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We are interested in creating methods to provide informative summaries
of random fields through the geometry of their excursion sets. To this end, we
introduce an estimator for the perimeter of excursion sets of random fields.
The parsimonious estimator acts on binary digital images of the excursions
and computes the length of a piecewise linear approximation of the bound-
ary. Consistency and asymptotic normality results are obtained for decreasing
pixel size and growing domain, without the restrictive assumption of isotropy
of the underlying random field. We conduct several numerical studies that
suggest our asymptotic results are well approximated in the finite data set-
ting.

1. Introduction. Random fields play a central role in the study of many real-world phe-
nomena. In many applications, the excursion set of a random field (i.e., the subset of the
domain on which the random field exceeds a certain threshold) is observed—or partially
observed—and its geometry can be used to make meaningful inferences about the underlying
field. Such techniques have been used in disciplines such as astrophysics, brain imaging, and
environmental sciences (Gott et al., 1990; Worsley et al., 1992; Angulo and Madrid, 2010;
Lhotka and Kyselỳ, 2015; Frölicher, Fischer and Gruber, 2018). In some cases, for example
in landscape ecology, land-use analysis, and statistical modeling, understanding the geome-
try of excursions is one of the primary objectives (McGarigal, 1995; Nagendra, Munroe and
Southworth, 2004; Bolin and Lindgren, 2015).
Geometric summaries of excursion sets, namely Lipschitz-Killing (LK) curvatures, have re-
cently been used for parametric inference (Biermé et al., 2019; Di Bernardino and Duval,
2020) and to test for Gaussianity, isotropy, and marginal symmetry of the underlying fields
(Cabaña, 1987; Di Bernardino, Estrade and León, 2017; Berzin, 2017; Abaach, Biermé and
Di Bernardino, 2021). Making use of the LK curvatures of excursion sets for statistical in-
ference has the practical advantage that very little information about the underlying field is
needed to compute these geometric summaries. To further emphasise their importance, LK
curvatures of excursions have deep links to extreme value theory; these insights are summa-
rized in Adler and Taylor (2007) and Azais and Wschebor (2007). LK curvatures can thus
provide meaningful and parsimonious summaries of spatial properties of the studied random
fields.
In the two-dimensional setting, there are three LK curvatures that can be leveraged to describe
excursions of random fields in R2; that is, the area, half the value of the perimeter, and the
Euler-Poincaré characteristic. In practice, data are often provided over regular spatial grids,
making the perimeter a particularly difficult quantity to estimate. There exists a number of
algorithms for computing the perimeter of objects in digital images, many of which are sum-
marised in Coeurjolly and Klette (2004) with further developments made in de Vieilleville,
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Lachaud and Feschet (2007). It seems, however, intractable to evaluate the performance of
these algorithms on random objects, in particular, excursion sets of two-dimensional random
fields. Biermé and Desolneux (2021) studies how the integrated perimeter of excursion sets
over a set of levels changes when considering discretized versions of the underlying station-
ary, isotropic random fields (i.e., those with translation- and rotation-invariant distributions).
This gives rise to a perimeter estimator complete with its own probabilistic analysis that
Abaach, Biermé and Di Bernardino (2021) expands on.
We introduce a class of estimators for the perimeter of objects in binary digital images, suit-
able for estimating the perimeter of excursion sets of random fields on R2. The elements
of the class are uniquely associated to the choice of norm that is used to measure a piece-
wise linear approximation of the excursion’s boundary. The estimator derived from the work
of Biermé and Desolneux (2021) arises as the element of the proposed class associated to
the 1-norm. The novel estimator associated to the 2-norm (the primary focus of this paper)
possesses the desirable property of so-called multigrid convergence (i.e., strong consistency
as the pixel size tends to zero; see Theorem 1), which we extend to convergence in mean
(see Proposition 1). These are general results that hold without the restrictive assumptions of
isotropy or Gaussianity of the underlying random field. In the Gaussian framework, we show
that the estimator built on the 2-norm is asymptotically normal with the same asymptotic
variance as the perimeter itself (see Theorem 2). This known variance can be written in terms
of a polynomial chaos expansion (see Theorem 3 in Kratz and León (2001)).
The organisation of the paper is as follows. Section 2 specifies the notion of an excursion
set, the assumptions on the underlying random fields, the regular grid on which the excursion
sets are observed, and the novel class of perimeter estimators. In Section 3, the statistical
properties of the perimeter estimator based on the 2-norm are discussed. Section 4 provides
extensive numerical results to support and illustrate the theory developed in Section 3. A
useful theoretical result is included in Section 4.3, which provides an explicit formula for
the expected perimeter of the excursion sets of some geometrically anisotropic random fields
(see Proposition 3). Proofs and auxiliary notions are postponed to Section 5.

2. Definitions and Notation. Let us begin by introducing some notation. Calligraphic font
is used to denote sets of isolated points in R2. For a set S ⊂ R2, its boundary is denoted
∂(S); its cardinality #(S); and its Lebesgue measure ν(S). We use H1 to denote the one-
dimensional Hausdorff measure, and Ck to denote the space of functions on R2 with k con-
tinuous derivatives. Between the nomenclatures sample paths and trajectories, we choose to
use the former when describing the realizations of a random field.
The following assumption ensures that the random objects that we consider are well defined.

ASSUMPTION 1. The real-valued stationary random field X = {X(s) : s ∈R2} defined on
a probability space (Ω,F ,P) has C2 sample paths.

DEFINITION 1 (Excursion set). Denote the excursion set of X at the level u ∈ R by
EX(u) := {s ∈ R2 :X(s) ≥ u}. For compact T ⊂ R2, we denote the restriction of EX(u)
and ∂

(
EX(u)

)
to T by

EX(T,u) := T ∩EX(u) and E∂
X(T,u) := T ∩ ∂

(
EX(u)

)
respectively. Finally, the quantity of interest in this paper is

P T
X(u) :=H1

(
E∂

X(T,u)
)
.
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In Figure 1 (a), a sample path of an isotropic, Gaussian random fieldX is depicted in a square
domain T with the contours E∂

X(T,u) drawn on the domain for various levels u. In Figure 1
(b) and (c), EX(u) is represented by the dark regions, for two different levels u.

(a) (b) (c)

Fig 1: (a) A realization of a stationary random field X with standard Gaussian margins
and covariance function R(h) = exp(−||h||22) is depicted in the square-shaped observation
window T = [−2.5,2.5]2 (generated using the R package RandomFields). Underneath
the field are the curves E∂

X(T,u) for different values of u. (b) (resp. (c)) The dark region
EX(T,u) is shown for u= 0 (resp. u= 0.5).

In what follows, let

(1) T := [−t, t]2 ⊂R2,

for fixed t > 0. Before proceeding, it is helpful to specify additional assumptions on the
considered random fields.

ASSUMPTION 2. Let X1 and X2 denote the partial derivatives of X in the two principle
Cartesian directions in R2, and let X11 and X22 denote the corresponding second order par-
tials. For any u ∈R, the following three conditions hold almost surely:

1. X has no critical points in T at the level u.
2. The restriction of X to each face of the square boundary ∂(T ) has no local extrema at the

level u.
3. For k ∈ {1,2}, there are no s ∈ T such that X(s)− u=Xk(s) =Xkk(s) = 0.

The random fields that satisfy Assumptions 1 and 2 are almost surely suitably regular at the
level u in T as defined in Adler and Taylor (2007, Definition 6.2.1) which is useful when
considering the set

(2) YT
X(u) :=

⋃
k=1,2

{s ∈E∂
X(T,u) :Xk(s) = 0}.

Indeed, under Assumptions 1 and 2, it follows directly from Adler and Taylor (2007,
Lemma 6.2.3) that

(3) #
(
YT
X(u)

)
<∞ a.s.

Recall that the reach of a set S ⊂Rd is given by

(4) reach(S) := sup{δ ≥ 0 : ∀y ∈ Sδ ∃!x ∈ S nearest to y},
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where Sδ =
{
y ∈Rd : ∃ x ∈ S s.t. ||x−y||2 ≤ δ

}
is the dilation of the set S by a radius δ ≥ 0

(see, e.g., Definition 11 in Thäle (2008)). Equations (3) and (4) will be useful later (see, for
example, Remark 4).
Recall that a curve γ ⊂R2 is connected if it cannot be expressed as the union of two disjoint
nonempty closed sets in R2. For sets B ⊆ A ⊆ R2, B is maximally connected in A if B is
connected and there does not exist a connected C ⊆A such that B ⊂C .

DEFINITION 2. Let ΓT
X(u) be the set of maximally connected subsets of E∂

X(T,u).

ASSUMPTION 3. The random variables P T
X(u) and #

(
ΓT
X(u)

)
are in L1(Ω) for all u ∈R.

We emphasise that none of the assumptions introduced in this section restrict to isotropic
random fields. Therefore, our results are applicable to anisotropic random fields—a crucial
point that we investigate in Section 4.3.
In what follows, we study a novel estimator of the random quantity P T

X(u) for arbitrary but
fixed u ∈R, based only on the random field ZX(·;u) = {ZX(s;u) : s ∈R2} defined by

ZX(s;u) := 1{s∈EX(u)} = 1{X(s)≥u}, s ∈R2.

Note that ZX has dependent Bernoulli margins with parameter P
(
X(0)≥ u

)
.

2.1. Sampling locations on a regular grid. The process ZX is evaluated at sampling loca-
tions on the regular grid defined as follows.

DEFINITION 3 (Square grid). Fix ϵ > 0, and define a square grid of points in R2 as

(5) G(T,ϵ) :=
{
si,j : i, j ∈N0

}
∩ T,

with

si,j := (−t+ iϵ,−t+ jϵ) ∈R2,

and with T and t as in Equation (1). Let M be the number of rows (which is identical to the
number of columns) of G(T,ϵ). Define the index set

I(T,ϵ) := {0, . . . ,M − 1} ⊂N0

and the random matrix ζ(T,ϵ)X (u) with binary elements

(6) ζ
(T,ϵ)
X,i,j(u) := ZX(si,j ;u) = 1{X(si,j)≥u}, i, j ∈ I(T,ϵ).

For m ∈N+, let us define

I(T,ϵ,m) := {i ∈ I(T,ϵ) : i≡ 0 (modm)}.

Notice that G(T,ϵ) = {si,j : i, j ∈ I(T,ϵ)}. We provide an illustration of G(T,ϵ) in Figure 2,
where the elements with indices in I(T,ϵ,m) are highlighted in red.
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ϵ

T

s0,0

s0,1

s0,2

s1,0

s1,1

s2,0

Fig 2: An illustration of the quantities defined in Definition 3. The positions of the elements
of G(T,ϵ) in R2 are shown as circles, and the subset {si,j : i, j ∈ I(T,ϵ,m)} with m = 2 is
highlighted in red. Here, M = 6, and the side length of T is

√
ν(T ) = (M − 1)ϵ= 5ϵ.

REMARK 1. The data matrix ζ(T,ϵ)X (u) in (6) can be represented as a binary digital image
as depicted in Figure 3 (b). In this framework, M corresponds to the pixel density or grid
size of the image (an integer number of pixels per distance of 2t, the side length of T ), and ϵ
corresponds to the pixel width. The quantities are related by |Mϵ− 2t| ≤ ϵ.

(a) (b)

Fig 3: (a) EX(T,0.5), as shown in Figure 1 (c), superposed with the elements of the grid
G(T,ϵ) shown as black circles. Here, ϵ ≈ 0.32. (b) The binary matrix ζ

(T,ϵ)
X (0.5), defined

in (6), represented as a binary digital image (dark pixels corresponding to 1, and white to 0).

2.2. Definition of the estimators. Here, we introduce a class of estimators of P T
X(u) that use

only the information contained in ζ(T,ϵ)X (u), defined in (6). We separate ζ(T,ϵ)X (u) into subma-
trices, and in each submatrix we compute the length of the line segment that approximately
separates the 1’s from the 0’s. In this way, the estimator obtained depends on the choice of
norm used.

DEFINITION 4 (Perimeter estimator). With || · ||p denoting the p-norm, define
(7)
P̂

(p)
X (ϵ,m;T,u) := ϵ

∑
a∈I(T,ϵ,m)

∑
b∈I(T,ϵ,m)

∣∣∣∣(NX,h(a, b;u),NX,v(a, b;u)
)∣∣∣∣

p
, p ∈N+,
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where

NX,h(a, b;u) :=

a+m−1∧M−1∑
i=a

b+m−1∧M−2∑
j=b

|ζ(T,ϵ)X,i,j(u)− ζ
(T,ϵ)
X,i,j+1(u)|, a, b ∈ I(T,ϵ,m),

and

NX,v(a, b;u) :=

a+m−1∧M−2∑
i=a

b+m−1∧M−1∑
j=b

|ζ(T,ϵ)X,i,j(u)− ζ
(T,ϵ)
X,i+1,j(u)|, a, b ∈ I(T,ϵ,m).

Figure 4 illustrates the behavior of the estimator in Equation (7) constructed with two differ-
ent norms, i.e., with p= 1 and p= 2.

(a) (b) (c)

Fig 4: (a) The curve E∂
X(T,u) is shown in relation to the points in G(T,ϵ). Points in the

dark regions are assigned a value of 1 in the matrix ζ(T,ϵ)X (u), and points in white are as-
signed a value of 0. The points outlined in red have indices in I(T,ϵ,m) with m= 2. In effect,
P̂

(1)
X (ϵ,2;T,u) is calculated by counting the pixel edges shown in green (see panel (b)),

whereas P̂ (2)
X (ϵ,2;T,u) is calculated by summing the lengths of the blue piecewise linear

curves (see panel (c)).

Continuing from the framework discussed in Remark 1,NX,v (resp.NX,h) counts the number
of pixels in a subrectangle—of size at most m×m pixels—of T that differ in shade from the
neighbouring pixel to the right (resp. above). In other words, NX,v (resp. NX,h) provides a
count of significant vertical (resp. horizontal) pixel edges in the subrectangle.
By considering the estimator in (7) with norm p = 1, one recovers the estimator that is
extensively studied in Biermé and Desolneux (2021). It counts the number of pixel edges
that separate pixels of different color, and rescales the count by ϵ (see Figure 4 (b)). Thus,
P̂

(1)
X (ϵ,m;T,u) will not depend on m, so we write P̂ (1)

X (ϵ;T,u) in place of P̂ (1)
X (ϵ,m;T,u).

The estimator in (7) with norm p = 2 approximates the length of E∂
X(T,u) by the total

length of a set of line segments that approximate the curve (see Figure 4 (c)). The hyperpa-
rameter m is related to the number of line segments used to approximate E∂

X(T,u), and so
P̂

(2)
X (ϵ,m;T,u) depends on m. We provide an adaptive method to select this hyperparameter

in Section 4.4.

3. Main Results. The focus of this section is to prove convergence results for the esti-
mator P̂ (2)

X (ϵ,m;T,u) as ϵ→ 0 and m→ ∞. The analysis is separated into two regimes.
In Section 3.1, we consider the domain T to be fixed and decrease the pixel width. In Sec-
tion 3.2, we study the behaviour of the estimator on a sequence of domains that grow to cover
R2 and conclude with a multivariate central limit theorem for the case when multiple levels
(u1, . . . , uk) are considered simultaneously.



STATISTICAL PROPERTIES OF A PERIMETER ESTIMATOR 7

3.1. On a fixed domain with decreasing pixel width. Here, we are interested in the be-
haviour of the estimator P̂ (2)

X (ϵ,m;T,u) in the case where the domain T = [−t, t]2 is fixed,
and the spacing between the locations of the observations in the matrix ζ(T,ϵ)X (u) tends to 0.
We proceed to show that the resulting perimeter estimate converges almost surely to P T

X(u)
and give the rate of convergence.

THEOREM 1 (Almost sure consistency). Let (mn)n≥1 be a non-decreasing sequence in N+

tending to ∞ as n→∞. Let (ϵn)n≥1 be a sequence in R+ such that mnϵ
2/3
n converges to a

constant C ∈ R+ and that the vertices of T are contained in G(T,ϵn) for all n ∈ N+. Then,
under Assumptions 1 and 2, for fixed u ∈R, it holds that

gn
∣∣P̂ (2)

X (ϵn,mn;T,u)− P T
X(u)

∣∣ a.s.−→ 0, n→∞,

where (gn)n≥1 is any non-decreasing sequence such that gn = o(mn).

The proof of Theorem 1 is postponed to Section 5.

REMARK 2. Theorem 1 is a statement about the multigrid convergence (see for instance
Definition 2 of Coeurjolly and Klette (2004)) of P̂ (2)

X (ϵn,mn;T,u) to P T
X(u) as n→∞ for

almost all sample paths of the random field X . Unsurprisingly, the speed of this convergence
is O(1/mn).

Theorem 1 requires that the vertices of T are in G(T,ϵn) for all n ∈ N+, for example as
depicted in Figure 2. This prevents the possibility of there being long segments of E∂

X(T,u)

that remain close to the border of T so as to not pass between elements of G(T,ϵn). In addition,
it is supposed that the sequence (mn)n≥1 is asymptotically equivalent to (ϵ

−2/3
n )n≥1, which

gives the fastest possible rate of convergence of P̂ (2)
X (ϵn,mn;T,u) to P T

X(u). By relaxing
this condition, we obtain the following corollary.

COROLLARY 1. Under the conditions of Theorem 1, if the requirement that mnϵ
2/3
n → C

is relaxed to mnϵn → 0, it holds that

P̂
(2)
X (ϵn,mn;T,u)

a.s.−→ P T
X(u), n→∞.

The proof is postponed to Section 5. The following proposition shows that convergence in
L1(Ω) holds under slightly stronger assumptions. The proof can also be found in Section 5.

PROPOSITION 1. Let (mn)n≥1 be a non-decreasing sequence in N+ tending to ∞ as n→
∞. Let (ϵn)n≥1 be a sequence in R+ such that mnϵn → 0 as n→∞, and that the vertices of
T are contained in G(T,ϵn) for all n ∈N+. Then under Assumptions 1, 2, and 3,∣∣P̂ (2)

X (ϵn,mn;T,u)− P T
X(u)

∣∣ L1

−→ 0, n→∞,

for any fixed u ∈R.

REMARK 3. It is shown in Proposition 5 of Biermé and Desolneux (2021) that for a random
field X satisfying Assumption 1, if, in addition, X is Gaussian, isotropic, and the supremum
of the first and second order partial derivatives of X in the domain T are in L1(Ω), then

(8) E[P̂ (1)
X (ϵ;T,u)]→ 4

π
E[P T

X(u)],
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as ϵ→ 0. Proposition 1 is a stronger result under weaker assumptions on X . It implies that

E[P̂ (2)
X (ϵ,m;T,u)]→ E[P T

X(u)],

as ϵ→ 0 and m→∞ under the constraint mϵ→ 0. Thus, the estimator P̂ (2)
X (ϵ,m;T,u) does

not suffer from the bias factor of 4/π.

3.2. On a growing domain with decreasing pixel width. Consider the sequence (Tn)n≥1,
where

Tn := {ns : s ∈ T}

is a dilation of the fixed domain T = [−t, t]2. The side length of the square domain Tn is then
2tn. To prove the consistency of our perimeter estimator when the domain grows to cover
R2, we define resolution in the context of excursion sets of random fields, inspired by the
notion of optical resolution.

DEFINITION 5 (Resolution). Define the random variable

ΛT
X(u) := min

{
reach

(
EX(T,u)

)
, reach

(
T \EX(u)

)
, reach

(
YT
X(u)

)}
.

For λ ∈ R+, we say that “ EX(u) is resolved by λ in T " whenever the random event {λ <
ΛT
X(u)} occurs.

This makes ΛT
X(u) a random geometrical description of EX(u) in the domain T : ΛT

X(u) is
the supremum of the set of λ ∈R+ such that one can roll a ball of radius λ along both sides
of the curve E∂

X(T,u), and that the distances between points in YT
X(u) are all at least 2λ.

Figure 5 clarifies some of the notions introduced in Definition 5.

EX (u)

T

Fig 5: Illustration of the notions of reach and resolution. The reach ofEX(T,u) is greater than
the radius, rgreen, of the small green circles with solid border. The reach of T \EX(u) is also
greater than rgreen. Moreover, the minimum distance between points in YT

X(u), highlighted
in purple, exceeds 2rgreen. Therefore, EX(u) is resolved by rgreen in T (see Definition 5).
Conversely, it is clear that EX(u) is not resolved in T by the radius of the larger orange
circles with dashed border.

REMARK 4. Under Assumptions 1 and 2, the random sets EX(T,u) and T \EX(u) have
positive reach almost surely, since EX(u) and E−X(u) are almost surely C2 submanifolds of
R2 for all u ∈R. The intersection of these sets with the compact rectangle T guarantees that
the reach of each is positive (Biermé et al., 2019, p. 541). The minimum distance between
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points in YT
X(u) is positive by Equation (3) and the compactness of T . Therefore, ΛT

X(u)
(see Definition 5) is almost surely positive for all u ∈R. It follows that for any u ∈R,

P
(
lim inf
λ→0

{
λ < ΛT

X(u)
})

= 1,

i.e., with probability 1, there exists a sufficiently small positive λ that resolves EX(u) in T .

Now that we have defined a number of important quantities for a large class of random fields,
we strengthen our hypotheses to the Gaussian framework, and make the following assumption
on the random field X .

ASSUMPTION 4 (Kratz and Vadlamani (2018)). Suppose that X is a stationary Gaus-
sian random field with zero-mean, unit-variance, and C3 sample paths. Define the random
field Y := (X,X1,X2,X11,X22,X12) with values in R6, whose components are the par-
tial derivatives of X as indicated by the subscripts. Denote the covariance function of Y
by R(h) :=

(
rij(h)

)
1≤i,j≤6

, with rij(h) = Cov
(
Yi(0), Yj(h)

)
for h ∈ R2. We require that

max1≤i,j≤6

∣∣rij(h)∣∣ can be bounded above everywhere on R2 by an integrable function ψ
which satisfies ψ(h)→ 0, as ||h||2 →∞. Finally, assume that for any h ∈R2, the covariance
matrix R(h) has full rank.

LEMMA 1. Assumption 4 implies that Assumptions 1, 2, and 3 are all satisfied.

PROPOSITION 2. Let X be a random field satisfying Assumption 4. Let (mn)n≥1 be a non-
decreasing sequence in N+ such thatmn/n→∞. Let (ϵn)n≥1 be a non-increasing sequence
in R+ satisfying ϵn =O

(
m

−3/2
n

)
. Moreover, suppose that 2t is an integer multiple of ϵn for

all n ∈N+, and P
(
mnϵn <ΛTn

X (u)
)
→ 1 as n→∞. Then for any u ∈R,

P̂
(2)
X (ϵn,mn;Tn, u)− P Tn

X (u)√
ν(Tn)

P−→ 0,

as n→∞.

The proofs of Lemma 1 and Proposition 2 are postponed to Section 5.

REMARK 5. One example of a sequence (ϵn)n≥1 satisfying the constraints in Proposition 2
is constructed by letting ϵn be the largest element in the sequence (2t/k)k≥1 such that ϵn ≤
m

−3/2
n and P

(
ΛTn

X (u) ≤ mnϵn
)
≤ 1/n, where ΛTn

X (u) is defined in Definition 5. Such a
sequence (ϵn)n≥1 exists since P(ΛTn

X (u)≤ 0) = 0 for all n ∈ N+ as discussed in Remark 4.
The idea is to have the sequence λn :=mnϵn tend to 0 faster than the quantiles of ΛTn

X (u),
which is difficult to verify analytically. However, in practice, for a given realization ofEX(u),
one can estimate ΛT

X(u) by first estimating the reach of the sets EX(T,u) and T \ EX(u)
(see, e.g., Aamari et al. (2019)) and the vector coordinates of the points in YT

X(u), defined
in (2).

By leveraging Proposition 2, we prove the multivariate central limit theorem for our estimator
as stated in Theorem 2.

THEOREM 2 (CLT for multiple levels). Let X be a random field satisfying Assumption 4.
Let k ∈ N+ and fix the vector u := (u1, . . . , uk) ∈ Rk such that ui ̸= uj for 1 ≤ i < j ≤ k.



10

Let the sequences (mn)n≥1 and (ϵn)n≥1 satisfy the constraints detailed in Proposition 2 for
all uj , where j = 1, . . . , k. If we define

P̂
(2)
X (ϵn,mn;Tn,u) :=

(
P̂

(2)
X (ϵn,mn;Tn, u1), . . . , P̂

(2)
X (ϵn,mn;Tn, uk)

)
and

P Tn

X (u) :=
(
P Tn

X (u1), . . . , P
Tn

X (uk)
)
,

then there exists a finite, non-degenerate (i.e., full-rank) covariance matrix Σ(u) such that

P̂
(2)
X (ϵn,mn;Tn,u)−E[P Tn

X (u)]√
ν(Tn)

d−→Nk

(
0,Σ(u)

)
, n→∞.

The appropriately rescaled limiting distribution of P Tn

X (u) also has covariance matrix Σ(u),
which is discussed in Kratz and León (2001). The proof of Theorem 2 is postponed to Sec-
tion 5.

4. Simulation studies. In this section, we illustrate finite sample performances of our esti-
mator P̂ (2)

X (ϵ,m;T,u) on simulated data. Namely, we wish to showcase the results of Propo-
sition 1 and Theorem 2, and to illustrate the adaptability of the estimator to anisotropic ran-
dom fields.

4.1. Convergence in mean in the isotropic case. Firstly, let us consider the following exam-
ple.

EXAMPLE 1. LetX be a stationary, isotropic, Gaussian random field on R2 with zero-mean
and unit-variance. The covariance function ofX is given byR(h) = exp(−||h||22) for h ∈R2.

We use the R package RandomFields to generate such a random field at the sampling
locations in G(T,ϵ), with T = [−2.5,2.5]2. Let ⌊·⌋ denote the floor function. For n ∈N+, let

(9) Mn = ⌊10n3/2⌋, mn = n, and ϵn = 5/Mn.

As noted in Remark 1, the quantity Mn should be interpreted as the pixel density of the
discretized domain T , and ϵn should be understood as the corresponding pixel width. Figure 6
provides two illustrations of EX(u), with u= 0.5 in the domain T ; one containing M2×M2

pixels, and another containing of M3 ×M3 pixels.

We wish to show numerically that P̂ (2)
X (ϵn,mn;T,0.5)

L1

−→ P T
X(0.5) as n→ ∞. However,

there is no way of accessing P T
X(ω)(0.5) for any realisation X(ω), so we use a proxy for

P T
X(ω)(0.5) to measure the performance of of our estimator. In Appendix B of Biermé and

Desolneux (2021), the authors introduce an estimator that they show converges to P T
X(u)

for any u ∈ R. For a pixel width of ϵ, denote this estimator by P̃X(ϵ;T,u). Convergence of
P̃X(ϵn;T,u) to P T

X(u) in L1(Ω) follows from the same arguments that we use in the proof
of our Proposition 1. Therefore, for any sequence (hn)n≥1,

(10)
∣∣hn − P̃X(ϵn;T,u)

∣∣ L1

−→ 0 ⇐⇒ hn
L1

−→ P T
X(u)

as n→∞. The estimator P̃X(ϵ;T,u) takes as its arguments the values of X evaluated on
a regular grid, which is precisely the output of the simulation from the RandomFields
package. Therefore, we are in a position to illustrate the left-hand side of Equation (10)
numerically with hn = P̂

(2)
X (ϵn,mn;T,u).
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Figure 6 shows how the mean absolute error (MAE) of the approximation of P̃X(ϵn;T,0.5)

(the proxy for P T
X(0.5)) by the estimator P̂ (2)

X (ϵn,mn;T,0.5) (shown in blue) approaches 0
as n→∞. The MAE of the approximation of P̃X(ϵn;T,0.5) by P̂ (1)

X (ϵn;T,0.5) (shown in
green) tends to a positive value, so by (10), π

4 P̂
(1)
X (ϵn;T,0.5) does not converge to P T

X(0.5) in
L1(Ω) (the interested reader is referred for instance to Theorem 3 in Biermé and Desolneux
(2021)), even though E

[
π
4 P̂

(1)
X (ϵn;T,0.5)

]
→ E

[
P T
X(0.5)

]
as n→∞ (see Equation (8)).

(a) n= 2 (b) n= 3 (c)

Fig 6: Independent realizations of EX(0.5) shown in T = [−2.5,2.5]2, where X is given by
Example 1 and Mn, mn, and ϵn are given in (9). (a) The excursion set (shown as the dark
region) is generated using M2 ×M2 pixels, and the dashed red lines have a spacing of 2ϵ2,
where ϵ2 is the pixel width. (b) Here, the size of the image (measured in pixels) is M3 ×M3,
and the dashed red lines have a spacing of 3ϵ3, where ϵ3 is the pixel width. (c) The approx-
imation of P̃X(ϵn;T,0.5) by π

4 P̂
(1)
X (ϵn;T,0.5) (green squares) and by P̂ (2)

X (ϵn,mn;T,0.5)
(blue circles) for different values of n. For each n, the MAE of the approximations are calcu-
lated from 500 independent replications of the process X . For reference, E[P T

X(0.5)] = 15.6
(computed via Adler and Taylor (2007, Theorem 15.9.5)).

4.2. Central limit theorem in the isotropic Gaussian case. To illustrate Theorem 2, we com-
pute P̂ (2)

X (ϵ,m;T,u) in a large domain T = [−15,15]2 divided into 1024× 1024 pixels, with
m= 8 and u = (0,0.25,0.5). Again, we consider the random field X from Example 1. Fig-
ure 7 shows how the distribution of the random vector P̂ (2)

X (ϵ,m;T,u) is close to a 3-variate
normal distribution with mean E[P T

X(u)] = (636,617,562) (computed via Adler and Taylor
(2007, Theorem 15.9.5)).
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(a) (b)

Fig 7: Illustration of asymptotic normality. We simulated 500 independent replications of
the vector P̂ (2)

X (ϵ,m;T,u). (a) The margins of P̂ (2)
X (ϵ,m;T,u)− E[P T

X(u)], rescaled using
the sample variances, plotted on a normal qq-plot. (b) The squared Mahalanobis distance of
P̂

(2)
X (ϵ,m;T,u) to E[P T

X(u)], calculated via the sample covariance matrix of P̂ (2)
X (ϵ,m;T,u),

plotted against the quantiles of a χ2(3) random variable with 3 degrees of freedom.

For each component ui of u, we test the null hypothesis that P̂ (2)
X (ϵ,m;T,ui) follows a

Gaussian distribution using a Shapiro-Wilk test. The resulting p-values from the tests are
0.43, 0.65, and 0.53 respectively. Thus, the hypothesis of Gaussianity cannot be rejected
for any margin of P̂ (2)

X (ϵ,m;T,u). Using the R package mvnormtest, we test the null
hypothesis that P̂ (2)

X (ϵ,m;T,u) follows a multivariate normal distribution with a multivariate
Shapiro-Wilk test. The test statistic corresponds to a p-value of 0.54, hence, multivariate
normality cannot be rejected.

4.3. Convergence in mean in the anisotropic case. Assumptions 1, 2, and 3 do not restrict
anisotropy. Therefore, Proposition 1 holds for anisotropic random fields. In the simulation
studies that follow, it will be useful to have the theoretical value of E[P T

X(u)], which is com-
puted for X in a particular class of anisotropic random fields exhibiting so-called geometric
anisotropy.

PROPOSITION 3. Let X be a stationary, Gaussian random field defined on R2, with zero-
mean, unit-variance, and covariance function R(h) = exp(−||Ah||22), where A is a 2 × 2
non-singular matrix and h ∈R2. Without loss of generality, let

A=

[
σ1 cosθ σ1 sinθ
−σ2 sinθ σ2 cosθ

]
,

so that σ1 > 0 and σ2 > 0 correspond to the singular values of A, and θ ∈ [0, π) is an angle
of rotation. Fix T = [−t, t]2, where t ∈R+. Then,

E[P T
X(u)] =

√
2

π
t2 ellipse(σ1, σ2) e

−u2/2,

for all u ∈R, where ellipse(σ1, σ2) is the perimeter of an ellipse with semi-minor and semi-
major axes σ1 and σ2.

The proof of Proposition 3 can be found in Section 5. Let us specify the anisotropic fields
used in this simulation study.
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EXAMPLE 2. Let X(·;θ) be a stationary random field with centered Gaussian margins, and
covariance function given by Rθ(h) := exp(−||Aθh||22) for h ∈R2, where

(11) Aθ :=

[
2 0
0 0.5

][
cosθ sinθ

− sinθ cosθ

]
.

We use the R package RandomFields to generate these random fields in T = [−2.5,2.5]2

on a rectangular grid of size 256 × 256 pixels. With ϵ denoting the resulting pixel width,
we wish to compare the performances of the estimators π

4 P̂
(1)
X(·;θ)(ϵ;T,u), P̂

(2)
X(·;θ)(ϵ,m;T,u)

with m= 8, and P̃X(·;θ)(ϵ;T,u), for u= 0.5.
For each value of θ that is tested in [0, π2 ], 500 independent replications of X are simulated
in the domain T and the mean of the estimates of P T

X(·;θ)(0.5) is plotted for each of the

three estimators π
4 P̂

(1)
X(·;θ)(ϵ;T,0.5) (shown in green), P̂ (2)

X(·;θ)(ϵ,8;T,0.5) (shown in blue),

and P̃X(·;θ)(ϵ;T,0.5) (shown in black) in Figure 8 (c). Notice that E
[
π
4 P̂

(1)
X(·;θ)(ϵ;T,0.5)

]
clearly depends on θ, whereas E

[
P T
X(·;θ)(0.5)

]
(shown in red) does not, by Proposition 3.

The performance of P̂ (2)
X(·;θ)(ϵ,8;T,0.5) is comparable to that of P̃X(·;θ)(ϵ;T,0.5), which is

interesting since the the latter estimator has access to the values of X(·;θ) evaluated on the
square grid G(T,ϵ), defined in (5); the former only has access to the binary matrix ζ(T,ϵ)X(·;θ)(0.5),
defined in (6).

(a) θ = π
8 (b) θ = π

4 (c)

θ θ

Fig 8: Illustration of the effect of anisotropy on estimation. The anisotropic random field
X(·;θ) is described in Example 2. Here, T = [−2.5,2.5]2 and ϵ= 5/256. (a, b) A realization
of EX(·;θ)(T,0.5) shown as the dark region. The matrix Aθ , defined in (11), maps the drawn
ellipse to a circle. (c) For several θ ∈ [0, π2 ], 500 independent realizations of X(·;θ) are sim-
ulated, and the mean values of π

4 P̂
(1)
X(·;θ)(ϵ;T,0.5) (green squares), P̂ (2)

X(·;θ)(ϵ,8;T,0.5) (blue

circles), and P̃X(·;θ)(ϵ;T,0.5) (black triangles) are plotted. The mean estimates are shown in
comparison with E

[
P T
X(·;θ)(0.5)

]
= 21.3 (red reference line, computed via Proposition 3).

In addition, we repeat the experiment in Section 4.1 for the random field X(·;θ) given in
Example 2. The results of the simulation study are summarised in Figure 9.
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Fig 9: For the anisotropic random field X(·;θ) in Example 2 with θ = 0, P̃X(·;0)(ϵn;T,0.5)

is approximated by π
4 P̂

(1)
X(·;0)(ϵn;T,0.5) (green squares) and by P̂ (2)

X(·;0)(ϵn,mn;T,0.5) (blue
circles). Here, T = [−2.5,2.5]2 and Mn, mn, and ϵn are given in (9). For each n, the MAE of
the approximations are calculated from 500 independent replications of the process X(·; 0).
In this simulation study, E[P T

X(·;0)(0.5)] = 21.3 (computed via Proposition 3).

4.4. Hyperparameter selection. In practice, sampling locations often have a fixed spacing,
and it is not possible to further decrease the grid spacing in the discretization. In these cases,
the pixel width ϵ is a feature of the data, and so to use P̂ (2)

X (ϵ,m;T,u), the hyperparameter
m must be chosen appropriately. As a rule-of-thumb, empirical studies suggest that it is
reasonable to choose

(12) m=mT
X :=

⌊
Cϵ−2/3

⌋
,

with

C :=

(
min

{
ν
(
EX(T,u)

)
, ν
(
T \EX(u)

)}
Ncc +Nholes

)1/2

,

where Ncc (resp. Nholes) corresponds to the number of connected components (resp. holes)
of EX(T,u). For a sequence (ϵn)n≥1 tending to 0, the corresponding sequence (mn)n≥1

determined by (12) satisfies the asymptotic relationship required by Theorem 1.

REMARK 6. In practice, ν
(
EX(T,u)

)
and ν

(
T \EX(u)

)
can be approximated by the num-

ber of 1’s and the number of 0’s in ζ(T,ϵ)X (u), rescaled by a factor of ϵ2. The quantities Ncc

and Nholes can be estimated by considering the sites in G(T,ϵ) to be either 4-connected or
8-connected, and colouring each site based on its corresponding value in ζ(T,ϵ)X (u).

Figures 10 and 11 showcase the performance of P̂ (2)
X (ϵ,mT

X ;T,0), with mT
X as in (12), for

two different levels of discretization of the random field in Example 1.
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(a) (b) (c)

Fig 10: Illustration of the influence of the hyperparameter m. The mean absolute percentage
error (MAPE) of several perimeter estimators is calculated for 10000 independent replica-
tions of the isotropic, Gaussian random field X in Example 1, with T = [−10,10]2, u = 0,
and ϵ = 20/512. The proxy P̃X(ϵ;T,0) is used to represent the true perimeter P T

X(0) for
each sample path. (a) One particular realisation of EX(0) is depicted in T . Shown for scale
in the top-left of the image is a line segment with length 30ϵ. (b) The points plotted in black
correspond to the MAPE of P̂ (2)

X (ϵ,m;T,0) for various values of m. The green horizontal
line (0.36%) corresponds to the MAPE of π

4 P̂
(1)
X (ϵ;T,0), which obviously does not depend

on m. The red horizontal line (0.22%) corresponds to the MAPE of P̂ (2)
X (ϵ,mT

X ;T,0), with
mT

X as in (12). (c) The values of mT
X computed from the 10000 independent replications of

X .

(a) (b) (c)

Fig 11: See Figure 10 for a description of the figures. In this case, T = [−2.5,2.5]2 and
ϵ= 5/512. The MAPE of π

4 P̂
(1)
X (ϵ;T,0) is 1.27%, and that of P̂ (2)

X (ϵ,mT
X ;T,0) is 0.19%.

4.5. Behaviour of the perimeter estimator as a function of the level u. Dfferently from our
previous numerical studies, we illustrate the behaviour of P̂ (2)

X (ϵ,mT
X ;T,u) as a function of

the level u in Figures 12 and 13.
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(a) (b)

Fig 12: Illustration of perimeter estimation for multiple levels. The isotropic, Gaussian
random field X in Example 1 is considered on T = [−2.5,2.5]2 with a discretization of
ϵ= 5/512. (a) The sample mean of 1000 independent replications of P̂ (2)

X (ϵ,mT
X ;T,u) plot-

ted in red for several values of u, shown against E[P T
X(u)] in black (computed via Adler

and Taylor (2007, Theorem 15.9.5)). (b) The MAE of the approximation of P̃X(ϵ;T,u) by
P̂

(2)
X (ϵ,mT

X ;T,u) (red circles) and π
4 P̂

(1)
X (ϵ, ;T,u) (green squares).

(a) (b) (c)

Fig 13: The same experiment as depicted in Figure 12, but using the anisotropic, Gaussian
random field X :=X(·; 0) in Example 2. (a) Now, E[P T

X(u)], shown in black, is calculated
via Proposition 3. (b) The MAE of the approximation of P̃X(ϵ;T,u) by P̂ (2)

X (ϵ,mT
X ;T,u)

(red circles), π
4 P̂

(1)
X (ϵ, ;T,u) (green squares), and P̂ (1)

X (ϵ, ;T,u) (dark green triangles). (c)
The MAE associated to P̂ (2)

X (ϵ,mT
X ;T,u) shown again on a more appropriate scale.

5. Proofs. This section provides a detailed justification for the theoretical results stated
thus far. The following definition is used throughout this section.

DEFINITION 6. For s ∈ R2, define the set B(l)
s := [0, l)2 + s, where “ + ” in this context

denotes the Minkowski sum. Let ϵ > 0 and m ∈N+. Define

VT
X(ϵ,m;u) := {si,j ∈ G(T,ϵ) : i, j ∈ I(T,ϵ,m), B(mϵ)

si,j ∩E∂
X(T,u) ̸= ∅}.

The following lemma allows us to bound #
(
VT
X(ϵ,m;u)

)
, which amounts to an upper bound

on the number of nonzero terms in the sum given by Equation (7). See Figure 15 in the
appendix for an illustration that complements Lemma 2.
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LEMMA 2. Let X be a random field satisfying Assumption 1. For any ϵ > 0 and m ∈N+,

#
(
VT
X(ϵ,m;u)

)
≤ 4
(P T

X(u)

mϵ
+#

(
ΓT
X(u)

))
, a.s.

PROOF. The squares of side length mϵ in the set B := {B(mϵ)
si,j : i, j ∈ I(T,ϵ,m)} are disjoint

and cover T . For each γ ∈ ΓT
X(u), it is possible to find connected subsets of γ, namely βγ,1,

. . . , βγ,Mγ
, that satisfy

γ =

Mγ⋃
i=1

βγ,i,

where

Mγ :=
⌊H1(γ)

mϵ

⌋
+ 1,

and for all i ∈ {1, . . . ,Mγ},

H1(βγ,i)≤mϵ.

Each βγ,i can intersect at most 4 elements of B. Since

E∂
X(T,u) =

⋃
γ∈ΓT

X(u)

Mγ⋃
i=1

βγ,i,

it follows that

#
(
VT
X(ϵ,m;u)

)
=#

(
{b ∈ B : b∩E∂

X(T,u) ̸= ∅}
)

≤ 4
∑

γ∈ΓT
X(u)

Mγ ≤ 4
(P T

X(u)

mϵ
+#

(
ΓT
X(u)

))
, a.s.

PROOF OF THEOREM 1. Let ω ∈ Ω be such that ΛT
X(ω)(u), defined in Definition 5, is pos-

itive (note that almost any ω ∈ Ω will suffice, as discussed in Remark 4). There exists
n0 ∈ N+ such that EX(ω)(u) is resolved by mnϵn in T for all n ≥ n0 (see Definition 5).

Fix si,j ∈ VT
X(ω)(ϵn,mn;u) and n ≥ n0. Let γ := B

(mnϵn)
si,j ∩ E∂

X(ω)(T,u). It follows from
our construction that YT

X(ω)(u)∩ γ contains at most one element, since the spacing between

points in YT
X(ω)(u) is larger than the diameter of B(mnϵn)

si,j . It also follows from our construc-
tion that γ is either connected, or the union of two maximally connected subsets. To see this,
note that the planar curvature of γ does not exceed 1/(mn0

ϵn0
) since mn0

ϵn0
is smaller than

the reach of both EX(ω)(T,u) and T \ EX(ω)(u). Therefore, the curve is bounded by the
planar arcs of radius mn0

ϵn0
as shown in Figure 14 (see Dubins (1961)). We aim to bound

the absolute difference between the length of γ and its contribution to P̂ (2)
X(ω)(ϵn,mn;T,u).

To this end, the two cases are shown in Figure 14 separately.
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(Case 1)

si,j si+1,j

mnϵn

(Case 2)

si,j si+1,j

mnϵn

Fig 14: (Case 1) The curve γ shown in black is bounded by the planar arcs of radius mn0
ϵn0

shown in blue. (Case 2) Here, γ shown in black is not connected, and the only point in
YT
X(ω)(u)∩B

(mnϵn)
si+1,j is highlighted in purple.

Case 1: The curve γ is connected (see the left panel of Figure 14). The closure of γ can be
parameterized by a continuous injective vector function x : [0,1] → R2. For α ∈ [0,1],
define

(13) TVk(α;si,j) :=

∫ α

0
|x′k(s)| ds, k ∈ {1,2},

so that TVk(1;si,j) corresponds to the total variation of γ in the kth principle Cartesian
direction of R2. As a consequence of the coarea formula (Adler and Taylor, 2007, Equa-
tion (7.4.15)), the quantity ϵnNX(ω),h(i, j;u) (see Definition 4) is a Riemann sum that
approximates the definite integral TV1(1;si,j). The total error can therefore be bounded
above by

(14)
∣∣ϵnNX(ω),h(i, j;u)−TV1(1;si,j)

∣∣≤ 4ϵn,

as suggested by Figure 16, found in the appendix. Analogously,∣∣ϵnNX(ω),v(i, j;u)−TV2(1;si,j)
∣∣≤ 4ϵn.

Let

(15) l̂n(si,j) := ϵn
∣∣∣∣(NX(ω),v(i, j;u),NX(ω),h(i, j;u)

)∣∣∣∣
2
,

and we achieve the following bound by the triangle inequality

(16)
∣∣∣l̂n(si,j)− ∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2

∣∣∣≤ 4
√
2ϵn.

It is clear that

(17) ||x(1)− x(0)||2 ≤
∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2
,

since the computation of the left-hand side of Equation (17) involves the same integral as
in (13) but without the absolute values. In addition, let

l(α;si,j) :=

∫ α

0
||x′(s)||2 ds

denote the length of x(s) for s ∈ [0, α]. It follows from the definition of the derivative and
the reverse triangle inequality that for all α ∈ (0,1),∣∣∣∣ ∂∂α ∣∣∣∣(TV1(α;si,j),TV2(α;si,j)

)∣∣∣∣
2

∣∣∣∣≤ ∣∣∣∣(x′1(α), x′2(α))∣∣∣∣2 = ∂

∂α
l(α;si,j).
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Therefore,

(18)
∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2
≤ l(1;si,j).

Since the curvature of γ is bounded above by the inverse of ΛT
X(ω)(u), we apply a well

known result from Schwartz (see Dubins (1961)) that guarantees that

(19) l(1;si,j)≤ a(si,j),

where a(si,j) is the length of the smallest planar arc with radius mn0
ϵn0

that has endpoints
x(0) and x(1). The Taylor expansion of the sine function shows the existence of K ∈ R+

independent of si,j and n such that

(20)
∣∣∣a(si,j)− ||x(1)− x(0)||2

∣∣∣≤K||x(1)− x(0)||32 ≤K(
√
2mnϵn)

3.

Assembling the bounds demonstrated in Equations (17), (18), and (19), we get

||x(1)− x(0)||2 ≤
∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2
≤ l(1;si,j)≤ a(si,j),

which in combination with (20) implies

(21)
∣∣∣l(1;si,j)− ∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2

∣∣∣≤K(
√
2mnϵn)

3.

Now, combining Equations (21) and (16) by the triangle inequality yields

(22)
∣∣∣l̂n(si,j)− l(1;si,j)

∣∣∣≤K(
√
2mnϵn)

3 + 4
√
2ϵn.

Case 2: The curve γ has two connected components (see the right panel of Figure 14). Simi-
larly to Case 1, we parameterize the closure of each maximally connected subset of γ with
continuous injective vector functions x : [0,1] → R2 and y : [0,1] → R2. For α ∈ [0,1],
define

TVk(α;si,j) :=

∫ α

0

(
|x′k(s)|+ |y′k(s)|

)
ds, k ∈ {1,2}.

With l̂n(si,j) defined as in (15), Equation (16) holds. Now, consider the curve γ̃ :=

(B
(mnϵn)
si,j ∪ B(mnϵn)

si+1,j ) ∩ E∂
X(ω)(T,u), which is γ in union with the middle section in the

adjacent box B(mnϵn)
si+1,j (where we have assumed, without loss of generality, that the “mid-

dle section” is in the box to the right). It is clear that γ̃ is connected, so its closure can be
parameterized by the continuous injective vector function z : [0,1]→R2. Define

T̃Vk(α;si,j) :=

∫ α

0
|z′k(s)| ds, k ∈ {1,2}

and

l̃(α;si,j) :=

∫ α

0
||z′(s)||2 ds.

By the same arguments that led to Equation (21), it holds that

(23) 0≤ l̃(1;si,j)−
∣∣∣∣(T̃V1(1;si,j), T̃V2(1;si,j)

)∣∣∣∣
2
≤K(

√
2mnϵn)

3,

where K ∈R+ is independent of si,j and n. Let

l(1;si,j) :=

∫ 1

0

(
||x′(s)||2 + ||y′(s)||2

)
ds
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be the total length of γ. Then l̃(1;si,j) = l(1;si,j) + l(1;si+1,j), and∣∣∣∣(T̃V1(1;si,j), T̃V2(1;si,j)
)∣∣∣∣

2
≤
∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2

+
∣∣∣∣(TV1(1;si+1,j),TV2(1;si+1,j)

)∣∣∣∣
2

by the triangle inequality. Therefore, (23) can be written as(
l(1;si,j)−

∣∣∣∣(TV1(1;si,j),TV2(1;si,j)
)∣∣∣∣

2

)
+(

l(1;si+1,j)−
∣∣∣∣(TV1(1;si+1,j),TV2(1;si+1,j)

)∣∣∣∣
2

)
≤K(

√
2mnϵn)

3.(24)

By the arguments in Case 1 that led to Equation (18), it follows that

l(1;si+1,j)≥
∣∣∣∣(TV1(1;si+1,j),TV2(1;si+1,j)

)∣∣∣∣
2
,

and by the same arguments,

l(1;si,j)≥
∣∣∣∣(TV1(1;si,j),TV2(1;si,j)

)∣∣∣∣
2
.

Therefore, both (21) and (22) follow from Equation (24).

Following from Equation (22), we have∣∣P̂ (2)
X(ω)(ϵn,mn;T,u)− P T

X(ω)(u)
∣∣= ∣∣∣∣ ∑

si,j∈VT
X(ω)(ϵn,mn;u)

(
l̂n(si,j)− l(1;si,j)

)∣∣∣∣
≤

∑
si,j∈VT

X(ω)(ϵn,mn;u)

∣∣l̂n(si,j)− l(1;si,j)
∣∣

≤#
(
VT
X(ω)(ϵn,mn;u)

)
2
√
2(Km3

nϵ
3
n + 2ϵn).

By Lemma 2,

gn
∣∣P̂ (2)

X(ω)(ϵn,mn;T,u)− P T
X(ω)(u)

∣∣
≤ 8

√
2gn

(P T
X(ω)(u)

mnϵn
+#

(
ΓT
X(ω)(u)

))(
Km3

nϵ
3
n + 2ϵn

)
= 8

√
2
gn
mn

(
P T
X(ω)(u) +mnϵn#

(
ΓT
X(ω)(u)

))(
Km3

nϵ
2
n + 2

)
,(25)

which tends to 0 as n→∞. This convergence holds for almost every ω ∈Ω, since ΛT
X(u) is

almost surely positive.

PROOF OF COROLLARY 1. The last expression in Equation (25) tends to 0 under the relaxed
constraint on (ϵn)n≥1 if gn = 1 for all n ∈N+.

PROOF OF PROPOSITION 1. If a sequence is uniformly integrable, convergence in L1(Ω) is
equivalent to convergence in probability. Therefore, by Corollary 1, it suffices to show that(
P̂

(2)
X (ϵn,mn;T,u)

)
n≥1

is bounded above by an element of L1(Ω) uniformly in n. Note that
for each n≥ 1,

P̂
(2)
X (ϵn,mn;T,u)≤ P̂

(1)
X (ϵn;T,u), a.s.

since the 2-norm is inferior to the 1-norm. Now, consider the quantity

Gn =#
(
{s ∈ G(T,ϵn) :B(ϵn)

s ∩E∂
X(T,u) ̸= ∅}

)
,
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which represents the number of pixels of side length ϵn that the curve E∂
X(T,u) intersects.

Almost surely, P̂ (1)
X (ϵn;T,u) is at most ϵn times the number of pixel edges that intersect

E∂
X(T,u), and there are at most 4Gn such pixel edges. By the same arguments used to prove

Lemma 2, we have for all n≥ 1,

Gn ≤ 4
(P T

X(u)

ϵn
+#

(
ΓT
X(u)

))
, a.s.

and

P̂
(2)
X (ϵn,mn;T,u)≤ P̂

(1)
X (ϵn;T,u)≤ 4Gnϵn ≤ 16

(
P T
X(u) + sup

n
(ϵn)#

(
ΓT
X(u)

))
, a.s.

which is in L1(Ω) by Assumption 3.

PROOF OF LEMMA 1. It is clear that Assumption 4 implies Assumption 1. Under Assump-
tion 4, Theorem 11.3.3 of Adler and Taylor (2007) implies that X is almost surely suitably
regular (Adler and Taylor, 2007, Definition 6.2.1) over bounded rectangles, which together
with the assumption of isotropy implies the conditions of Assumption 2. The expectations
of P Tn

X (u) and #
(
ΓTn

X (u)
)

are shown in Kratz and Vadlamani (2018) and Beliaev, McAuley
and Muirhead (2020) respectively to be O

(
ν(Tn)

)
; therefore, they are finite for all n ∈ N+,

implying the conditions of Assumption 3.

PROOF OF PROPOSITION 2. Let

Wn :=
P̂

(2)
X (ϵn,mn;Tn, u)− P Tn

X (u)√
ν(Tn)

.

Given that EX(u) is resolved by mnϵn in Tn for fixed n ∈ N+, Equation (25) holds with
gn = 1/

√
ν(Tn), implying

|Wn| ≤
8

mn

√
2

ν(Tn)

(
P Tn

X (u) +mnϵn#
(
ΓTn

X (u)
))(

Km3
nϵ

2
n + 2

)
=

8
√

2ν(Tn)

mn

(
P Tn

X (u)

ν(Tn)
+mnϵn

#
(
ΓTn

X (u)
)

ν(Tn)

)(
Km3

nϵ
2
n + 2

)
,(26)

where K ∈R+ is independent of n. As discussed in the proof of Lemma 1, both

limsup
n→∞

P Tn

X (u)

ν(Tn)
and limsup

n→∞

#
(
ΓTn

X (u)
)

ν(Tn)

are finite almost surely. Thus, the final expression in (26) tends to 0 almost surely, since√
ν(Tn)/mn → 0 by assumption. Now, denote the random event An := {mnϵn < ΛTn

X (u)},
and let AC

n denote its complement. Since P(An)→ 1 as n→∞ by assumption, it holds that
for any η > 0,

P(|Wn|> η)≤ P(|Wn|> η | An)P(An) + P(AC
n )→ 0

as n→∞.

PROOF OF THEOREM 2. Recall from Kratz and Vadlamani (2018) that the Lipschitz-Killing
curvatures of the excursion sets of isotropic random fields satisfying Assumption 4 follow a
multivariate central limit theorem, as proven earlier in Kratz and León (2001) for the perime-
ter of two-dimensional excursions. The result is proven for a single level u, but as noted in the



22

Discussion of Kratz and Vadlamani (2018) and in Shashkin (2013) the Cramér-Wald device
can be used to extend the arguments to the multivariate setting. Moreover, it is noted in both
Kratz and León (2001) and Kratz and Vadlamani (2018, Remark 3.4) that the assumption of
isotropy can be relaxed, and the result still holds. The central limit theorem for the perimeter
is then written as follows. For any u ∈Rk satisfying the given constraints, it holds that

(27)
P Tn

X (u)−E[P Tn

X (u)]√
ν(Tn)

d−→Nk

(
0,Σ(u)

)
, n→∞.

The proof of our Theorem 2 is finished by combining Equation (27), Proposition 2, and
Slutsky’s theorem.

PROOF OF PROPOSITION 3. Let Y be a random field defined on R2 that satisfies Y (s) =
X(A−1s) almost surely for all s ∈R2. It follows that Y is isotropic, and so we can apply the
kinematic formula in Theorem 15.9.5 of Adler and Taylor (2007) as is done in Section 2.2 of
Biermé et al. (2019) to obtain

E[P T
Y (u)] =

(2t)2√
2
e−u2/2,

for all u ∈R. Let D be a closed disk contained in T , and define γ =E∂
Y (D,u). Then

E[H1(γ)]

ν(D)
=

E[P T
Y (u)]

ν(T )
=
e−u2/2

√
2
.

By the Crofton formula (see, e.g., Equation (13.1.2) of Adler and Taylor (2007)),

H1(γ) =
1

4

∫ ∞

−∞

∫ 2π

0
nγ(φ,p) dφ dp,

where nγ(φ,p) is the number points at which γ intersects an oriented line in R2 with orien-
tation angle φ and signed distance p from the origin. Since Y is isotropic, E[nγ(φ,p)] has no
dependence on φ. Define β =E∂

X(D,u). Then there exists a function h : [0,2π)→R+ such
that

E[nβ(φ,p)] = h(φ)E[nγ(0, p)],
for all φ ∈ [0,2π) and p ∈ R. Moreover, h(φ) is entirely determined by the matrix A, since
∂
(
EX(u)

)
is the image of ∂

(
EY (u)

)
under the linear transform A−1. It follows that

E[H1(β)] =
1

4

∫ ∞

−∞

∫ 2π

0
E[nβ(φ,p)] dφ dp

=

(
1

2π

∫ 2π

0
h(φ) dφ

)(
2π

4

∫ ∞

−∞
E[nγ(0, p)] dp

)
=

(
1

2π

∫ 2π

0
h(φ) dφ

)
E[H1(γ)].(28)

Note that h depends only on A, so we consider another random object that also satisfies (28)
to find the average value of h on [0,2π). Let P be a homogeneous point process on R2 with
rate λ ∈R. For fixed r > 0, define

Ξr = {s ∈R2 : ∃ p ∈ P s.t. ||s− p||2 = r}
to be the set of circles of radius r whose centers are the points in P . Let γ̃r = Ξr ∩D, and
β̃r = (A−1Ξr)∩D. It is easy to see that

E[H1(γ̃r)] = 2πr λν(D)
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and

E[H1(β̃r)] = ellipse(σ−1
1 r,σ−1

2 r) det(A)λν(D),

where det(A) denotes the determinant of A, or equivalently, the product of the singular
values of A. Therefore,

E[H1(β̃r)] =
ellipse(σ−1

1 r,σ−1
2 r)σ1σ2

2πr
E[H1(γ̃r)] =

ellipse(σ1, σ2)

2π
E[H1(γ̃r)].

Since Equation (28) holds for β̃r and γ̃r in place of β and γ respectively, it follows that

1

2π

∫ 2π

0
h(φ) dφ=

ellipse(σ1, σ2)

2π
.

Finally,

E[H1(β)]

E[H1(γ)]
=

E[P T
X(u)]

E[P T
Y (u)]

=
ellipse(σ1, σ2)

2π
,

and so

E[P T
X(u)] =

ellipse(σ1, σ2)

2π
E[P T

Y (u)]

=
ellipse(σ1, σ2)

2π

(2t)2√
2
e−u2/2 =

√
2

π
t2 ellipse(σ1, σ2) e

−u2/2.

Discussion. We have shown for a large class of random fields that P̂ (p)
X (ϵ,m;T,u) with p=

2 is a consistent and asymptotically normal estimator for P T
X(u). Our numerous simulation

studies showcase the advantages of choosing the norm p= 2 as opposed to p= 1. For p > 2,
we do not expect P̂ (p)

X (ϵ,m;T,u) to have desirable properties, since there is a bias introduced
for certain orientations of the curveE∂

X(T,u). There is a natural extension of P̂ (p)
X (ϵ,m;T,u)

to random fields defined on Rd, with d > 2, and it is plausible that analogous results hold in
this multivariate setting. For example, Theorem 2 is based on the central limit theorem in
Kratz and Vadlamani (2018), which holds in arbitrary dimension. Future work might also
investigate the rate at which ΛT

X(u) tends weakly to 0 as T ↗ R2, which would provide a
more explicit constraint on the rate at which ϵn → 0 in Proposition 2.

APPENDIX

Here, we provide two figures; one to complement Lemma 2, and the other, Equation (14).
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Fig 15: An illustration to aid Lemma 2. With m = 2, the curve E∂
X(T,u) shown in black

intersects 13 elements of {B(mϵ)
si,j : i, j ∈ I(T,ϵ,m)}, which are highlighted in blue. Thus,

#
(
VT
X(ϵ,m;u)

)
= 13.

1

2

mnϵn

ϵn

si,j

Fig 16: The approximation of TV1(1, si,j) in (13) by ϵnNX(ω),h(i, j;u) (see Definition 4).

The black curve γ is shown in B(mnϵn)
si,j , which we outline in dashed red. The definite integral

TV1(1, si,j) is represented by the grey area, and is approximated by ϵnNX(ω),h(i, j;u) = 7ϵn,
the area under the blue curve. The absolute error of this approximation is clearly bounded
above by 4ϵn as stated in Equation (14). Highlighted in purple is a point in YT

X(ω)(u) (see
Equation (2)).
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