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ABSTRACT

We consider the clustering of extremes for stationary regularly varying random fields over arbitrary
growing index sets. We study sufficient assumptions on the index set such that the limit of the point
random fields of the exceedances above a high threshold exists. Under the so-called anti-clustering
condition, the extremal dependence is only local. Thus the index set can have a general form
compared to previous literature [3, 21]. However, we cannot describe the clustering of extreme
values in terms of the usual spectral tail measure [23] except for hyperrectangles or index sets in the
lattice case. Using the recent extension of the spectral measure for star-shaped equipped space [18],
the υ-spectral tail measure provides a natural extension that describes the clustering effect in full
generality.

Keywords: Extremes, Regular variation, Extremal index, Max-stable random field, Space-time
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1 Introduction

Asymptotic results for extreme values of random fields have attracted much attention recently, see
Samorodnistky and Wu [23], Basrak and Planinic [3], and Jakubowski and Soja-Kukieła [14], to name
a few. Extending the basic results of Basrak and Segers [2] in the context of time series, the newly
developed approaches focus on stationary regularly varying Rd-valued random fields X = (Xt)t∈Zk :
The random vectors (Xt1

, ....,Xtn) are regularly varying in Rnd for each t1, ..., tn ∈ Zk. The
existence of the spectral tail random field Θ := (Θt)t∈Zk characterizes the limit behavior of the
extremes around the origin {0} under the condition that X0 is extreme and normalized by |X0|.
The random field Θ characterizes the extrema of X and hence any asymptotic extreme value set.
One phenomenon is the clustering of extrema, i.e., the tendency for extrema to occur locally. To
formalize this phenomenon, the approach is to extend the basic result of Davis and Hsing [5] via the
convergence of the point process of exceedances. More precisely, we define Nn as a simple point
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random field of exceedances on a hyperrectangle Cn = [1, n]k, n ≥ 1

Nn :=
∑

t∈Cn

εa−1

nk
Xt
.

The level of excesses is set to an, which satisfies limn→∞ nP(|X0| > an) = 1, as if the observations
were independent. Samorodnistky and Wu [23] show that Nn converges to a cluster point random
field N on Rd \ {0} and an explicit representation of the latter is given in Basrak and Planinic [3].
More precisely, there is a spectral cluster field Q := (Qt)t∈Zk whose distribution is derived from
that of (Θt) and for which holds

NΛ =

∞∑
i=1

∑
t∈Zk

ε
Γ
−1/α
i Qi,t

,

where (
∑

t∈Zk εQi,t)i≥1
) are independent and identically distributed (iid) copies of

∑
t∈Zk εQt ,

independent of the points (Γi) of a standard Poisson process. The random field Q is crucial since it
accurately describes the asymptotic clustering phenomenon. The paper aims to introduce and analyze
a new setting adapted to index sets other than the hyperrectangle Cn.
Let us consider Λn as an arbitrary index set of Zk \ {0}. Such an extension of the rectangular index
set is not straightforward, as Stehr and Rónn-Nielsen [21] showed in the asymptotically independent
case (Θt = 0 for all t 6= 0). For index sets (Λn), a geometric condition must hold. To motivate
the study of index sets that are not rectangular, let us describe the most common index sets in the
literature. The spatio-temporal sets Λn are typically of the form C × {T, . . . ,mT}, where C is a
fixed lattice of Z2 and T ≥ 1 is the observation period through time expressed in space-time units,
and m is the number of observation periods. As usual, we consider a stationary, regularly varying
random field (Xt). Remark that the assumption of stationarity in time and space on X is standard
in environmental statistics, even when the spatial grid C is large but finite, see the review paper by
Davison, Padoan and Ribatet [10] and references therein. We first obtain the existence of a limiting
point random field NΛ as follows

NΛ
n :=

∑
t∈Λn

εaΛ
n
−1Xt

d→ NΛ , n→∞ ,

where aΛ
n comes from lim

n→∞
|Λn|P(|X0| > aΛ

n) = 1.

In contrast to the hyperrectangle case, the distribution of the edge point random field NΛ depends
on the asymptotic lattice properties of the general lattice Λn. Not surprisingly, the asymptotic form
of the index set Λn constrains the clustering effect. We derive the limiting distribution of the point
random field under a sufficient condition that ensures that Λn consists asymptotically of translated
versions of countably many fixed sets Dj . It appears that the limiting cluster point random field
distribution is a mixture of expressions of the spectral tail random field over the differentDj . However,
a representation of the clusters using the original spectral tail random field (Θt) is limited to specific
Λn. We derive the representation of the limiting points similar as in Basrak and Planinic [3] only
when all the Dj’s are lattice. This condition is satisfied for Cn, and we recover the characterization
of the clusters first provided in Basrak and Planinic [3].
For irregular index set Λn, the representation of the (asymptotic) clusters does not naturally use the
original spectral tail random field (Θt). Instead, one has to introduce the concept of the Υ-tail field
that characterizes the limiting behaviour of the extremes around the region Υ given that Xt is extreme
over Υ and normalized by a modulus of (Xt)t∈Υ. This framework has already been developed for
iid sequences by Ferreira and de Haan [8] and for time series cases by Segers et al. [18] but not for
random fields.
Our main contribution is to introduce a very general setting for index sets, namely Condition (DΛ),
which does not involve any topological properties. This condition allows for countably many
different shapes, and it is only an asymptotic condition. In particular, it implies that some shapes
repeat approximately an infinite number of times proportional to |Λn|. Surprisingly, the shape of the
asymptotic local region Υ is arbitrary. In contrast with existing results such as Stehr and Rónn-Nielsen
[21] we show that convexity is not required when dealing with extremes. Under the anti-clustering
condition, we deal with index sets that are local regions such as Υ reproduced over a lattice.
The rest of the paper is organized as follows. In Section 2 are collected preliminaries, notation and
main assumptions. That the crucial Condition (DΛ) implies asymptotic local region reproduced over
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lattices is the main theoretical challenge of the paper, alleviated in Section 3. The asymptotic clusters
are studied in Section 4 for any index set Λn satisfying Condition (DΛ). Their characterization
is provided using the Υ−spectral tail field in Section 5. Two applications of this new approach
are developed in Section 6, determining the extremal index and providing sufficient conditions for
max-stable random fields. Section 7 contains the proofs of the results of Section 3 and the rest of the
proofs are collected in Section 8 and 9.

2 Preliminaries, notation and main assumptions
Let (Xt)t∈Zk be an Rd-valued regularly varying stationary random field.

2.1 Spectral tail fields

Let us recall two fundamental results of Samorodnitsky and Wu [23]: the existence of the tail field
and the time change formula for the tail and spectral tail fields.
Theorem 1 (Theorem 2.1 in [23]). An Rd-valued stationary random field (Xt)t∈Zk is jointly regularly
varying with index α if and only if there exists a random field (Yt)t∈Zk such that

L
(
x−1Xt : t ∈ Zk

∣∣|X0| > x
) fdd→ L(Yt : t ∈ Zk)

as x→∞, and P(|Y0| > y) = y−α for y ≥ 1. We call (Y)t∈Zk the tail field of (Xt)t∈Zk .

Theorem 2 (Theorem 3.2 in [23]). Let (Y)t∈Zk be the tail field corresponding to an Rd-valued
stationary random field (Xt)t∈Zk that is jointly regularly varying with index α and define Θt =

Yt/|Y0|, t ∈ Zk. Let g : (Rd)Zk → R be a bounded measurable function. Take any s ∈ Zk. Then
the following identities hold:

E[g(Yt−s)1(Y−s 6= 0)] =

∫ ∞
0

E[g(rΘt)1(r|Θs| > 1)]d(−r−α), (1)

E[g(Θt−s)1(Θ−s 6= 0)] = E
[
g

(
Θt

|Θs|

)
|Θs|α

]
. (2)

We call (Θt)t∈Zk the spectral field of (Xt)t∈Zk .

Denote by ≤ the component-wise order on Zk, thus for i = (i1, ..., ik), j = (j1, ..., jk) in Zk, i ≤ j
if il ≤ jl for all l = 1, ..., k.
We consider a complete order≺ on Zk that is invariant: if s ≺ t for s, t ∈ Zk implies that s+i ≺ t+i
for any i ∈ Zk. An example of an invariant order is the lexicographic (or dictionary) order: for
s, t ∈ Zk, we say that s ≺ t if either (1) s1 < t1, or (2) there exists 2 ≤ j ≤ k such that si = ti for
all i = 1, ..., j − 1, and sj < tj .

2.2 Condition (DΛ) on the index set

Consider the following simple point random field:

NΛ
n :=

∑
t∈Λn

εaΛ
n
−1Xt

,

where the sequence (aΛ
n) satisfies lim

n→∞
|Λn|P(|X0| > aΛ

n) = 1 and Λn is any subset of Zk such that

|Λn| → ∞ as n → ∞. For any set Υ ⊂ Zk, c > 0, and t ∈ Zk, let (Υ)+ := {u ∈ Υ : u � 0},
(Υ)−t := {u ∈ Zk : u = s− t, s ∈ Υ} and Υ(t,c) := ((Υ)−t ∩Kc)

+ where the hypercube Kc is
defined as Kc = [−c, c]k ∩ Zk, c ≥ 0. Through the paper we assume that Λn satisfies the following
condition.
Condition (DΛ): There exist (possibly countably many) different subsets of {t ∈ Zk : t � 0}, which
we denote by D1,D2, ..., s.t.

lim
n→∞

|{t ∈ Λn : Λ
(t,p)
n = Di ∩Kp}|
|Λn|

=: λi,p → λi , p→∞ ,

with λi > 0 and
∑q
i=1 λi = 1, where q ∈ N ∪ {∞} is the number of these Ds.

3
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Condition (DΛ) says the following. Consider a point t in Λn. Translate the set Λn by −t so that
t is now at 0. Take an hypercube around 0 of side 2p, for p large enough, and intersect it with the
positive points according to � and with the translated set. Thus, we have obtained Λ

(t,p)
n . Now, it

might happen that the same set Λ
(t,p)
n is exactly the same for other points in Λn, and also for other

points in Λm with m > n. Condition (DΛ) imposes that there are different sets (denoted Di ∩Kp,
i ∈ {1, ..., q}) such that the number of points t ∈ Λn for which Λ

(t,p)
n is equal to one of these sets,

divided by |Λn|, has a limit and these limits form a weighted sum.
This condition provides a minimum requirement to have (at least asymptotically) a structure for
studying the long-time clustering behaviour of extremes.

Example 1. Imagine observing precipitations over a specific geographical area C. There are stations
spread throughout the geographical region that measure the precipitation. Let Λn lying in Zd where d
is the sum of the time dimension and the space dimension (thus d = 3 or d = 4 depending on whether
we consider the geographical region C to lie in Z2 or Z3, respectively). In the time direction, each
point is the number of rain rained in a certain amount of time, while the space direction indicates the
location where this is measured. Thus, Xt where t ∈ Λn corresponds to the amount of rain measured
in a certain period in a specific location. Assume that the measurements over C repeat in a constant
frequency (e.g. at every week). This assumption corresponds to condition (DΛ), where we take the
order � to be increasing with successive observations. In particular, imagine measuring over C
infinitely many times. Denote this set by C∞. Then, each D is C∞ centered at 0 (that is translated
version of C∞ by minus one of its points) and consider the points successive to 0. Notice that only
q = |C| distinct D. [4] already considered similar index sets.

Example 2. The framework of [21, 22] is a particular specification of our framework. Indeed,
consider Assumption 1 in [21] (which is Assumption 3 in [22]): The sequence (Cn)n∈N consists of
p–convex bodies (i.e. connected sets which are also unions of p convex sets), where Cn = ∪pi=1Cn,i

and |Cn| → ∞ as n→∞, and
∑p
i=1 Vj(Cn,i)

|Cn|j/d
is bounded for each j = 1, ..., d− 1, where Vj(Cn,i)

indicates the intrinsic volumes of the convex body Cn,i. Consider the two dimensional case, so d = 2
– similar arguments apply to other dimensions. For any convex body C, we have that V0(C) = 1
and V1(C) is equal to the perimeter of C divided by π. Then, Assumption 1 in [21] states that the
sum of the perimeters of the Cn,is must not grow faster than the square root of the volume of Cn.
There are cases where this is not true, like when one of the Cn,is is a rectangle with edges increasing
with different speed. In general, this assumption ensures that the Cn,is must grow in all directions,
implying that the number of points in Cn away from the boundary divided by the number of points
in Cn tends to 1 as n→∞. Formally it implies that, for any r ∈ N, |{t∈Cn:C(t,r)

n =D∩Kr}|
|Cn| → 1 as

n→∞, where D is simply given by {t ∈ Zk : t � 0}. Therefore, Assumption 1 in [21] is strictly
stronger than condition (DΛ).
It is important to explicitly look at the differences of our framework with the one of [21, 22]. First,
Condition (DΛ) is only an asymptotic condition, thus the set Λn (or Cn) does not need to satisfy
any constraint for finite n. The lack of a non-asymptotic structure for Λn is a challenge, and in
particular for the proof of Theorem 17. We overcome this by imposing structures that will be satisfied
asymptotically. Another feature of our setting also exacerbates this issue: the possibility of having
countably many different asymptotic sets (denoted by Ds). Indeed, having countably many sets does
not allow distinguishing the points in Λn that will eventually form an asymptotic set from other points
in Λn, because this distinction happens only asymptotically. We overcome this by using that only
finitely many of these sets have weights (denoted by λs) greater than ε, for any ε > 0. The third
difference is the structure of the asymptotic sets. While in [21, 22] the only allowed asymptotic set
is {t ∈ Zk : t � 0} as just shown, in our framework any possible subset of {t ∈ Zk : t � 0} is
allowed. For example, we might have that Λn is a rectangle where only one side increases.

We conclude this section by pointing out that condition (DΛ) comes from the proof of the main
asymptotic results of the paper, and it is the most refined (i.e. weakest) condition we could attain.
This condition is satisfied in all the previous settings (see [5, 23, 21, 22, 4]).

2.3 Mixing and anti-clustering conditions

Following the seminal work of Davis and Hsing [5] on stationary time series, we assume two
complementary conditions. The anti-clustering condition avoids too strong clustering effects. The
mixing condition approximates the Laplace functional of the point random field NΛ over Λn in terms

4
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of products of Laplace functionals of copies of the point random field over a smaller index set. Such
conditions were extended to random fields by Samorodnistky and Wu [23] for the specific index set
Cn = [1, n]k. Some care is required when considering the general index set Λn.
Take a sequence of positive integers (rn) such that lim

n→∞
rn = |Λn|/|Λrn | = ∞ and let kn =

b|Λn|/|Λrn |c. Let Rl,Λn :=
(⋃

t∈Λn
(Λn)−t

)+ \ Kl and let M̂Λ,|X|
l,n := maxi∈Rl,Λn |Xi| and

consider the following anti-clustering
Condition (ACΛ

�): The Rd-valued stationary regularly varying random field (Xt : t ∈ Zk) satisfies
the (ACΛ

�) condition if there exists an integer sequence rn →∞ and kn = |Λn|/|Λrn | → ∞ such
that

lim
l→∞

lim sup
n→∞

P
(
M̂

Λ,|X|
l,rn

> aΛ
nx
∣∣|X0| > aΛ

nx
)

= 0.

Let dn := maxx,y∈Λrn
maxj=1,..,k |x(j) − y(j)|, namely dn be the maximum distance between the

points of Λrn . Observe that

lim
l→∞

lim sup
n→∞

P
(
M̂
|X|
l,dn;� > aΛ

nx
∣∣|X0| > aΛ

nx
)

= 0

⇒ lim
l→∞

lim sup
n→∞

P
(
M̂

Λ,|X|
l,rn

> aΛ
nx
∣∣|X0| > aΛ

nx
)

= 0

where M̂ |X|a,b;� = maxa≤|i|≤b, i�0 |Xi| for a, b ∈ Z and |i| := max(|i1|, ..., |ik|). This sufficient
condition is often easier to check in practice and is implied by the anti-clustering condition considered
in Samorodnistky and Wu [23] that required a stronger condition on the maxima over indices
a ≤ |i| ≤ b in any directions.
For the mixing condition, we require extra classical notation, namely

ÑΛ
rn :=

∑
t∈Λrn

εaΛ
n
−1Xt

,

and for any E ⊂ Rd, C+
K(E) the class of continuous non-negative functions g on E. Further, let the

Laplace functional of a point random field ξ with points (Yi) in the space E ⊂ Rd be denoted by

Ψξ(g) := E
[

exp

(
−
∫
E

gdξ

)]
= E

[
exp

(
−
∑

i

g(Yi)

)]
, g ∈ C+

K(E).

We adopt the notation C+
K := C+

K(Rd \ {0}).
Condition AΛ(aΛ

n): Choose the integer sequences rn → ∞ and kn = |Λn|/|Λrn | → ∞ from
condition (ACΛ

�). The Rd-valued stationary regularly varying random field (Xt : t ∈ Zk) satisfies
the condition AΛ(aΛ

n) if

ΨNΛ
n

(g)− (ΨÑΛ
rn

(g))kn → 0, n→∞, g ∈ C+
K .

3 Lattice properties
Before giving the main results, we need to investigate further the lattice properties of the index sets
Dj appearing in Condition (DΛ) on Λn. We will distinguish two settings, lattice properties on the
upper orthant and the whole index set. Condition (DΛ) implicitly involves the upper orthant and it
would have been possible to focus on the whole index set by adapting Condition (DΛ) accordingly.
This approach would have been entirely equivalent to ours. But notice that the two settings are crucial
for our main results, and one cannot make the economy of one of them.

3.1 Lattice properties on the upper orthant

Recall that D1,D2, ... are the subsets of the upper-orthant
(
Zk
)+

that appear in Condition (DΛ).

Proposition 3. Let Λn satisfy |Λn| → ∞ as n→∞ together with Condition (DΛ).
(I) For every Dj and Di with j 6= i there exists a p large enough s.t. Dj ∩Kp 6= Di ∩Kp. Further,
for every Dj and every p ∈ N we have the identity

lim
n→∞

|{t ∈ Λn : Λ
(t,p)
n = Dj ∩Kp}|
|Λn|

= λj,p =
∑
i∈I(j)

p

λi,

5
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where I(j)
p := {i ∈ {1, ..., q} : Di ∩Kp = Dj ∩Kp}.

(II) The empty set is a possible D.
(III) For every Dj , there exist bj many different Ds, where bj ∈ N s.t. bj ≤ b1/λjc − 1, which we
denote by Dl1 , ...,Dlbj such that, for every z ∈ Dj , Dli = ((Dj)−z)+ for some i = 1, ..., bj and
then λi ≥ λj .
Point (III) of Proposition 3 suggests that Dj contains shifted versions of potentially different D`. In
order to exhibit the lattice property of Dj , we define Gj as the set of the shifts that yields the same
Dj , namely

Gj := {z ∈ Dj ∪ {0} : (Dj)+
−z = Dj} and Lj := Gj ∪ −Gj , 1 ≤ j ≤ q . (3)

For every 1 ≤ j ≤ q, one can partition the set Dj using the lattice sets Lli , i = 1, ..., bj :

Proposition 4. Let Λn satisfy |Λn| → ∞ as n→∞ together with Condition (DΛ). Fix 1 ≤ j ≤ q,
then the set Lj is a lattice on Zk. For i = 1, ..., bj , denoting zli any point in Dj such that Dli =
((Dj)−zli

)+ we have the partition

Dj = L+
j ∪

bj⋃
i=1

((Lli)zli
)+. (4)

Further, for every Dj , we have that Lli ⊇ Lj , and Lli and Lj have the same rank for i = 1, ..., bj .
In particular, Dj is bounded if and only if Lj = {0} and in this case Dj =

⋃bj
i=1{zli}.

Building on partition (4) we want to exhibit some translation invariant properties of Dj . Fix any
j = 1, . . . , q and denote l0 = j for convenience, then any i ∈ {0, 1, ..., bj} satisfies the Translation
Invariance Property (TIPj) if it has the following property:

Translation Invariance Property (TIPj): The index i ∈ {0, 1, ..., bj} satisfies (TIPj) if there is a
point x ∈ ((Lli)zli

)+ such that x ≺ y for some y ∈ Gj .

Further, we let Wj denote the subset of {0, ..., bj} satisfying (TIPj) and let D̂j :=
⋃
h∈Wj

Dlh .

Proposition 5. Let Λn satisfy |Λn| → ∞ as n → ∞ together with Condition (DΛ). Fix any
j = 1, . . . , q. If i ∈ {0, 1, ..., bj} satisfies (TIPj) then Lli = Lj and λli = λj . In particular, when
Lj is a full rank lattice the (TIPj) condition is satisfied for all i = 0, ..., bj and when Dj is bounded
the (TIPj) condition is never satisfied.

Further, for every i ∈Wj we have D̂li = D̂j and D̂j ∪ {0} ∪ −D̂j is translation invariant for every
point in Lj .
Remark 1. The case of (TIPj) not holding for some l = l1, ..., lbj is equivalent to the case of Gj
lying on the hyperplane determined by the order �. For example, this is the case when we are in
R2, the order goes along the horizontal lines (informally (0, 0) ≺ (0, 1) ≺ (0, 2) ≺ ... ≺ (0,∞) ≺
(1,−∞) ≺ ... ≺ (1, 0) ≺ ...), and Λn draws two lines which are parallel to the horizontal axis, see
Figure 1 for an illustration. It is possible to see that in this case one D̂ (say D̂1) is is simply given
by x-axis, while for the other (D̂2) we have the set provided in Figure 2. These sets are translation
invariant with respect to the points in the respective Li and in this example L1 and L2 are both equal
to x-axis.

3.2 Lattice properties on the whole index set

In this subsection we consider subsets Ξj of the whole index set Zk that are the equivalent of the
subsets Dj of the upper-orthant. As Condition (DΛ) defined only the Dj , the existence of the Ξj ,
shown in the next result, is deduced from it.
Proposition 6. Let Λn satisfy |Λn| → ∞ as n→∞ together with Condition (DΛ). For any p ∈ N
and any Ξ subset of Zk with 0 ∈ Ξ we have that the limits

lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξ ∩Kp}|
|Λn|

, and

lim
p→∞

lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξ ∩Kp}|
|Λn|

6
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x

y

0 D1

D2E1

Figure 1: We consider an order that increases along the horizontal axis and then upward. Red chopped half-line starting
at (1, 0) is D1, D1 plus the red line above is D2 also in red. Both Ds have the same G = D1 ∪ {(0, 0)} thus the same L
which coincides with the x-axis. We check that D2 is partitioned into L+ and Lz where z is any point with 1 as the
second coordinate. However, none of the points of Lz precedes any point in G, and the TIP property fails. Notice E1 is
any couple of points {(0, 0), z} in blue.

x

y

0

D̂2

Figure 2: Representation of D̂2. It is possible to see that D̂2 is translation invariant for the points in L2 which in this
case is given by the x-axis.

exist. Moreover, any such Ξ such that

lim
p→∞

lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξ ∩Kp}|
|Λn|

> 0 (5)

satisfies Ξ+ = Dj for some j = 1, ..., q.

Define by Ξ1, ...,Ξq′ the sets satisfying (5) with q′ ∈ N ∪ {∞}. For each m = 1, ..., q′ and p ∈ N
define

γm := lim
p→∞

lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξm ∩Kp}|/|Λn|,

γp,m := lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξm ∩Kp}|/|Λn|,

F (m)
p := {j ∈ {1, ..., q′} : Ξj ∩Kp = Ξm ∩Kp}.

Let l0 := j and zj := 0. From Proposition 3 recall that Dj = G+
j ∪

⋃bj
i=1((Lli)zli

)+, which we can

rewrite as Dj =
⋃bj
i=0((Lli)zli

)+.

Proposition 7. Let Λn satisfy |Λn| → ∞ as n → ∞ together with Condition (DΛ). Every Ξm,
m = 1, ..., q′, is a translation of

⋃bj
i=0(Lli)zli

for some j = 1, . . . , q. Moreover,
∑q′

m=1 γm = 1, and
γp,m =

∑
m′∈F (m)

p
γm′ , for every m = 1, ..., q′.

It is important to notice that the translations of
⋃bj
i=0(Lli)zli

can coincide. A careful analysis is done
in order to describe the distinct translations. Recall that l0 = j and that Lj = Ll0 ⊂ Lli for every
i = 1, ..., bj , are same rank lattices by Proposition 4. Thus there exists a finite number of translations
of Lj covering any Lli , i = 1, ..., bj . Denote nj ≥ 1 this number. Moreover, let x

(j)
1 , ...,x

(j)
nj be

the points in
⋃bj
i=0(Lli)zli

such that x
(j)
k � 0 and that

⋃nj
h=1(Lj)x

(j)
h

=
⋃bj
i=0(Lli)zli

. Finally, let

Ej = {x(j)
1 , ...,x

(j)
nj } where, for the sake of clarity, we include by convention {0} in Ej so that 0 is

always the lowest (according to �) point in Ej . Notice that a certain arbitrary choice is still possible
when choosing Ej , see Figure 1 for an example.
Any Ξm contains {0} by definition. Thus, the different Ξms correspond to the different translated
versions of

⋃bj
i=0(Lli)zli

containing {0}. Having in mind the identity
⋃

s∈Ej (Lj)s =
⋃bj
i=0(Lli)zli

,

7
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the number of different translations is thus nj and the shifts are the elements of Ej (and thus nj = |Ej |).
Denote I∗ the set of the indices j = 1, . . . , q satisfying

lim
p→∞

lim
n→∞

∣∣∣{t ∈ Λn : (Λn)−t ∩Kp =
⋃

s∈Ej

(Lj)s ∩Kp

}∣∣∣/|Λn| > 0. (6)

For every j ∈ I∗, let Ξ∗j :=
⋃

s∈Ej (Lj)s and γ∗j be the positive limit in (5) associated to Ξ∗j . For
every j ∈ I∗ we have (Ξ∗j )

+ = Dj , that there exists an m = 1, . . . , q′ such that Ξ∗j = Ξm and that
any Ξm, m = 1 . . . , q′, are translated versions of Ξ∗j , j ∈ I∗. It essentially means that the Ξ∗j for
j ∈ I∗ are the only relevant structures in the asymptotic of (Λn) as the other ones are translated
versions of them:
Proposition 8. Let Λn satisfy |Λn| → ∞ as n → ∞ together with Condition (DΛ). We have the
identity

∑
j∈I∗ γ

∗
j nj =

∑
j∈I∗ γ

∗
j |Ej | = 1.

By definition we have

Ξ∗j =

bj⋃
i=0

(Lli)zli
=
⋃

s∈Ej

(Lj)s =
⋃

s∈Lj

(Ej)s

for any j ∈ I∗.
In the following statement, we link the asymptotic behaviour of (Λn) with specific non-asymptotic
properties of some of its subsets. In particular, we extract from (Λn) specific disjoint subsets, which
have helpful non-asymptotic properties(for the proof of Theorem 17) and show that these subsets
asymptotically describe the whole (Λn) satisfying Condition (DΛ).
We introduce the following notation. Let l ∈ N. Consider the maximum of the m ∈ N ∪ {0}
such that Di ∩ Kl 6= Dj ∩ Kl for every i, j ∈ I∗ with i, j < m. Denote this maximum by m̃l,1.
Consider the maximum of the m ∈ N ∪ {0} such that Dw ∩ Kbl/2c 6= Dlh ∩ Kbl/2c for every
w, v ∈ I∗ with w, v < m and where Dw is bounded, Dv is unbounded and lh is any index l1, ..., lbv .
Denote this maximum by m̃l,2. Consider the maximum of the m ∈ N ∪ {0} such that Es ⊂ Kbl/4c
for every s ∈ I∗ with s < m. Denote this maximum by m̃l,3. Then, we define ml as follows
ml := min(m̃l,1, m̃l,2, m̃l,3). Notice that such ml exists because l is finite and bj is finite for every
unbounded Dj .
Further, let Si,l := {t ∈ Λn : (Λn)−t ∩Kl = Ξ∗i ∩Kl} for every i ∈ I∗ and l, n ∈ N. Notice that
Si,l depends on n, but we omit the dependency to lighten the notation.

Proposition 9. Let Λn satisfy |Λn| → ∞ as n → ∞ together with Condition (DΛ). Then for
every n ∈ N, j, i ∈ I∗ with j, i < m4l and i 6= j, t ∈ Sj,4l and s ∈ Si,4l, we have that
(Dj ∩K2l)t ∩ (Di ∩K2l)s = ∅. Further, there exists a set S′j,4l, with S′j,4l ⊂ Sj,4l, such that for
every t ∈ S′i,l

(Dj ∩Kbl/2c) \
⋃

s∈(Sj,l)−t,s≺0

(Ej)s = (Dj ∩Kbl/2c) \
⋃

s∈−Gi\{0}

(Ej)s (7)

and that lim
n→∞

|S′j,4l|/|Λn| = γ∗j for every j ∈ I∗ with j < m4l. Finally, we obtain that

lim
l→∞

lim
n→∞

∑
i∈I∗,i<m4l

|S′i,4l||Ei|
|Λn| = 1.

We remark that even if the Condition (DΛ) is asymptotic, the sets S′j,4l and Sj,4l have both asymptotic
and non-asymptotic properties.
Example 3 (Continuing Example 1). Recall that in this example, the observations formed a pattern
C that repeated itself with a certain frequency in order to constitute C∞. Using the notation of this
section, we see that such frequency is represented by G0. The number of D’s is b0 + 1 = |D|. The
Translation Invariance Property (TIPj) is satisfied for every i = 0, ..., bj and j = 1, ..., |D|. The
infinite union of translated patterns is what we denote by Ξ in this section. Notice that any different
centering of C∞ at 0 corresponds to a different Ξm, namely one of the Ξ’s which we denoted Ξ∗h for
some h = 1, ..., |C|. Further, notice that I∗ = {h}, that C = Eh and that γ∗h = 1/|C|. A non-trivial
result, even in this simple example, is the last statement in Proposition 5. Suppose we take the union
of all the D’s and {0} and their negative counterpart, then this union is translation invariant along
with L0, namely along that certain frequencies with which the observations repeat their pattern.

8
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Moreover, Proposition 9 states that it is important that the observations (Λn) repeat the pattern C for
a sufficiently long time. For instance, a finite number of observations (for instance, cases where the
station is working intermittently – this is typical of non-automatic weather stations) does not matter.

Finally, we refer to the lattice case when every Ξ’s are lattices, meaning that Ej = {0} and Ξ∗j = Lj
for every j = 1, . . . , q.

4 Main results expressed using the spectral tail field

4.1 Laplace functional of the limiting point random field

The first result states the convergence of the Laplace functionals to some Laplace functional without
an explicit description of the point random field. The proof of the result is based on a telescoping sum
argument developed initially in the time series setting by Jakubowski and co-authors [13, 1] together
with lattice property (I) from Proposition 3.

Theorem 10. Let k, d ∈ N. Consider an Rd-valued stationary regularly varying random field
(Xt : t ∈ Zk) with index α > 0. We assume conditions (DΛ), (ACΛ

�) and AΛ(aΛ
n). Then NΛ

n
d→ NΛ

on the state space Rd \ {0} and the limit random measure has Laplace functional for g ∈ C+
K , given

by

ΨNΛ(g) = exp

(
−
∫ ∞

0

∞∑
i=1

λiE
[
e−

∑
t∈Di

g(yΘt)
(

1− e−g(yΘ0)
)]
d(−y−α)

)
. (8)

Remark 2. Notice that by Tonelli’s theorem and by the monotone convergence theorem, the Laplace
transform is the one of a mixture distribution

ΨNΛ(g) =

∞∏
i=1

exp

(
−
∫ ∞

0

E
[
e−

∑
t∈Di

g(yΘt)
(

1− e−g(yΘ0)
)]
d(−y−α)

)λi
.

Remark 3. In the asymptotically independent case, we have that |Θt| = 0 for every t 6= 0 and so
the limit random measure has Laplace functional

ΨNΛ(g) = exp

(
−
∫ ∞

0

E
[
1− e−g(yΘ0)

]
d(−y−α)

)
.

Thus, it coincides with the case of one D and in particular D = ∅.

4.2 The spectral cluster random field in the lattice case

Define for any set A ⊂ Zk, any sequence x = (xt)t∈Zk and any α > 0,

‖x‖A,α :=

(∑
t∈A
|xt|α

)1/α

.

For the spectral tail random field (Θt)t∈Zk of a regularly varying stationary random field we use

‖Θ‖A,α =

(∑
t∈A
|Θt|α

)1/α

as the normalisation constant. When ‖x‖A,α <∞ a.s., We define the spectral cluster random field by

QA :=
Θ

‖Θ‖A,α
.

Using the lattice properties investigated in Proposition 3, we show the existence of the spectral tail
random field over some lattice index sets.

Proposition 11. Consider an Rd-valued stationary regularly varying random fields (Xt)t∈Zk with
index α > 0. Assume conditions (DΛ) and (ACΛ

�). Then, Θt → 0 a.s. as |t| → ∞ for t ∈
⋃∞
j=1Dj

and so we have ‖Θ‖D̂j∪−D̂j ,α <∞ a.s. for every j ∈ N.

9
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4.3 Cluster point random field expressed using the spectral cluster field in the lattice case
Now, we present an explicit formulation of the asymptotic Laplace functional as a mixture of cluster
random fields when the Ds are lattices (on the positive points).
Theorem 12. Consider an Rd-valued stationary regularly varying random fields (Xt)t∈Zk with
index α > 0. We assume conditions (DΛ), (ACΛ

�) andAΛ(aΛ
n). Assume also that we are in the lattice

case. Then, NΛ
n

d→ NΛ on Rd0 and the limit admits the cluster point random field representation

NΛ =

∞∑
j=1

∑
i∈N

∑
t∈Ξ∗j

ε
Γ
−1/α
j,i λ

1/α
j QΞ∗

j
,i,t

where
(∑

t∈Ξ∗j
εQΞ∗

j
,i,t

)
i∈N

, is an iid sequence of point random fields with state space Rd, and

where (Γj,i)i∈N are the points of a unit rate homogeneous Poisson process on (0,∞) independent of

(QΞ∗j ,i,t
)t∈Dj , for every j ≥ 1. Moreover,

(∑
i∈N
∑

t∈Ξ∗j
ε

Γ
−1/α
j,i λ

1/α
j QΞ∗

j
,i,t

)
j≥1

is a sequence of

independent point random fields with state space Rd.
We extend the characterization of the clusters first provided in Basrak and Planinic [3] on the
whole index set Ξ∗1 = Zk, q = 1 to potential mixtures of lattices with q > 1. For instance, when the
observations grow frequently along the axis. In this case, we have q = k, Ξ∗j = {0}j−1×Z×{0}k−j ,
and γ∗j = λj , for every j = 1, ..., k. The value of the weights depends on fast the observations grow
along one axis relative to the others, e.g. if on axis j there are twice the observations on axis i (as
n→∞) then γ∗j = 2γ∗i .

5 Point random field convergence using Υ−spectral tail field
For general index set Λn satisfying Condition (DΛ) that are non necessarily lattice, we introduce new
spectral tail fields.

5.1 The Υ−spectral tail field

Let ρ be a modulus of continuity on (Rd)Zk and for any finite Υ ⊂ Zk let ρΥ the truncation of ρ to
RdΥ. In the following, we extend some of the results of Basrak and Segers [2] to the case of the
random fields. In the time series case, the following result is contained in Theorem 5.1 of Segers et al.
[18].
Proposition 13. Let (Xt)t∈Zk be a regularly varying of index α random field in Rd, with α ∈ (0,∞).
Let Υ be a finite subset of Zk. Then there exists a random field (YΥ,t)t∈Zk in Rd with P(ρΥ(YΥ) >
y) = y−α for y ≥ 1 such that as x→∞,

L(x−1Xs, ..., x
−1Xt|ρΥ(X) > x)

f.d.d.→ L(YΥ,s, ...,YΥ,t).

Moreover, there exists a random field (ΘΥ,t)t∈Zk in Rd such that as x→∞

L
(
x−1Xs

ρΥ(X)
, ...,

x−1Xt

ρΥ(X)

∣∣∣ ρΥ(X) > x

)
f.d.d.→ L(ΘΥ,s, ...,ΘΥ,t).

It is possible to see that ΘΥ in distribution is given by YΥ/ρΥ(Y). For stationary regularly varying
random fields it is possible to extend the time change formula of Theorem 3.2 in Samorodnitsky and
Wu [23] to Υ-spectral tail field:
Proposition 14. Let (YΥ,t)t∈Zk be the tail random field in Proposition 13 and consider ΘΥ,t =

YΥ,t/ρΥ(Y), t ∈ Zk. Let g : (Rd)Zk → R be a bounded measurable function. Then,
(i) ρΥ(Y) is independent of (ΘΥ,t)t∈Zk .
(ii) for any s ∈ Zk,

E[g(YΥ,t−s)1(ρ(Υ)−s
(Y) 6= 0)] =

∫ ∞
0

E[g(rΘΥ,t)1(rρ(Υ)s(Θ) > 1)]d(−r−α), (9)

(iii) for any s ∈ Zk,

E[g(ΘΥ,t−s)1(ρ(Υ)−s
(Θ) 6= 0)] = E

[
g

(
ΘΥ,t

ρ(Υ)s(Θ)

)
ρ(Υ)s(Θ)α

]
. (10)

Remark 4. It is possible to see that by definition ρΥ(ΘΥ) = 1 a.s..

10
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5.2 Asymptotic Laplace functional expressed using the Υ−spectral tail field

We start with a simple result on the relation between the uniform norm and the other modulus of
continuity.
Lemma 15. Let Υ be a finite subset of Zk. There exists two positive constant C and D with
C ≤ D such that, for every ε > 0, maxt∈Υ |xt| < ε implies ρΥ(x) < ε

C , and ρΥ(x) < ε implies
maxt∈Υ |xt| < Dε.
Corollary 16. Consider the notation of Lemma 15. Then, ρΥ(x) = 1 implies that maxt∈Υ |xt| ≤ D.

Proof. From Lemma 15 we have that ρΥ(x) < 1 + δ implies that maxt∈Υ |xt| < (1 + δ)D for
every δ > 0.

We let Cm and Dm denote the constants of Lemma 15 for Em, for every m ∈ I∗. Notice that Cm and
Dm depends on the chosen ρ, but we do not write the dependency explicitly in the notation because it
does not create confusion and it lightens the notation.
Remark 5. Our setting, and in particular the following Theorem 17, is general enough to allow for
countable infinitely different moduli of continuity to be used at the same time, one different ρj for
each Ej as in Lemma 28. With some abuse of notation we denote ρj,Ej by ρEj .

Now, consider the following assumption on the modulus of continuity.

Condition (AΛ
ρ ): We have

∑
j∈I∗ γ

∗
j cjD

α
j <∞, where cj = lim

n→∞

P(ρEj (X)>an)

P(|X0|>an) .

This condition is satisfied in many cases. For example, if the modulus of continuity is unique and
coincides with the uniform norm then Dj = 1 and cj ≤ |Ej |, and so

∑
j∈I∗ γ

∗
j cjD

α
j ≤ 1. Moreover,

for ρα(·) := ‖ · ‖α we have that Dj = 1 and cj = |Ej | and so
∑
j∈I∗ γ

∗
j cjD

α
j = 1. We remark that

such condition is needed to implement a dominated convergence theorem in the proof of Theorem 17
and so, as it happens in most of the cases where a dominated convergence theorem is used, it might
be possible to obtain the result for a specific ρ even if condition AΛ

ρ is not satisfied.
We are now ready to state an anti-clustering condition tailored for conditioning on the modulii
of X being large over a local subset and not necessarily X0. For every j ∈ I∗, let R(j)

l,Λn
:=(⋃

t∈{s∈Λn:(Λn)−s⊃Ej}((Λn)−t

)+ \Kl and let M̂Λ,|X|,(j)
l,n := max

i∈R(j)
l,Λn

|Xi|
Condition (ACΛ

�,I∗ ): The Rd-valued stationary regularly varying random field (Xt)t∈Zk satisfies the
condition (ACΛ

�,I∗) if there exists an integer sequences rn →∞ such that kn = |Λn|/|Λrn | → ∞
and for every j ∈ I∗

lim
l→∞

lim sup
n→∞

P
(
M̂

Λ,|X|,(j)
2l,rn

> aΛ
nx
∣∣max

t∈Ej
|Xt| > aΛ

nx
)

= 0.

Remark 6. We remark that condition (ACΛ
�,I∗ ) is weaker than assuming that for every j ∈ I∗

lim
l→∞

lim sup
n→∞

P
(
M̂

Λ,|X|
2l,rn

> aΛ
nx
∣∣max

t∈Ej
|Xt| > aΛ

nx
)

= 0.

Remark 7. If (Xt : t ∈ Zk) is m-dependent then the anti-clustering conditions considered in this
paper, namely (ACΛ

�) and (ACΛ
�,I∗ ), are satisfied.

Moreover, it is possible to see that in some cases condition (ACΛ
�,I∗ ) is strictly weaker than condition

(ACΛ
�). As we see in the following example.

Example 4 (Continuing Example 1). Recall that in setting of Example 1 I∗ = {h} and that we
denote Eh by C. Thus, the condition (ACΛ

�,I∗ ) in this setting is:

lim
l→∞

lim sup
n→∞

P
(
M̂

Λ,|X|,(h)
2l,rn

> aΛ
nx
∣∣max

t∈C
|Xt| > aΛ

nx
)

= 0.

In case we know that the pattern of observations will be the same, namely Λn =
⋃

t∈L0
(C)t ∩Kn,

which in practice means that the weather stations perform regularly, then R(h)
l,Λn

= Λn \Kl and so
the condition (ACΛ

�,I∗ ) becomes

lim
l→∞

lim sup
n→∞

P
(

max
i∈Λrn\K2l

|Xi| > aΛ
nx
∣∣max

t∈C
|Xt| > aΛ

nx
)

= 0.

11
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On the other hand we have that Rl,Λn is given by
⋃

t∈Λn
((Λn)−t)

+ \ Kl ⊃ R
(h)
l,Λn

. Then, it is
possible to see that (ACΛ

�,I∗ ) is strictly weaker than condition (ACΛ
�).

Let D̃j =
⋃

s∈Gj\{0}(Ej)s. We are now ready to present of the main results of this paper.

Theorem 17. Consider an Rd-valued stationary regularly varying random field (Xt)t∈Zk with index

α > 0. We assume conditions (DΛ), (ACΛ
�,I∗), AΛ(an) and (AΛ

ρ ). Then NΛ
n

d→ NΛ on the state
space Rd \ {0} and the limit random measure has Laplace functional for g ∈ C+

K , given by

ΨNΛ(g) =

exp

(
−
∫ ∞

0

∑
j∈I∗

γ∗j cjE
[(

1− e−
∑

t∈Ej
g(yΘEj ,t)

)
e
−

∑
t∈D̃j

g(yΘEj ,t)
]
d(−y−α)

)
(11)

where cj = lim
n→∞

P(ρEj (X)>an)

P(|X0|>an) .

5.3 The Υ−spectral cluster field

Recall that Gj is the lattice intersected with the non negative points associated to Lj and that
the extension Gj to the whole Zk is just given by Lj = Gj ∪ −Gj . For every Ej , denote by
Hj =

⋃
s∈Lj (Ej)s. Notice thatHj coincides with Ξ∗j for j ∈ I∗.

Proposition 18. Consider an Rd-valued stationary regularly varying random fields (Xt)t∈Zk with
index α > 0. We assume conditions (ACΛ

�,I∗ ) and (AΛ
ρ ). Then, |ΘEj ,t| → 0 a.s. for any |t| → ∞ and

t ∈ Dj , and so
∑

t∈Lj ρ(Ej)t(Θ)α <∞ a.s. and
∑

t∈Hj |ΘEj ,t|
α <∞ a.s. for every j = 1, ..., q.

Let Υ be a finite subset of Zk and A a subset Zk and ρ a modulus of continuity. Define

‖ΘΥ‖ρ,A,α =

(∑
t∈A

ρ(Υ)t(Θ)α
)1/α

as the normalisation constant. We define the spectral cluster random field by

QΥ,A :=
ΘΥ

‖ΘΥ‖ρ,A,α
,

where the dependence on ρ is implicit. Notice that when the modulus of continuity is ρα, Υ is Ej ,
and A is Lj then

‖ΘEj‖ρα,Lj ,α =

( ∑
t∈Hj

|ΘEj (t)|α
)1/α

= ‖ΘEj‖Hj ,α and

‖QEj ,Lj‖ρα,Lj ,α = ‖QEj‖Hj ,α = 1.

Observe that for bounded Dj we have that Ej = {0} ∪ Dj = Hj and that Gj = Lj = {0}. We
remark that when Υ = {0} we have that Θ{0}, ‖Θ{0}‖ρα,A,α, and Q{0},A are simply given by Θ,
‖Θ‖A,α, and QA (see Section 4.2).

5.4 Cluster point random field expressed using the Υ−spectral cluster field

Theorem 19. Consider an Rd-valued stationary regularly varying random fields (Xt)t∈Zk with

index α > 0. We assume conditions (DΛ), (ACΛ
�,I∗), AΛ(an) and (AΛ

ρ ). Then, NΛ
n

d→ NΛ on Rd0
and the limit has Laplace functional for g ∈ C+

K , with the following expression:

ΨNΛ(g) = exp

(
−
∑
j∈I∗

γ∗j cj

∫ ∞
0

E
[
1− e

−
∑

t∈Ξ∗
j
g(yQEj ,Lj ,t)

]
d(−y−α)

)
.

Proof. It follows from Theorem 17 using the same arguments as in the proof of Theorem 12, the time
change formula (10) and the fact that from Proposition 18 we have that

∑
t∈Lj ρ(Ej)t(Θ)α <∞ a.s.,

for every j ∈ I∗.

12
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In the following corollary we consider Theorems 17 and 19 when the modulus of continuity is ρα.
Corollary 20. Let the modulus of continuity be ρα. Consider an Rd-valued stationary regularly
varying random fields (Xt)t∈Zk with index α > 0. We assume conditions (DΛ), (ACΛ

�,I∗) and

AΛ(an). Then, NΛ
n

d→ NΛ on Rd0 admitting, for g ∈ C+
K , the Laplace functional:

ΨNΛ(g) = exp

(
−
∑
j∈I∗

γ∗j |Ej |
∫ ∞

0

E
[
1− e

−
∑

t∈Ξ∗
j
g(yQEj ,Lj ,t)

]
d(−y−α)

)
.

where
∑
j∈I∗ γ

∗
j |Ej | = 1.

Proof. The result follows from Theorems 17 and 19 and from the fact that when the modulus of
continuity is ρα we have that:

cj = lim
n→∞

P((
∑

t∈Ej |Xt|α)1/α > an)

P(|X0| > an)
= |Ej |.

Moreover, we have the following result on the representation of NΛ.
Proposition 21. Consider NΛ given in Theorems 17 and 19, then

NΛ =
∑
j∈I∗

∑
i∈N

∑
t∈Ξ∗j

ε
Γ
−1/α
j,i (γ∗j cj)

1/αQEj ,Lj ,i,t
(12)

where
(∑

t∈Ξ∗j
εQEj ,Lj ,i,t

)
i∈N

, is an iid sequence of point random fields with state space Rd, and

where (Γj,i)i∈N are the points of a unit rate homogeneous Poisson process on (0,∞) independent

of (QEj ,Lj ,i,t)t∈Ξ∗j
, for every j ∈ I∗. Moreover,

(∑
i∈N
∑

t∈Ξ∗j
ε

Γ
−1/α
j,i (γ∗j cj)

1/αQEj ,Lj ,i,t

)
j∈I∗

is a

sequence of independent point random fields with state space Rd.
Finally, in the setting of Corollary 20 we have NΛ =

∑
i∈N
∑
l∈N εΓ

−1/α
i Q̂i,l

where(∑
l∈N εQ̂i,l

)
i∈N

, is an iid sequence of point random fields with state space Rd with mixing distri-

bution L(
∑

l∈N εQ̂i,l
) =

∑
j∈I∗ γ

∗
j |Ej |L(

∑
t∈Ξ∗j

εQEj ,Lj ,t) for every i ∈ N, and where (Γi)i∈N are

the points of a unit rate homogeneous Poisson process on (0,∞) independent of (Q̂l)l∈N.

Proof. The result follows from Theorems 17 and 19 identifying the limiting Laplace functionals
such as the ones of cluster Poisson random fields.

Remark 8. Notice that the chosen order does not affect the spectral tail random field. This fact is
a clear advantage of the Υ−spectral cluster field approach compared to the approach of Section 4
because it allows the asymptotic representation (12) in full generality, not just in the lattice case.
Example 5 (Continuing Example 1). Armed with the results of this and the previous section we can
present the extreme asymptotic behaviour of NΛ

n , where Λn is described in Example 1. Then,

ΨNΛ(g) = exp

(
−
∫ ∞

0

E
[
1− e−

∑
t∈Ξ∗

h
g(yQC,Lh,t)

]
d(−y−α)

)
,

where we consider ρα as the modulus of continuity. We remark that such a clean result is not
achievable when the anti-clustering condition (ACΛ

�,I∗ ) does not hold. Since in this case (ACΛ
�,I∗ ) is

strictly weaker than (ACΛ
�), this representation is equivalent to

ΨNΛ(g) = exp

(
−
∫ ∞

0

|C|∑
i=1

1

|C|
E
[
e−

∑
t∈Di

g(yΘt)
(

1− e−g(yΘ0)
)]
d(−y−α)

)
.

Moreover, we can see that it is not important which reference point h ∈ C we consider, since our
results enjoy certain translation properties. In particular, this representation is equivalent to

ΨNΛ(g) = exp

(
−
∫ ∞

0

E
[
1− e−

∑
t∈Ξ∗s

g(yQC,Ls,t)
]
d(−y−α)

)
,

where s is any element of C and Ξ∗s is any different centering of C∞ at 0 (in our example Lh = Ls
for every h, s = 1, ..., |C|).

13
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6 Applications

6.1 The extremal index

In this section we investigate properties of the extremal index for random fields; see the work of
Hashorva [6] for max-stable random fields. First, let us define it.

Definition 1 (Λ-extremal index). Consider an Rd-valued stationary random field (Xt)t∈Zk . Assume
that for each positive τ there exists a sequence (un(τ)) such that lim

n→∞
|Λn|P(|X0| > un(τ)) = τ ∈

[0,∞] holds and the limit limn→∞ P(maxt∈Λn |Xt| ≤ un(τ)) = e−θ
Λ
Xτ exists for some θΛ

X ∈ [0, 1].
Then θΛ

X is the Λ-extremal index of (Xt).

As shown by Samorodnistky and Wu [23] when Λn = [1, n]k, the extremal index is connected with
the so called block extremal index. In particular, let

θΛ
n :=

P(maxt∈Λrn
|Xt| > un(τ))

|Λrn |P(|X0| > un(τ))
and θΛ

b := lim
n→∞

θΛ
n

where by un(τ) is such that lim
n→∞

|Λn|P(|X0| > un(τ)) = τ ∈ [0,∞].

For the sake of simplicity, we provide our results for random fields with respect to the modulus ρα in
this section. Thus, Dj = 1 and

∑
i∈I∗ γ

∗
i |Ej | = 1. For every j ∈ I∗, generalizing the approach of

Janssen [9] for processes to random fields, let T∗j be defined as follows: for t ∈ Lj define

{ω : T∗j (ω) = t} = {ω : max
z∈(Ej)t

|ΘEj ,z(ω)| − sup
s∈Lj ,s≺t

max
v∈(Ej)s

|Θ(v)(ω)| > 0}

∩ {ω : max
z∈(Ej)t

|ΘEj ,z(ω)| − sup
s∈Lj ,s�t

max
v∈(Ej)s

|Θ(v)(ω)| = 0}

and for t ∈ Zk \ L let {ω : T∗j (ω) = t} = ∅. If (ACΛ
�,I∗ ) is satisfied then T∗j is well defined thanks

to the summability proved in Proposition 18 (see also the end of the proof of Lemma 29 for the
connection between the summability of ρ and the one of the max norm). If (ACΛ

�) is satisfied and all
Hj’s are lattices (namely all D∪{0} ∪−D’s and all the Ξ’s are lattices) then T∗j is also well defined
thanks to the summability proved in Proposition 11. Observe that whenHj is a lattice then Ej = {0}
andHj = Lj .
Theorem 22. Consider an Rd-valued stationary random field (Xt)t∈Zk with index α and a sequence
(Λn) satisfying the condition (DΛ).
(1) If the anti-clustering condition (ACΛ

�) holds, then the limit θΛ
b := lim

n→∞
θΛ
n exists, is positive and

has the representations

θΛ
b =

∞∑
j=1

λjP(Y sup
t∈Dj

|Θt| ≤ 1) =

∞∑
j=1

λjE
[(

sup
t∈Dj∪{0}

|Θt|α − sup
t∈Dj

|Θt|α
)]
. (13)

(2) If also all the Ξ∗j ’s are lattices then θΛ
b admits the representations

θΛ
b =

∞∑
j=1

λjE
[

sup
t∈Ξ∗j

|QΞ∗j ,t
|α
]

=

∞∑
j=1

λjE
[ supt∈Ξ∗j

|Θt|α∑
s∈Ξ∗j

|Θs|α

]

=

∞∑
j=1

λjE
[
|Θ0|α1(T∗j = 0)

]
=

∞∑
j=1

λjE
[(

sup
t∈Dj∪{0}

|Θt|α − sup
t∈Dj

|Θt|α
)]
.

(14)

(3) In any case (1) or (2), if also the mixing condition

P(max
t∈Λn

|Xt| ≤ aΛ
nx)− P( max

t∈Λrn
|Xt| ≤ aΛ

nx)kn → 0, n→∞, (15)

where (kn and (rn) are as in the anti-clustering condition (ACΛ
�), is satisfied, then θΛ

X exists and
coincides with θΛ

b .

14
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It is possible to see that Theorem 22 (2) only applies to D’s that are lattices. It is natural to ask
whether or not a similar result holds for any D. The answer is positive if a different anti-clustering
condition is assumed. In particular, we have the equivalent result when the anti-clustering condition
(ACΛ

�,I∗ ) holds.

Theorem 23. Consider an Rd-valued stationary random field (Xt)t∈Zk with index α and a sequence
(Λn) satisfying the condition (DΛ).
(1) If the anti-clustering condition (ACΛ

�,I∗) holds, then the limit θΛ
b := lim

n→∞
θΛ
n exists, is positive

and has the representations

θΛ
b = E

[
sup
l∈N
|Q̂l|α

]
=
∑
j∈I∗

γ∗j |Ej |E
[

sup
t∈Ξ∗j

|QEj ,Lj ,t|α
]

=
∑
j∈I∗

γ∗j |Ej |E
[

max
t∈(Ej)T∗

j

|QEj ,Lj ,t|α
]

=
∑
j∈I∗

γ∗j |Ej |E
[

max
z∈Ej
|ΘEj ,z|α1(T∗j = 0)

]
. (16)

(2) If also the mixing condition (15) where (kn) and (rn) are as in the anti-clustering condition
(ACΛ

�,I∗ ), is satisfied, then θΛ
X exists and coincides with θΛ

b .

From the two previous results we obtain the following immedaite corollary.

Corollary 24. Assume that (Xt)t∈Zk is an Rd-valued stationary random field with index α, a
sequence (Λn) satisfying the condition (DΛ) and either (ACΛ

�) or (ACΛ
�,I∗) and (15). Then the

extremal index θX exists, is positive, and

lim
n→∞

P(max
t∈Λn

aΛ
n |Xt| ≤ x) = ΦθXα (x), x > 0,

where Φα(x) = e−x
−α

, x > 0, is the standard Fréchet distribution function and θX is given in
either (13) or (16) depending on which anti-clustering and mixing conditions are satisfied, (14) being
available only when the Ξ∗j are lattices.

6.2 Max-stable random fields

Consider a non negative stationary random fieldX = (Xt)t∈Zk (with state spaceE = R+ and d = 1).
A fundamental representation theorem by de Haan [11] states that any stochastically continuous
max-stable (real valued) random field X can be represented (in finite dimensional distributions) as

Xt = max
i∈N

UiVi,t, t ∈ Zk, (17)

where (Ui)i∈N is a decreasing enumeration of the points of a Poisson point process on (0,+∞) with
intensity measure u−2du, (Vi)i∈N are i.i.d. copies of a non-negative random field (Vt)t∈Zk such that
E[Vt] < +∞ for all t ∈ Zk, the sequences (Ui)i∈N and (Vi)i∈N are independent. Observe that the
above definition implies that the marginal distributions of X are 1-Fréchet, that is P(Xt ≤ z) =
e−E[Vt]/z for all z > 0, where E[Vt] > 0 is a scale parameter.
The aim of this Section is to find a necessary an sufficient condition for the anti-clustering
condition (ACΛ

�,I∗) to hold for stationary max-stable random fields. We recall some notation:
Hj =

⋃
s∈Lj (Ej)s where, for every j ≥ 1, Ej are finite subsets of Zk including 0 and Lj are any

lattice of Zk (possibly degenerate). The following result is an extension of results in Samarodnistky
and Wu [23]. Notice that the limit (12) motivates the introduction of a mixing distribution on Vt as in
the second assertion below.

Proposition 25. Let (Xt)t∈Zk be a stationary max-stable random field with non-negative values.
Consider a sequence Λn of subsets of translated

⋃
j≥1Hj satisfying the condition (DΛ) then (Xt)t∈Zk

satisfies the (ACΛ
�,I∗ ) condition for any rn →∞ s.t. bn/rnc → ∞ if for any i ≥ 1 and j ∈ I∗

lim
|t|→∞,t∈(Hi)+

Vt 1
(

max
t∈Ej

Vt 6= 0
)

= 0, a.s. (18)

15
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Consider L(Vt) =
∑
j∈I∗ λjL(V

(j)
t ), λj > 0, j ∈ I∗,

∑
j∈I∗ λj = 1 such that each component

V
(j)
t is supported by a subset of a translation of a uniqueHj , j ≥ 1 then the condition (18) simplifies

to
lim

|t|→∞,t∈(Hj)+
Vt 1
(

max
t∈Ej

Vt 6= 0
)

= 0, a.s. (19)

for any j ∈ I∗.

Notice that these specific max-stable random fields could be used to model any asymptotic clustering
due to our result (12).

Remark 9. Under Condition (DΛ), the index set Λn fills up the translated asymptotic index set⋃
j≥1Hj . Checking the conditions (18) and (19) requires the knowledge of the Ej , j ≥ 1, beforehand.

Thus it requires some prior knowledge on the grid of the observations.

Example 6 (Continuing Example 1). Max-stable random fields have been widely used for modeling
extremal phenomena such as storm, starting with the pioneer work of [20]. The spatial model [19],
called spectrally stationary, is widely used to model space dependence because of its simplicity. It
is defined as follows: consider an iid sequence of stationary random fields Vi,s, s ∈ Z2 which are
not null. Then Xspace

s = maxi≥1 UiVi,s is a stationary max-stable random field. However it does
not satisfy conditions (18) nor (19) in any direction of Z2 because it would contradict the stationary
assumption on Vi,s, s ∈ Z2. The M3 representation of [12, 15] was introduced to bypass this issue.
Consider now a state-space model with space defined over H0 =

⋃
t∈L0

(C)t where C is a finite
subset of Z2. It is sufficient to check (18) and (19) where the limit is taken along the time direction
only. Thus a stationary space-time process Xt such that its space distribution is the one of Xspace

t
can satisfy conditions (18) and (19) when its extremes are sufficiently independent over time. A basic
example is an iid process in time for which the condition max

t∈E0
Vt 6= 0 = max

t∈C×{0}
Vt 6= 0 forces that

Vt = 0 for any other component t = (s, k), k 6= 0. Such spectrally stationary models in space were
not attainable in previous studies, see Remark 5 (i) of [4], because they are not ergodic as shown in
[7].

7 Proofs in Section 3

7.1 Proof of Proposition 3

Assume that the first statement of point (I) is false for at least some Dj and Di with j 6= i. Then,
for every p ∈ N, Dj ∩Kp = Di ∩Kp, which implies that Dj = Di contradicting Condition (DΛ).
By Condition (DΛ) we infer on one hand that λj,p ≥

∑
i∈I(j)

p
λi. Indeed Dj ∩Kp ⊆ Dj ∩Kp′ for

p′ > p thus we have the inclusion

{t ∈ Λn : Λ(t,p′)
n = Dj ∩Kp′} ⊆ {t ∈ Λn : Λ(t,p)

n = Dj ∩Kp}

and λj,p ≥ λj , p ≥ 1, 1 ≤ j ≤ q. Thus for any p′ > p we have

{t ∈ Λn : Λ(t,p)
n = Dj ∩Kp} =

⋃
i∈I(j)

p

{t ∈ Λn : Λ(t,p)
n = Di ∩Kp}

⊇
⋃
i∈I(j)

p

{t ∈ Λn : Λ(t,p′)
n = Di ∩Kp′} .

Fix ε > 0. As
∑q
i=1 λi < ∞, there exists some m sufficiently large such that

∑
i≥m λi < ε.

Moreover, there exists p′ sufficiently large so that Dj ∩Kp′ 6= Di ∩Kp′ for any i, j ≤ m from the
reasoning above. Thus

|{t ∈ Λn : Λ(t,p)
n = Dj ∩Kp}| ≥ |

⋃
i∈I(j)

p ,i≤m

{t ∈ Λn : Λ(t,p′)
n = Di ∩Kp′}|

≥
∑

i∈I(j)
p ,i≤m

|{t ∈ Λn : Λ(t,p′)
n = Di ∩Kp′}|

16
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and dividing both sides by |Λn| and letting n→∞ we obtain

λj,p ≥
∑

i∈I(j)
p ,i≤m

λi,p′ ≥
∑

i∈I(j)
p ,i≤m

λi ≥
∑
i∈I(j)

p

λi − ε .

As it holds for every ε > 0 it implies the desired relation λj,p ≥
∑
i∈I(j)

p
λi. On the other hand

λi,p cannot be strictly greater than
∑
i∈I(j)

p
λi. Indeed, defining the equivalence relation i ∼ j ⇔

i ∈ (I
(j)
p )1≤j≤q, one considers the partition of {1, . . . , q} generated by the equivalence classes

Pp = {1, . . . , q}\ ∼. If

lim
n→∞

|{t ∈ Λn : Λ(t,p)
n = Dj ∩Kp}|/|Λn| >

∑
i∈I(j)

p

λi

for some j ∈ {1, . . . , q} belonging to the class ` ∈ Pp then one gets

lim
n→∞

∑
j∈Pp

|{t ∈ Λn : Λ(t,p)
n = Dj ∩Kp}|/|Λn|

> lim
n→∞

∑
j∈Pp\`

|{t ∈ Λn : Λ(t,p)
n = Dj ∩Kp}|/|Λn|+

∑
j∈I(`)

p

λj

>
∑
j∈Pp

∑
j∈I(j)

p

λj = 1

which yields a contradiction.
For point (II), consider the case of (Λrn)n∈N whose points have a distance between each other which
increases as n increases. The increase of the distance within the points of Λrn as n increases allows
the following fact: when we consider Kp around one of the points, for every fixed p, all the other
points are outside Kp for every n large enough. Then, in this case there is only one D for (Λrn)n∈N
and it is given by the empty set.
For point (III) we need the following Lemma.
Lemma 26. For any 1 ≤ j ≤ q and z ∈ Dj , there exists 1 ≤ i ≤ q such that Di = ((Dj)−z)+ and
λi ≥ λj .

Proof. Consider z ∈ Dj , 1 ≤ j ≤ q and let D := ((Dj)−z)+. Notice that for every q ∈ N there
exists a p ∈ N such that Kp ⊃ ((Kq)−z)+. Thus Dj ∩ ((Kq)−z)+ ⊂ Dj ∩ Kp and thus z + s
belongs to Dj ∩Kp for any s ∈ D ∩Kq . Thus for every q ∈ N we have

{t ∈ Λn : Λ(t,q)
n = D ∩Kq} ⊃ {t ∈ Λn : Λ(t,p)

n = Dj ∩Kp}
so that

lim inf
n→∞

|{t ∈ Λn : Λ(t,q)
n = D ∩Kq}|/|Λn| ≥ λj,p ≥ λj . (20)

Assume that D does not coincide with any Di, 1 ≤ i ≤ q. Fix ε > 0 so small that it satisfies λj > ε.
Let m satisfies

∑
i>m λi < ε as above in the proof of point (I) (thus j ≤ m) and p sufficiently large

such that D ∩Kp 6= Di ∩Kp and Di ∩Kp 6= Dk ∩Kp for every i 6= k ≤ m. Using the notation
introduced in the proof of point (I), we have

lim sup
n→∞

|{t ∈ Λn : Λ(t,p)
n = D ∩Kp}|/|Λn|

≤ lim sup
n→∞

|{t ∈ Λn : Λ(t,p)
n 6= Di ∩Kp,∀i ≤ m}|/|Λn|

≤ lim sup
n→∞

(|Λn| − |
⋃
i≤m

{t ∈ Λn : Λ(t,p)
n = Di ∩Kp}|)/|Λn|

≤ 1−
∑
i≤m

λi,p ≤ 1−
∑
i≤m

λi ≤ ε

which is in contradiction with (20). Therefore, D = Di for some 1 ≤ i ≤ q and we have

lim
q→∞

lim
n→∞

|{t ∈ Λn : Λ(t,q)
n = D ∩Kq}|/|Λn| = λi

and the relation λi ≥ λj follows from (20).
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To prove Point (III) observe first that for any Dj there exists bj ∈ N ∪ {∞}, with bj ≤ |Dj | + 1,
distinct sets (Dj)+

−z, z ∈ Dj . The sum of the corresponding weights λi being smaller than 1 and
larger than bjλj , by Lemma 26 we get the constraint bjλj ≤ 1 and Point (III) follows.

7.2 Proof of Proposition 4

First, for any 1 ≤ j ≤ q, let us show that Gj is invariant by addition in the sense that if z ∈ Gj
and z′ ∈ Gj we infer that z + z′ ∈ Gj \ {0}. Indeed, z′ ∈ Dj = ((Dj)−z)+ so that necessarily
z + z′ ∈ Dj . Moreover we have

((Dj)−z−z′)
+ = ((((Dj)−z)+)−z′)

+

= ((Dj)−z′)
+

= Dj .

It shows that Gj is invariant by addition on (Zk)+. Thus Gj is given by a lattice, namely given k (not
necessarily linearly independent) distinct vectors v1, ...,vk ∈ Zk (i.e. a basis of Zl for l ∈ {1, ..., k}
called the rank) we have the identity Gj = {

∑k
l=1 alvl : al ∈ Z} ∩ {t ∈ Zk : t � 0}. We will refer

to the degenerate case Gj = {0} as the case of null rank k = 0. Thus, Lj is a lattice on Zk.
Let us now we prove the existence of the partition (4). We have to show that for any z ∈ Dj there
exists a unique 1 ≤ i ≤ bj so that z − zli ∈ Lli . We know that we have a unique Dli such that
Dli = ((Dj)−z)+ = ((Dj)−zli

)+ for some 1 ≤ i ≤ bj . Assume without loss of generality that
z � zli . Thus, either z = zli and then z − zli = 0 ∈ Gli . Or z − zli � 0 and for any s ∈ Dli we
have s + z ∈ Dj and thus s + z− zli ∈ Dli . That z− zli ∈ Gli follows by definition of Gli . Since z
is an arbitrary point in Dj and since li is unique as Dli , we obtain the desired partition.
Consider any Dl so that there exists z ∈ Dj satisfying Dl = ((Dj)−z)+. Then for any s ∈ Gj \ {0}
we have

((Dl)−s)
+ = ((Dj)−z−s)

+

= ((((Dj)−s)
+)−z)+

= ((Dj)−z)+

= Dl .

Since z ∈ Dj = ((Dj)−s)
+ then z + s ∈ Dj and s ∈ Dl. Thus we proved that

s ∈ {z′ ∈ Dl ∪ {0} : ((Dl)−z′)
+ = Dl} =: Gl

and that Gj ⊆ Gl.
Further, we show now that Gj and Gl, l = l1, ..., lbj , have the same rank. Assume the contrary.
Thus, let Gj = {

∑m
l=1 alvl : al ∈ Z}+ where v1, ...,vm ∈ Zk are linearly independent and Gl =

{
∑p
l=1 alv

′
l : al ∈ Z}+ where v′1, ...,v

′
p ∈ Zk are linearly independent, with k ≥ p > m. Since

Gj ⊆ Gl we know that vi = civ
′
i for some ci ∈ Z, for every i = 1, ...,m. Since ahv′h ∈ Gl \ Gj for

any ah ∈ Z such that ahv′h � 0 and since Gj ⊆ Gl (and Gl is a lattice), we have that (Gj)ahv′h
⊂ Gl,

and again by the lattice structure of Gl we have (Lj)+
ahv′h

⊂ Gl. By induction we obtain⋃
am+1∈Z

⋃
am+2∈Z

· · ·
⋃
ap∈Z

(Lj)+
am+1v′m+1+···+apv′p

⊂ Gl. (21)

Now, consider (Dj ∩Kq) \
⋃

i∈Gj\{0}(Dj ∩Kq)i, namely the points in Dj ∩Kq without K+
q (i) for

every i ∈ Gj \ {0}. By (21) we have( ⋃
am+1∈Z

⋃
am+2∈Z

· · ·
⋃
ap∈Z

(Lj)+
am+1v′m+1+···+apv′p

)
zl
⊂ (Gl)zl ⊂ Dj ,

where zl is defined in the statement of Point (V). Thus, |(Dj ∩ Kq) \
⋃

i∈Gj\{0}(Dj ∩ Kq)i| →
∞ as q → ∞ monotonically. In particular, there is a q∗ large enough such that |(Dj ∩ Kq∗) \⋃

i∈Gj\{0}(Dj ∩Kq∗)i| > 1/λj . Since lim
n→∞

|{t ∈ Λn : Λ
(t,q∗)
n = Dj ∩Kq∗}|/|Λn| = λj,q∗ , there

are λj,q∗ |Λn||(Dj ∩ Kq) \
⋃

i∈Gj\{0}(Dj ∩ Kq∗)i| asymptotically many points in Λn, but since

18
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λj,q∗ ≥ λj we have that λj,q∗ |Λn||(Dj ∩Kq) \
⋃

i∈Gj\{0}(Dj ∩Kq∗)i| > |Λn|, which leads to a
contradiction. Thus, Gj and Gl, l = l1, ..., lbj , have the same rank.
Finally, ifDj is bounded then by definition of Gj we have that Gj = {0}. If Gj = {0} then Gli = {0}
because Gj and Gli have the same rank, for every i = 1, ..., bj . Since bj is finite, we conclude that Dj
is finite.

7.3 Proof of Proposition 5

Since Gj ⊆ Gli , it remains to show that Gj ⊇ Gli considering that i satisfies (TIPj). We notice that
for x ∈ (Lli)+

zli
we have ((Dj)−x)+ = Dli as

((Dj)−x)+ =
(

(G+
j )−x ∪

bj⋃
h=1

((Llh)zlh
)+
−x

)+

= ((Gj)−x)+ ∪
bj⋃
h=1

((Llh)zlh−x)+

= ((Gj)−x)+ ∪ G+
i ∪

bj⋃
h=1,h6=i

((Llh)zlh−x)+.

So that ((Dj)−x)+ is the unique Dl, l = 1, . . . , bj associated to the lattice Gl = Gli and it coincides
with Dli . Then y − x ∈ Dli , with y ∈ Gj , is such that ((Dli)−(y−x))

+ = Dj . We then obtain that
Gj ⊇ Gli by exchanging the role of Dli with the one of Dj in the proof of Gj ⊆ Gli in Point (V).
Further, by applying Lemma 26 to Dli we conclude that λj = λli .
If Gj is a full rank lattices then it is spanned by k linearly independent vectors and there always exists
a point s ∈ Gj such that s � zl for every l = l1, ..., lbj . This implies that the (LCl) condition must be
satisfied and Gj = Gl for every l = l1, ..., lbj . This concludes the proof of the first statement.
Let us now prove the second statement. By (TIPj), for every i = 0, ..., bj , and points (V) and
(VI) we have that there exists z ∈ Dli such that ((Dli)−z)+ = Dj . Hence, z ∈ Dli contains a
translated copy of Dj hence a translated copy of any Dlh , h = 1, ..., bj , already contained in Dj .
Thus (lh;h = 0, ..., bj) = (lh;h = 0, ..., bli) so that (lh;h ∈ Wj) = (lh;h ∈ Wli) and then D̂li is
the union of the same sets than D̂j

D̂li =
⋃

h∈Wli

Dlh =
⋃
h∈Wj

Dlh = D̂j .

Concerning the translation invariance property, we need to check that D̂j ∪ {0} ∪−D̂j is invariant to
the translation by every point in the lattice Lj , that is D̂j∪{0}∪−D̂j = (D̂j∪{0}∪−D̂j)s for every
s ∈ Lj . With no loss of generality consider s ∈ G+

j so that for any h ∈Wj we have (Dlh)−s ∩ {t ∈
Zk : t � 0} = {0}∪Dlh since Glh = Gj . Hence (D̂j)−s∩{t ∈ Zk : t � 0} = {0}∪D̂j . Moreover,
for similar reason for any z ∈ D̂j ∪ {0} we have s + z ∈ D̂j so that −(D̂j ∪ {0})−s ⊂ −D̂j . It
remains to show that −D̂j \ −(D̂j)−s = (D̂j ∪ {0})−s \ (((D̂j)−s)

+ ∪ {0}).

7.4 Proof of Propositon 6

Let Ξ be a subset of Zk such that 0 ∈ Ξ and let p ∈ N. Denote by −v be the lowest point (according
to �) of Ξ ∩ Kp and denote the points of Kp \ {t ∈ Zk : t � −v} by −w1, ...,−wu, for some
u ∈ N which depends on p. Let Φ1, ...,Φv, for some v ∈ N, be the subsets of K+

2p such that for
each h = 1, ..., v we have Φh ∩ (Kp)v = ((Ξ ∩ Kp)v)+. Similarly, for every i = 1, ..., u, let
Ψi,1, ...,Ψi,vi , for some vi ∈ N, be the subsets of K+

2p such that for each h = 1, ..., vi we have
Ψi,h ∩ (Kp)wi

= (Ξ ∩Kp)wi
. Moreover, for every i = 1, ..., u, denote by Πi,1, ...,Πi,si the non-

empty subsets of Kp \ {t ∈ Zk : t � v} with highest point (according to �) given by −wi. Observe
that ((Ξ ∩Kp)v)+ = (Ξ ∩Kp)v \ {0} and ((Ξ ∩Kp)wi

)+ = (Ξ ∩Kp)wi
for every i = 1, ..., u.

First, for every n ∈ N we have that

|{t ∈ Λn : (Λn)−t ∩Kp = Ξ ∩Kp}| = |{t ∈ Λn : (Λn)−t ∩ (Kp)v = (Ξ ∩Kp)v}|.
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Second, we have the following identities

{t ∈ Λn : (Λn)−t ∩ (Kp)v = (Ξ ∩Kp)v}
= {t ∈ Λn : (Λn)−t ∩ ((Kp)v)+

= ((Ξ ∩Kp)v)+} \
⋃

i=1,...,u

⋃
h=1,...,vi

{t ∈ Λn : (Λn)−t ∩ (Kp)v

= (Πi,h ∪ Ξ ∩Kp)v}.

Since ⋃
i=1,...,u

⋃
h=1,...,vi

{t ∈ Λn : (Λn)−t ∩ (Kp)v = (Πi,h ∪ Ξ ∩Kp)v}

are unions of disjoint sets, since

{t ∈ Λn : (Λn)−t ∩ ((Kp)v)+ = ((Ξ ∩Kp)v)+}

⊃
⋃

i=1,...,u

⋃
h=1,...,vi

{t ∈ Λn : (Λn)−t ∩ (Kp)v = (Πi,h ∪ Ξ ∩Kp)v}

and since for every i = 1, ..., u

|
⋃

h=1,...,vi

{t ∈ Λn : (Λn)−t ∩ (Kp)v = (Πi,h ∪ Ξ ∩Kp)v}|

= |{t ∈ Λn : (Λn)−t ∩ ((Kp)wi
)+ = (Ξ ∩Kp)wi

}|

we have that

|{t ∈ Λn : (Λn)−t ∩ ((Kp)v)+ = ((Ξ ∩Kp)v)+}

\
⋃

i=1,...,u

⋃
h=1,...,vi

{t ∈ Λn : (Λn)−t ∩ (Kp)v = (Πi,h ∪ Ξ ∩Kp)v}|

= |{t ∈ Λn : (Λn)−t ∩ ((Kp)v)+ = ((Ξ ∩Kp)v)+}|

−
∑

i=1,...,u

∑
h=1,...,vi

|{t ∈ Λn : (Λn)−t ∩ (Kp)v = (Πi,h ∪ Ξ ∩Kp)v}|

= |{t ∈ Λn : (Λn)−t ∩ ((Kp)v)+ = ((Ξ ∩Kp)v)+}|

−
∑

i=1,...,u

|{t ∈ Λn : (Λn)−t ∩ ((Kp)wi)
+ = (Ξ ∩Kp)wi}|

=
∑

l=1,...,v

|{t ∈ Λn : Λ(t,2p)
n = Φl}| −

∑
i=1,...,u

∑
h=1,...,vi

|{t ∈ Λn : Λ(t,2p)
n = Ψi,h}|,

where the last equality follows by the definition of the Φ’s and the Ψ’s and the fact that Φl 6= Φm
for every l,m = 1, ..., v with l 6= m, and that Ψi,h 6= Ψi,k for every i = 1, ..., u and h, k = 1, ..., vi
with h 6= k. Now, thanks to Point (I) in Proposition 3 we have that

lim
n→∞

|{t ∈ Λn : Λ(t,2p)
n = Φl}|/|Λn| =

{
λ2p,z =

∑
x∈I(z)

2p
λx if Dz ∩K2p = Φl for some z ∈ N,

0 otherwise.

for l = 1, ..., v, and similarly for Ψi,h for i = 1, ..., u and h = 1, ..., vi. Then, we obtain that the
following limit exists

lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξ ∩Kp}|/|Λn|.

Further, observe that for p′ > p we have the inclusion

{t ∈ Λn : (Λn)−t ∩Kp′ = Ξ ∩Kp′} ⊆ {t ∈ Λn : (Λn)−t ∩Kp = Ξ ∩Kp},

thus, the following limit exists

lim
p→∞

lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξ ∩Kp}|/|Λn|.
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This concludes the first part of the statement.
Now, let Ξ+ 6= Dj for every 1 ≤ j ≤ q and fix ε > 0. As

∑q
i=1 λi = 1, there exists some m

sufficiently large such that
∑
i≥m λi < ε and there exists p sufficiently large so that Ξ∩K+

p 6= Di∩Kp

for any i ≤ m. Then,
lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξ ∩Kp}|/|Λn| < ε

Thus,
lim
p→∞

lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξ ∩Kp}|/|Λn| = 0,

which concludes the proof.

7.5 Proof of Proposition 7
Consider first the case of bounded Ξb. In this case, we have that |Ξb| < 1/γb + 1; otherwise we will
have a contradiction because we will asymptotically end up with more points than the ones in Λn.
Further, denote by −z its lowest point according to �, then we have

lim
p→∞

lim
n→∞

|{t ∈ Λn : Λ(t,p)
n = (Ξb)z ∩K+

p }|/|Λn| > 0,

which implies that (Ξb)z = Dj for some j = 1, ..., q. Further, since
lim
p→∞

lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = {0} ∪ Dj ∩Kp}|/|Λn| > 0,

and since by (4) Lj ∪
⋃bj
i=1(Lli)zli

= {0} ∪ Dj we obtain that Ξb = ({0} ∪ Dj)−z and the first
statement follows.
Now, let Ξb be unbounded. We show that Ξb is a finite union of translated lattices. Consider any
point s in Ξb. Let gp ∈ N be such that Ξb ∩Kgp ⊃ Ξb ∩ (K+

p )−s. Then, for every n ∈ N

|{t ∈ Λn : Λ(t,p)
n = (Ξb)−s ∩K+

p }| ≥ |{t ∈ Λn : (Λn)−t ∩Kgp = Ξb ∩Kgp}|
and since this holds for every p large enough, we get

lim
p→∞

lim
n→∞

|{t ∈ Λn : Λ(t,p)
n = (Ξb)−s ∩K+

p }|/|Λn| ≥ γb.

Then, we have that ((Ξb)−s)
+ = Dk for some k = 1, ..., q. By Proposition 4, we deduce that Ξb is a

union of translated lattices. Further, this union is finite because γb is strictly positive.
Now, consider a point r on the most preceding lattice of Ξb. Then, ((Ξb)−r)+ = Dj , for some
j = 1, ..., q, and so ((Ξb)−r) =

⋃bj
i=0(Lli)zli

, which concludes the proof of the first statement.
Let us now prove the second statement. Let p ∈ N. Define the equivalence relation i ∼ j ⇔
i ∈ (F

(j)
p )1≤j≤q′ , one considers the partition of {1, . . . , q′} generated by the equivalence classes

P′p = {1, . . . , q′}\ ∼. Recall the definition of Pp from the proof of point (I) in Proposition 3. For
every l ∈ Pp, let P′p,l ⊂ P′p such that i ∈ P′p,l if Ξi ∩K+

p = Dl ∩K+
p . Since

|{t ∈ Λn : Λ(t,p)
n = Dj ∩Kp}| =

∑
i=1,...,u

|{t ∈ Λn : (Λn)−t ∩Kp = Πi ∪ {0} ∪ Dj ∩Kp}|

where Π1, ...,Πu, u ∈ N, are the subsets of K−p \ {0}, we obtain that λp,j =
∑
i∈P′p,j

γp,i. Thus,
we have that 1 =

∑
j∈Pp λp,j =

∑
j∈Pp

∑
i∈P′p,j

γp,i =
∑
i∈P′p

γp,i. By applying Fatou’s lemma,
we get that

1 = lim
p→∞

∑
i∈P′p

γp,i = lim inf
p→∞

∑
i∈P′p

γp,i

≥
q′∑
j=1

lim inf
p→∞

lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξj ∩Kp}|
|Λn|

=

q′∑
j=1

γj .

Hence, 1 ≥
∑q′

j=1 γj . By applying the same arguments as the ones used in the proof of point
(I) in Proposition 3 we have that

∑
i∈F (j)

p
γi ≥ γj,p for every j ∈ P′p, which implies that∑q′

i=1 γi =
∑
j∈P′p

∑
i∈F (j)

p
γi ≥

∑
j∈P′p

γj,p = 1. Therefore, combining the two results we

have that
∑q′

i=1 γi = 1 and
∑
i∈F (j)

p
γi = γj,p for every j ∈ P′p.
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7.6 Proof of Proposition 8
Let j ∈ I∗. Consider (Ξ∗j )−x for every x ∈ Ej and observe that these are the only possible Ξs
that can be formed by translations of Ξ∗j . The weights of the sets (Ξ∗j )−x, x ∈ Ej , are all equal to
γ∗j . This is because of the following arguments. Let γb be the weight of (Ξ∗j )−x. Consider a point
x ∈ Ej \ {0}. For any p ∈ N, let gp ∈ N be such that Ξ∗j ∩Kgp ⊃ Ξ∗j ∩ (Kp)x. Then, for every
n ∈ N

|{t ∈ Λn : (Λn)−t ∩Kp = (Ξ∗j )−x ∩Kp}| ≥ |{t ∈ Λn : (Λn)−t ∩Kgp = Ξ∗j ∩Kgp}|
which implies that γb ≥ γ∗j . Conversely, for any p ∈ N, let fp ∈ N be such that (Ξ∗j )−x ∩Kfp ⊃
(Ξ∗j )−x ∩ (Kp)−x. Then, for every n ∈ N

|{t ∈ Λn : (Λn)−t ∩Kp = Ξ∗j ∩Kp}| ≥ |{t ∈ Λn : (Λn)−t ∩Kfp = (Ξ∗j )−x ∩Kfp}|
which implies that γ∗j ≥ γb, hence γ∗j = γb. Thus, for each j ∈ I∗ we have that the sum of the
weights of the Ξs composed by the translations of Ξ∗k is |Ej |γ∗j . Since each Ξb, b = 1, ..., q′, is the

translation of a Ξ∗k for some k ∈ I∗, we obtain that
∑
j∈I∗ γ

∗
j |Ej | =

∑q′

i=1 γi = 1, where the last
equality comes from Proposition 7.

7.7 Proof of Proposition 9
First, we have that ml →∞ as l→∞ and, since by Lemma 8 we know that

∑
i∈I∗ γ

∗
i |Ei| = 1, we

obtain that
∑
i∈I∗,i>ml γ

∗
i |Ei| → 0 as l→∞.

For every n ∈ N and j ∈ I∗ with j < m4l, consider the set Sj,4l. We let the dependency on n be
implicit. Let j, i ∈ I∗ with j, i < m4l and i 6= j. In the following we show that for every t ∈ Sj,4l
and s ∈ Si,4l we have that (Dj ∩K2l)t ∩ (Di ∩K2l)s = ∅. The idea behind the following proof
is that by taking points in Λn with certain structure on K4l around them (i.e. Ξ ∩K4l for i ∈ I∗
with i < m4l) where l is large enough (see above), we ensure that the sets K+

2l around them do not
intersect for different structures (i.e. (Dj ∩K2l)t∩ (Di∩K2l)s = ∅, for every t ∈ Sj,4l and s ∈ Si,4l
and every i, j ∈ I∗ with i, j < m4l and i 6= j).
First, consider the case of Di and Dj bounded. Notice that t 6= s because Dj ∩K4l 6= Di ∩K4l and
so Ξ∗j ∩K4l 6= Ξ∗i ∩K4l. Thus, if (Dj ∩K2l)t and (Di ∩K2l)s have an intersection then one of the
two Ξ∗ ∩K4l’s will have at least one point in K−4l \ {0} (in particular at s− t if t � s or at t− s if
s � t) which is impossible by definition of bounded Ξ∗’s because its lowest point (according to �) is
{0}.
Second, consider the case of Di bounded and Dj unbounded. Then, as before t 6= s. Moreover,
if (Dj ∩ K2l)t and (Di ∩ K2l)s have an intersection and s � t then Ξ∗i ∩ K4l will have at least
one point in K−4l \ {0} which is impossible. If they have an intersection and t � s, then we have
Ξ∗i ∩K2l = Dlh ∩K2l for some lh = l1, ..., lbj , because (K4l)t ⊃ (K2l)s and so the structure of
(Ξ∗j ∩K4l)t implies that (Λn)−s ∩K+

2l = Dlh ∩K2l for some lh = l1, ..., lbj . However, the equality
Ξ∗i ∩K2l = Dlh ∩K2l is impossible by construction.
Third, consider the case of Di and Dj unbounded. Then, as before t 6= s. Further, if t � s, then
we have Ξ∗i ∩ K2l = Dlh ∩ K2l for some lh = l1, ..., lbj as in the previous paragraph, which is
impossible by construction. We conclude by observing that the case s � t is specular to the case
t � s.
Now, we bound the number of points in Si,4l for every i < m4l and i ∈ I∗. For every Di bounded
with i < m4l and i ∈ I∗, let S′i,4l = Si,4l if |Si,4l| ≤ γ∗i |Λn| and let S′i,4l be a subset of Si,4l with
|S′i,4l| = γ∗i |Λn| if |Si,4l| > γ∗i |Λn|.
For the unbounded case we have the following. Consider any Di unbounded with i < m4l and
i ∈ I∗. Notice that (Ei)s ∩ (Ei)t = ∅ for every s, t ∈ Si,4l because Ei ⊂ K+

l ∪ {0} and because we
are considering Ξi ∩K4l and thus an intersection would violate the structure of Ξi ∩K4l. For any
t ∈ Si,4l, consider the set (Di ∩K2l) \

⋃
s∈(Si,4l)−t,s≺0(Ei)s. Consider the set of points t ∈ Si,4l

such that
(D∗i ∩K2l) \

⋃
s∈(Si,4l)−t,s≺0

(Ei)s = (D∗i ∩K2l) \
⋃

s∈−Gi\{0}

(Ei)s

and denote it by S̃i,4l. We remark that

(Di ∩K2l) \
⋃

s∈(Si,4l)−t,s≺0

(Ei)s = (Di ∩K2l) \
⋃

s∈(∪i∈I∗,i<m4l
Si,4l)−t,s≺0

(Ei)s

22



A PREPRINT - FEBRUARY 21, 2022

because by construction for every t ∈ Si,4l and s ∈ Sj,4l, where j ∈ I∗ with j 6= i and j < m4l, we
have that (Di ∩K2l)t ∩ (Dj ∩K2l)s = ∅ and so that (Di ∩K2l)t ∩ (Ej)s = ∅.
Now, if |S̃i,4l| > γ∗i |Λn| and we arbitrarily take out a point x ∈ Si,4l then we might end up taking
out more than one point in S̃i,4l because the points in S̃i,4l need the existence of certain points in
Si,4l around them. Thus, we need to show that it is possible to find a procedure in which by taking
out a certain point in Si,4l we only take out one (and only one) point in S̃i,4l.

Let v := |{s ∈ −Gi \ {0} : (Di ∩K2l) ∩ (Ei)s 6= ∅}|. For each t ∈ S̃i,4l, let st,1 ≺ ... ≺ st,v ≺ 0
be the points in (Si,4l)−t such that (Di ∩K2l)∩ (Ei)st,h 6= ∅, h = 1, ..., v. Consider the lowest point
in S̃i,4l according to � and denote it by w. Then, by taking out sw,1 from Si,4l we only take out
w from S̃i,4l (but not from Si,4l). This is because sw,1 is the lowest among sw,1, ..., sw,v and since
sw,1 is the lowest point in S̃i,4l, this implies that sw,1 6= st,h for every t ∈ S̃i,4l \ {w} and every
h = 1, ..., v. Thus, by taking out sw,1 from Si,4l we are not taking out any other point in S̃i,4l apart
from w.
Now, if |S̃i,4l| ≤ γ∗i |Λn| let S′i,4l = S̃i,4l, while if |S̃i,4l| > γ∗i |Λn| then, following the above

procedure, reduces the points in Si,4l to obtain a set, which we denote S
(reduced)
i,4l , such that

|S̃(reduced)
i,4l | = γ∗i |Λn| and let S′i,4l = S̃

(reduced)
i,4l .

Concerning the asymptotic behaviour of S′i,4l, in the bounded case, since lim
n→∞

|{t ∈ Λn : (Λn)−t ∩
K4l = Ξ∗i ∩K4l}|/|Λn| ≥ γ∗i , by continuity of the minimum function we obtain that

lim
n→∞

|S′i,4l|/|Λn| = lim
n→∞

(|{t ∈ Λn : (Λn)−t ∩K4l = Ξ∗i ∩K4l}| ∧ γ∗i |Λn|)/|Λn| = γ∗i .

In the unbounded case, notice that Si,4l ⊃ S̃i,4l ⊃ Si,p for every p ≥ 8l and every n ∈ N. Since
lim
n→∞

|Si,p|/|Λn| = lim
n→∞

|{t ∈ Λn : (Λn)−t ∩Kp = Ξ∗i ∩Kp}|/|Λn| ≥ γ∗i for every p ∈ N, then
we have that

γ∗i = lim
n→∞

(|{t ∈ Λn : (Λn)−t∩K4l = Ξ∗i ∩K4l}|∧γ∗i |Λn|)/|Λn| ≤ lim
n→∞

(|S̃i,4l|∧γ∗i |Λn|)/|Λn|

≤ lim
n→∞

(|{t ∈ Λn : (Λn)−t ∩K8l = Ξ∗i ∩K8l}| ∧ γ∗i |Λn|)/|Λn| = γ∗i .

Since |S̃i,4l| ∧ γ∗i |Λn| = |S′i,4l| we obtain that |S′i,4l|/|Λn| → γ∗i as n→∞.

Finally, since
∑
i∈I∗,i<m4l

|S′i,4l||Ei| →
∑
i∈I∗,i<m4l

γ∗i |Ei| as n → ∞ for every fixed l and
since

∑
j<m4l

γ∗j |Ej | →
∑
j∈I∗ γ

∗
j |Ej | = 1 monotonically as l → ∞, we conclude that

lim
l→∞

lim
n→∞

|Λn|−
∑
i∈I∗,i<m4l

|S′i,4l||Ei|
|Λn| = 1.

8 Proofs in Sections 4 and 5

8.1 Proof of Theorem 10

First, by AΛ(aΛ
n) it suffices to show that for any g ∈ C+

K , (ΨÑΛ
rn

(g))kn converges to (8) as n→∞.
Then, by regular variation of |X| and the definition of (an)

1−ΨÑΛ
rn

(g) ≤ P( max
t∈Λrn

|Xt| > δan) ≤ |Λrn |
|Λn|

[|Λn|P(|X| > δan)] = O(1/kn)

as n → ∞. So by Taylor expansion it suffices to prove that kn(1 − ΨÑΛ
rn

(g)) converges to the
logarithm of (8) as n→∞. Denote t|Λrn | the highest element of Λrn according to ≺, by t|Λrn |−1

the second highest one,..., by t1 the lowest one. Let

Ψ̃m(g) =

{
E
[

exp
(
−
∑|Λrn |
j=m g(aΛ

n
−1

Xtj )
)]
, 1 ≤ m ≤ |Λrn |,

1, m = |Λrn |+ 1.
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Recall that Kl = {x ∈ Zk : x ∈ {−l, ..., l}k}. Using the stationarity of X and the fact that ≺ is shift
invariant, we have

Ψ̃m+1(g)− Ψ̃m(g)

=E
[
e−

∑|Λrn |
j=m+1 g(a

Λ
n
−1

Xtj−tm )
(

1− e−g(a
Λ
n
−1

X0)
)]

=E
[
e
−

∑
t∈{tm+1−tm,...,t|Λrn |

−tm}∩Kl
g(aΛ

n
−1

Xt)
(

1− e−g(a
Λ
n
−1

X0)
)
1(M̂

Λ,|X|
l+1,rn

≤ δan)
]

+ E
[
e−

∑|Λrn |
j=m+1 g(a

Λ
n
−1

Xtj−tm )
(

1− e−g(a
Λ
n
−1

X0)
)
1(M̂

Λ,|X|
l+1,rn

> δan)
]

=E
[
e
−

∑
t∈{tm+1−tm,...,t|Λrn |

−tm}∩Kl
g(aΛ

n
−1

Xt)
(

1− e−g(a
Λ
n
−1

X0)
)]

− E
[
e
−

∑
t∈{tm+1−tm,...,t|Λrn |

−tm}∩Kl
g(aΛ

n
−1

Xt)
(

1− e−g(a
Λ
n
−1

X0)
)
1(M̂

Λ,|X|
l+1,rn

> δan)1(|X0| > δan)
]

+ E
[
e−

∑|Λrn |
j=m+1 g(a

Λ
n
−1

Xtj−tm )
(

1− e−g(a
Λ
n
−1

X0)
)
1(M̂

Λ,|X|
l+1,rn

> δan)1(|X0| > δan)
]

=E
[
e
−

∑
t∈{tm+1−tm,...,t|Λrn |

−tm}∩Kl
g(aΛ

n
−1

Xt)
(

1− e−g(a
Λ
n
−1

X0)
)]

+ J
(rn)
l,m

where J (rn)
l,m is such that

lim
l→∞

lim sup
n→∞

kn

|Λrn |∑
m=1

|J (rn)
l,m | ≤ 2 lim

l→∞
lim sup
n→∞

P(M̂
Λ,|X|
l+1,rn

> δan
∣∣|X0| > δan)|Λn|P(|X| > δan) = 0.

Now, for the every point in Λrn we have that

E
[
e
−

∑
t∈{tm+1−tm,...,t|Λrn |

−tm}∩Kl
g(aΛ

n
−1

Xt)
(

1− e−g(a
Λ
n
−1

X0)
)]

= E
[
e
−

∑
t∈{tm+1−tm,...,t|Λrn |

−tm}∩Kl
g(aΛ

n
−1

Xt)
(

1− e−g(a
Λ
n
−1

X0)
)∣∣∣|X0| > δan

]
P(|X| > δan)

≤ P(|X| > δan)

To lighten the notation assume that q in Condition (DΛ) is ∞, so that there are infinitely many
Ds. By point (ii) in the construction of Λrn only the points

⋃∞
i=1{t ∈ Λrn : Λ

(t,l)
rn = Di ∩ Kl}

are asymptotically relevant, because by (i) and (ii) we have that |Λrn \
⋃∞
i=1{t ∈ Λrn : Λ

(t,l)
rn =

Di ∩Kl}| → 0.
Observe that there are finitely many different subsets of Kl. We denote their total number by τl and
denote them by Ξ

(1)
l , ....,Ξ

(τl)
l . Thus, we have

kn

|Λrn |∑
m=1

E
[

exp
(
−

∑
t∈{tm+1−tm,...,t|Λrn |−tm}∩Kl

g(aΛ
n

−1
Xt)

)(
1− e−g(a

Λ
n
−1

X0)
)]

=

τl∑
j=1

knµ
(j)
rn E

[
exp

(
−
∑

t∈Ξ
(j)
l

g(aΛ
n

−1
Xt)

)(
1− e−g(a

Λ
n
−1

X0)
)]

where µ(j)
rn := |{tm,m = 1, ..., |Λrn | : {tm+1− tm, ..., t|Λrn |− tm}∩Kl = Ξ

(j)
l }|. Recall from the

proof of Point (I) in Proposition 3, that by defining the equivalence relation i ∼ j ⇔ i ∈ (I
(j)
p )1≤j≤q ,

one considers the partition of {1, . . . , q} generated by the equivalence classes Pp = {1, . . . , q}\ ∼.
Then, by (i) and (ii) and in particular by point (I) in Proposition 3 we have

lim
n→∞

knµ
(j)
rn

|Λrn |
=

{
λi,l, if Ξ

(j)
l = Di ∩Kl for some i ∈ Pl,

0, otherwise.
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Therefore, we have that

lim
n→∞

τl∑
j=1

knµ
(j)
rn E

[
exp

(
−
∑

t∈Ξ
(j)
l

g(aΛ
n

−1
Xt)

)(
1− e−g(a

Λ
n
−1

X0)
)]

= δ−α
∑
i∈Pl

λi,lE
[

exp
(
−

∑
t∈Di∩Kl

g(δYt)
)(

1− e−g(δY0)
)]

= δ−α
∞∑
i=1

λiE
[

exp
(
−

∑
t∈Di∩Kl

g(δYt)
)(

1− e−g(δY0)
)]

=

∫ ∞
0

∞∑
i=1

λiE
[

exp
(
−

∑
t∈Di∩Kl

g(yΘt)
)(

1− e−g(yΘ0)
)]
d(−y−α).

Notice that the above arguments hold for every l large enough. By monotone convergence theorem
we have that

lim
l→∞

∫ ∞
0

∞∑
i=1

λiE
[

exp
(
−

∑
t∈Di∩Kl

g(yΘt)
)(

1− e−g(yΘ0)
)]
d(−y−α)

=

∫ ∞
0

∞∑
i=1

λiE
[

exp
(
−
∑
t∈Di

g(yΘt)
)(

1− e−g(yΘ0)
)]
d(−y−α).

Finally, the existence of the limiting random measure NΛ is ensured by Corollary 4.14 in [16].

8.2 Proof of Proposition 11

In order to prove Proposition 11 we need the following Lemma.

Lemma 27. Let (Yt : t ∈ Zk) be an Rd-valued random field such that the time change formula (1)
is satisfied. Let Θt = Yt/|Y0|, t ∈ Zk. Let Υ be a subset of {t ∈ Zk : t � 0} containing {0} and
assume that Υ ∪ −Υ is translation invariant along the points of a (not necessarily full rank) lattice.
Then |Θt| → 0 a.s. as |t| → ∞ for t ∈ Υ implies that

∑
t∈Υ∪−Υ |Θt|α <∞ a.s..

Proof. The proof is divided in two parts. In the first part we show that |Θt| → 0 a.s. as |t| → ∞ for
t ∈ Υ ∪ −Υ and then that

∑
t∈Υ∪−Υ |Θt|α <∞ a.s.

Denote by L the lattice and let G := L ∩ {t ∈ Zk : t � 0}. We stress that {0} ∈ G. Let ε > 0.
Suppose that P(

∑
h∈−Υ 1(|Yh| > ε) =∞) > 0. Recall that |Y0| follows a Pareto(α) distribution,

thus P(|Y0| ≥ 1) = 1, and observe that the sets
{
|Yt| ≥ C > sup

t≺s,s∈G
|Ys|

}
, t ∈ G, are disjoint

for every C > 0. Then, we have that for every 0 < D ≤ 1

P
( ⋃

t∈G

{
|Yt| ≥ D > sup

t≺s,s∈G
|Ys|

})
=
∑
t∈G

P
(
|Yt| ≥ D > sup

t≺s,s∈G
|Ys|

)
= 1,

and for every D′ > 1

P
( ⋃

t∈G

{
|Yt| ≥ D′ > sup

t≺s,s∈G
|Ys|

})
=
∑
t∈G

P
(
|Yt| ≥ D′ > sup

t≺s,s∈G
|Ys|

)
≤ 1.

we have that P(
∑

h∈−Υ 1(|Yh| > ε) = ∞) =
∑

t∈G P(
∑

h∈−Υ 1(|Yh| > ε) = ∞, |Yt| ≥ 1 >
sup

t≺s,s∈G
|Ys|). Consider any t ∈ G s.t. P(

∑
h∈−Υ 1(|Yh| > ε) =∞, |Yt| ≥ 1 > sup

t≺s,s∈G
|Ys|) > 0.
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By the time change formula (1) we get

∞ = E
[ ∑

h∈−Υ

1(|Yh| > ε, |Yt| ≥ 1 > sup
t≺s,s∈G

|Ys|)
]

=
∑

h∈−Υ

E
[
1(|Yh| > ε, |Yt| ≥ 1 > sup

t≺s,s∈G
|Ys|)

]
=
∑

h∈−Υ

P
(
|Yh| > ε, |Yt| ≥ 1 > sup

t≺s,s∈G
|Ys|

)
=
∑

h∈−Υ

∫ ∞
ε

P
(
r|Θ−h| > 1, r|Θt−h| ≥ 1 > r sup

t−h≺s,s∈G
|Θs|

)
d(−r−α)

(r=qε)
= ε−α

∑
h∈−Υ

∫ ∞
1

P
(
qε|Θ−h| > 1, qε|Θt−h| ≥ 1 > qε sup

t−h≺s,s∈G
|Θs|

)
d(−q−α)

≤ ε−α
∫ ∞

1

∑
h∈−Υ

P
(
|Θt−h| ≥

1

qε
> sup

t−h≺s,s∈G−h

|Θs|
)
d(−q−α)

≤ bε−α
∫ ∞

1

d(−q−α) = ε−α <∞,

where b is the number of points of Υ inside the fundamental parallelotope of L. Notice that we used
that for every t ∈ G and h ∈ −Υ (i.e. −h ∈ Υ) we have that t − h ∈ Υ, that is t − h ∈ (G)x

where x is one of the b different points in the fundamental parallelotope, which we denote by B̂ to
be consistent with the notation of the proof of Proposition 3. Thus, we have a contradiction and so
|Θt| → 0 a.s. as |t| → ∞ for t ∈ Υ ∪ −Υ.
Now, suppose that the event {|Θt| → 0 as |t| → ∞, t ∈ Υ ∪ −Υ} has probability 1. Denote this
event by E. Observe that supt∈Υ∪−Υ |Θt| is a well defined random variable since it is the supremum
of measurable functions over a countable set. Since |Θt| → 0 a.s. as |t| → ∞ for t ∈ Υ ∪ −Υ and
since we are in (a subset of) Zk, for every ω ∈ E there exist finitely many t1, ..., tm ∈ Υ ∪ −Υ such
that |Θ(t1)(ω)| = ... = |Θ(tm)(ω)| = supt∈Υ∪−Υ |Θt(ω)|. For every ω ∈ E, let T ∗(ω) be such
that |Θ(T ∗(ω))(ω)| = supt∈Υ∪−Υ |Θt(ω)| with T ∗(ω) being the smallest of these finitely many
points according to �. That is for every t ∈ Υ ∪ −Υ we have

{ω : T ∗(ω) = t}
= {ω : Θt(ω)− sup

s∈Υ∪−Υ,s≺t
|Θs(ω)| > 0} ∩ {ω : Θt(ω)− sup

s∈Υ∪−Υ,s�t
|Θs(ω)| = 0}

and for t ∈ Zk \ (Υ ∪ −Υ) we have {ω : T ∗(ω) = t} = ∅.
By construction |ΘT∗ | is a measurable function. Since the difference of two measurable functions is
measurable and the intersection of two measurable sets is also measurable we have that {ω : T ∗(ω) =
t} is a measurable set. Further, for any subset A of Zk, since (T ∗)−1(A) = ∪t∈A{ω : T ∗(ω) = t}
and since the union of measurable sets is measurable we have that (T ∗)−1(A) is measurable. Thus,
T ∗ is a well defined random variable. Using the same arguments we can construct T ∗L, where the
supremum is taken over L instead of Υ ∪ −Υ. In the same way we can construct T ∗(L)x

where the

supremum is taken over (L)x where x ∈ B̂.

Consider any x ∈ B̂. Assume that P(
∑

t∈(L)x
|Θt|α =∞) > 0. We have that P(

∑
t∈(L)x

|Θt|α =

∞) =
∑

i∈L P(
∑

t∈(L)x
|Θt|α = ∞, T ∗L = i) =

∑
i∈H P(

∑
t∈(L)x

|Θt|α = ∞, T ∗L = i), where
H is the subset of L s.t. P(

∑
t∈(L)x

|Θt|α =∞, T ∗L = i) > 0 for every i ∈ H . Let i ∈ H , then

∞ = E
[ ∑

t∈(L)x

|Θt|α1(T ∗L = i)

]
=

∑
t∈(L)x

E
[
|Θt|α1(T ∗L = i)

]
.

Now, we generalise the arguments adopted in the proof of Lemma 3.3 in [23]. For each i ∈ L define
a function gi : (R̄d)Zk → R as follows. If (Θs, s ∈ Zk) is such that

|Θj| < |Θi| for j ≺ i and j ∈ L, |Θj| ≤ |Θi| for j � i and j ∈ L,
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then set gi(Θs, s ∈ Zk) = 1. Otherwise set gi(Θs, s ∈ Zk) = 0. Observe that gi is a bounded
measurable function and observe that, for any t ∈ Zk, gi(· − t) = 1 when

|Θj−t| < |Θi−t| for j ≺ i and j ∈ L, |Θj−t| ≤ |Θi−t| for j � i and j ∈ L,

⇔ |Θj| < |Θi−t| for j ≺ i− t and j ∈ (L)−t, |Θj| ≤ |Θi−t| for j � i− t and j ∈ (L)−t,

and zero otherwise. Then, by time change formula we have

∞ =
∑

t∈(L)x

E
[
|Θt|α1(T ∗L = i)

]
=

∑
t∈(L)x

E
[
|Θt|αgi(Θs, s ∈ Zk)

]

=
∑

t∈(L)x

E
[
gi(Θ(s− t), s ∈ Zk)1(Θ(−t) 6= 0)

]
≤

∑
t∈(L)x

E
[
gi(Θ(s− t), s ∈ Zk)

]

=
∑

t∈(L)x

E
[
1(T∗(L)−t

= i− t)

]
=

∑
t∈(L)x

E
[
1(T∗(L)−x

= i− t)

]
=

∑
t∈(L)−x

E
[
1(T∗(L)−x

= i + t)

]

=
∑

t∈(L)r−x

E
[
1(T∗(L)r−x

= i + t)

]
=

∑
t∈(L)r−x

E
[
1(T∗(L)r−x

= t)

]
= 1,

which is a contradiction. Notice that we used the fact that by construction, for every t ∈ (L)x, we
have (L)−t = (L)−x, −t ∈ (L)−x, (L)−x = (L)r−x where r is the highest point in the closure of
the fundamental parallelotope (as defined in the proof of Proposition 3), and that t + i ∈ (L)r−x for
any i ∈ L.
Thus, we have

∑
t∈(L)x

|Θt|α <∞ almost surely. The same arguments can be repeated for every

x ∈ B̂ and use the fact proven in the proof of Proposition 3 that for every x ∈ B̂ we know that r−x ∈
B̂. Therefore, since B̂ is finite we conclude that

∑
t∈Υ∪−Υ |Θt|α =

∑
x∈B̂

∑
t∈(L)x

|Θt|α < ∞
a.s..

We first prove that for every t ∈
⋃∞
j=1Dj there exists a nt ∈ N s.t. t ∈ R0,Λm for every m > nt.

First, notice that if t ∈
⋃∞
j=1Dj then t ∈ Di for some i ∈ N. Then, by condition point (I) in

Proposition 3 for every i ∈ N and every p ∈ N there exists an n∗i,p ∈ N such that for every m > n∗i,p

we have |{t ∈ Λm : Λ
(t,p)
m = Di ∩ Kp}| ≥ 1. Thus, for every i, p ∈ N there exists an n∗i,p

s.t. Di ∩Kp ⊂ R0,Λm for every m > n∗i,p. Therefore, for every t ∈
⋃∞
j=1Dj (notice that for each

t we have t ∈ Di ∩Kp for some i, p ∈ N) there exists a nt ∈ N (namely n∗i,p) s.t. t ∈ R0,Λm for
every m > nt.
Now, choose (dn)n∈N such that dn is the highest integer s.t. max|t|≤dn,t∈

⋃∞
j=1Dj nt < rn. Notice

that {|t| ≤ dn, t ∈
⋃∞
j=1Dj} ⊂ R0,Λrn

. It is possible to see that dn →∞ as n→∞ and that for
every l < rn

P
(

max
l≤|t|≤dn | t∈

⋃∞
j=1Dj

|Xt| > aΛ
nx
∣∣|X0| > aΛ

nx
)

= P
(

max
l≤|t|≤dn | t∈

⋃∞
j=1Dj | t∈Rl,Λrn

|Xt| > aΛ
nx
∣∣|X0| > aΛ

nx
)

≤ P
(

max
t∈Rl,Λrn

|Xt| > aΛ
nx
∣∣|X0| > aΛ

nx
)
.

Therefore, condition (ACΛ
�) implies the following anti-clustering condition:

lim
l→∞

lim sup
n→∞

P
(

max
l≤|t|≤dn | t∈

⋃∞
j=1Dj

|Xt| > aΛ
nx
∣∣|X0| > aΛ

nx
)

= 0. (22)

Now, for any z > 0, by the regular variation of |X0| and by (22) we have that

lim
l→∞

lim sup
n→∞

P
(

max
l≤|t|≤dn | t∈

⋃∞
j=1Dj

|Xt| > zaΛ
nx
∣∣|X0| > aΛ

nx

)
= 0.
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In other words, for any ε > 0 and z > 0, there exists l > 0 such that for all w > l

P
(

max
l≤|t|≤w | t∈

⋃∞
j=1Dj

|Yt| > z

)
≤ ε.

This, implies that P( lim
|t|→∞

|Yt| = 0) = 1 and so P( lim
|t|→∞

|Θt| = 0) = 1 for t ∈
⋃∞
j=1Dj . Then,

from Lemmas 3 and 27 we obtain the statement.

8.3 Proof of Theorem 12
By changes of variables we have∫ ∞

0

E
[
e
−

∑
t∈Dj

g(yΘt)
(

1− e−g(yΘ0)
)]
d(−y−α)

= E
[
‖Θ‖αDj∪−Dj ,α

∫ ∞
0

e
−

∑
t∈Dj

g(yΘt/‖Θ‖Dj∪−Dj ,α)
(

1− e−g(yΘ0/‖Θ‖Dj∪−Dj ,α)
)
d(−y−α)

]
=

∑
h∈Dj∪−Dj

E
[
|Θh|α

∫ ∞
0

e
−

∑
t∈Dj

g(yΘt/‖Θ‖Dj∪−Dj ,α)
(

1− e−g(yΘ0/‖Θ‖Dj∪−Dj ,α)
)
d(−y−α)

]
From the time-change formula, we obtain that for any h ∈ Dj ∪ −Dj ,

E
[
|Θh|α

∫ ∞
0

e
−

∑
t∈Dj

g(yQDj∪−Dj ,t) − e−
∑

t∈Dj∪{0}
g(yQDj∪−Dj ,t)

d(−y−α)
]

= E
[ ∫ ∞

0

e
−

∑
t∈(Dj)−h

g(yQDj∪−Dj ,t) − e−
∑

t∈(Dj)−h∪{−h} g(yQDj∪−Dj ,t)
d(−y−α)

]
.

Since h is a lattice point then (Dj)−h = (Dj ∪ −Dj) ∩ {t ∈ Zk : t � −h} and since −h is the
first point of (Dj ∪ −Dj) ∩ {t ∈ Zk : t � −h}. This leads to a telescoping sum structure for any
k ∈ Dj ∪ −Dj∑
{−h∈Dj∪−Dj :−k�h�k}

E
[ ∫ ∞

0

e
−

∑
t∈(Dj)−h

g(yQDj∪−Dj ,t) − e−
∑

t∈(Dj)−h∪{−h} g(yQDj∪−Dj ,t)
d(−y−α)

]
= E

[ ∫ ∞
0

e
−

∑
t∈(Dj)k

g(yQDj∪−Dj ,t) − e−
∑

t∈(Dj)−k∪{−k} g(yQDj∪−Dj ,t)
d(−y−α)

]
. (23)

Since any function g ∈ C+
K vanishes in some neighbourhood of the origin and Θt

a.s→ 0 and
QDj∪−Dj ,t

a.s→ 0 as t→∞ for t ∈ Dj∪−Dj , we have monotonically
∑

t∈(Dj)k g(yQDj∪−Dj ,t)→
0, and

∑
t∈(Dj)−k∪{−k} g(yQDj∪−Dj ,t) →

∑
t∈Dj∪−Dj g(yQDj∪−Dj ,t) a.s., as k → ∞. Thus,

by monotone convergence theorem the right-hand side in (23) converges, as k→∞, to

E
[ ∫ ∞

0

1− exp
(
−

∑
t∈Dj∪−Dj

g(yQDj∪−Dj ,t)
)
d(−y−α)

]
.

One deduces the following expression of the Laplace transform of Nλ

ΨNΛ(g) = exp

(
−
∞∑
j=1

λj

∫ ∞
0

E
[
1− e−

∑
t∈D̂j

g(yQD̂j ,t
)
]
d(−y−α)

)
.

8.4 Poof of Proposition 13
The first statement follows from similar arguments as the ones used in the proof of Theorem 2.1 in
[2] and in Lemma 3.1 in [18]. In particular, it is easy to see that for all s, t ∈ Zk with s ≤ t

P((x−1Xs, ..., x
−1Xt) ∈ ·)

P(ρΥ(X) > x)
=

P(|X0| > x)

P(ρΥ(X) > x)

P((x−1Xs, ..., x
−1Xt) ∈ ·)

P(|X0| > x)
.

Let µ̃ be the tail measure of X with auxiliary regularly varying function P(|X0| > x). By the
definition of regular variation of X, by homogeneity of the tail measure, and assuming w.l.o.g. that
{0} ∈ Υ we have (see also Lemma 3.1 in [18])

P(|X0| > x)

P(ρΥ(X) > x)
→ 1

µ̃Υ(z ∈ R|Υ| : ρ(z) > 1)
∈ (0,∞).
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Thus, we have

P((x−1Xs, ..., x
−1Xt) ∈ ·)

P(ρΥ(X) > x)
→ µ̃s,t(·)

µ̃Υ(z ∈ R|Υ| : ρ(z) > 1)
=: µs,t(·).

Notice that the function x 7→ P(ρΥ(X) > x) is regularly varying of index −α and that µ restricted
to the set {ys, ...., yt : ρ(Y) > 1} is a probability measure, call it νs,t. Here we have used that
w.l.o.g. Υ ⊂ {s, ..., t}, indeed if some z ∈ Υ is not contained in {s, ..., t} then we can consider
µ̃{s,t}∪{z} because by consistency of the measure µ̃ we have µ̃{s,t}∪{z}(·,R) = µ̃s,t(·).
It is possible to see that (νs,t)s,t∈Zk is a family of consistent probability measures and by Kolmogorov
extension theorem we obtain the first statement. The second statement follows from the first and the
continuous mapping theorem.

8.5 Proof of Proposition 14

This follows from similar arguments used in the proofs of Theorem 3.1 in [2] and of Theorem 3.2 in
[23]. Consider any s ∈ Zk and any i, j ∈ Zk such that Υ ⊂ {t ∈ Zk : i ≤ t ≤ j}. Then, following
the proof of Theorem 3.1 in [2] we define the spaces:

Ei,j = {(yi, ...,yj) | 0 < ρΥ(y) <∞}, Si,j = {(yi, ...,yj) | ρΥ(y) = 1}.
Define the bijection T : Ei,j → (0,∞)× Si,j by

T (yi, ...,yj) =

(
ρΥ(y),

yi

ρΥ(y)
, ...,

yj

ρΥ(y)

)
.

Let µi,j be the tail measure of (Xi, ...,Xj) with auxiliary regularly varying function P(ρΥ(X) > x)
(as defined in the proof of Proposition 13). Define the measure Φi,j on Si,j by

Φi,j(B) = µi,j

(
T−1((1,∞)×B)

)
for Borel-measurable B ⊂ Si,j. Since the law of (YΥ,i, ...,YΥ,j) is equal to the restriction of µi,j to
T−1((1,∞)× Si,j), the measure Φi,j is in fact equal to the law of (ΘΥ,i, ...,ΘΥ,j). Furthermore, as
µi,j is homogeneous of order −α, for u ∈ (0,∞) and Borel sets B ⊂ Si,j

µi,j

(
T−1((u,∞)×B)

)
= µi,j

(
uT−1((1,∞)×B)

)
= u−αΦi,j(B) (24)

For u ≥ 1, the left-hand side is equal to P(ρΥ(Y) > u, (ΘΥ,i, ...,ΘΥ,j) ∈ B), while the right hand
side is equal to P(ρΥ(Y) > u)P((ΘΥ,i, ...,ΘΥ,j) ∈ B). Thus, ρΥ(Y) and (ΘΥ,i, ...,ΘΥ,j) are
independent and so ρΥ(Y) and (ΘΥ,i)i∈I are independent, where I is any subset of {t ∈ Zk : i ≤
t ≤ j}. Since i and j were arbitrary, point (i) follows.

Concerning point (ii), consider any i, j ∈ Zk and let g : (Rd)Zk → R be a bounded and continuous
function. By stationarity

E[g(YΥ,i−s, ...,YΥ,j−s)1(ρ(Υ)−s
(Y) > ε)]

= lim
x→∞

E[g(x−1Xi−s, ..., x
−1Xj−s)1(ρ(Υ)−s

(X) > xε)1(ρΥ(X) > x)]

P(ρΥ(X) > x)

= lim
x→∞

E[g(x−1Xi, ..., x
−1Xj)1(ρΥ(X) > xε)1(ρ(Υ)s(X) > x)]

P(ρΥ(X) > x)

=

∫
g(yi, ...,yj)1(ρΥ(y) > ε)1(ρ(Υ)s(y) > 1)µl,k(dy) (25)

where l,k ∈ Zk are such that {t ∈ Zk : l ≤ t ≤ k} ⊃ {t ∈ Zk : i ≤ t ≤ j} ∪Υ ∪ (Υ)s. The last
equality follows from the consistency of the measures µl,k, l,k ∈ Zk and the fact that µl,k restricted
on the set {(yl, ...,yk) : ρ(Υ)s(y) > 1} is a probability measure, call it ν̃s,t, and this holds for any
s ∈ Zk; indeed by stationarity

P((x−1Xl, ..., x
−1Xk) ∈ ·)

P(ρ(Υ)s(X) > x)
=

P((x−1Xl, ..., x
−1Xk) ∈ ·)

P(ρΥ(X) > x)
→ µl,k(·)

As a side note observe that YΥ is not necessarily stationary because different restrictions (i.e. different
s) of µ correspond to potentially different probability measures. That is νs,t, which is the probability
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measure given by µl,k restricted on {(yl, ...,yk) : ρ(Υ)s(y) > 1} (as introduced in the proof of
Proposition 13) is potentially a different from ν̃s,t.
Now, by (24) applied to µl,k we obtain that (25) is equal to∫ ∞

ε

E[g(rΘΥ,i, ..., rΘΥ,j)1(rρ(Υ)s(Θ) > 1)]d(−r−α).

Following the monotone convergence arguments of the proof of Theorem 3.2 in [23] we send ε→ 0
and drop the continuity assumption of g. Since i and j were arbitrary we obtain the result.
Finally point (iii) follows from (9) applied to the function g̃(y) = g(y/ρ(Υ)s(y))1(ρ(Υ)s(y) 6= 0).

8.6 Proof of Lemma 15

Let c− := infx:ρΥ(x)≥1 |x| and c+ := supx:ρΥ(x)<1 |x|. By homogeneity we have that
infx:ρΥ(x)≥ε |x| = εc− for every ε > 0 (and the same holds for c+). This implies that if |x| < ε then
ρΥ(x) < ε/c−, and if ρΥ(x) < ε then |x| < c+ε. From the latter we deduce that for every b > 0
we have that |x| ≥ bc+ implies ρΥ(x) ≥ b (or equivalently by homogeneity that |x| ≥ b implies
ρΥ(x) ≥ b/c+) and from the former that ρΥ(x) ≥ b implies that |x| ≥ bc−.
Furthermore, it is easy to see that maxt∈Υ |xt| is a norm on R|Υ|k and since on any finite dimensional
vector space any norm is equivalent to any other norm, we have that there exists two constants A and
B such that A|x| ≤ maxt∈Υ̂ |xt| ≤ B|x|. Therefore, for every ε > 0 we have that maxt∈Υ |xt| < ε
implies that A|x| < ε which in turn implies that ρΥ(x) < ε

Ac− . Moreover, for every ε > 0 we have
that maxt∈Υ |xt| ≥ ε implies that B|x| ≥ ε which in turn implies that ρΥ(x) ≥ ε

Bc+ .
Similarly for the other direction we have that, for every ε > 0, ρΥ(x) < ε implies that |x| < c+ε
which implies that maxt∈Υ |xt| < c+Bε. Moreover, for every ε > 0, ρΥ(x) ≥ ε implies that
|x| ≥ c−ε which implies that maxt∈Υ |xt| ≥ c−Aε. Thus by setting C = Ac− and D = Bc+ we
obtain the result.

8.7 Proof of Theorem 17

Before proving Theorem 17 we present the following result on the connection between tail random
fields for different sets Υ1 and Υ2 and different moduli of continuity ρ1 and ρ2.
Lemma 28. Let Υ1 and Υ2 be two finite subset of Zk and consider ρ1 and ρ2 be two moduli of
continuity on RdZk . Let C1 and C2 be the constants such that, for every ε > 0, ρ1,Υ1(x) > ε implies
ρ2,Υ2(x) > ε

C2
, and ρ2,Υ2(x) > ε implies ρ1,Υ1(x) > C1ε. Then,

YΥ2

d
= C1YΥ1

∣∣ρ2,Υ2(YΥ1) >
1

C1

and
YΥ1

d
=

YΥ2

C2

∣∣∣ρ1,Υ1
(YΥ2

) > C2.

Proof. Let Ξ be a finite subset of Zk and let g : Rd|Ξ| → R be a bounded and continuous function.
Then, by homogeneity we have

E
[
g
((

YΥ1(t)
)
t∈Ξ

)]
= lim
x→∞

E
[
g
((

Xt

x

)
t∈Ξ

)
1(ρ1,Υ1(X) > x)

]
P(ρ1,Υ1

(X) > x)

= lim
x→∞

E
[
g
((

Xt

x

)
t∈Ξ

)
1(ρ1,Υ1

(X) > x)[1(ρ2,Υ2
(X) > x

C1
) + 1(ρ2,Υ2

(X) ≤ x
C1

)]
]

P(ρ1,Υ1
(X) > x)

P(ρ2,Υ2
(X) > x

C1
)

P(ρ2,Υ2
(X) > x

C1
)

= KE
[
g
((YΥ2,t

C1

)
t∈Ξ

)]
+ E

[
g
((

YΥ1,t

)
t∈Ξ

)
1(ρ2,Υ2

(YΥ1
) ≤ 1

C1
)
]

where

K = lim
x→∞

P(ρ2,Υ2
(X) > x

C1
)

P(ρ1,Υ1
(X) > x)

= lim
x→∞

P(ρ2,Υ2
(X) > x

C1
, ρ1,Υ1

(X) > x)

P(ρ1,Υ1
(X) > x)

= P
(
ρ2,Υ2

(YΥ1
) >

1

C1

)
.
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Thus, we have

E
[
g
((YΥ2,t

C1

)
t∈Ξ

)]
= E

[
g
((

YΥ1,t

)
t∈Ξ

)
|ρ2,Υ2

(YΥ1
) >

1

C1

]
.

Since g and Ξ were arbitrary we obtain the first stated result. The same arguments apply to the second
one.

For notational purpose we consider the general case of countably many Ds and so of Es. For the
first part of this proof we follow similar arguments as the ones used in the proof of Theorem 10.
By AΛ(an) it suffices to show that for any g ∈ C+

K , (ΨÑΛ
rn

(g))kn converges to (11) as n→∞: It
suffices to prove that kn(1−ΨÑΛ

rn
(g)) converges to the logarithm of (11) as n→∞.

Recall the sets Si,4l, S′i,4l, and S̃i,4l from Proposition 9 and its proof. Further, let S̄i,4l := Si,4l \S′i,4l.
For notational consistency let S̄i,4l := ∅ for i corresponding to Di bounded. Now, we apply a
telescoping sum argument which generalises the one used in the proof of Theorem 10.

Let u := |
⋃
i∈I∗,i<m4l

S′i,4l| (we omit the dependency on l and on n in u) and let s1 ≺ s2 ≺ ... ≺ su
denote the points in

⋃
i∈I∗,i<m4l

S′i,4l. Denote by Ej1 , ..., Eju the Es associated to s1, ..., su. Let
ū := |

⋃
i∈I∗,i<m4l

S̄i,4l| and let s̄1 ≺ s̄2 ≺ ... ≺ s̄ū denote the points in
⋃
i∈I∗,i<m4l

S̄i,4l.
Denote by Ej̄1 , ..., Ej̄ū the Es associated to s̄1, ..., s̄ū. Let s̃1, ..., s̃ũ, for some ũ ∈ N ∪ {0},
be the ordered points in Λrn \

(⋃u
i=1(Eji)si ∪

⋃ū
i=1(Ej̄i)s̄i

)
. In this case we associate the set

{0} to any point s̃h, h = 1, ..., ũ. Denote by û := u + ū + ũ and by ŝ1, ..., ŝû the points
s1, ...su, s̄1, ...s̄u, s̃1, ..., s̃ũ indexed such that ŝ1 ≺ ŝ2 ≺ ... ≺ ŝû, and denote by Ê1, ..., Êû, the
corresponding sets Ej1 , ..., Eju , Ej̄1 , ..., Ej̄ū , {0}, ..., {0}︸ ︷︷ ︸

ũ times

; for example if ŝ1 = s̄ū then Ê1 = Ej̄ū .

Let

Ψ̃l,m(g) =

{
exp

(
−
∑û
j=m

∑
t∈(Êj)ŝj

g(a−1
n Xt)

)]
, 1 ≤ m ≤ û,

1, m = û+ 1 ,
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so that for every l ∈ N we obtain 1−ΨÑrn
(g) =

∑û
m=1 Ψ̃l,m+1(g)− Ψ̃l,m(g). By the stationarity

of X, we have

Ψ̃m+1(g)− Ψ̃m(g) (26)

=E
[(

1− e−
∑

t∈Êm g(a−1
n Xt)

)
exp

(
−

û∑
j=m+1

∑
t∈(Êj)ŝj

g(a−1
n Xt−ŝm)

)]
=E
[(

1− e−
∑

t∈Êm g(a−1
n Xt)

)
exp

(
−

∑
t∈

⋃û
j=m+1(Êj)ŝj−ŝm

g(a−1
n Xt)

)]
=E
[(

1− e−
∑

t∈Êm g(a−1
n Xt)

)
exp

(
−

∑
t∈

⋃û
j=m+1(Êj)ŝj−ŝm∩K2l

g(a−1
n Xt)

)
1( max

t∈
⋃û
j=m+1(Êj)ŝj−ŝm\K2l

|Xt| ≤ δan)
]

+ E
[(

1− e−
∑

t∈Êm g(a−1
n Xt)

)
exp

(
−

∑
t∈

⋃û
j=m+1(Êj)ŝj−ŝm

g(a−1
n Xt)

)
1( max

t∈
⋃û
j=m+1(Êj)ŝj−ŝm\K2l

|Xt| > δan)
]

=E
[(

1− e−
∑

t∈Êm g(a−1
n Xt)

)
exp

(
−

∑
t∈

⋃û
j=m+1(Êj)ŝj−ŝm∩K2l

g(a−1
n Xt)

)]
− E

[(
1− e−

∑
t∈Êm g(a−1

n Xt)
)

exp
(
−

∑
t∈

⋃û
j=m+1(Êj)ŝj−ŝm∩K2l

g(a−1
n Xt)

)
1( max

t∈
⋃û
j=m+1(Êj)ŝj−ŝm\K2l

|Xt| > δan)1(max
t∈Êm

|Xt| > δan)
]

+ E
[(

1− e−
∑

t∈Êm g(a−1
n Xt)

)
exp

(
−

∑
t∈

⋃û
j=m+1(Êj)ŝj−ŝm

g(a−1
n Xt)

)
1( max

t∈
⋃û
j=m+1(Êj)ŝj−ŝm\K2l

|Xt| > δan)1(max
t∈Êm

|Xt| > δan)
]

=E
[(

1− e−
∑

t∈Êm g(a−1
n Xt)

)
exp

(
−

∑
t∈

⋃û
j=m+1(Êj)ŝj−ŝm∩K2l

g(a−1
n Xt)

)]
+ J

(rn)
l,m .

Consider now only the J (rn)
l,m where m is such that ŝm = si for some i = 1, ..., u. We have that

J
(rn)
l,m ≤ 2E

[
1( max

t∈
⋃û
j=m+1(Êj)ŝj−ŝm\K2l

|Xt| > δan)1(max
t∈Ei
|Xt| > δan)

]
≤ 2P(M̂

Λ,|X|,(i)
2l,rn

> δan,max
t∈Ei
|Xt| > δan). (27)

By Proposition 9 we have that |S′i,4l|/|Λrn | → γ∗i as n → ∞, and so that lim
n→∞

u
|Λrn |

=∑
j∈I∗,j<m4l

γ∗j . Further, since the inequality (27) holds for every n, l ∈ N and since
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∑
j∈I∗ γ

∗
j |Ej | = 1, we obtain that

lim
l→∞

lim sup
n→∞

kn

u∑
m=1

|J (rn)
l,m |

= lim
l→∞

lim sup
n→∞

kn
∑

i∈I∗,i<m4l

2|S′i,4l|P(M̂
Λ,|X|,(i)
2l,rn

> δan,max
t∈Ei
|Xt| > δan)

≤ 2 lim
l→∞

∑
i∈I∗,i<m4l

γ∗i lim sup
n→∞

|Λrn |knP(M̂
Λ,|X|,(i)
2l,rn

> δan,max
t∈Ei
|Xt| > δan)

= 2 lim
l→∞

∑
i∈I∗,i<m4l

γ∗i lim sup
n→∞

|Λn|P(|X0| > δan)P(M̂
Λ,|X|,(i)
2l,rn

> δan|max
t∈Ei
|Xt| > δan)

P(maxt∈Ei |Xt| > δan)

P(|X0| > δan)

= 2 lim
l→∞

∑
i∈I∗,i<m4l

γ∗i lim sup
n→∞

P(M̂
Λ,|X|,(i)
2l,rn

> δan|max
t∈Ei
|Xt| > δan)

P(maxt∈Ei |Xt| > δan)

P(|X0| > δan)

≤ 2 lim
l→∞

∑
i∈I∗,i<m4l

γ∗i |Ei| lim sup
n→∞

P(M̂
Λ,|X|,(i)
2l,rn

> δan|max
t∈Ei
|Xt| > δan) (28)

and since∑
i∈I∗,i<m4l

γ∗i |Ei| lim sup
n→∞

P(M̂
Λ,|X|,(i)
2l,rn

> δan|max
t∈Ei
|Xt| > δan) ≤

∑
i∈I∗,i<m4l

γ∗i |Ei| ≤
∑
i∈I∗

γ∗i |Ei| = 1

by dominated convergence theorem we have that (28) is equal to

2
∑
i∈I∗

γ∗i |Ei| lim
l→∞

lim sup
n→∞

P(M̂
Λ,|X|,(i)
2l,rn

> δan|max
t∈Ei
|Xt| > δan) = 0 (29)

where the last equality follows by the anti-clustering condition (ACΛ
�,I∗ ).

Now, let us focus on (26) where m is such that ŝm = s̄i for some i = 1, ..., ū or ŝm = s̃l for
some l = 1, ..., ũ. Since by Proposition 9

∑
j<m4l

γ∗j |Ej | →
∑
j∈I∗ γ

∗
j |Ej | = 1 monotonically

as l → ∞, then lim
l→∞

lim
n→∞

|Λrn |−
∑
i∈I∗,i<m4l

|S′i,4l||Ei|
|Λrn |

= 0. Since ũ +
∑
i∈I∗,i<m4l

|S̄i,4l||Ei| =

|Λrn | −
∑
i∈I∗,i<m4l

|S′i,4l||Ei|, we obtain that

lim
l→∞

lim
n→∞

ũ+
∑
i∈I∗,i<m4l

|S̄i,4l||Ei|
|Λrn |

= 0. (30)

By combining this with the fact that (26) is bounded by

E
[(

1− e−
∑

t∈Êm g(a−1
n Xt)

)]
≤ P(max

t∈Êm
|Xt| > δan) ≤ |Êm|P(|X0| > δan)

we conclude that

lim
l→∞

lim sup
n→∞

kn

(
ũP(|X0| > δan) +

∑
i∈I∗,i<m4l

|S̄i,4l||Ei|P(|X0| > δan)

)

= lim
l→∞

lim
n→∞

ũ+
∑
i∈I∗,i<m4l

|S̄i,4l||Ei|
|Λrn |

= 0. (31)

Now, by construction (recall (7)) when ŝm = sk for some k = 1, ..., u we get

E
[(

1− e−
∑

t∈Êm g(a−1
n Xt)

)
exp

(
−

∑
t∈

⋃û
j=m+1(Êj)ŝj−ŝm∩K2l

g(a−1
n Xt)

)]
= E

[(
1− e−

∑
t∈Ejk

g(a−1
n Xt)

)
exp

(
−

∑
t∈D̃jk∩K2l

g(a−1
n Xt)

)]
, (32)
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where we used that by definition (D∗i ∩K2l)\
⋃

s∈{0}∪−Gi(Ei)s = D̃i∩K2l. Therefore, by combining
(29) and (31) we have that

lim
l→∞

lim sup
n→∞

kn

∣∣∣∣ û∑
m=1

Ψ̃l,m+1(g)−Ψ̃l,m(g)−
u∑

m=1

E
[(

1−e−
∑

t∈Ejm
g(a−1

n Xt)
)

exp
(
−

∑
t∈D̃jm∩K2l

g(a−1
n Xt)

)]∣∣∣∣ = 0.

Thus, for the remaining part of the proof we focus on

kn

u∑
m=1

E
[(

1− e−
∑

t∈Ejm
g(a−1

n Xt)
)

exp
(
−

∑
t∈D̃jm∩K2l

g(a−1
n Xt)

)]
.

From Lemma 15 we have that for every i ∈ I∗{
max
t∈Ei
|Xt| > δan

}
⊆
{
ρEi(X) >

δ

Di
an

}
, (33)

and thus we have

lim
n→∞

kn

u∑
m=1

E
[(

1− e−
∑

t∈Ejm
g(a−1

n Xt)
)

exp
(
−

∑
t∈D̃jm∩K2l

g(a−1
n Xt)

)]

= lim
n→∞

kn

u∑
m=1

E
[(

1− e−
∑

t∈Ejm
g(a−1

n Xt)
)

exp
(
−

∑
t∈D̃jm∩K2l

g(a−1
n Xt)

)
1
(

max
t∈Ejm

|Xt| > δan

)]

= lim
n→∞

kn

u∑
m=1

E
[(

1− e−
∑

t∈Ejm
g(a−1

n Xt)
)

exp
(
−

∑
t∈D̃jm∩K2l

g(a−1
n Xt)

)
1
(
ρEjm (X) >

δan
Djm

)]

= lim
n→∞

kn

u∑
m=1

E
[(

1− e−
∑

t∈Ejm
g(a−1

n Xt)
)

exp
(
−

∑
t∈D̃jm∩K2l

g(a−1
n Xt)

)
∣∣∣ρEjm (X) >

δan
Djm

]P(ρEjm (X) > δan
Djm

)

P(ρEjm (X) > an)

P(ρEjm (X) > an)

P(|X0| > an)
P(|X0| > an)

=
∑

j∈I∗,j<m4l

( δ

Dj

)−α
γ∗j cjE

[(
1− e−

∑
t∈Ej

g( δ
Dj
YΘEj ,t)

)
exp

(
−

∑
t∈D̃j∩K2l

g(
δ

Dj
YΘEj ,t)

)]
=

∑
j∈I∗,j<m4l

∫ ∞
δ

γ∗j cj

(Dj)−α
E
[(

1− e−
∑

t∈Ej
g( y
Dj

ΘEj ,t)
)

exp
(
−

∑
t∈D̃j∩K2l

g(
y

Dj
ΘEj ,t)

)]
d(−y−α)

=

∫ ∞
δ

∑
j∈I∗,j<m4l

γ∗j cj

(Dj)−α
E
[(

1− e−
∑

t∈Ej
g( y
Dj

ΘEj ,t)
)

exp
(
−

∑
t∈D̃j∩K2l

g(
y

Dj
ΘEj ,t)

)]
d(−y−α).

By assumption AΛ
ρ we can apply the dominated convergence theorem (twice) as follows. First since

the integrand is bounded by the constant
∑
j∈I∗ γ

∗
j cjD

α
j for every l ∈ N and since this constant is

bounded by condition AΛ
ρ , which makes it an integrable function for the integral

∫∞
δ
d(−y−α) for

any δ > 0, we can put the limit of l going to infinity inside the integral. Second, consider the finite
counting measure

∑
j∈I∗ γ

∗
j cjD

α
j εj(·), where ε is the Dirac delta measure. Since the integrand is

bounded by 1 and 1 is an integrable function with respect to this finite counting measure, then we can
apply again the dominated convergence theorem. Hence, we obtain

lim
l→∞

∫ ∞
δ

∑
j∈I∗,j<m4l

γ∗j cj

(Dj)−α
E
[(

1−e−
∑

t∈Ej
g( y
Dj

ΘEj ,t)
)

exp
(
−

∑
t∈D̃j∩K2l

g(
y

Dj
ΘEj ,t)

)]
d(−y−α)

=

∫ ∞
δ

∑
j∈I∗

γ∗j cj

(Dj)−α
E
[(

1− e−
∑

t∈Ej
g( y
Dj

ΘEj ,t)
)

exp
(
−
∑
t∈D̃j

g(
y

Dj
ΘEj ,t)

)]
d(−y−α). (34)
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Since ρEj (Θ) = 1 a.s., by Corollary 16 we have that maxs∈Ej |Θs| ≤ Dj a.s.. Further, recall that g
has compact support, in particular for any x ∈ Rd with |x| < δ we have that g(x) = 0. Then, we
obtain that if y < δ then y

Dj
ΘEj ,t < δ a.s., and so g( y

Dj
ΘEj ,t) = 0 a.s.. Thus, (34) is equal to

∫ ∞
0

∑
j∈I∗

γ∗j cj

(Dj)−α
E
[(

1− e−
∑

t∈Ej
g( y
Dj

ΘEj ,t)
)

exp
(
−
∑
t∈D̃j

g(
y

Dj
ΘEj ,t)

)]
d(−y−α)

Tonelli’s theorem
=

∑
j∈I∗

∫ ∞
0

γ∗j cj

(Dj)−α
E
[(

1−e−
∑

t∈Ej
g( y
Dj

ΘEj ,t)
)

exp
(
−
∑
t∈D̃j

g(
y

Dj
ΘEj ,t)

)]
d(−y−α)

(∀j ∈ I∗ let z= y
Dj

)

=
∑
j∈I∗

∫ ∞
0

γ∗j cjE
[(

1− e−
∑

t∈Ej
g(zΘEj ,t)

)
exp

(
−
∑
t∈D̃j

g(zΘEj ,t)
)]
d(−z−α).

Finally, Corollary 4.14 in [16] ensures the existence of the limiting random measure NΛ and so NΛ

has the stated Laplace formulation.

8.8 Proof of Proposition 18

We start by showing the following useful Lemma:

Lemma 29. Let (YΥ,t : t ∈ Zk) be an Rd-valued random field such that the time change formula
(9) is satisfied. Let L be a (not necessarily full rank) lattice. Let ΘΥ,t = YΥ,t/ρΥ(Y), t ∈ Zk. Let
H :=

⋃
s∈G(Υ)s where G = L∩{t ∈ Zk : t � 0} and such that (Υ)s∩(Υ)s′ = ∅ for every s, s′ ∈ G

with s 6= s′. Then |ΘΥ,t| → 0 a.s. as |t| → ∞ for t ∈ H implies that
∑

t∈L ρ(Υ)t(Θ)α <∞ a.s.,
and that

∑
t∈

⋃
s∈L(Υ)s

|ΘΥ,t|α <∞ a.s.

Proof. The proof is divided in two parts. In the first part we show that |ΘΥ,t| → 0 a.s. as |t| → ∞
for t ∈

⋃
s∈L(Υ)s and then that

∑
t∈L ρ(Υ)t(Θ)α <∞ a.s.

From |ΘΥ,t| → 0 a.s. as |t| → ∞ for t ∈ H by continuity we obtain that ρ(Υ)t(Θ) → 0 a.s. as
|t| → ∞ for t ∈ G. Let ε > 0. Observe that L = G ∪ −G and that for every 0 < c ≤ 1

P
( ⋃

t∈G

{
ρ(Υ)t(Y) ≥ c > sup

t≺z,z∈G
ρ(Υ)z(Y)

})
=
∑
t∈G

P
(
ρ(Υ)t(Y) ≥ c > sup

t≺z,z∈G
ρ(Υ)z(Y)

)
= 1,

because P(ρΥ(Y) ≥ 1) = 1, and Υ ∈ H.

Suppose that P(
∑

h∈−G 1(ρ(Υ)h(Y) > ε) =∞) > 0. We have that

P(
∑

h∈−G

1(ρ(Υ)h(Y) > ε) =∞)

=
∑
t∈G

P
( ∑

h∈−G

1(ρ(Υ)h(Y) > ε), ρ(Υ)t(Y) ≥ 1 > sup
t≺z,z∈G

ρ(Υ)z(Y)
)
.

Consider any t ∈ G s.t.

P
( ∑

h∈−G

1(ρ(Υ)h(Y) > ε), ρ(Υ)t(Y) ≥ 1 > sup
t≺z,z∈G

ρ(Υ)z(Y)
)
> 0.
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By the time change formula (9) we get

∞ = E
[ ∑

h∈−G

1
(
ρ(Υ)h(Y) > ε, ρ(Υ)t(Y) ≥ 1 > sup

t≺z,z∈G
ρ(Υ)z(Y)

)]
=
∑

h∈−G

P
(
ρ(Υ)h(Y) > ε, ρ(Υ)t(Y) ≥ 1 > sup

t≺z,z∈G
ρ(Υ)z(Y)

)
=
∑

h∈−G

∫ ∞
ε

P
(
rρ(Υ)−h

(Θ) > 1, rρ(Υ)t−h
(Θ) ≥ 1 > r sup

t−h≺z,z∈G
ρ(Υ)z(Θ)

)
d(−r−α)

(r=qε)
= ε−α

∑
h∈−G

∫ ∞
1

P
(
qερ(Υ)−h

(Θ) > 1, qερ(Υ)t−h
(Θ) ≥ 1 > qε sup

t−h≺z,z∈G
ρ(Υ)z(Θ)

)
d(−q−α)

≤ ε−α
∑

h∈−G

∫ ∞
1

P
(
ρ(Υ)t−h

(Θ) ≥ 1

qε
> sup

t−h≺z,z∈G
ρ(Υ)z(Θ)

)
d(−q−α)

≤ ε−α
∫ ∞

1

d(−q−α) = ε−α <∞,

where we used that for every t ∈ G and h ∈ −G we have that t−h ∈ G. Thus, we have a contradiction
and so ρ(Υ)t(Θ)→ 0 a.s. as |t| → ∞ for t ∈ −G which by homogeneity and continuity implies that
|ΘΥ,t| → 0 a.s. as |t| → ∞ for t ∈

⋃
s∈L(Υ)s. Assume that P(

∑
t∈L ρ(Υ)t(Θ)α = ∞) > 0. We

have that

P(
∑
t∈L

ρ(Υ)t(Θ)α =∞) =
∑
i∈L

P(
∑
t∈L

ρ(Υ)t(Θ)α =∞,T∗Υ,L = i)

=
∑
i∈H

P(
∑
t∈L

ρ(Υ)t(Θ)α =∞,T∗Υ,L = i),

where H is the subset of L s.t. P(
∑

t∈L ρ(Υ)t(Θ)α = ∞,T∗Υ,L = i) > 0 for every i ∈ H . Let
i ∈ H , then

∞ = E
[∑

t∈L
ρ(Υ)t(Θ)α1(T∗Υ,L = i)

]
=
∑
t∈L

E
[
ρ(Υ)t(Θ)α1(T∗Υ,L = i)

]
.

Now, we generalise the arguments adopted in the proof of Lemma 3.3 in [23]. For each i ∈ L define
a function gi : (R̄d)Zk → R as follows. If (ΘΥ,s, s ∈ Zk) is such that

|ΘΥ,j| < |ΘΥ,i| for j ≺ i and j ∈ L, |ΘΥ,j| ≤ |ΘΥ,i| for j � i and j ∈ L,

then set gi(ΘΥ,z, z ∈ Zk) = 1. Otherwise set gi(ΘΥ,z, z ∈ Zk) = 0. Then, by time change formula
we have

∞ =
∑
t∈L

E
[
ρ(Υ)t(Θ)α1(T∗Υ,L = i)

]
=
∑
t∈L

E
[
ρ(Υ)t(Θ)αgi(ΘΥ,s, z ∈ Zk)

]
=
∑
t∈L

E
[
ρ(Υ)t(Θ)αgi

(
ΘΥ,z

ρ(Υ)t(Θ)
, z ∈ Zk

)]
=
∑
t∈L

E
[
gi(ΘΥ,z−t, z ∈ Zk)1(ρ(Υ)−t

(Θ) 6= 0)

]
≤
∑
t∈L

E
[
gi(ΘΥ,z−t, z ∈ Zk)

]
=
∑
t∈L

E
[
1(T∗Υ,L = i− t)

]
= 1,

which is a contradiction. Notice that we used the fact that by construction, for every i, t ∈ L, we have
i− t ∈ L.
Thus, we have

∑
t∈L ρ(Υ)t(Θ)α < ∞ a.s., and by homogeneity and continuity we have that∑

t∈Lmaxs∈Υ |ΘΥ,t+s|α <∞ a.s., and since Υ is finite we obtain that
∑

t∈
⋃

s∈L(Υ)s
|ΘΥ,t|α <∞

a.s.
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Let j ∈ N. From similar arguments as the ones used in the proof of Proposition 11, we have that for
every t ∈ Dj (and so t ∈ Dj ∩Kp for some j, p ∈ N) there exists a nt ∈ N s.t. t ∈ R(j)

0,Λm
for every

m > nt. Further, choose (dn)n∈N such that dn is the highest integer s.t. max|t|≤dn,t∈Dj nt < rn. It
is possible to see that dn →∞ as n→∞ and that for every 2l < rn

P
(

max
2l≤|t|≤dn | t∈Dj

|Xt| > aΛ
nx
∣∣max

t∈Ej
|Xt| > aΛ

nx
)

= P
(

max
l≤|t|≤dn | t∈Dj | t∈R(j)

2l,Λrn

|Xt| > aΛ
nx
∣∣max

t∈Ej
|Xt| > aΛ

nx
)

≤ P
(

max
t∈R(j)

2l,Λrn

|Xt| > aΛ
nx
∣∣max

t∈Ej
|Xt| > aΛ

nx
)
.

Since

P
(

max
2l≤|t|≤dn | t∈Dj

|Xt| > Cja
Λ
nx
∣∣ ρEj (X) > aΛ

nx
)

=
P
(

max2l≤|t|≤dn | t∈Dj |Xt| > Cja
Λ
nx, ρEj (X) > aΛ

nx
)

P(ρEj (X) > aΛ
nx)

≤
P
(

max2l≤|t|≤dn | t∈Dj |Xt| > Cja
Λ
nx,maxs∈Ej |Xs| > Cja

Λ
nx
)

P(ρEj (X) > aΛ
nx)

=P
(

max
2l≤|t|≤dn | t∈Dj

|Xt| > Cja
Λ
nx|max

s∈Ej
|Xs| > Cja

Λ
nx
)

P(maxs∈Ej |Xs| > Cja
Λ
nx)

P(maxs∈Ej |Xs| > aΛ
nx)

P(maxs∈Ej |Xs| > aΛ
nx)

P(ρEj (X) > aΛ
nx)

,

by condition (ACΛ
�,I∗ ) we obtain the following anti-clustering condition:

lim
l→∞

lim sup
n→∞

P
(

max
2l≤|t|≤dn | t∈Dj

|Xt| > Cja
Λ
nx
∣∣ρEj (X) > aΛ

nx
)

= 0. (35)

Now, for any z > 0, by the regular variation of ρEj (X) (namely of maxs∈Ej |Xs|) and by (35) we
have that

lim
l→∞

lim sup
n→∞

P
(

max
2l≤|t|≤dn | t∈Dj

|Xt| > zaΛ
nx
∣∣ρEj (X) > aΛ

nx
)

= 0.

In other words, for any ε > 0 and z > 0, there exists l > 0 such that for all w > l

P
(

max
l≤|t|≤w | t∈Dj

|YEj (t)| > z

)
≤ ε.

This, implies that P( lim
|t|→∞

|YEj (t)| = 0) = 1 and so P( lim
|t|→∞

|ΘEj (t)| = 0) = 1 for t ∈ Dj . The

argument holds for every j ∈ N. Since D̃j ⊂ Dj , from Lemma 29 we obtain the statement.

9 Proofs in Section 6
9.1 Proofs in Section 6.1

Since in Section 6.1 the Rd-valued stationary random field (Xt)t∈Zk is always considered in modulus
and since (|Xt|)t∈Zk is stationary and regularly varying, it is sufficient to prove the results for a
non-negative valued stationary random field (Xt)t∈Zk , as we do for the remaining proofs.
Theorem 30. Consider the following conditions:
(I) (Xt)t∈Zk is a real valued stationary random field whose marginal distribution F does not have
an atom at the right endpoint xF .
(II) For a sequence un ↑ xF and an integer sequence rn → ∞ s.t. kn = [|Λn|/|Λrn |] → ∞ the
following anti-clustering condition is satisfied:

lim
l→∞

lim sup
n→∞

P(M̂Λ,X
l,rn

> un |X0 > un) = 0. (36)
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(III) A mixing condition holds:

P
(

max
t∈Λn

Xt ≤ un
)
− (P

(
max
t∈Λrn

Xt ≤ un)kn
)
→ 0, n→∞, (37)

where (un), (kn) and (rn) are as in (II).
(IV) For any τ ≥ 0 there exists a sequence (un) = (un(τ)) s.t. lim

n→∞
|Λn|P(X0 > un(τ)) = τ and

(II) and (III) are satisfied for these sequences (un).
Then, the following statements hold:
(a) If (I) and (II) are satisfied then

lim
l→∞

lim sup
n→∞

∣∣∣∣θΛ
n −

∞∑
j=1

λjP( max
t∈Dj∩Kl

Xt ≤ un |X0 > un)

∣∣∣∣ = 0, (38)

and lim inf
n→∞

θΛ
n > 0.

(b) If (I) and (IV) are satisfied and θΛ
b = lim

n→∞
θΛ
n exists, then θΛ

X ∈ (0, 1] exists and θΛ
X = θΛ

b .

Remark 10. Notice that when un = anx then (36) is the (ACΛ
�) condition.

Proof. Let us first focus on (38). Denote by t|Λrn | the highest element of Λrn according to ≺, by
t|Λrn |−1 the second highest one, ..., by t1 the lowest one. Further, for m = 1, ..., |Λrn | letMm :=
maxj=m,...,|Λrn |Xtj and for m = |Λrn |+ 1 letMm := 0. Thus, we have P(M|Λrn |+1 > un) = 0
and

P( max
t∈Λrn

Xt > un) =

|Λrn |+1∑
m=2

−P(Mm > un) + P(Mm−1 > un).

Consider l ∈ N with l� |Λrn | and for m = 2, ..., |Λrn | let

M◦m := max
t∈{tm−tm−1,...,t|Λrn |−tm−1}

Xt and

M◦m\l := max
t∈{tm−tm−1,...,t|Λrn |−tm−1}\Kl

Xt. (39)

We have

− P(Mm > un) + P(Mm−1 > un) =

− P(M◦m > un) + P(M◦m ∨X0 > un) = P(M◦m ≤ un, X0 > un)

Notice that for m = |Λrn |+ 1 we have that

−P(Mm > un) + P(Mm−1 > un) = P(X0 > un)

and so when divided by |Λrn |P(X > un) is asymptotically negligible.
Now, for each j, n ∈ N consider the points tm, form = 2, ..., |Λrn |, such that {tm−tm−1, ..., t|Λrn |−
tm−1} ∩Kl = Dj ∩Kl. For such points we have that (39) is equal to

P(M◦m ≤ un, X0 > un, max
t∈Dj∩Kl

Xt ≤ un) + P(M◦m ≤ un, X0 > un, max
t∈Dj∩Kl

Xt > un)

= P(M◦m ≤ un, X0 > un, max
t∈Dj∩Kl

Xt ≤ un) = P(M◦m\l ≤ un, X0 > un, max
t∈Dj∩Kl

Xt ≤ un)

= P(X0 > un, max
t∈Dj∩Kl

Xt ≤ un)− P(M◦m\l > un, X0 > un, max
t∈Dj∩Kl

Xt ≤ un).

and that

P(M◦m\l > un, X0 > un, max
t∈Dj∩Kl

Xt ≤ un) ≤ P(M◦m\l > un, X0 > un)

≤ P(M̂X
l,rn > un, X0 > un).

For the points tm, for m = 2, ..., |Λrn |, such that {tm − tm−1, ..., t|Λrn | − tm−1} ∩Kl 6= Dj ∩Kl

for every j ∈ N, we will use that

P(M◦m ≤ un, X0 > un)

|Λrn |P(X > un)
≤ 1

|Λrn |

38



A PREPRINT - FEBRUARY 21, 2022

Observe that there are finitely many different subsets of Kl and, following the notation of the proof of
Theorem 10, we denote their total number by τl and denote them by Ξ

(1)
l , ....,Ξ

(τl)
l . Further, for z =

1, ..., τl, we let µ(z)
rn be the number of points tm, m = 2, ..., |Λrn |, such that {tm− tm−1, ..., t|Λrn |−

tm−1} ∩Kl = Ξ
(z)
l , that is µ(z)

rn = |{tm,m = 2, ..., |Λrn | : {tm− tm−1, ..., t|Λrn |− tm−1} ∩Kl =

Ξ
(z)
l }|. Recall that I(z)

l = {i ∈ N : Ξ
(z)
l = Di ∩Kl}. Then, by (i) and (ii) and in particular by point

(I) in Proposition 3 we have

µ
(z)
rn

|Λrn |
→

∑
i∈I(z)

l

λi, as n→∞.

Notice that if Ξ
(z)
l 6= Di ∩Kl, for every i ∈ N, then I

(z)
l is empty and so

µ(z)
rn

|Λrn |
→ 0, as n→∞, and

we let Zl the subset of {1, ..., τl} of such zs. Further, for z ∈ {1, ..., τl} \ Zl we let Dj(z) indicate
the (or one of the) Di such that Ξ

(z)
l = Di ∩Kl. Thus,

∑
z∈{1,...,τl}\Zl

µ
(z)
rn

|Λrn |
n→∞→

∑
z∈{1,...,τl}\Zl

∑
i∈I(z)

l

λi =

∞∑
i=1

λi = 1.

Hence, we have that

θΛ
n =

P(maxt∈Λrn
Xt > un)

|Λrn |P(X > un)
=

∑
z∈{1,...,τl}\Zl

µ
(z)
rn

|Λrn |
P( max

t∈Dj(z)∩Kl
Xt ≤ un|X0 > un) +Al,n

where Al,n is such that

|Al,n| ≤
∑

z∈{1,...,τl}\Zl

µ
(z)
rn

|Λrn |
P(M̂X

l,rn > un|X0 > un) +
∑
z∈Zl

µ
(z)
rn

|Λrn |
.

Therefore, applying (36) we obtain that (38).
To show that lim inf

n→∞
θΛ
n > 0 we proceed as follows. Consider the a set of points composed by points

{t1, ..., t|Λrn |} which have a supremum distance of at least 2l, and denote it Wn and its points (in
increasing order according to �) by w1, ..., wpn for some pn ∈ N. Observe that the sets{

Xwm > un, max
t�wm,t∈{t1,...,t|Λrn |}\Kl−1(wm)

Xt ≤ un

}
,

for m = 1, ..., pn, are disjoint and their union is a subset of {maxt∈Λrn Xt > un}. Observe also
that |Λrn | ≥ |Wn| ≥ b|Λrn |/(2l)kc. Hence, we have

θΛ
n =

P(maxt∈Λrn
Xt > un)

|Λrn |P(X > un)

≥
pn∑
m=1

P(Xwm > un,maxt�wm,t∈{t1,...,t|Λrn |}\Kl−1(wm)Xt ≤ un)

|Λrn |P(X > un)

=

pn∑
m=1

P(X0 > un,maxt�0,t∈{t1−wm,...,t|Λrn |−wm}\Kl−1
Xt ≤ un)

|Λrn |P(X > un)

≥
pn∑
m=1

P(X0 > un, M̂l−1,rn ≤ un)

|Λrn |P(X > un)

=
pn
|Λrn |

[1− P(M̂l−1,rn > un|X0 > un)]

≥ b|Λrn |/(2l)
kc

|Λrn |
[1− P(M̂l−1,rn > un|X0 > un)].
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Then
lim inf
n→∞

θn =
1

(2l)k
[1− lim sup

n→∞
P(M̂l−1,rn > un|X0 > un)].

This proves point (a).
Now, assume that θΛ

b = lim
n→∞

θΛ
n exists. We need to show that θΛ

X = θΛ
b . By Taylor expansion we

have

(P( max
t∈Λrn

Xt ≤ un))kn = exp(kn log(1− P( max
t∈Λrn

Xt > un)))

= exp
(
− |Λn|
|Λrn |

P( max
t∈Λrn

Xt > un)(1 + o(1))
)

= exp
(
− τ

|Λrn |
P(maxt∈Λrn

Xt > un)

P(X > un)
(1 + o(1))

)
= exp

(
− τθΛ

n (1 + o(1))
)
→ e−θbτ , as n→∞.

Hence, by the mixing condition (37) we have

P(max
t∈Λn

Xt ≤ un) = [P(max
t∈Λn

Xt ≤ un)− (P( max
t∈Λrn

Xt ≤ un))kn ]

+ (P( max
t∈Λrn

Xt ≤ un))kn → e−θbτ , as n→∞.

Since this holds for any τ > 0, we conclude that θΛ
X = θΛ

b .

Proof of Theorem 22. Recall (38) and let θ(l) := lim
n→∞

∑∞
j=1 λjP(maxt∈Dj∩Kl Xt ≤ un |X0 >

un), for l ∈ N. By the continuous mapping theorem (and noticing that the sum is actually a
finite sum since there are finitely many different combination of points inside Kl for given l) we
have θ(l) =

∑∞
j=1 λjP(maxt∈Dj∩Kl Yt ≤ 1) and by monotonicity of the probability measure

θ(l) ↓
∑∞
j=1 λjP(supt∈Dj Yt ≤ 1) as l →∞. Given that lim

l→∞
θ(l) = θΛ

b exists, Theorem 30 point

(a) ensures that for (un) = (un(τ)) and some τ > 0 we have that θΛ
b = lim

n→∞
θΛ
n exists and is

positive. Then, from Theorem 30 point (b) for (un) = (un(τ)) and arbitrary τ > 0 we obtain that θΛ
X

exists, is positive and it is equal to θΛ
b , hence we obtain point (2). Moreover, from these arguments

we immediately obtain the first equality in (13), while for the others, using Θ0
a.s.
= 1, we have that

θΛ
b =

∞∑
j=1

λjP(Y sup
t∈Dj

|Θt| ≤ 1) =

∞∑
j=1

λj

(
1−

∫ ∞
1

P(y sup
t∈Dj

Θt > 1)d(−y−α)

)

=

∞∑
j=1

λj

(
1−

∫ 1

0

P( sup
t∈Dj

Θα
t > u)du

)
=

∞∑
j=1

λj

(
1− E

[
sup
t∈Dj

Θα
t ∧ 1

])

=

∞∑
j=1

λj

(
E
[(

1− sup
t∈Dj

Θα
t

)
+

])
=

∞∑
j=1

λj

(
E
[

sup
t∈Dj∪{0}

Θα
t − sup

t∈Dj
Θα

t

])
.

Theorem 31. Consider the following conditions:
(I) (Xt)t∈Zk is a real valued stationary random field whose marginal distribution F does not have
an atom at the right endpoint xF .
(II) For a sequence un ↑ xF and an integer sequence rn → ∞ s.t. kn = [|Λn|/|Λrn |] → ∞ the
following anti-clustering condition is satisfied: for every j ∈ I∗

lim
l→∞

lim sup
n→∞

P(M̂
Λ,X,(j)
2l,rn

> un | max
t∈Ej

Xt > un) = 0. (40)

(III) A mixing condition holds:

P(max
t∈Λn

Xt ≤ un)− (P( max
t∈Λrn

Xt ≤ un))kn → 0, n→∞, (41)
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where (un), (kn) and (rn) are as in (II).
(IV) For any τ ≥ 0 there exists a sequence (un) = (un(τ)) s.t. lim

n→∞
|Λn|P(X0 > un(τ)) = τ and

(II) and (III) are satisfied for these sequences (un).
Then, the following statements hold:
(a) If (I) and (II) are satisfied then

lim
l→∞

lim sup
n→∞

∣∣∣∣θΛ
n−

∑
h∈I∗,h<m4l

P( max
t∈D̃h∩K2l

Xt ≤ un|max
t∈Eh

Xt > un)
|S′h,4l|
|Λrn |

P(maxt∈Eh Xt > un)

P(X > un)

∣∣∣∣ = 0,

(42)
and lim inf

n→∞
θΛ
n > 0.

(b) If (I) and (IV) are satisfied and θΛ
b = lim

n→∞
θΛ
n exists, then θΛ

X ∈ (0, 1] exists and θΛ
X = θΛ

b .

Remark 11. Notice that when un = anx then (40) is the (ACΛ
�,I∗ ) condition.

Proof. Denote by t|Λrn | the highest element of Λrn according to ≺, by t|Λrn |−1 the second highest
one, ..., by t1 the lowest one. Consider the s, s̃, and ŝ introduced in the proof of Theorem 17. Let
l ∈ N. For m = 1, ..., û let Mm := maxt∈∪ûi=m(Êi)ŝi

Xt and for m = |Λrn |+ 1 let Mm := 0. Thus,
we have P(M|Λrn |+1 > un) = 0 and

P( max
t∈Λrn

Xt > un) =

û+1∑
m=2

−P(Mm > un) + P(Mm−1 > un).

For m = 2, ..., û let M◦m := maxt∈∪ûi=m(Êi)ŝi−ŝm−1
Xt and M◦m\l :=

maxt∈∪ûi=m(Êi)ŝi−ŝm−1
\Kl Xt. We have

− P(Mm > un) + P(Mm−1 > un) = −P(M◦m > un) + P(M◦m ∨ max
t∈Êm−1

Xt > un)

= P(M◦m ≤ un, max
t∈Êm−1

Xt > un) (43)

Notice that for m = |Λrn |+ 1 we have that

−P(Mm > un) + P(Mm−1 > un) = P(max
t∈Êû

Xt > un) ≤ P( max
t∈Kl,t�0

Xt > un)

and so when divided by |Λrn |P(X > un) is asymptotically negligible, for every fixed l ∈ N.
Moreover, we have that (43) is equal to

P(M◦m ≤ un, max
t∈Êm−1

Xt > un, max
t∈∪ûi=m(Êi)ŝi−ŝm−1

∩K2l

Xt ≤ un)

+ P(M◦m ≤ un, max
t∈Êm−1

Xt > un, max
t∈∪ûi=m(Êi)ŝi−ŝm−1

∩K2l

Xt > un)

=P(M◦m ≤ un, max
t∈Êm−1

Xt > un, max
t∈∪ûi=m(Êi)ŝi−ŝm−1

∩K2l

Xt ≤ un)

=P(M◦m\2l ≤ un, max
t∈Êm−1

Xt > un, max
t∈∪ûi=m(Êi)ŝi−ŝm−1

∩K2l

Xt ≤ un)

=P( max
t∈Êm−1

Xt > un, max
t∈∪ûi=m(Êi)ŝi−ŝm−1

∩K2l

Xt ≤ un)

− P(M◦m\2l > un, max
t∈Êm−1

Xt > un, max
t∈∪ûi=m(Êi)ŝi−ŝm−1

∩K2l

Xt ≤ un)

where

P(M◦m\2l > un, max
t∈Êm−1

Xt > un, max
t∈∪ûi=m(Êi)ŝi−ŝm−1

∩K2l

Xt ≤ un)

≤ P(M◦m\2l > un, max
t∈Êm−1

Xt > un) ≤ P(M̂
Λ,X,(j)
2l,rn

> un,max
t∈Ej

Xt > un),
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for some j ∈ I∗ with j < m4l. Hence, we have that

θΛ
n =

P(maxt∈Λrn
Xt > un)

|Λrn |P(X > un)

=
∑
i∈u

P( max
t∈D̃ji∩K2l

Xt ≤ un|max
t∈Eji

Xt > un)
P(maxt∈Eji Xt > un)

|Λrn |P(X > un)
+Bl,n

where the absolute value of Bl,n is such that

|Bl,n| ≤
∑
h∈I∗,h<m4l

|S̄h,4l||Eh|+ ũ

|Λrn |

+
∑

i∈I∗,i<m4l

P(M̂
Λ,X,(ji)
l,rn

> un|max
t∈Eji

Xt > un)
|S′ji,4l|P(maxt∈Eji Xt > un)

|Λrn |P(X > un)
.

By (40) and by the same arguments as the ones used in the proof of Theorem 17, see in particular
(28), (29), and (30), we obtain that lim

l→∞
lim sup
n→∞

|Bl,n| = 0. Moreover, since

∑
i∈u

P( max
t∈D̃ji∩K2l

Xt ≤ un|max
t∈Eji

Xt > un)
P(maxt∈Eji Xt > un)

|Λrn |P(X > un)

=
∑

h∈I∗,h<m4l

|S′h,4l|P( max
t∈D̃h∩K2l

Xt ≤ un|max
t∈Eh

Xt > un)
P(maxt∈Eh Xt > un)

|Λrn |P(X > un)
.

we obtain (42).
To show that lim inf

n→∞
θΛ
n > 0 we proceed as follows. Consider S′h,4l, for some h ∈ I∗ with h < m4l.

Let W (h)
n be the set of points in S′h,4l that have supremum distance of 4l from each other. Observe

that the sets {
max
t∈Eh

Xt+sm > un, max
t�sm,t∈∪ûi=1(Êi)ŝi\K2l

Xt ≤ un

}
, sm ∈W (h)

n ,

are disjoint and their union is a subset of {maxt∈Λrn
Xt > un}. This is because{

max
t∈K2l∩Λrn

Xt+sm > un, max
t�sm,t∈∪ûi=1(Êi)ŝi\K2l

Xt ≤ un
}
, sm ∈W (h)

n ,

are disjoint and their union is a subset of {maxt∈Λrn
Xt > un} and because{

maxt∈K2l∩Λrn
Xt+sm > un

}
⊃ {maxt∈Eh Xt+sm > un}. Observe that |W (h)

n | ≥
|S′h,4l|
(4l)k

. Then,
we have

θΛ
n =

P(maxt∈Λrn Xt > un)

|Λrn |P(X > un)
≥

∑
sm∈W (h)

n

P(maxt∈Eh Xt+sm > un,maxt�sm,t∈∪ûi=1(Êi)ŝi\K2l
Xt ≤ un)

|Λrn |P(X > un)

=
∑

sm∈W (h)
n

P(maxt∈Eh Xt > un,maxt�0,t∈∪ûi=1(Êi)ŝi−sm\K2l
Xt ≤ un)

|Λrn |P(X > un)

≥ |W (h)
n |

P(maxt∈Eh Xt > un, M̂
Λ,X,(h)
2l,rn

≤ un)

|Λrn |P(X > un)

=
(

1− P(max
t∈Eh

Xt > un|M̂Λ,X,(h)
2l,rn

≤ un)
) |W (h)

n |
|Λrn |

P(maxt∈Eh Xt > un)

P(X > un)
.

Then
lim inf
n→∞

θn ≥
γ∗hch
(4l)k

[1− lim sup
n→∞

P(M̂
Λ,X,(h)
2l,rn

> un|X0 > un)] > 0,

for some l large enough. This proves point (a). The proof of point (b) follows from the same
arguments as the ones used for the proof of Theorem 30 point (b).
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Proof of Theorem 23. Recall (42) and let

θ(l) := lim
n→∞

∑
h∈I∗,h<m4l

P( max
t∈D̃h∩K2l

Xt ≤ un|max
t∈Eh

Xt > un)
|S′h,4l|
|Λrn |

P(maxt∈Eh Xt > un)

P(X > un)
,

for l ∈ N. Using the arguments in the proof of Theorem 17, we have that

θ(l) = lim
n→∞

∑
h∈I∗,h<m4l

γ∗h
P(maxt∈D̃h∩K2l

Xt ≤ un,maxt∈Eh Xt > un, ρEji (X) > un
Dji

)

P(X > un)

=
∑

h∈I∗,h<m4l

γ∗hchD
α
hP
(

max
t∈Eh

YEh,t > Dh, max
t∈D̃h∩K2l

YEh,t ≤ Dh

)
=

∑
h∈I∗,h<m4l

∫ ∞
1

γ∗hchD
α
hP
(
ymax

t∈Eh
ΘEh,t > Dh, y max

t∈D̃h∩K2l

ΘEh,t ≤ Dh

)
d(−y−α),

and

θΛ
b = lim

l→∞
θ(l) = lim

l→∞

∑
h∈I∗,h<m4l

∫ ∞
1

γ∗hchD
α
hP
(
ymax

t∈Eh
ΘEh,t > Dh, y max

t∈D̃h∩K2l

ΘEh,t ≤ Dh

)
d(−y−α)

=
∑
h∈I∗

∫ ∞
1

γ∗hchD
α
hP
(
ymax

t∈Eh
ΘEh,t > Dh, y sup

t∈D̃h
ΘEh,t ≤ Dh

)
d(−y−α)

=
∑
h∈I∗

∫ ∞
0

γ∗hchD
α
hP
(
ymax

t∈Eh
ΘEh,t > Dh, y sup

t∈D̃h
ΘEh,t ≤ Dh

)
d(−y−α).

Given that lim
l→∞

θ(l) = θΛ
b exists, Theorem 30 point (a) ensures that for (un) = (un(τ)) and some

τ > 0 we have that θΛ
b = lim

n→∞
θΛ
n exists and is positive. Thus, from Theorem 30 point (b) for

(un) = (un(τ)) and arbitrary τ > 0 we obtain that θΛ
X exists, is positive and it is equal to θΛ

b . From
these arguments we obtain the first equality in (16) while for the others we have that we have that

θΛ
b =

∑
i∈I∗

γ∗i ciD
α
i P
(
Y max

t∈Ei
ΘEi,t > Di, Y sup

t∈D̃i
ΘEi,t ≤ Di

)
=
∑
i∈I∗

γ∗i ciD
α
i

(
P
(
Y max

t∈Ei
ΘEi,t > Di

)
− P

(
Y max

t∈Ei
ΘEi,t > Di, Y sup

t∈D̃i
ΘEi,t > Di

))
=
∑
i∈I∗

γ∗i ciD
α
i

∫ ∞
1

P
(
ymax

t∈Ei
ΘEi,t > Di

)
− P

(
ymax

t∈Ei
ΘEi,t > Di, y sup

t∈D̃i
ΘEi,t > Di

)
d(−y−α)

u=y−α

=
∑
i∈I∗

γ∗i ciD
α
i

∫ 1

0

P
(

max
t∈Ei

Θα
Ei,t > uDα

i

)
− P

(
max
t∈Ei

Θα
Ei,t > uDα

i , sup
t∈D̃i

Θα
Ei,t > uDα

i

)
du

=
∑
i∈I∗

γ∗i ciD
α
i

(
E
[
D−αi max

t∈Ei
Θα
Ei,t ∧ 1

]
− E

[
D−αi max

t∈Ei
Θα
Ei,t ∧D

−α
i sup

t∈D̃i
Θα
Ei,t ∧ 1

])
=
∑
i∈I∗

γ∗i ci

(
E
[

max
t∈Ei

Θα
Ei,t ∧D

α
i

]
− E

[
max
t∈Ei

Θα
Ei,t ∧ sup

t∈D̃i
Θα
Ei,t ∧D

α
i

])
=
∑
i∈I∗

γ∗i ci

(
E
[

max
t∈Ei

Θα
Ei,t

]
− E

[
max
t∈Ei

Θα
Ei,t ∧ sup

t∈D̃i
Θα
Ei,t

])
=
∑
i∈I∗

γ∗i ciE
[(

max
t∈Ei

Θα
Ei,t − sup

t∈D̃i
Θα
Ei,t

)
+

]
=
∑
i∈I∗

γ∗i ciE
[

sup
t∈Ei∪D̃i

Θα
Ei,t − sup

t∈D̃i
Θα
Ei,t

]
,

where we used the fact that since ρEi(Θ) = 1 a.s., then maxs∈Ei Θ(s ≤ Di a.s. by Corollary 16.
Moreover, applying a change of variable and the time change formula we get the representation∑

j∈I∗
γ∗j cjE

[
supt∈Hj Θα

Ej ,t∑
s∈Hj |ΘEj ,s|

α

]
=
∑
j∈I∗

γ∗j cjE
[

sup
t∈Hj

QαEj ,Lj ,t

]
.

43



A PREPRINT - FEBRUARY 21, 2022

Finally, by the time-change formula applied to

ft((ΘEj ,s)s∈Hj ) =
maxz∈(Ej)t Θα

Ej ,z∑
s∈Hj Θα

Ej ,s
1(T∗j = t)

and shifting t to 0, for every t ∈ Lj , we have

E
[

sup
t∈(Ej)T∗

j

QαEj ,Lj ,t

]
=
∑
t∈Lj

E
[

maxz∈(Ej)t Θα
Ej ,z∑

s∈Hj Θα
Ej ,s

1(T∗j = t)

]

=
∑
t∈Lj

E
[

maxz∈Ej Θα
Ej ,z∑

s∈Hj Θα
Ej ,s

1(T∗j = 0)
∑

i∈(Ej)−t

Θα
Ej ,i

]
= E

[
max
z∈Ej

Θα
Ej ,z1(T∗j = 0)

]
.

9.2 Proof of Proposition 25

For every j ≥ 1 we also denoteR(j)
l,Λn

:=
(⋃

t∈{s∈Λn:(Λn)−s⊃Ej}((Λn)−t∩{s ∈ Zk : s � 0})
)
\Kl

and M̂Λ,X,(j)
l,n := max

i∈R(j)
l,Λn

Xi so that Condition (ACΛ
�,I∗ ) is satisfied if for every j ∈ I∗

lim
l→∞

lim sup
n→∞

P
(
M̂

Λ,X,(j)
2l,rn

> aΛ
nx
∣∣max

t∈Ej
Xt > aΛ

nx
)

= 0.

We start by showing the following Lemma

Lemma 32. Let (Xt)t∈Zk be a stationary max-stable random field. Then (Xt)t∈Zk is jointly regularly
varying and the finite-dimensional distributions of its tail field (Yt)t∈Zk is given by

P(Yt1 < y1, ..., Ytn < yn)

=
1

E[V0]

{
E
[
max

(
max

i=1,...,n

1

yi
Vti , V0

)]
− E

[
max

i=1,...,n

1

yi
Vti

]}
(44)

for t1, ..., tn ∈ Zk and y1, ..., yn ∈ (0,∞).

Proof. It follows from similar computations as the ones in the proof of Proposition 6.1 in [23]. For
any x1, ..., xn ∈ (0,∞) we have (see Examples 1.5.4 and 4.4.3 in [17])

P(Xt1 ≤ x1, ..., Xtn ≤ xn) = exp

{
−E

[
max

i=1,...,n

Vti
xi

]}
.

Thus, for any x > 0

P(x−1Xt1 ≤ y1, ..., x
−1Xtn ≤ yn | X0 > x)

=
P(Xt1 ≤ xy1, ..., Xtn ≤ xyn)− P(Xt1 ≤ xy1, ..., Xtn ≤ xyn, X0 ≤ x)

P(X0 > x)

=
exp

{
− 1
xE
[
maxi=1,...,n

Vti
yi

]}
− exp

{
− 1
xE
[
max

(
maxi=1,...,n

Vti
yi
, V0

)]}
1− e−E[V0]/x

∼ x

E[V0]

(
exp

{
− 1

x
E
[

max
i=1,...,n

Vti
yi

]}
− exp

{
− 1

x
E
[
max

(
max

i=1,...,n

Vti
yi
, V0

)]})
=

x

E[V0]

(
exp

{
−E[V0]

x

1

E[V0]
E
[

max
i=1,...,n

Vti
yi

]}
− exp

{
−E[V0]

x

1

E[V0]
E
[
max

(
max

i=1,...,n

Vti
yi
, V0

)]})
which converges to (44) as x→∞.
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We follow partially the proof of Proposition 6.2 in [23]. Fix any j ∈ I∗, observe that

P
(
M̂

Λ,X,(j)
2l,rn

> aΛ
nx
∣∣max

t∈Ej
Xt > aΛ

nx
)

= 1−

P
(

max
(
M̂

Λ,X,(j)
2l,rn

,max
t∈Ej

Xt

)
> aΛ

nx
)
− P

(
M̂

Λ,X,(j)
2l,rn

> aΛ
nx
)

P
(

max
t∈Ej

Xt > aΛ
nx
)

and that

P
(

max
t∈Ej

Xt > aΛ
nx
)

=
(

1− e
−E
[

max
t∈Ej

Vt

]
/aΛ
nx
)
∼ E

[
max
t∈Ej

Vt

]
/aΛ
nx , n→∞ .

Since

0 ≤ −(aΛ
nx)−1E

[
M̂

Λ,V,(j)
2l,rn

]
≤ −(aΛ

nx)−1|Λrn | → 0,

as n→∞, we also have

P
(
M̂

Λ,X,(j)
2l,rn

> aΛ
nx
)

=
(

1− e−E
[
M̂

Λ,V,(j)
2l,rn

]
/aΛ
nx
)
∼ E

[
M̂

Λ,V,(j)
2l,rn

]
/aΛ
nx , n→∞ .

Then, the (AC�) condition is satisfied if and only if

lim
l→∞

lim inf
n→∞

aΛ
nx
[
P
(

max
(
M̂

Λ,X,(j)
2l,rn

,max
t∈Ej

Xt

)
> aΛ

nx
)
− P

(
M̂

Λ,X,(j)
2l,rn

> aΛ
nx
)]

= E[max
t∈Ej

Vt].

(45)
Since

P
(

max
(
M̂Λ,X,j

2l,rn
,max

t∈Ej
Xt

)
> aΛ

nx
)
− P

(
M̂

Λ,X,(j)
2l,rn

> aΛ
nx
)

= exp
(
− (aΛ

nx)−1E
[
M̂

Λ,V,(j)
2l,rn

])
− exp

(
− (aΛ

nx)−1E
[

max
(
M̂

Λ,V,(j)
2l,rn

,max
t∈Ej

Vt

)])
∼ (aΛ

nx)−1
(
E
[

max
(
M̂

Λ,V,(j)
2l,rn

,max
t∈Ej

Vt

)]
− E

[
M̂

Λ,V,(j)
2l,rn

])
and then (45) holds if and only if

lim
l→∞

lim inf
n→∞

E
[

max
(
M̂

Λ,V,(j)
2l,rn

,max
t∈Ej

Vt

)]
− E

[
M̂

Λ,V,(j)
2l,rn

]
= E

[
max
t∈Ej

Vt

]
. (46)

Then

lim
l→∞

lim inf
n→∞

E
[

max
(
M̂

Λ,V,(j)
2l,rn

,max
t∈Ej

Vt)
]
− E

[
M̂

Λ,V,(j)
2l,rn

]
= lim
l→∞

E
[(

max
t∈R(j)

2l,Λrn
∪Ej

Vt − max
t∈R(j)

2l,Λrn

Vt

)
1
(

max
t∈Ej

Vt 6= 0
)]
.

By assumption max
t∈R(j)

2l,Λrn

Vt = max
t∈R(j)

2l,Λrn
∩(∪i≥1((H)i)+)

Vt, thus max
t∈R(j)

2l,Λrn

Vt1
(

max
t∈Ej

Vt 6= 0
)
→ 0 a.s.

as l→∞ under (18) and then (46) follows by dominated convergence.
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