(ω)(T,u), which is γ in union with the middle section in the

adjacent box B(mnϵn)
si+1,j (where we have assumed, without loss of generality, that the “mid-

dle section” is in the box to the right). It is clear that γ̃ is connected, so its closure can be
parametrized by the continuous injective vector function z : [0,1]→R2. Define

T̃Vk(α;si,j) :=

∫ α

0
|z′k(s)| ds, k ∈ {1,2}

and

l̃(α;si,j) :=

∫ α

0
||z′(s)||2 ds.

By the same arguments that led to Equation (24), it holds that

(26) 0≤ l̃(1;si,j)−
∣∣∣∣(T̃V1(1;si,j), T̃V2(1;si,j)

)∣∣∣∣
2
≤K(

√
2mnϵn)

3,

where K ∈R+ is independent of si,j and n. Let

l(1;si,j) :=

∫ 1

0

(
||x′(s)||2 + ||y′(s)||2

)
ds

be the total length of γ. Then l̃(1;si,j) = l(1;si,j) + l(1;si+1,j), and∣∣∣∣(T̃V1(1;si,j), T̃V2(1;si,j)
)∣∣∣∣

2
≤

∣∣∣∣(TV1(1;si,j),TV2(1;si,j)
)∣∣∣∣

2

+
∣∣∣∣(TV1(1;si+1,j),TV2(1;si+1,j)

)∣∣∣∣
2

by the triangle inequality. Therefore, (26) can be written as(
l(1;si,j)−

∣∣∣∣(TV1(1;si,j),TV2(1;si,j)
)∣∣∣∣

2

)
+(

l(1;si+1,j)−
∣∣∣∣(TV1(1;si+1,j),TV2(1;si+1,j)

)∣∣∣∣
2

)
≤K(

√
2mnϵn)

3.(27)

By the arguments in Case 1 that led to Equation (21), it follows that

l(1;si+1,j)≥
∣∣∣∣(TV1(1;si+1,j),TV2(1;si+1,j)

)∣∣∣∣
2
,

and by the same arguments,

l(1;si,j)≥
∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2
.

Therefore, both (24) and (25) follow from Equation (27).

Following from Equation (25), we have∣∣P̂ (2)
X(ω)(ϵn,mn;T,u)− P T

X(ω)(u)
∣∣= ∣∣∣∣ ∑

si,j∈VT
X(ω)(ϵn,mn;u)

(
l̂n(si,j)− l(1;si,j)

)∣∣∣∣
≤

∑
si,j∈VT

X(ω)(ϵn,mn;u)

∣∣l̂n(si,j)− l(1;si,j)
∣∣

≤#
(
VT
X(ω)(ϵn,mn;u)

)
2
√
2(Km3

nϵ
3
n + 2ϵn).
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By Lemma 1,

gn
∣∣P̂ (2)

X(ω)(ϵn,mn;T,u)− P T
X(ω)(u)

∣∣
≤ 8

√
2gn

(P T
X(ω)(u)

mnϵn
+#

(
ΓT
X(ω)(u)

))(
Km3

nϵ
3
n + 2ϵn

)
= 8

√
2
gn
mn

(
P T
X(ω)(u) +mnϵn#

(
ΓT
X(ω)(u)

))(
Km3

nϵ
2
n + 2

)
,(28)

which tends to 0 as n→∞. This convergence holds for almost every ω ∈Ω, since ΛT
X(u) is

almost surely positive.

PROOF OF COROLLARY 1. The last expression in Equation (28) tends to 0 under the relaxed
constraint on (ϵn)n≥1 if gn ≡ 1 for all n ∈N+.

PROOF OF PROPOSITION 1. If a sequence is uniformly integrable, convergence in L1(Ω) is
equivalent to convergence in probability. Therefore, by Corollary 1, it suffices to show that(
P̂

(2)
X (ϵn,mn;T,u)

)
n≥1

is bounded above by an element of L1(Ω) uniformly in n. Note that
for each n≥ 1,

P̂
(2)
X (ϵn,mn;T,u)≤ P̂

(1)
X (ϵn;T,u), a.s.

since the 2-norm is inferior to the 1-norm. Now, consider the quantity

Gn =#
(
{s ∈ G(T,ϵn) :B(ϵn)

s ∩E∂
X(T,u) ̸= ∅}

)
,

which represents the number of pixels of side length ϵn that the curve E∂
X(T,u) intersects.

Almost surely, P̂ (1)
X (ϵn;T,u) is at most 4ϵn (the perimeter of one pixel) times Gn. By the

same arguments used to prove Lemma 1, we have for all n≥ 1,

Gn ≤ 4
(P T

X(u)

ϵn
+#

(
ΓT
X(u)

))
, a.s.

and

P̂
(2)
X (ϵn,mn;T,u)≤ P̂

(1)
X (ϵn;T,u)≤ 4ϵnGn ≤ 16

(
P T
X(u) + sup

n
(ϵn)#

(
ΓT
X(u)

))
, a.s.

which is in L1(Ω) by Assumption 3.

PROOF OF PROPOSITION 2. Let

Wn :=
P̂

(2)
X (ϵn,mn;Tn, u)− P Tn

X (u)√
ν(Tn)

.

Given that EX(u) is resolved by mnϵn in Tn for fixed n ∈ N+, Equation (28) holds with
gn = 1/

√
ν(Tn), implying

|Wn| ≤
8

mn

√
2

ν(Tn)

(
P Tn

X (u) +mnϵn#
(
ΓTn

X (u)
))(

Km3
nϵ

2
n + 2

)
=

8
√

2ν(Tn)

mn

(
P Tn

X (u)

ν(Tn)
+mnϵn

#
(
ΓTn

X (u)
)

ν(Tn)

)(
Km3

nϵ
2
n + 2

)
,(29)
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where K ∈R+ is independent of n. Note that for any n ∈N+,

Tn =

n2⋃
i=1

T (i)
n ,

for a family of sets (T (i)
n )i=1,...,n2 , each of which being congruent to T1. Then

E
[
P Tn

X (u)

ν(Tn)

]
= E

[∑n2

i=1P
T (i)
n

X (u)

n2ν(T1)

]
= E

[
P T1

X (u)

ν(T1)

]
<∞

and

E
[
#
(
ΓTn

X (u)
)

ν(Tn)

]
≤ E

[∑n2

i=1#
(
Γ
T (i)
n

X (u)
)

n2ν(T1)

]
= E

[
#
(
ΓT1

X (u)
)

ν(T1)

]
<∞,

by Assumption 3. This implies that both

limsup
n→∞

P Tn

X (u)

ν(Tn)
and limsup

n→∞

#
(
ΓTn

X (u)
)

ν(Tn)

are finite almost surely. Therefore, the final expression in (29) tends to 0 almost surely, since√
ν(Tn)/mn → 0 by assumption. Now, denote the random event An := {mnϵn < ΛTn

X (u)},
and let AC

n denote its complement. Since P(An)→ 1 as n→∞ by assumption, it holds that
for any η > 0,

P(|Wn|> η)≤ P(|Wn|> η | An)P(An) + P(AC
n )→ 0

as n→∞.

PROOF OF THEOREM 2. The Central Limit Theorem in Iribarren (1989) for P Tn

X (u) at the
fixed level u ∈ R is implied by the constraints on X . The result is proven for a single level
u, but as noted in the Discussion of Kratz and Vadlamani (2018) and in Shashkin (2013), the
Cramér-Wald device can be used to extend the arguments to the multivariate setting.
The Central Limit Theorem for the perimeter is then written as follows. For any u ∈ Rk

satisfying the given constraints, it holds that

(30)
P Tn

X (u)−E[P Tn

X (u)]√
ν(Tn)

d−→Nk

(
0,Σ(u)

)
, n→∞.

Equation (10) is obtained by combining Equation (30), Proposition 2, and Slutsky’s theorem.
By writing P T

X(u) =
∫
T ||∇X(s)||2δ(X(s)− u)ds, with δ(·) denoting the dirac delta func-

tion (see, for instance, Proposition 6.13 in Azais and Wschebor (2007)), it is easily checked
that for u1, u2 ∈R,

E[P T
X(u1)] = ν(T )f(u1)E

[
||∇X(s)||2

∣∣ X(s) = u1
]

and

E[P T
X(u1)P

T
X(u2)] =

∫
T

∫
T
gs2−s1(u1, u2)

×E
[
||∇X(s1)||2||∇X(s2)||2

∣∣ X(s1) = u1,X(s2) = u2
]
ds1ds2,

where f denotes the marginal density function of X , and gs, the joint density function of(
X(0),X(s)

)
. Hence the result in (11).
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PROOF OF COROLLARY 2. Under the given constraints, it is clear that Assumption 1 is sat-
isfied. Also following from the hypotheses, the gradient ofX and the Hessian matrix ofX are
independent with Gaussian entries, and thus the conditions of Theorem 11.3.3 of Adler and
Taylor (2007) are satisfied. Therefore, X is almost surely suitably regular (Adler and Taylor,
2007, Definition 6.2.1) over bounded rectangles, which implies the conditions of Assump-
tion 2. The expectations E

[
P Tn

X (u)
]

and E
[
#
(
ΓTn

X (u)
)]

are shown to be finite in Adler and
Taylor (2007, Theorem 13.2.1) and Beliaev, McAuley and Muirhead (2020) respectively, im-
plying the conditions of Assumption 3. Therefore, Proposition 2 holds, which in combination
with the Central Limit Theorem in Berzin (2021, Theorem 4.7) yields the result.

Discussion. We have shown for a large class of random fields that P̂ (p)
X (ϵ,m;T,u) with p=

2 is a consistent and asymptotically normal estimator for P T
X(u). Our numerous simulation

studies showcase the various cases where it is advantageous to use the norm p= 2 as opposed
to p = 1. An obvious example is when X is not known to be isotropic. For p > 2, we do
not expect P̂ (p)

X (ϵ,m;T,u) to have desirable properties, since there is a bias introduced for
certain orientations of the curve E∂

X(T,u). There is a natural extension of P̂ (p)
X (ϵ,m;T,u) to

random fields defined on Rd, with d > 2, and it is plausible that analogous results hold in this
multivariate setting. Results such as the central limit theorems in Shashkin (2013), Müller
(2017), and Kratz and Vadlamani (2018), which hold in arbitrary dimension, will be useful
to study the Gaussian fluctuations of our estimate.
Future work might also investigate the rate at which ΛT

X(u) tends weakly to 0 as T ↗ R2,
which would provide a more explicit constraint on the rate at which ϵn → 0 in Proposition 2.
Furthermore, we plan to study how the proposed perimeter estimate can be used to build a
test statistics for isotropy testing based on the length of level curves of smooth random fields.
This future analyse could enrich the existing literature of isotropy testing based on functionals
of level curves (see, for instance, Wschebor (1985); Cabaña (1987); Fournier (2018); Berzin
(2021)).

In this paper, we have focused on perimeter estimator properties in the case of a single
replicate of the random field with one or several fixed levels u. Properties of estimators of
Lipschitz–Killing curvatures, including the perimeter, could further be studied when the level
u tends towards the upper endpoint of the marginal distribution of X . This setting is relevant
for extreme-value theory of stochastic processes (de Haan and Ferreira, 2006, Chapters 9–
10). Jointly with decreasing pixel size and increasing domain T , we would further have to
control the rate at which the perimeter tends towards zero as u increases, where ultimately
the excursion set is almost surely empty. The combination of the results obtained for our
perimeter estimator with asymptotics of the exact perimeter for increasing level u (Adler and
Taylor, 2007) could be useful to establish asymptotic results and appropriate estimators for
the perimeter and for other excursion-set geometrical features at extreme thresholds.
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APPENDIX

Here, we provide two figures; one to complement Lemma 1, and the other, Equation (17).

Fig 16: An illustration to aid Lemma 1. With m = 2, the curve E∂
X(T,u) shown in black

intersects 13 elements of {B(mϵ)
si,j : i, j ∈ I(T,ϵ,m)}, which are highlighted in blue. Thus,

#
(
VT
X(ϵ,m;u)

)
= 13.
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1

2

mnϵn

ϵn

si,j

Fig 17: The approximation of TV1(1, si,j) in (16) by ϵnNX(ω),h(i, j;u) (see Definition 4).

The black curve γ is shown in B(mnϵn)
si,j , which we outline in dashed red. The definite integral

TV1(1, si,j) is represented by the grey area, and is approximated by ϵnNX(ω),h(i, j;u) = 7ϵn,
the area under the blue curve. The absolute error of this approximation is clearly bounded
above by 4ϵn as stated in Equation (17). Highlighted in purple is a point in YT

X(ω)(u) (see
Equation (2)).
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