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ABSTRACT

We consider the clustering of extremes for stationary regularly varying random fields over arbitrary
growing index sets. We study sufficient assumptions on the index set such that the limit of the point
random fields of the exceedances above a high threshold exists. Under the so-called anti-clustering
condition, the extremal dependence is only local. Thus the index set can have a general form
compared to previous literature [3, [21]]. However, we cannot describe the clustering of extreme
values in terms of the usual spectral tail measure [23] except for hyperrectangles or index sets in the
lattice case. Using the recent extension of the spectral measure for star-shaped equipped space [[18]],
the v-spectral tail measure provides a natural extension that describes the clustering effect in full
generality.

Keywords: Extremes, Regular variation, Extremal index, Max-stable random field, Space-time
models

MSC Classification: 60G70, 60G60, 62G32

1 Introduction

Asymptotic results for extreme values of random fields have attracted much attention recently, see
Samorodnistky and Wu [23]], Basrak and Planinic [3]], and Jakubowski and Soja-Kukieta [[14]], to name
a few. Extending the basic results of Basrak and Segers [2] in the context of time series, the newly
developed approaches focus on stationary regularly varying R%-valued random fields X = (Xy)gcz:
The random vectors (Xg, , ..., Xg,, ) are regularly varying in R™? for each ty,...,t,, € ZF. The
existence of the spectral tail random field ® := (@ )¢cz+ characterizes the limit behavior of the
extremes around the origin {0} under the condition that X is extreme and normalized by |Xg|.
The random field ® characterizes the extrema of X and hence any asymptotic extreme value set.
One phenomenon is the clustering of extrema, i.e., the tendency for extrema to occur locally. To
formalize this phenomenon, the approach is to extend the basic result of Davis and Hsing [5] via the
convergence of the point process of exceedances. More precisely, we define IV, as a simple point
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random field of exceedances on a hyperrectangle C,, = [1,n]*, n > 1

Nn = E Eaflixt .
n

teC,

The level of excesses is set to a,,, which satisfies lim,,_, nP(|Xo| > a,) = 1, as if the observations
were independent. Samorodnistky and Wu [23]] show that NV,, converges to a cluster point random
field N on R?\ {0} and an explicit representation of the latter is given in Basrak and Planinic [3].
More precisely, there is a spectral cluster field Q := (Q¢)¢ez+ Whose distribution is derived from
that of (©¢) and for which holds

(o]

NA — Z Z E‘Fi—l/aQM 5

=1 teZk

where (> sk £€Q,..):>,) are independent and identically distributed (iid) copies of } , ., €q,,
independent of the points (I';) of a standard Poisson process. The random field Q is crucial since it
accurately describes the asymptotic clustering phenomenon. The paper aims to introduce and analyze
a new setting adapted to index sets other than the hyperrectangle C,,.

Let us consider A,, as an arbitrary index set of Z* \ {0}. Such an extension of the rectangular index
set is not straightforward, as Stehr and Rénn-Nielsen [21] showed in the asymptotically independent
case (@ = 0 for all t # 0). For index sets (A,), a geometric condition must hold. To motivate
the study of index sets that are not rectangular, let us describe the most common index sets in the
literature. The spatio-temporal sets A,, are typically of the form C x {T,...,mT}, where C is a
fixed lattice of Z2 and T > 1 is the observation period through time expressed in space-time units,
and m is the number of observation periods. As usual, we consider a stationary, regularly varying
random field (X¢). Remark that the assumption of stationarity in time and space on X is standard
in environmental statistics, even when the spatial grid C is large but finite, see the review paper by
Davison, Padoan and Ribatet [10]] and references therein. We first obtain the existence of a limiting
point random field N as follows

d
N2 = E €aﬁ—1xt—>NA, n — 00,
teA,

A

where a;,

comes from lim |A,|P(|Xo| > a?) = 1.
n— oo

In contrast to the hyperrectangle case, the distribution of the edge point random field N** depends
on the asymptotic lattice properties of the general lattice A,,. Not surprisingly, the asymptotic form
of the index set A,, constrains the clustering effect. We derive the limiting distribution of the point
random field under a sufficient condition that ensures that A,, consists asymptotically of translated
versions of countably many fixed sets D;. It appears that the limiting cluster point random field
distribution is a mixture of expressions of the spectral tail random field over the different D;. However,
a representation of the clusters using the original spectral tail random field (®y) is limited to specific
A,,. We derive the representation of the limiting points similar as in Basrak and Planinic [3]] only
when all the D;’s are lattice. This condition is satisfied for C),, and we recover the characterization
of the clusters first provided in Basrak and Planinic [3]].

For irregular index set A,,, the representation of the (asymptotic) clusters does not naturally use the
original spectral tail random field (®y). Instead, one has to introduce the concept of the Y-tail field
that characterizes the limiting behaviour of the extremes around the region Y given that X is extreme
over T and normalized by a modulus of (X¢)¢er. This framework has already been developed for
iid sequences by Ferreira and de Haan [8]] and for time series cases by Segers et al. [18] but not for
random fields.

Our main contribution is to introduce a very general setting for index sets, namely Condition (D*),
which does not involve any topological properties. This condition allows for countably many
different shapes, and it is only an asymptotic condition. In particular, it implies that some shapes
repeat approximately an infinite number of times proportional to |A,,|. Surprisingly, the shape of the
asymptotic local region Y is arbitrary. In contrast with existing results such as Stehr and Rénn-Nielsen
[21] we show that convexity is not required when dealing with extremes. Under the anti-clustering
condition, we deal with index sets that are local regions such as Y reproduced over a lattice.

The rest of the paper is organized as follows. In Section [2]are collected preliminaries, notation and
main assumptions. That the crucial Condition (D*) implies asymptotic local region reproduced over
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lattices is the main theoretical challenge of the paper, alleviated in Section[3] The asymptotic clusters
are studied in Section E] for any index set A,, satisfying Condition (D”). Their characterization
is provided using the Y —spectral tail field in Section [5] Two applications of this new approach
are developed in Section[6] determining the extremal index and providing sufficient conditions for
max-stable random fields. Section[7|contains the proofs of the results of Section [3]and the rest of the
proofs are collected in Section[§]and [0]

2 Preliminaries, notation and main assumptions
Let (X¢)gczx be an Re-valued regularly varying stationary random field.

2.1 Spectral tail fields

Let us recall two fundamental results of Samorodnitsky and Wu [23]]: the existence of the tail field
and the time change formula for the tail and spectral tail fields.

Theorem 1 (Theorem 2.1 in [23]]). An R%-valued stationary random field (Xy)yczx is jointly regularly
varying with index o if and only if there exists a random field (Yt )yezr such that

L(x Xyt € ZF|Xo| > ) T £(Y, : t e ZF)
asx — oo, and P(|Yo| > y) =y~ fory > 1. We call (Y )ez- the tail field of (X¢)pezn-

Theorem 2 (Theorem 3.2 in [23]). Let (Y)iczx be the tail field corresponding to an R%-valued
stationary random field (X¢)¢czr that is jointly regularly varying with index o and define ®¢ =

Y:/|Yo|, t €ZF. Let g : (Rd)zk — R be a bounded measurable function. Take any s € Z*. Then
the following identities hold:

Blo(Y 1Y 0] = [ T E(r00)1(r|04] > 1ld(—r ), )
El(©:-1(6-. # 0] = Eo " ) 0.7, @

We call (®y) ¢z the spectral field of (X¢)¢ezr-

Denote by < the component-wise order on Z¥, thus for i = (i1, ...,i1), j = (j1, .., jx) in Z¥, i < j
ifyy < g foralll=1,.., k.

We consider a complete order < on ZF that is invariant: if s < t fors,t € Z* implies that s+i < t+1i
for any i € Z*. An example of an invariant order is the lexicographic (or dictionary) order: for
s, t e 7k, we say that s < t if either (1) s; < t1, or (2) there exists 2 < j < k such that s; = ¢; for
alli=1,...,5—1,and s; < ;.

2.2 Condition (D) on the index set
Consider the following simple point random field:

AL E
Nn = f‘:a%—l)(t7

teA,
where the sequence (a’) satisfies lim |A,,|P(|Xo| > a?) = 1 and A,, is any subset of Z* such that
n—oo

|A,| — oo asn — oo. Forany set Y C ZF, ¢ > 0,and t € Z*, let (Y)" := {u € Y : u = 0},
(M) ¢:={ueZF:u=s—t,s € Y}hand T := ((T)_¢ N K.)* where the hypercube K, is
defined as K. = [—¢, c]* N ZF, ¢ > 0. Through the paper we assume that A,, satisfies the following
condition.

Condition (D™): There exist (possibly countably many) different subsets of {t € ZF : t = 0}, which
we denote by D1, D, ..., s.t.

lim {t €A, A1(1t,p) =D; N Kp}|

n—00 [An]

with A; > 0and 3" | \; = 1, where ¢ € NU {oo} is the number of these Ds.

= Xip = Ais p— 00,
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Condition (D*) says the following. Consider a point t in A,,. Translate the set A,, by —t so that
t is now at 0. Take an hypercube around O of side 2p, for p large enough, and intersect it with the

positive points according to > and with the translated set. Thus, we have obtained A&f’p ). Now, it

might happen that the same set A%t P) i exactly the same for other points in A,,, and also for other

points in A, with m > n. Condition (DM imposes that there are different sets (denoted D; N K,

i € {1,...,¢q}) such that the number of points t € A,, for which A%t’p ) is equal to one of these sets,
divided by |A,,|, has a limit and these limits form a weighted sum.

This condition provides a minimum requirement to have (at least asymptotically) a structure for
studying the long-time clustering behaviour of extremes.

Example 1. Imagine observing precipitations over a specific geographical area C. There are stations
spread throughout the geographical region that measure the precipitation. Let A, lying in Z.* where d
is the sum of the time dimension and the space dimension (thus d = 3 or d = 4 depending on whether
we consider the geographical region C to lie in 72 or 7.2, respectively). In the time direction, each
point is the number of rain rained in a certain amount of time, while the space direction indicates the
location where this is measured. Thus, Xy where t € A,, corresponds to the amount of rain measured
in a certain period in a specific location. Assume that the measurements over C repeat in a constant
frequency (e.g. at every week). This assumption corresponds to condition (D™), where we take the
order = to be increasing with successive observations. In particular, imagine measuring over C
infinitely many times. Denote this set by C.. Then, each D is Co, centered at 0 (that is translated
version of Co, by minus one of its points) and consider the points successive to 0. Notice that only
q = |C| distinct D. [4]] already considered similar index sets.

Example 2. The framework of [21l 22|] is a particular specification of our framework. Indeed,
consider Assumption 1 in [21]] (which is Assumption 3 in [22]]): The sequence (Cy,)neN consists of
p—convex bodies (i.e. connected sets which are also unions of p convex sets), where Cp, = Ut_,C,, ;

and |C,,| — o0 as n — oo, and % is bounded for each j = 1, ...,d — 1, where V;(C,, ;)
indicates the intrinsic volumes of the convex body C, ;. Consider the two dimensional case, so d = 2
— similar arguments apply to other dimensions. For any convex body C, we have that Vo(C) = 1
and V1 (C) is equal to the perimeter of C divided by w. Then, Assumption 1 in [21|] states that the
sum of the perimeters of the C,, ;s must not grow faster than the square root of the volume of C,.
There are cases where this is not true, like when one of the C, ;s is a rectangle with edges increasing
with different speed. In general, this assumption ensures that the C,, ;s must grow in all directions,
implying that the number of points in C,, away from the boundary divided by the number of points

[{teC,: 0 =DNK,}|
N oA

n — oo, where D is simply given by {t € Z* : t = 0}. Therefore, Assumption 1 in [2]] is strictly
stronger than condition ( D).

in C,, tends to 1 as n — oo. Formally it implies that, for any r € — las

It is important to explicitly look at the differences of our framework with the one of [21} 122|]. First,
Condition (D) is only an asymptotic condition, thus the set A, (or C,,) does not need to satisfy
any constraint for finite n. The lack of a non-asymptotic structure for A, is a challenge, and in
particular for the proof of Theorem[I7} We overcome this by imposing structures that will be satisfied
asymptotically. Another feature of our setting also exacerbates this issue: the possibility of having
countably many different asymptotic sets (denoted by Ds). Indeed, having countably many sets does
not allow distinguishing the points in A\, that will eventually form an asymptotic set from other points
in A, because this distinction happens only asymptotically. We overcome this by using that only
finitely many of these sets have weights (denoted by \s) greater than ¢, for any € > 0. The third
difference is the structure of the asymptotic sets. While in [21| 122)] the only allowed asymptotic set
is {t € ZF : t = 0} as just shown, in our framework any possible subset of {t € ZF : t = 0} is
allowed. For example, we might have that A,, is a rectangle where only one side increases.

We conclude this section by pointing out that condition (D) comes from the proof of the main
asymptotic results of the paper, and it is the most refined (i.e. weakest) condition we could attain.
This condition is satisfied in all the previous settings (see [} 23} 21} 22} 4]).

2.3 Mixing and anti-clustering conditions

Following the seminal work of Davis and Hsing [5] on stationary time series, we assume two
complementary conditions. The anti-clustering condition avoids too strong clustering effects. The
mixing condition approximates the Laplace functional of the point random field N over A,, in terms
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of products of Laplace functionals of copies of the point random field over a smaller index set. Such
conditions were extended to random fields by Samorodnistky and Wu [23] for the specific index set
C,, = [1,n]*. Some care is required when considering the general index set A,,.

Take a sequence of positive integers (r,,) such that lim r, = |A,|/|A,, | = oo and let k,, =
n—00

UAnl/IAr,|). Let Ria, == (Usen, (An)—¢) "\ Ki and let M5 .= maxiep, , [X;| and
consider the followmg anti-clustering
Condition (AC2): The R%-valued stationary regularly varying random field (X : t € ZF) satisfies

the (ACL) condition if there exists an integer sequence r,, — 0o and k,, = |A,|/| A,
that

— 00 such

lim hmsup}P’(MA XS xHX0| >a x) =0.

=00 nooco

Letdy, := max; yea, Max;—=1_ k \x(j) —y) |, namely d,, be the maximum distance between the
points of A, . Observe that

lim hmsupIP(Mlpj s >a xHXO\ >a x) =0

=0 n—oo

= lim hmsupIP’<MA X ada |[Xo| > a x) =0
=00 nooo

where M| |>_ = MAX,<i|<b, -0 |X;| for a,b € Z and |i|] := max(|i1], ..., |ix|). This sufficient

condition is often easier to check in practice and is implied by the anti- clusterlng condition considered

in Samorodnistky and Wu [23]] that required a stronger condition on the maxima over indices

a < |i| < bin any directions.

For the mixing condition, we require extra classical notation, namely

VA E
Nn = 8aﬁ_lxt’

teA

n

and for any £ C R4, (C}(E ) the class of continuous non-negative functions g on E. Further, let the
Laplace functional of a point random field ¢ with points (Y;) in the space £ C R? be denoted by

Pe(9) ==E{6Xp(—/Egd£>} :E{QXP(_Z:Q(YQ)} 9 € Ci(E).

We adopt the notation C}. := CL(R?\ {0}).
Condition AA(aﬁ): Choose the integer sequences , — 0o and ky, = |A,|/|Ay,| = oo from
condition (ACL ). The R%-valued stationary regularly varying random field (Xy : t € Z*) satisfies
the condition AM(a) if

Unalg) = (Tga (9))*" =0, n—oo, geCk.

Tn

3 Lattice properties

Before giving the main results, we need to investigate further the lattice properties of the index sets
D; appearing in Condition (D) on A,,. We will distinguish two settings, lattice properties on the
upper orthant and the whole index set. Condition (D”) implicitly involves the upper orthant and it
would have been possible to focus on the whole index set by adapting Condition (D) accordingly.
This approach would have been entirely equivalent to ours. But notice that the two settings are crucial
for our main results, and one cannot make the economy of one of them.

3.1 Lattice properties on the upper orthant

Recall that Dy, D, ... are the subsets of the upper-orthant (Z’“)+ that appear in Condition (D).

Proposition 3. Let A, satisfy |A,,| — 0o as n — oo together with Condition (D).
(I) For every D; and D; with j # i there exists a p large enough s.t. D; N K, # D; N K,,. Further,
for every D; and every p € N we have the identity

Ay AP =D N K,
lim [{t € An d Al p}|:)", = Z i

n—00 |An|

ierl?



A PREPRINT - FEBRUARY 21, 2022

where I = {i € {1,...,q} : DiN K, = D; N K, }.

(IT) The empty set is a possible D.

(IIT) For every D, there exist b; many different Ds, where b; € N s.t. b; < |1/A;| — 1, which we
denote by Dy, , ..., Dy, such that, for every z € Dj, D, = ((Dj)—z)" for some i = 1,...,b; and
then \; > )\j.

Point (IIT) of Proposition suggests that D; contains shifted versions of potentially different D,. In
order to exhibit the lattice property of D;, we define G; as the set of the shifts that yields the same
D;, namely

gj = {ZGDjU{O}S(Dj)tz:Dj} and ,Cj = ngfgj, 1§]§q (3)
For every 1 < j < g, one can partition the set D; using the lattice sets £;,,7 = 1, ..., b;:

Proposition 4. Let A,, satisfy |A,,| — oo as n — oo together with Condition (D*). Fix1 < j < ¢,
then the set L; is a lattice on ZF. Fori=1,..., bj, denoting z;, any point in D; such that D), =
((Dj)—a,)" we have the partition

b;

D; = £f u (L))" @

i=1
Further, for every Dj, we have that L;, O L;, and L;, and L; have the same rank fori =1, ..., b;.
In particular, Dj is bounded if and only if L; = {0} and in this case D; = Uf’zl {z,}.

Building on partition @) we want to exhibit some translation invariant properties of D;. Fix any
j=1,...,¢qand denote [y = j for convenience, then any i € {0, 1, ..., b; } satisfies the Translation
Invariance Property (TIP;) if it has the following property:

Translation Invariance Property (TIP;): The index i € {0,1, ...,b;} satisfies (TIP;) if there is a
pointx € ((Ly,)z,, )" such that x <y for some 'y € G;.

Further, we let WW; denote the subset of {0, ..., b;} satisfying (TIP;) and let D; := | new, Diy.-

Proposition 5. Let A,, satisfy |A,| — oo as n — oo together with Condition (D). Fix any
j=1,...,¢ Ifi € {0,1,...,b;} satisfies (TIP;) then L;, = L; and \;, = ;. In particular, when
L; is a full rank lattice the (TIP;) condition is satisfied for all i = 0, ..., b; and when D is bounded
the (TIP;) condition is never satisfied.

Further, for every i € W; we have ﬁl,; = ﬁj and bj u{o}u ,ﬁj is translation invariant for every
point in L;.

Remark 1. The case of (TIP;) not holding for some | = l1, ..., ly, is equivalent to the case of G;
lying on the hyperplane determined by the order . For example, this is the case when we are in
R?, the order goes along the horizontal lines (informally (0,0) < (0,1) < (0,2) < ... < (0,00) <
(1,—00) < ... < (1,0) < ...), and A, draws two lines which are parallel to the horizontal axis, see
Figure|l|for an illustration. It is possible to see that in this case one D (say Dy ) is is simply given
by x-axis, while for the other ( D,) we have the set provided in Figure These sets are translation
invariant with respect to the points in the respective L; and in this example L1 and Lo are both equal
to T-axis.

3.2 Lattice properties on the whole index set

In this subsection we consider subsets Z; of the whole index set Z* that are the equivalent of the
subsets D; of the upper-orthant. As Condition (D™) defined only the D;, the existence of the =,
shown in the next result, is deduced from it.

Proposition 6. Let A, satisfy |A,| — oo as n — oo together with Condition (D*). For any p € N
and any = subset of ZF with 0 € = we have that the limits

lim HteAn:(An)¢eNK,=ENnK,}|

o0 A and
teA,: (A, K,==ZnK
P—00 N—¥00 |An|
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Figure 1: We consider an order that increases along the horizontal axis and then upward. Red chopped half-line starting
at (1,0) is Dy, D; plus the red line above is Dy also in red. Both Ds have the same G = D; U {(0,0)} thus the same £
which coincides with the x-axis. We check that Dy is partitioned into £ and £, where z is any point with 1 as the
second coordinate. However, none of the points of £, precedes any point in G, and the TIP property fails. Notice & is
any couple of points {(0,0),z} in blue.

Figure 2: Representation of D,. Itis possible to see that D, is translation invariant for the points in £, which in this
case is given by the z-axis.

exist. Moreoven any such = such that
teA,:(Ay)tNK,==2NK

P—00 N—00 ‘A |

&)

satisfies = = D; for some j = 1,...,q
Define by =1, ..., 24 the sets satisfying (3) with ¢" € NU {oo}. Foreachm =1,...,¢' and p € N
define

Ym o= lim lim [{t € A, 0 (Ay) ¢ N K, =E,, N Kp}H/|Ax,

P—00 N—00

Yo = lim [Tt € Ayt (Ap)—¢ N Kp = Zm 0 K}/ 1A,

n— oo

Em ={je{l,..d}:E;NK,=E,NEKp,}

Let [y := j and z; := 0. From Propositionrecall that D; = gj U Ug;l((ﬁli)zli )+, which we can
rewrite as D; = UZ o((L1)z, )"

Proposition 7. Let A, satisfy |A,,| — oo as n — oo together with Condition (D™). Every Z,,,
m=1,...,q, is a translation OfU?iO(‘Cli)zli forsome j =1,...,q. Moreover, >.? _ v, =1, and
Yp.m = Zm/EF(m) ’Ym/,f()l" every m = 1, "'aq/'

It is important to notice that the translations of UZ oLy, )zl can coincide. A careful analysis is done

in order to describe the distinct translations. Recall that lo = jandthat £; = £;, C L;, for every
i =1,...,b;, are same rank lattices by Proposition E} Thus there exists a ﬁmte number of translations

of £; covering any Ly, 1 =1,...,b;. Denote n; > 1 this number. Moreover, let x(] ). ngj) be

the points in Uz 0(Li; )z, such that X( 7 »~ 0 and that UnZy (L), W = Ui—o(ﬁl)z;»- Flnally, let

&= {X(J ). xgl J)} where, for the sake of clarity, we include by convention {0} in &; so that 0 is
always the lowest (according to ) point in £;. Notice that a certain arbitrary choice is st111 possible
when choosing &;, see Figure|[T|for an example.

Any Z,, contains {0} by definition. Thus, the different =,,,s correspond to the different translated
versions of UZ 0(L1;)z, containing {0}. Having in mind the identity USEE (Lj)s = U?io(ﬁlqz)zw
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the number of different translations is thus n; and the shifts are the elements of £; (and thus n; = |&;|).

Denote I* the set of the indices j = 1, ..., ¢ satisfying
lim lim_ Ht €At (A)—eN K, = | (£)sN Kp}‘/mn\ > 0. 6)

s€é;

For every j € I*, let Z7 = [J £ (L;)s and 7} be the positive limit in () associated to =. For
every j € I'* we have (E;*)Jr = D, that there exists an m = 1,..., ¢’ such that E’ = Ep and that
any Z,,, m = 1...,¢, are translated versions of Ej, 7 € I*. Tt essentially means that the E;‘ for
j € I* are the only relevant structures in the asymptotic of (A,) as the other ones are translated
versions of them:

Proposition 8. Let A, satisfy |A,| — 0o as n — oo together with Condition (D™). We have the
identity Zjel* Yin; = Zjel* 7}‘\5]»\ =1

By definition we have

J
sk

J

—_
—
i

=

(Li)m, = J L)s = | (€)s

0 s€é; seL;

forany j € I*.

In the following statement, we link the asymptotic behaviour of (A;,) with specific non-asymptotic
properties of some of its subsets. In particular, we extract from (A,,) specific disjoint subsets, which
have helpful non-asymptotic properties(for the proof of Theorem[I7) and show that these subsets
asymptotically describe the whole (A,,) satisfying Condition (D).

We introduce the following notation. Let [ € N. Consider the maximum of the m € N U {0}
such that D; N K; # D; N K, for every 4,j € I* with 4, j < m. Denote this maximum by 17, ;.
Consider the maximum of the m € N U {0} such that D,, N K|;/2) # Dy, N K|;/2) for every
w,v € I'* with w,v < m and where D,, is bounded, D,, is unbounded and [, is any index [y, ..., s, .
Denote this maximum by 772 ». Consider the maximum of the m € N U {0} such that £, C K ;4
for every s € I* with s < m. Denote this maximum by 772, 3. Then, we define m; as follows
my := min(my 1, My,2, My 3). Notice that such m; exists because [ is finite and b, is finite for every
unbounded D;.

Further, let S; ; := {t € A,, : (A,)_¢ N K; = Zf N K} forevery i € I* and I,n € N. Notice that
S;,1 depends on n, but we omit the dependency to lighten the notation.

Proposition 9. Let A, satisfy |A,| — oo as n — oo together with Condition (D*). Then for
everyn € N, ji € I* with j,i < my and i # j, t € S;4 and s € S; 4, we have that
(Dj N Ka1)¢ N (D; N Kop)s = 0. Further, there exists a set 59,41’ with 55,41 C Sj,a1, such that for
everyt € S}

(D N Kpiy2)) \ U  Es=@nEup\ U € @)
s€(S;,1)—t,5=<0 se—gi\{0}
and that lim |S§ al/lAn| = ~j for every j € I* with j < my. Finally, we obtain that
n—o0 ’
hm hm Zzel*z<|77\4lllsq4l”$7‘ _ 1

|—00 n—r00

We remark that even if the Condition (D) is asymptotic, the sets S j’ 4; and S; 4; have both asymptotic
and non-asymptotic properties.

Example 3 (Continuing Example[I). Recall that in this example, the observations formed a pattern
C that repeated itself with a certain frequency in order to constitute C,. Using the notation of this
section, we see that such frequency is represented by Go. The number of D’s is by + 1 = |D|. The
Translation Invariance Property (TIP;) is satisfied for every i = 0,...,b; and j = 1, ...,|D|. The
infinite union of translated patterns is what we denote by = in this section. Notice that any different
centering of C at 0 corresponds to a different =,,, namely one of the Z’s which we denoted =j, for
some h =1, ..., |C|. Further, notice that I* = {h}, that C = &, and that ~;; = 1/|C|. A non-trivial
result, even in this simple example, is the last statement in Proposition[3} Suppose we take the union
of all the D’s and {0} and their negative counterpart, then this union is translation invariant along
with Ly, namely along that certain frequencies with which the observations repeat their pattern.
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Moreover, Proposition 9 states that it is important that the observations (\y,) repeat the pattern C for
a sufficiently long time. For instance, a finite number of observations (for instance, cases where the
station is working intermittently — this is typical of non-automatic weather stations) does not matter.

Finally, we refer to the lattice case when every =’s are lattices, meaning that £; = {0} and =% = L;
forevery j =1,...,q.

4 Main results expressed using the spectral tail field

4.1 Laplace functional of the limiting point random field

The first result states the convergence of the Laplace functionals to some Laplace functional without
an explicit description of the point random field. The proof of the result is based on a telescoping sum
argument developed initially in the time series setting by Jakubowski and co-authors [13\ [1] together
with lattice property (I) from Proposition [3]

Theorem 10. Let k,d € N. Consider an R%-valued stationary regularly varying random field
(X4 : t € ZF) with index o > 0. We assume conditions (D), (AC2) and A*(a®). Then N} A A

on the state space R? \ {0} and the limit random measure has Laplace functional for g € C}., given

by
\I/NA (g) = exp ( - /OO Z )\ZE [e_ ZtEDi 9(y®r) <1 _ e—g(y@)o))] d(_y—a))' (8)
0 =1

Remark 2. Notice that by Tonelli’s theorem and by the monotone convergence theorem, the Laplace
transform is the one of a mixture distribution

0o I N
U na (g) = HeXp ( — / E l:e >tep, 9(¥Ot) (1 _ e—g(y(-)o)):| d(—y_a)> .
i=1 0

Remark 3. In the asymptotically independent case, we have that |®¢| = 0 for every t # 0 and so
the limit random measure has Laplace functional

W ya(g) = exp ( - /OOOE[1 - 69(960)}d(y°‘)>.

Thus, it coincides with the case of one D and in particular D = ().

4.2 The spectral cluster random field in the lattice case

Define for any set A C Z*, any sequence x = (X )¢cz+ and any a > 0,

1/a
Il e = (Z W) .

tcA

For the spectral tail random field (®¢ )7+ of a regularly varying stationary random field we use

1/a
10]l40 = (Z |@ta)

teA

as the normalisation constant. When ||x|| 4,o < o0 a.s., We define the spectral cluster random field by

®
Q4= .
1©]l4,a

Using the lattice properties investigated in Proposition[3] we show the existence of the spectral tail
random field over some lattice index sets.

Proposition 11. Consider an R%-valued stationary regularly varying random fields (Xy)yczr with
index o > 0. Assume conditions (D) and (AC/E\). Then, ®¢ — 0 a.s. as |t| — oo fort € Ujil D;
and so we have ||®||15],U7I3j o < 00a.s. forevery j € N.



A PREPRINT - FEBRUARY 21, 2022

4.3 Cluster point random field expressed using the spectral cluster field in the lattice case
Now, we present an explicit formulation of the asymptotic Laplace functional as a mixture of cluster
random fields when the Ds are lattices (on the positive points).

Theorem 12. Consider an R%-valued stationary regularly varying random fields (Xy)yezr with
index o > 0. We assume conditions (D), (ACQ) and AA(aQ). Assume also that we are in the lattice

d . . ) .
case. Then, N> 5 N on RE and the limit admits the cluster point random field representation

0o
NAZ E E E En—1 1
Fj,i/a/\j/aQE;‘,i,t

j=1i€eN teE}
where (Zt ez €Qar :) , is an iid sequence of point random fields with state space RY, and
R RVATO\
where (L'} ;);en are the points of a unit rate homogeneous Poisson process on (0, c0) independent of

(ngvi,t)tepj,for every j > 1. Moreover, (ZieN ZteE; esrj_lil/(,)\;/QQE*‘.i’t - is a sequence of
, %, >

independent point random fields with state space R%.

We extend the characterization of the clusters first provided in Basrak and Planinic [3] on the
whole index set Z% = Z*, ¢ = 1 to potential mixtures of lattices with ¢ > 1. For instance, when the
observations grow frequently along the axis. In this case, we have ¢ = k, = = {0}/ "' xZ x {0}F—7,
and 77 = \;, forevery j = 1,..., k. The value of the weights depends on fast the observations grow
along one axis relative to the others, e.g. if on axis j there are twice the observations on axis ¢ (as
n — 00) then v; = 2v;.

5 Point random field convergence using Y —spectral tail field

For general index set A,, satisfying Condition (D) that are non necessarily lattice, we introduce new
spectral tail fields.

5.1 The Y —spectral tail field

Let p be a modulus of continuity on (R%)%" and for any finite T C ZF let py the truncation of p to
R4, In the following, we extend some of the results of Basrak and Segers [2]] to the case of the
random fields. In the time series case, the following result is contained in Theorem 5.1 of Segers et al.
(18]

Proposition 13. Let (Xy)yczx be a regularly varying of index o random field in R, with o € (0, 00).
Let Y be a finite subset of Z¥. Then there exists a random field (Y t)tezr in R with P(py (Yy) >
y) =y~ fory > 1 such that as * — oo,

Lo XKy, sz Ko (X) > 2) TS L(Yrg, s Yorg).
Moreover, there exists a random field (O~ )¢z in R such that as © — oo
71X 1 X,
(PT(X) T pr(X)
It is possible to see that @~ in distribution is given by Y+ /py(Y). For stationary regularly varying

random fields it is possible to extend the time change formula of Theorem 3.2 in Samorodnitsky and
Wau [23] to Y -spectral tail field:

Proposition 14. Let (Y t)¢czr be the tail random field in Proposition and consider Oy ¢ =

Yryi/pr(Y), t €ZF. Letg: (IRd)Z)c — R be a bounded measurable function. Then,
@) pr(Y) is independent of (O~ +)yezk-
(i) for any s € ZF,

Elg(Yrt-s)1(pr)_,(Y) #0)] = /OOO]E[Q(T@T,t)l(TP(T)S(@) > D)jd(=r=%), ©

‘pT(X) > x) 1dg. L(Org,....Ory).

(iii) for any s € Z*,
C]
Blo(©74-0)1(prr) () £ 0)] = E|o( -2 e, (0] (10)
P(1).(©)
Remark 4. It is possible to see that by definition py(©®~) = 1 a.s..

10
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5.2 Asymptotic Laplace functional expressed using the T —spectral tail field
We start with a simple result on the relation between the uniform norm and the other modulus of
continuity.

Lemma 15. Let Y be a finite subset of ZF. There exists two positive constant C and D with
C < D such that, for every € > 0, maxger |X¢| < € implies py(x) < &, and py(x) < € implies
maxger |X¢| < De.

Corollary 16. Consider the notation of Lemmall3] Then, py(x) = 1 implies that maxgcy |[x;| < D.

Proof. From Lemma |15/ we have that py(x) < 1 + ¢ implies that maxsey [x¢] < (1 + 6)D for
every 6 > 0. O

We let C,, and D,,, denote the constants of Lemma|[I3|for &,,, for every m € I*. Notice that C,,, and
D,,, depends on the chosen p, but we do not write the dependency explicitly in the notation because it
does not create confusion and it lightens the notation.

Remark 5. Our setting, and in particular the following Theorem[I7} is general enough to allow for
countable infinitely different moduli of continuity to be used at the same time, one different p; for
each &; as in Lemma@ With some abuse of notation we denote p; ¢, by pe;.

Now, consider the following assumption on the modulus of continuity.

A a P(ng (X)>an)
Condition (A ): We have Z ierV; ch < 00, where ¢; = ILII;O F(XeSan)

This condition is satisfied in many cases. For example, if the modulus of continuity is unique and
coincides with the uniform norm then D; = 1 and ¢; < [;, and s0 >, . vi¢; DS < 1. Moreover,
for po(+) := || - [« we have that D; = 1 and ¢; = |€;[ and so 3, . vie; DY = 1 We remark that
such condition is needed to implement a dominated convergence theorem in the proof of Theorem|[I7]
and so, as it happens in most of the cases where a dominated convergence theorem is used, it might
be possible to obtain the result for a specific p even if condition Af,‘ is not satisfied.

We are now ready to state an anti-clustering condition tailored for conditioning on the modulii

of X being large over a local subset and not necessarily Xo. For every 7 € I, let Rl(j[{n =

A, X
(Ueesen,:anooe,1 (An) - ¢) "\ I and let A7 X0 = max, o [Xil

Condition (AC> 1+): The R%-valued stationary regularly varying random ﬁeld (Xt)tezr satisfies the
condition (ACb <) if there exists an integer sequences T, — oo such that k, = |A,|/|Ar, | = o0
and for every j € I*

lim hmsup]P’(MA 1XLG@) aba | max |X¢| > aﬁx) =0.
=00 n—soco Tn teg;

Remark 6. We remark that condition (AC> =) is weaker than assuming that for every j € I*

lim hmsup[P’(MA Xl ala | max|Xt\ >a x) =0.

=00 nooo
Remark 7. If (X; : t € ZF) is m-dependent then the anti-clustering conditions considered in this
paper, namely (ACA ) and (ACQ _1+)» are satisfied.
Moreover, it is possible to see that in some cases condition (AC> 1+) s strictly weaker than condition
(AC ). As we see in the following example.

Example 4 (Continuing Example ' Recall that in setting of Example I | 1* = {h} and that we
denote Ey, by C. Thus, the condition (AC> _1+) in this setting is:

AX
lim lim supIP’( 2llr ) abx | max |X¢| > aﬁ}x) =0.

=0 nooo
In case we know that the pattern of observations will be the same, namely A, = | J, ¢ Lo C)¢ N Ky,
which in practice means that the weather stations perform regularly, then Rl(};\)n = A, \ K, and so
the condition (ACQ) 1) becomes 7

lim limsupP( max  |X;| > alx | r{lacx|Xt| > aﬁx) =0.
€

=0 psoco ieAr, \K2

11
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On the other hand we have that Ry y,, is given by ey ((An)—¢)T \ K; D Rl(,hA)n' Then, it is

possible to see that (AC’% 1+) is strictly weaker than condition (AC’% ).

LetD; = Usegj\{o} (€5)s- We are now ready to present of the main results of this paper.

Theorem 17. Consider an R%-valued stationary regularly varying random field (X4 )¢ezx with index
a > 0. We assume conditions (D), (ACéI*), AMay) and (AL). Then N} 4 N on the state
space R?\ {0} and the limit random measure has Laplace functional for g € (C;r(, given by

Una(g) =
exp ( - /O > 'Y;CjE{(l e ey g(yggf’t))ef Leen; g(yegj'”)]d(—ya)> (1)
jerr

where ¢; = lim Lgg0)>an)
i = M X San)

5.3 The Y —spectral cluster field

Recall that G; is the lattice intersected with the non negative points associated to £; and that
the extension G; to the whole Z* is just given by £; = G; U —G;. For every &;, denote by
H;j = User, (€))s- Notice that H; coincides with =7 for j € I*.

Proposition 18. Consider an R%-valued stationary regularly varying random fields (Xy)¢ezx with
index oo > 0. We assume conditions (AC/%J*) and (A)). Then, |®g, | — 0 a.s. for any |t| — oo and
t €Dy andso Y o pe;) (©) <ooas.and iy O, ¢|* <ooas. foreveryj=1,..,q

Let Y be a finite subset of Z* and A a subset Z* and p a modulus of continuity. Define

1/«
1O llpae = (me(@)a)

teA
as the normalisation constant. We define the spectral cluster random field by
1©1lp.a.0°

where the dependence on p is implicit. Notice that when the modulus of continuity is po, T is &,
and A is £; then

Q.4

1/a
19, )0 = ( 3 |ex, <t>|a) — @6 2,0 and

tG’Hj
1Q¢; 2, pa.c;.0 = 1Qg; 12,0 = 1.

Observe that for bounded D; we have that £; = {0} UD; = H; and that G; = £; = {0}. We
remark that when T = {0} we have that © ¢}, [|®0}|/,., 4,4, and Qoy,a are simply given by ©,

|©] 4,q, and Q4 (see Section_

5.4 Cluster point random field expressed using the T —spectral cluster field

Theorem 19. Consider an R%-valued stationary regularly varying random fields (X4 )yezr with
index o > 0. We assume conditions (D*), (AC/%J*), AMay) and (AL). Then, N} 4 NA on R
and the limit has Laplace functional for g € C, with the following expression:

Una(g) = exp (— > v}‘cg‘/ E[l —e e g(ngj’L“)}d(—y‘O‘))
JEI* 0

Proof. It follows from Theorem [I7]using the same arguments as in the proof of Theorem[12] the time
change formula (10) and the fact that from Proposition we have that 3, p(e,), (@)% < oo as.,

forevery j € I*. O

12
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In the following corollary we consider Theorems[I7)and [T9 when the modulus of continuity is pq.

Corollary 20. Let the modulus of continuity be p,. Consider an R%-valued stationary regularly
varying random ﬁelds (X4t)gezr with index o > 0. We assume conditions (D*), (AC> 1+) and

AMay,). Then, N2 4 NA on R admitting, for g € C}., the Laplace functional:

Ua(g) = exp ( > IE |/ —e g(ng”'L’"t)}d(—y‘Q))-

Jjer*
where Zjep ’y;-‘|5j| =1.

Proof. The result follows from Theorems [I7] and [T9] and from the fact that when the modulus of
continuity is p, we have that:

P((Vsee, 1Xel)* > an)
¢j = lim = |&;].
n—o0 P(|Xo| > an)

Moreover, we have the following result on the representation of N,
Proposition 21. Consider N* given in Theorems|17|and|19| then

=2 riepieyieas, o) (12)

JEI* iEN tEZ

where (Ztef* €Qe. .4 t) , is an iid sequence of point random fields with state space R and
i "/ ieN
where (I'; ;)icn are the points of a unit rate homogeneous Poisson process on (0, 00) independent
. —_% ] * =k @ ]
of(ng7gj,l7t)t€:j,for every j € I*. Moreover, (ZZEN D te=s Ep v (Vij)l/“Qsj,L-,i,c>jej* isa

sequence of independent point random fields with state space ]Rd.

Finally, in the setting of Corollary we have N = Y. > r1/eq,, where

(ZIGN €4, 1) , is an iid sequence of point random fields with state space R® with mixing distri-
i1/ ieN

bution L(} e 8Qi,l) = Zje]* 7;-‘|Sj\£(zt65; 5ng,z;j,t)f0” every i € N, and where (I';)en are

the points of a unit rate homogeneous Poisson process on (0, 00) independent of (Ql) lEN-

Proof. The result follows from Theorems [17|and [19|identifying the limiting Laplace functionals
such as the ones of cluster Poisson random fields. U

Remark 8. Notice that the chosen order does not affect the spectral tail random field. This fact is
a clear advantage of the Y —spectral cluster field approach compared to the approach of Section
because it allows the asymptotic representation (12)) in full generality, not just in the lattice case.

Example 5 (Continuing Example[I). Armed with the results of this and the previous section we can
present the extreme asymptotic behaviour of N , where A,, is described in Example Then,

Una(g) = exp ( — / E[l — ¢ Zres; g(ch’Lh't)}d(—ya)),
0

where we consider p., as the modulus of continuity. We remark that such a clean result is not
achievable when the anti-clustering condition (AC’; 1+ ) does not hold. Since in this case (AC/; 1) is

strictly weaker than (ACY ), this representation is equivalent to

00 |C|
Uaa(g) =exp ( / |C| |: —2iep; 9(yO%) (1 _ eg(yQU)):|d(_ya)>'

Moreover, we can see that it is not important which reference point h € C we consider, since our
results enjoy certain translation properties. In particular, this representation is equivalent to

Upna(g) = exp ( - / E{l _ o Xtesy g(yQC’ﬁs’t)}d(—y_o‘)>,
0

where s is any element of C and Z}, is any different centering of C~, at 0 (in our example L}, = L
foreveryh,s =1,....|C|).

13
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6 Applications

6.1 The extremal index

In this section we investigate properties of the extremal index for random fields; see the work of
Hashorva [6] for max-stable random fields. First, let us define it.

Definition 1 (A-extremal index). Consider an R%-valued stationary random field (X4 )gczx. Assume
that for each positive T there exists a sequence (uy (7)) such that lim |A,|P(|Xo| > un(7)) =7 €
n—oo

0

[0, 00] holds and the limit lim,,_, oo P(maxgen, | Xe| < un(7)) =€~ X7 exists for some 0% € [0,1].

Then 6% is the A-extremal index of (Xy).

As shown by Samorodnistky and Wu [23] when A,, = [1, n]*, the extremal index is connected with
the so called block extremal index. In particular, let
oA P(maxgen,, [Xe| > un(7))
" |Ar, [P(|Xo| > un (7))

and 0 := lim 62
n—oo

where by u, (7) is such that ILm [ALIP(1Xo| > un(T)) =7 € [0, 00].

For the sake of simplicity, we provide our results for random fields with respect to the modulus p,, in
this section. Thus, D; = 1and ), ;. 7/|€;| = 1. Forevery j € I*, generalizing the approach of
Janssen [9] for processes to random fields, let T; be defined as follows: for t € L; define

{w:Tj(w) =t} ={w: max [Og 4(w)| - sup max [O(v)(w)|> 0}

z2€(E;)e s€L;,s<t VE(Ej)s
N{w: max [Og, ,(w)|— sup max [O(v)(w)| =0}
2€(&;5)e seL;,s=t VE(E))s
and fort € Z* \ £ let {w : Ti(w) =t} =0.If (AC’;I*) is satisfied then T is well defined thanks
to the summability proved in Proposition [I8] (see also the end of the proof of Lemma [29] for the
connection between the summability of p and the one of the max norm). If (ACQ) is satisfied and all
H,’s are lattices (namely all D U {0} U —D’s and all the =’s are lattices) then T is also well defined
thanks to the summability proved in Proposition Observe that when 7 is a lattice then £; = {0}
and H; = L;.

Theorem 22. Consider an R%-valued stationary random field (X4 )yczr with index o and a sequence

(A,,) satisfying the condition (D™).

(1) If the anti-clustering condition (AC/Q_) holds, then the limit 09 = lim 9,/} exists, is positive and
n—oo

has the representations

oy = NP(Y sup [©y < 1) = MNE[( sup O — sup |©*)]. (13
P AR amied < 1) = 30N (w10 = s @e)]. a3

j=1

(2) If also all the =%’s are lattices then 0{)\ admits the representations

> > SUpgez+ |O]*
oh = )\-E[sup Q=+ a] = A-E[’]
’ 32::1 ’ teE;‘ J’t| 32:21 ’ ZseE]*. CRE
= Z)\jIE [|@0|0‘1(T; = 0)] = Z)\j]EK sup |O¢|* — sup |®t|a)] .
j=1 j=1 teD;u{0} teD;
(14)
(3) In any case (1) or (2), if also the mixing condition
< gAp) < gAp)en
P(Fel%x IX¢| < anx) P(t?fﬁ IX¢| < apz)®™ — 0, n— oo, (15)

where (ky, and (r,,) are as in the anti-clustering condition (ACL), is satisfied, then 0% exists and
coincides with 0.

14
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It is possible to see that Theorem 22] (2) only applies to D’s that are lattices. It is natural to ask
whether or not a similar result holds for any D. The answer is positive if a different anti-clustering
condition is assumed. In particular, we have the equivalent result when the anti-clustering condition
(ACA ,.) holds.

-, I*

Theorem 23. Consider an R%-valued stationary random field (X4 )¢cz» with index o and a sequence

(A, satisfying the condition (D).

(1) If the anti-clustering condition (AC> 1+) holds, then the limit 9{)\ = lim 62 exists, is positive
n—oo

and has the representations

Hé\:E[?uNlea} Z’yj IE; |E[sup |ngl;],t|o‘]
€

jer*

= Y il e Qe el

jerx TJ
= Y 16 1E | max e, o717 = ). (16)
JeI*

2) Ifalso the mixing condition (13) where (k) and (r,,) are as in the anti-clustering condition
(AC> 1), is satisfied, then 0% exists and coincides with 6.

From the two previous results we obtain the following immedaite corollary.

Corollary 24. Assume that (Xy)yeznr is an Ri-valued stationary random field with index «, a
sequence (A, satisfying the condition (D) and either (AC ) or (AC>_ 1<) and . Then the
extremal index 0 x exists, is positive, and
< Ox
nll)m ]P’(Irel%xa X¢| <) =P0%(x), x>0,
where ®,,(x) = e~ ", & > 0, is the standard Fréchet distribution function and 0x is given in

either ([[3)) or (I6) depending on which anti-clustering and mixing conditions are satisfied, (14) being

available only when the =7 are lattices.

6.2 Max-stable random fields

Consider a non negative stationary random field X = (X4 )¢z (with state space £ = R andd = 1).
A fundamental representation theorem by de Haan [[11] states that any stochastically continuous
max-stable (real valued) random field X can be represented (in finite dimensional distributions) as

Xy=maxUViy, te zF, (17)
1€

where (U;)ien is a decreasing enumeration of the points of a Poisson point process on (0, +-00) with
intensity measure u~2du, (V;);ey are i.i.d. copies of a non-negative random field (V;)cz+ such that
E[V;] < +oo for all t € ZF, the sequences (U;);en and (V;);en are independent. Observe that the
above definition implies that the marginal distributions of X are 1-Fréchet, that is P(X; < z) =
e BVil/= for all z > 0, where E[V;] > 0 is a scale parameter.

The aim of this Section is to find a necessary an sufficient condition for the anti-clustering
condition (ACQ 1+) to hold for stationary max-stable random fields. We recall some notation:
Hj = User, (€))s where, for every j > 1, &; are finite subsets of Z* including 0 and L are any
lattice of Z* (possibly degenerate). The following result is an extension of results in Samarodnistky
and Wu [23]]. Notice that the limit (T2)) motivates the introduction of a mixing distribution on V4 as in
the second assertion below.

Proposition 25. Let (X;);czx be a stationary max-stable random field with non-negative values.
Consider a sequence \,, of subsets of translated | i>1 H; satisfying the condition ( DA) then (X,)iezn

satisfies the (AC>. _1+) condition for any v, — oo s.t. |n/rn] — oo ifforanyi>1and j € I*

lim Wl(rtréngt #* O) =0, a.s. (18)

|t|—o0,te(Hi) T

15
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)\jE(Vt(j)), Aj > 0,4 €I 30 Aj = L such that each component

Consider L(Vy) = 3¢
Vt(j Vis supported by a subset of a translation of a unique H;, j > 1 then the condition (I8) simplifies

to
li i1 Vi 20) =0 .S. 19
oo Ve ({%ag’j ¢ #0) =0, a.s (19)
forany j € I*.

Notice that these specific max-stable random fields could be used to model any asymptotic clustering
due to our result (12).

Remark 9. Under Condition (D"), the index set \,, fills up the translated asymptotic index set
Uj>1 H ;. Checking the conditions (I8) and (19) requires the knowledge of the £;, j > 1, beforehand.

Thus it requires some prior knowledge on the grid of the observations.

Example 6 (Continuing Example([T). Max-stable random fields have been widely used for modeling
extremal phenomena such as storm, starting with the pioneer work of [20]. The spatial model [19]],
called spectrally stationary, is widely used to model space dependence because of its simplicity. It
is defined as follows: consider an iid sequence of stationary random fields V; s, s € Z? which are
not null. Then XJP*°° = max;>1 U;V, s is a stationary max-stable random field. However it does
not satisfy conditions (I8) nor (I9) in any direction of Z? because it would contradict the stationary
assumption on V5, s € Z2. The M3 representation of [[12) [I15] was introduced to bypass this issue.
Consider now a state-space model with space defined over Ho = | Jc Lo (C)t where C is a finite
subset of Z2. 1t is sufficient to check (T8) and (19) where the limit is taken along the time direction
only. Thus a stationary space-time process X; such that its space distribution is the one of X'
can satisfy conditions (I8) and (I9) when its extremes are sufficiently independent over time. A basic

example is an iid process in time for which the condition max Vi #0= Igai( , Vi # 0 forces that
teéo teCx{0

Vi = 0 for any other component t = (s, k), k # 0. Such spectrally stationary models in space were
not attainable in previous studies, see Remark 5 (i) of [4l], because they are not ergodic as shown in

[7].

7 Proofs in Section

7.1 Proof of Proposition 3]

Assume that the first statement of point (I) is false for at least some D; and D; with j # 4. Then,
forevery p € N, D; N K, = D; N K,,, which implies that D; = D; contradicting Condition (D).
By Condition (D) we infer on one hand that Ajp = Zz‘eI(” Ai. Indeed D; N K, € D; N K,y for

p’ > p thus we have the inclusion
{teh, :A®Y) =D, NK,} C{teA, Ab" =D;NK,}
and \;, > A;,p>1,1<j <gq. Thus for any p’ > p we have

{teA :APP) =D, K} = | {t €Ay AP =D;NK,}

iery)
D) U {t GAnZASIt’p/) ZDiﬂKpl}.
el
Fix e > 0. As 23:1 Ai < oo, there exists some m sufficiently large such that ) .. A, < e.

Moreover, there exists p’ sufficiently large so that D; N K, # D; N K, for any ¢, j < m from the
reasoning above. Thus

{te Ay :APP =D;nK M >| | {ted, AP =DinK,}|
ie1§) i<m
> > [teA A =DiNKy Y|
ieI$) i<m
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and dividing both sides by |A,,| and letting n — oo we obtain
WEED DEPWEED SEPIES SPT
ie1$) i<m ieI$) i<m ier$)
As it holds for every € > 0 it implies the desired relation A;, > >3, ierth ;. On the other hand

i p cannot be strictly greater than ZZ ¢ Ai. Indeed, defining the equlvalence relation 7 ~ j &
P

i€ (I,(,j ))195(1, one considers the partition of {1,...,¢} generated by the equivalence classes

Pp={1,...,q¢}\ ~. If
: SAED) . )
Tim[{t € A A D; N Ky }/|An] > Z i
iery)
for some j € {1,...,q} belonging to the class £ € J3,, then one gets
lim Y [{t € Ay : AP =D; N K, }/|A]

n— 00
Jemp
> lim o > [{te Ay AP =Dy N KM/ A+ D A
JEPBp\L jersH
DIDIRES
J€Bp jer1l)

which yields a contradiction.

For point (II), consider the case of (A, ),cn whose points have a distance between each other which
increases as n increases. The increase of the distance within the points of A,. as 7 increases allows
the following fact: when we consider K, around one of the points, for every fixed p, all the other
points are outside K, for every n large enough. Then, in this case there is only one D for (A, )nen
and it is given by the empty set.

For point (IIT) we need the following Lemma.

Lemma 26. Forany 1 < j < qand z € Dj, there exists 1 < i < q such that D; = ((D;j)_5)" and
A > A

Proof. Considerz € D;, 1 < j < gandlet D := ((D;)_,)". Notice that for every ¢ € N there
exists a p € N such that K, O ((K,)_,)". Thus D; N ((Kq)-z)" € D; N K, and thus z + s
belongs to D; N K, for any s € D N K. Thus for every ¢ € N we have

=D

{t e A, : AB NK,D{teA, :AbY =D,NK,}
so that
liminf |{t € A, : ABD = DOKY/|An] > Njp > N (20)

Assume that D does not coincide with any D;, 1 <4 < ¢. Fix € > 0 so small that it satisfies \; > e.
Let m satisfies ) ;. A; < € as above in the proof of point (I) (thus j < m) and p sufficiently large
such that D N K, # D; N K, and D; N K, # D}, N K, for every ¢ # k < m. Using the notation
introduced in the proof of point (I), we have

limsup|{t € A, : AP = DN K,}|/| A

n—00

< limsup [{t € A, : A®P) £ D, N K, Vi <m}|/|A,]

n— o0
< 11msup(|A | — | U {t € A : APP) =D N KL }) /||
i<m
glfz/\i,pglfz/\igs
i<m i<m

which is in contradiction with (20). Therefore, D = D; for some 1 < i < g and we have
lim lim [{t € A, : A®? = DK, }/|An] = N

gq—00 Nn—00

and the relation \; > \; follows from (20). O
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To prove Point (III) observe first that for any D; there exists b; € N U {oo}, with b; < |D;| + 1,

distinct sets (Dj)fz, z € D;. The sum of the corresponding weights A; being smaller than 1 and
larger than b; \;, by Lemmawe get the constraint b;A; < 1 and Point (IIT) follows.

7.2 Proof of Proposition ]

First, for any 1 < j < g, let us show that G; is invariant by addition in the sense that if z € G;
and z' € G; we infer that z + z’ € G, \ {0}. Indeed, z' € D; = ((D,)_,)" so that necessarily
z + 2’ € D;. Moreover we have

It shows that G; is invariant by addition on (Z*)*. Thus G; is given by a lattice, namely given k (not
necessarily linearly independent) distinct vectors v, ..., vy € ZF (i.e. a basis of Z' for [ € {1,...,k}
called the rank) we have the identity G; = {3, a;v; : a; € Z} N {t € Z* : t = 0}. We will refer
to the degenerate case G; = {0} as the case of null rank k = 0. Thus, £; is a lattice on Z*.

Let us now we prove the existence of the partition (#). We have to show that for any z € D; there
exists a unique 1 < 7 < b; so that z — z;; € £;,. We know that we have a unique D;, such that
Dy, = ((Dj)-2)t = ((Dj)—z,)" for some 1 < i < b;. Assume without loss of generality that
z >~ z;,. Thus, either z = z;, and then z — z;, = 0 € G;,. Orz — z;, > 0 and for any s € D;, we
have s +z € D; and thus s + z — z;, € Dy,. That z — z;, € G, follows by definition of G;,. Since z
is an arbitrary point in D; and since /; is unique as D;,, we obtain the desired partition.

Consider any D; so that there exists z € D satisfying D; = ((D;)_,)". Then forany s € G; \ {0}
we have

Since z € Dj = ((Dj)—_s)* thenz + s € D; and s € D;. Thus we proved that
sc{z e DyuU{0}: (D) )t =D} =G

and that G; C G;.

Further, we show now that gj and G, [ = [4, ..., lbj, have the same rank. Assume the contrary.
Thus, let G; = {>_/~, arv; : a; € Z}T where vy, ..., vy, € ZF are linearly independent and G; =
{37 v : ay € Z}T where v, ...,v), € ZF are linearly independent, with k& > p > m. Since
G; C G; we know that v; = ¢; v}, for some ¢; € Z, for every i = 1, ..., m. Since ahv’h € G\ g; for
any aj, € Z such that a, v}, = 0 and since G; C G; (and G; is a lattice), we have that (Qj)ahv;l C G,

and again by the lattice structure of G; we have (Ej)(: + C Gi. By induction we obtain
*Vh

U U . U (£j>:m’+lv;n+1+”'+apv/p C G. (1)

Am41€ZL Q1 2€L ap€Z
Now, consider (D; N K,) \ Uiegj\{o}(Dj N K )i, namely the points in D; N K, without K (i) for
every i € G; \ {0}. By (21) we have

( U U Ce U ('Cj):m+1vin+1+"'+apvé>zl C (gl)zz C Dj7

Am+1€ZL Am42€EZL H.p€Z

where z; is defined in the statement of Point (V). Thus, |(D; N K,) \ Uiegj\{o}(Dj NK,)il —

oo as ¢ — oo monotonically. In particular, there is a ¢* large enough such that |(D; N Kg4+) \

Ui, 0y (Dj N Kg- )i > 1/A;. Since lim [{t € A, : AS") = Dj N Ky }|/|An] = Ajge, there
n— oo

are \j o+ |[An]|(D; N Ky) \ Uiegj\{o} (Dj N Ky« );| asymptotically many points in A,,, but since
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Ajgr = A we have that A ¢+ [An|[(D; N Kq) \ Uieg, (03 (D5 N Kg+)il > [An], which leads to a
contradiction. Thus, G; and G;, I =14, ..., lbj, have the same rank.

Finally, if D; is bounded then by definition of G; we have that G; = {0}. If G; = {0} then G;, = {0}
because G; and G, have the same rank, for every 7 = 1, ..., b;. Since b; is finite, we conclude that D;
is finite.

7.3 Proof of Proposition 5]

Since G; C Gy, it remains to show that G; O G;, considering that 7 satisfies (TIP;). We notice that
forx € (£;,); wehave ((D;)_x)" =D, as

zli

h=1
bj
=((G)"ugru | (Li)m, T
h=1,h#i

So that ((D;)_x)" is the unique D, [ = 1,...,b; associated to the lattice G; = G;, and it coincides
with D;,. Theny — x € Dy, with y € Gj, is such that ((Dy,)_(y—x))" = D;. We then obtain that
G; 2 G, by exchanging the role of D;, with the one of D; in the proof of G; C G;, in Point (V).
Further, by applying Lemmato D, we conclude that \; = A;,.

If G; is a full rank lattices then it is spanned by k linearly independent vectors and there always exists
apoints € G; such that s > z; forevery [ = [y, ..., lbj. This implies that the (LC;) condition must be
satisfied and G; = G; forevery [ =y, ..., Iy, . This concludes the proof of the first statement.

Let us now prove the second statement. By (TIP;), for every ¢ = 0,...,b;, and points (V) and
(VI) we have that there exists z € D;, such that ((D;,)_,)* = D;. Hence, z € D;, contains a
translated copy of D; hence a translated copy of any D;,, h = 1, ..., b;, already contained in D;.

Thus (Ip;h = 0,...,b;) = (ln;h =0, ...,b;,) so that (I; h € W;) = (I; h € W) and then @li is
the union of the same sets than D,

f)li = U Dlh = U Dlh :f)j.
heWy, heW;

Concerning the translation invariance property, we need to check that ﬁj u{o}u ,bj is invariant to
the translation by every point in the lattice £, that is D; U{0}U—D; = (D;U{0}U—D,), for every
s € L;. With no loss of generality consider s € gj so that for any h € W; we have (D;,,)_s N {t €
Z¥ .t = 0} = {0}UD,, since G;, = G;. Hence (D;)_sN{t € Z* : t = 0} = {0} UD;. Moreover,
for similar reason for any z € D; U {0} we have s + z € D; so that —(D; U {0})_o € —D;. It
remains to show that —D; \ —(D;)_s = (D; U{0}) ¢\ ((D;)_s)T U{0}).

7.4 Proof of Propositon [6]

Let = be a subset of Z* such that 0 € = and let p € N. Denote by —v be the lowest point (according
to =) of 2N K, and denote the points of K, \ {t € Z* : t = —v} by —w1, ..., —w,,, for some
u € N which depends on p. Let @4, ..., ®,, for some v € N, be the subsets of K;p such that for
each h = 1,...,v we have ®, N (K,)y = ((EN K,)y)". Similarly, for every i = 1,...,u, let
W, 1,y ¥4 0, for some v; € N, be the subsets of K;;j such that for each h = 1,...,v; we have
U, N (Kp)w; = (EN K,)w,. Moreover, for every ¢ = 1, ..., u, denote by II; 1, ..., II; ,, the non-
empty subsets of K, \ {t € Z* : t = v} with highest point (according to =) given by —w;. Observe
that (ENK,)v)m = (ENK,)y \ {0} and (EN K,)w,)" = (ENK,)w, foreveryi =1, ..., u.
First, for every n € N we have that

{t € An i (An) s N K =ENKp} = [{t € A s (An) s N (Kp)v = (ENKp)v ).
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Second, we have the following identities

{teA,:(A)eN(Ep)v = (ENK,)v}

Since

are unions of disjoint sets, since

{t €M (M) N((E) " = (ENKy)v) T}
> U U ftet: (M) en(Kpv =Ly UENK,)}

1=1,...,u h=1,...,v;
and since forevery: = 1,...,u

U {tetn: (An)en(Ky)y = (I, UEN Ky }|
h=1,...,v;

=[{t € An: (M) e N ((Kp)w,)" = (ENKp)w, }|
we have that
H{t € Ap: (An)—e N ((KP)V)+ =(EnN Kp)V)+}
VU U {ter (M) en(By)y = (L UENK,) )

i=1,...,u h=1,...,v;

=[{t € An: (M) e N ((Kp)v) T = (ENKy)v) T}
S HteAn:(An)_enN(Kyy = L, UEN Ky}
1

i=1,...,u h=1,...,v;
=[{t € At (An) ¢ N ((Fp)v) T = (ENKp)v) T}
- Z {t € Ayt (Ap)—¢ N ((Kp)wi)+ =(ENKy)w,}

1=1,...,u

= > HteA AP =@} - > YT [{te A, AP =1},

=1,...,v i=1,...,u h=1,...,v;

where the last equality follows by the definition of the ®’s and the ¥’s and the fact that &; # ®,,
forevery [,m =1, ...,v with | # m, and that ¥, j, # U, , foreveryi =1,...,uand h, k=1, ...,v;
with h # k. Now, thanks to Point (I) in Proposition [3| we have that

Aop» = 9 Ap ifD,N Ky, = ®; for some z € N,
lim [{t € A, A2 = B} |/|A,| = {0 2t 2 = &

n—00 otherwise.

for! =1,...,v, and similarly for ¥; , for¢ = 1,...,u and h = 1,...,v;. Then, we obtain that the
following limit exists

lim [{t € Ay : (An)—¢ N K, = EN K}/ A

n—oo
Further, observe that for p’ > p we have the inclusion
{teA, :(Ap)eNKy =ENKy} C{teA,: (Ay)_«NK,=ENK,},
thus, the following limit exists

lim lim [{t € A, : (An)_¢ N K, = ZN K, }H/|Anl.

P—00 N—00
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This concludes the first part of the statement.

Now, let 2 +# Dj forevery 1 < j < gand fixe > 0. As §=1 A; = 1, there exists some m
sufficiently large such that Ai < € and there exists p sufficiently large so that =ENK ; # DiNK,
for any ¢+ < m. Then,

i>m

lim [{t € Ay : (An)—¢ N K, = ENK,p}/|An| < e

n—oo
Thus,
lim lim |[{t € A, : (An)_¢ NK,= EﬂK,,}|/|An| =0,

pP—00 N—00
which concludes the proof.

7.5 Proof of Proposition

Consider first the case of bounded =y,. In this case, we have that |Z;| < 1/, + 1; otherwise we will
have a contradiction because we will asymptotically end up with more points than the ones in A,,.
Further, denote by —z its lowest point according to >, then we have

lim lim [{t € A, : A®P) = (2,), 0 K }/[An] >0,

P—00 N—00
which implies that (=), = D; for some j = 1, ..., ¢. Further, since
plgrolonh_}rréo {teA,:(Ay)¢NK,={0}UD; NK,}|/|An] >0,
and since by @) L;U U?;l(ﬁli)zli = {0} U D; we obtain that Z, = ({0} U D;)_, and the first
statement follows.

Now, let =, be unbounded. We show that = is a finite union of translated lattices. Consider any
point s in Z;. Let g, € N be such that 5, N K;, D Z N (K;),S. Then, for every n € N

{t € An t APP) = (B) s N K} > [{t € At (M) ¢ N Ky, =, N Ky, }|
and since this holds for every p large enough, we get
lim lim [{t € A, : A&?) = (5,)_s N K}/ |An] = 7.

p—r00 N—00
Then, we have that ((Z;)_s)* = Dy, for some k = 1, ..., . By Proposition[4] we deduce that =, is a
union of translated lattices. Further, this union is finite because - is strictly positive.
Now, consider a point r on the most preceding lattice of =,. Then, ((Z;)_,)" = D, for some
j=1,...,¢q,andso ((Ep)_r) = U?io(ﬁli)zh , which concludes the proof of the first statement.
Let us now prove the second statement. Let p € N. Define the equivalence relation ¢ ~ j <

i€ (F,Sj ))1§ j<q'» one considers the partition of {1,...,q’} generated by the equivalence classes
P, ={1,...,¢'}\ ~. Recall the definition of J3,, from the proof of point (I) in Proposition For

every | € B, let B, C P, such thati € Py, if =, N K7 =Dy N K. Since

{teAn : APP) =D K} = Y [{teA,: (Ay)eNK,=TLU{0}UD; NK,}|
i=1,...,u
where Iy, ..., II,, u € N, are the subsets of K \ {0}, we obtain that A, ; = >>,cq  Vp,i- Thus,
p,J
we have that 1 = Zjemp Apj = Zjemp ZiE‘B;,J- Vp,i = Ziem;} Yp,i- By applying Fatou’s lemma,
we get that

1= lim D W= lim inf >
iE€P;, (ISPUA

q — q
teA,:(A)tNK,=2:NK
> E liminf lim {t € (An) s P J p}‘ = E V-
Jj=1 j=1

P— 00 N—00 |An|

Hence, 1 > 23;1 ;- By applying the same arguments as the ones used in the proof of point
(I) in Proposition [3| we have that > .__gyv; > ~;, for every j € B/, which implies that
p icp@ Y Yi.p yJ p

P
1y = - ) Vi 2 o Vip = 1. Therefore, combining the two results we
i=1 JEP, L~icF, JjeB, 1P g
have that  7_, 7; = 1 and ZieFéj) i = ;p forevery j € Py,
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7.6  Proof of Proposition

Let j € I*. Consider (Ej),x for every x € &; and observe that these are the only possible Zs
that can be formed by translations of =7. The weights of the sets (E;)_x, x € &;, are all equal to
7; - This is because of the following arguments. Let 7, be the weight of (E;f)_x. Consider a point
x € & \ {0}. Forany p € N, let g, € N be such that = N K, D =% N (K}, )x. Then, for every
neN

Ht € An: (An)eNKp = (E]) xNKp}H > H{t €Ay (M)« NKy, =25 N Ky, }|
which implies that 7, > 7. Conversely, for any p € N, let f, € N be such that (Z})_x N Ky, D
(E7)—x N (Kp) —x. Then, for every n € N

Ht € At (M)t NKp =E;NKH > {t € Ayt (An) -+ N Ky, = () —x N Ky, }
which implies that 77 > v, hence v = 73. Thus, for each j € I* we have that the sum of the
weights of the =s composed by the translations of =j, is |€j|'y;f. Since each Z, b = 1, ..., ¢, is the

translation of a =} for some k € I*, we obtain that Zjel* 7 1€ = 7 17 = 1, where the last
equality comes from Proposition [7]

7.7 Proof of Proposition [J]

First, we have that m; — oo as | — oo and, since by Lemma we know that Ziej* Y& =1, we
obtain that 37, /. ;- Vi€l — 0asl — oo,

For every n € Nand j € I* with j < my;, consider the set S; 4;. We let the dependency on n be
implicit. Let j,¢ € I* with j,¢ < my; and ¢ # j. In the following we show that for every t € S; 4
and s € S; 4; we have that (D; N Ko)¢ N (D; N Ka;)s = 0. The idea behind the following proof
is that by taking points in A,, with certain structure on Ky; around them (i.e. =N Ky fori € I*
with ¢ < my;) where [ is large enough (see above), we ensure that the sets K. ;E around them do not
intersect for different structures (i.e. (D; N Ko;)e N (D; N Kag)s = 0, forevery t € S; 4 ands € S; 4
and every i,j € I* with i, j < my; and i # j).

First, consider the case of D; and D; bounded. Notice that t # s because D; N Ky # D; N Ky and
s0 =5 N Ky # Z; N Ky. Thus, if (Dj N Kg)¢ and (D; N Ky;)s have an intersection then one of the
two Z* N Ky;’s will have at least one point in K ;; \ {0} (in particular ats — t if t > sorat t — s if
s > t) which is impossible by definition of bounded =*’s because its lowest point (according to >) is
{o}.

Second, consider the case of D; bounded and D; unbounded. Then, as before t # s. Moreover,
if (D; N Ko;)¢ and (D; N Ko;)s have an intersection and s > t then = N K will have at least
one point in K; \ {0} which is impossible. If they have an intersection and t - s, then we have
E; N Ky = Dy, N Ky for some I, = Iy, ..., Iy, because (Ky;)t O (K2)s and so the structure of
(Ej N K4 )¢ implies that (A,,)_s N K;? = Dy, N Ky for some I}, = Iy, ..., I,. However, the equality
E; N Ky =Dy, N Ky is impossible by construction.

Third, consider the case of D; and D; unbounded. Then, as before t # s. Further, if t > s, then
we have 2 N Koy = Dy, N Ky for some I, = Iy, ...,ly, as in the previous paragraph, which is
impossible by construction. We conclude by observing that the case s > t is specular to the case
t >~ s.

Now, we bound the number of points in S; 4; for every ¢ < my; and ¢ € I*. For every D; bounded
with 7 < my; and 7 € I*, let S;Al = 541 1f |S; 1] < ~F|A,] and let 52{74l be a subset of S; 4; with
157 atl = Vi [AR L [Sia1] > 97 [ Al

For the unbounded case we have the following. Consider any D; unbounded with 7 < my; and
i € I*. Notice that (£;)s N (&;)¢ = 0 for every s, t € S; 4; because &; C KZJr U {0} and because we
are considering =; N K4; and thus an intersection would violate the structure of Z; N Ky,;. For any

t € S, 41, consider the set (D; N Ko) \ USG(S¢,4l)7t,S<0(5i)S‘ Consider the set of points t € S; 4
such that
(D7 N Ka) \ U E)s=D;nEa)\ ] (&)s
sE€(Si,41)—t,5<0 se—g;\{0}

and denote it by 5'1-,41. We remark that

(Di N K2) \ U (&i)s = (Di N Ka) \ U (Ei)s

s€(Si,41)-+,5<0 s€(User+,i<my; Si,a1)—t,5<0
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because by construction for every t € S; 4; and s € S 4, where j € I* with j # i and j < my;, we
have that (D; N Ko)¢ N (D; N Ko)s = ) and so that (D; N K¢ N (€ i)s = 0.
Now, if \Sz 41| > v}|Ay| and we arbitrarily take out a pomt x € S;,4; then we might end up taking

out more than one point in Sl .41 because the pomts in SZ 41 need the existence of certain points in
S; 41 around them. Thus, we need to show that it is p0531ble to find a procedure in which by taking

out a certain point in \S; 4; we only take out one (and only one) point in Si,zu-

Letv:=|{s € —G; \ {0} : (D; N Kq;) N (&;)s # 0}|. Foreach t € Si,u, letsg1 < ... <8ty <0
be the points in (S; 4;) ¢ such that (D; N Ko;) N (E;)s, ,, # 0, h =1, ..., v. Consider the lowest point
in 5'1-,41 according to > and denote it by w. Then, by taking out s,y ; from .S; 4; we only take out
w from S”,;Al (but not from S; 4;). This is because sy,; is the lowest among Sy 1, ..., Sw,» and since
Sw,1 is the lowest point in SiAl, this implies that sy, 1 7# s¢,, for every t € 5’@41 \ {w} and every

h =1,...,v. Thus, by taking out sy, ; from S; 4; we are not taking out any other point in .S; 4; apart
from w.

Now, if |SZ al < AL let S = =5, .4, while if |Sl a1l > 7f|Ay| then, following the above
procedure, reduces the points in S; 4; to obtain a set, which we denote S(Wd“cpd), such that

|50odueed | = 42 |A,,| and let 57,

_ a(reduced)

=S x .

Concerning the asymptotic behaviour of S/ ,,, in the bounded case, since lim |{t € A, : (A,)_¢ N
’ n—oo

Ky =Zf N Ky}|/|An] >}, by continuity of the minimum function we obtain that

i [S]yl/IAu] = lim ({6 € Ay (An) e 0 Kt = 550 K} A7 [An])/IAa] =7

In the unbounded case, notice that S; 4; D 5},41 D S, for every p > 8l and every n € N. Since
lim |S;,|/|An] = lim [{t € Ay (M) ¢ N K, = EX N KL}H/|An| > 7 for every p € N, then
n—o0 n— oo

we have that

7 = lim ({6 € An+ (Aw)—e N Kt = Z50 Kad| A7 IAGl)/IAn] < lim (18 a0l A7 Al /1A

< lim ({t € Ay : (An) e 0 Kar = 270 Ksi}[ A7 [An])/[An] =77

n— oo

Since |S; 41| Ay An| = |S, i 41| we obtain that [} [ /[An| — 7] asn — oo,

Finally, since 3 e e i p,, 191 aillEil = 2 icre i<y, Vi€l @s m — oo for every fixed I and
since >, Vi€ — Z]GI* 771€;| = 1 monotonically as [ — oo, we conclude that

IA"‘fzq‘,eI*,i<m4l ‘S£,4LHSi| _ 1
[An] -

lim lim
l— 00 N—00

8 Proofs in Sections 4 and 3

8.1 Proof of Theorem [10]

First, by A”(a?) it suffices to show that for any g € CJ, (¥ 51 (g))* converges to (8) as n — oo.
Then, by regular variation of |X| and the definition of (a,,)

A,
1= ¥y, (0) < Pmpx 1Xel > 80,) < el (AL F(X] > d0,)] = O(1 /)
as n — oo. So by Taylor expansion it suffices to prove that k, (1 — ¥ NA (g)) converges to the

logarithm of (8) as n — oco. Denote t|,, | the highest element of A, accordmg to <, by tja,, |1
the second highest one,..., by ;1 the lowest one. Let

@m@):{l[exp( Sl gt T X)) ], liTAS |A:11|.,
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Recall that K; = {x € ZF : x € {1, ..., 1}¥}. Using the stationarity of X and the fact that < is shift
invariant, we have

Vint1(9) = Uin(9)
= [ Tiih 10 X o) (1 moten” X0))

- PR glah ™' Xy) Co(ar ! ~ALIX
:E[e b€ Lt g1t Ay, |t PO (176 g(an X°>)1<Mz+"1 ,.‘,L Séan)]

[Arp |

e SR o) (1 ot X0 1 > 0, ]

_ A-ly _ N
~E[e Dttt =ttt S X (1= s X1 (X! > a,)1(Xo| > dan)|

[Apy, | -1 — ~
+ E[e* Yo g(an T Xej—e) (1 — e—9(an 1Xo))1(lei‘1§L > da,)1(|Xo| > day,)

—1

—F [67 Zte(tm+1—tm,...,tmrn‘—f,m,}mKl glah ™ Xy) (1 B e_g(aﬁ—lxo))} N JI(T”)

where J"") is such that

[Ary |
lim lim sup k,, Z |Jl(;;;)| < 2llim limsup}P’(MA"X‘ > day, ||Xo| > da,)|An|P(IX] > da,) = 0.

=00 noco =1 —00 n—oo 1

Now, for the every point in A,,, we have that

< P(X| > day)

To lighten the notation assume that ¢ in Condition (D) is oo, so that there are infinitely many
Ds. By point (i) in the construction of A, only the points [ J;°,{t € A, : A = Dpin K}

are asymptotically relevant, because by (i) and (ii) we have that [A,, \ U=, {t € A, : ALY —
D; N K, l}| — 0.
Observe that there are finitely many different subsets of K;. We denote their total number by 7; and

denote them by El(l), ey Egﬂ). Thus, we have

|Ary,

|
bn 3 E[exp ( - 3 g(ag‘lxt)> (1 _ 6—g(a£*1xo>)}

te{tm{»l_tnu'n;t\A,»n \_tnl}ﬁKl

TI
=Y kB exp (= Y glad X)) (1 el Xe))]
j=1

tez!?

where M%) = Htm,m =1, A | {tmgr =ty s ta, | —tm N K = El(j)}|. Recall from the

proof of Point (I) in Proposition that by defining the equivalence relation i ~ j < 4 € (I, ,(,j ) Ji<j<qs
one considers the partition of {I, ..., ¢} generated by the equivalence classes B, = {1,...,q}\ ~.
Then, by (i) and (ii) and in particular by point (I) in Proposition [3| we have

(4) em(d) .
lim Ko b, _ {)\i,l, if ul] =D, N K; for some i € P,

n—oo |AT"

0, otherwise.
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Therefore, we have that

JE&ZW Blew (= 30 glad'X0) (1 - oo X))

te=)
=6 Z )\NE[exp ( — Z 9(5Yt)> (1 _ 6*9(5Y0)>]
ieml teD;NK;
=5 Z Ai E{exp ( Z g((sYt)) (1 _ e—g(éYo))}
teDiNK;
/ Z)\ ;& exp ( Z g(y@t)> (1 — efg(y(%))}d(_yfa).
teD;NK;

Notice that the above arguments hold for every [/ large enough. By monotone convergence theorem
we have that

i ["Sasfew (< 3 avn) (1-e o) acu

teD;NK;

/ ZME [exp (= gw@0)) (1 e 90 ) [a(—y~).

teD;

Finally, the existence of the limiting random measure N is ensured by Corollary 4.14 in [16].

8.2 Proof of Proposition [I1]

In order to prove Proposition[TT| we need the following Lemma.

Lemma 27. Let (Y¢ : t € ZF) be an R%-valued random field such that the time change formula
is satisfied. Let ©y = Y /|Yol, . Let Y be a subset of {t € Z¥ : t = 0} containing {0} and
assume that T U =Y is translation invariant along the points of a (not necessarily full rank) lattice.
Then |®¢| — 0 a.s. as [t| — oo for t € Y implies that ), v, _ |©Ot|* < 00 a.s..

Proof. The proof is divided in two parts. In the first part we show that |®¢| — 0 a.s. as |t| — oo for
t € TU -7 and then that ), . ,_+ [©¢|* < coas.

Denote by £ the lattice and let G := £ N {t € Z* : t = 0}. We stress that {0} € G. Let e > 0.
Suppose that P(3 ", .+ 1(]Yn| > €) = 00) > 0. Recall that [ Y| follows a Pareto(c) distribution,

thus P(]Yo| > 1) = 1, and observe that the sets {|Yt\ >C > sup |Ys|}, t € G, are disjoint
t<s,s€g
for every C' > 0. Then, we have that forevery 0 < D <1

]P’(U{|Yt|2D> sup |YS|}> Z]P’(|Yt|>D> up e |)
teg t<s,s€g teg t<s
and for every D' > 1
P( U{vz0> sw |Ys|}) =Y P(Yal= D' > sup |Y[) <1
teg t<s,s€G teg t<s,s€g
we have that P(}, c v 1(|[Yn| > €) = 00) = > 6 PO ey 1([Yn| > €) = 00, [Y¢| > 1 >

sup |Ys]). Consideranyt € Gs.t. P(3 o+ 1(|Yn| >¢€) =00,[Y¢[ > 1> sup [Yg[) >0.
t<s,s€g t<s,s€g
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By the time change formula (T)) we get

w0 —E| 30 1Vl >alvi 21> s [Y)
he—1 t<s,s€g

S E[L(Yul > e [Yil 21> sup |V
he_T t<s,s€@

3y IP’(|Yh| Se|Ye|>1> sup [Ys |)

he_r t<s,s€g
= Z / r|O_p| > 1,7|@¢_pn| >1>r sup |®S|)d(—7°_°‘)
he—-7T t—h<s,;scg

(r=9¢) —a Z / qe|®7h| >1,q¢|®¢_pn| >1>¢qe  sup |®S|)d(_q_a)

he-7T t—h<s,;seg
s [T p(ocaz ts ap jeu)ia)
I pe v t—h<s;seG_p

be_a/ d(—q™) =€ < o0,
1

where b is the number of points of Y inside the fundamental parallelotope of £. Notice that we used
that foreveryt € Gandh € —Y (i.e. —h € T) we have thatt —h € T, thatist —h € (G)x
where x is one of the b different points in the fundamental parallelotope, which we denote by Bto
be consistent with the notation of the proof of Proposition[3] Thus, we have a contradiction and so
|©:] > Oas.as|t| > ocofort € TU-T.

Now, suppose that the event {|@¢| — 0 as [t| — co,t € T U —T} has probability 1. Denote this
event by E. Observe that sup;cy,_v |®¢] is a well defined random variable since it is the supremum
of measurable functions over a countable set. Since |@4| — 0 a.s. as [t| = cofort € T U -7 and
since we are in (a subset of) Z*, for every w € F there exist finitely many ¢y, ....t,, € Y U =Y such
that |©(t1)(w)] = ... = |O(¢t )( )| = supgery_ |O(w)|. Forevery w € E, let T*(w) be such
that |® (T*(w))(w )| = SUPgery_ |©¢(w)| with T*(w) being the smallest of these finitely many
points according to >. That is for every t € T U —T we have

{w: T*(w) =t}

={w: BO¢(w) — sup |Os(w)| > 0} N{w: Og(w) — sup |®s(w)| =0}
seTU—-T,s<t seYU-T,s>t

and fort € ZF\ (T U —7T) we have {w : T*(w) =t} = 0.

By construction |©r~| is a measurable function. Since the difference of two measurable functions is
measurable and the intersection of two measurable sets is also measurable we have that {w : T*(w) =
t} is a measurable set. Further, for any subset A of Z, since (T*)71(A) = Ugea{w : T*(w) = t}
and since the union of measurable sets is measurable we have that (T*)~1(A) is measurable. Thus,
T™ is a well defined random variable. Using the same arguments we can construct 7'z, where the
supremum is taken over £ instead of T U —7Y. In the same way we can construct T(*L)x where the

supremum is taken over (£)y where x € B.
Consider any x € B. Assume that P te(c), [©]* = 00) > 0. We have that P(3 ¢ (1, [O]* =

OO) = ZiGC P(Zte(ﬁ)x |®t|a = OO,TZ = i) = ZiEH P(ZtG(ﬁ)x ‘@tla = OO,TZ = i), where
H is the subset of £ s.t. P(3 ¢ (1), [©¢]* = 00,77 =1) > Oforeveryi€ H. Leti€ H, then

OO:]E|: Z ‘®t|a £—1:| Z E|:|®t|a _‘):|
te(L)x te(L)x

Now, we generalise the arguments adopted in the proof of Lemma 3.3 in [23]]. For each i € £ define
a function g; : (RY)Z" — R as follows. If (@4, s € ZF) is such that

|®5] < |©;] forj<iandje L, |O; <|®; forj>=iandje L,
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then set g;(@g,s € ZF) = 1. Otherwise set g;(®g,s € ZF) = 0. Observe that g; is a bounded
measurable function and observe that, for any t € 7k, gi(- —t) = 1 when

|®j_¢| < |@i—¢| forj<iandje L, [Oj_¢] <|@j_¢| forj>=iandje L,
<105 <|0;_¢] forj<i—tandje (L), |O;] <|O;_¢| forj=i—tandje (L)_q,

and zero otherwise. Then, by time change formula we have

00 = Z E |®t|“1(TZ—i)] - Z ]E{|@t|“gi(®s,s€Zk)]

te(L)x - te(L)x

= Z E|g(©(s —t),s € Z¥)1(O(~t } Z IEl[gl (s—t),s € Zk)]
te(L)x - te(L)x

= > E|1( z‘ﬁ)t:i—t)] = > E{1(T§£)w:i—t)} = > E[l( zﬁ)wZi—i—t)}
te(L)x - te(L)x te(L)—x

= > E[1(T§E)m = i—|—t)] = > E[1(T§E)m :t)] =1,
te(L)r—x te(L)r—x

which is a contradiction. Notice that we used the fact that by construction, for every t € (L), we
have (£)_; = (£)_z, —t € (£)_x, (£)—x = (L£)r—x where r is the highest point in the closure of
the fundamental parallelotope (as defined in the proof of Proposition , and that t +1i € (£),_x for
anyie L.

Thus, we have ), €(L)w |©¢|* < oo almost surely. The same arguments can be repeated for every
x € B and use the fact proven in the proof of Propositionthat for every x € B we know thatr —x €
B. Therefore, since B is finite we conclude that Dteru-r Ot =2 D te(r), 1O]* < o0
a.s.. O

We first prove that for every t € UJO';I D there exists ang € Ns.t. t € Ry p,, for every m > ny.
First, notice that if t € U;’il D; then t € D; for some i € N. Then, by condition point (I) in
Propositionfor every ¢ € N and every p € N there exists an n; , € N such that for every m > nj |
we have [{t € A, : AL = D, 0 Kp}| > 1. Thus, for every 4,p € N there exists an nj,
s.t. D; N K}, C Ro,a,, forevery m > n; . Therefore, for every t € U;’il D; (notice that for each

t we have t € D; N K, for some 4, p € N) there exists a ny € N (namely n ) s.t.t € Ry, for
every m > ng.

Now, choose (d;,)nen such that d,, is the highest integer s.t. maxX|¢|<d, teUs, D; M < Tn- Notice

that {|t| < dy,,t € U;Z, Dj} C Roa,, - Itis possible to see that d,, — oo as n — oo and that for
every | <,

P( max IX¢| > abda |[Xol > aﬁx)
I<[t|<dn [teUS2, D;

:IP’( Xo| > alz |[Xo| > A)
lﬁt\@ﬂtefﬁ?@\teRL,A“| ¢ > an [[Xo] > ape

§P( max | X¢| > a, 1:||X0|>a :c)

teER A,

Therefore, condition (AC ) implies the following anti-clustering condition:

lim lim sup[P’( max 1X¢| > abz ||Xo| > aﬁz) =0. (22)

=00 noo I<[|t|<dn ‘tEU]O'Czl D

Now, for any z > 0, by the regular variation of |Xg| and by we have that

lim lim sup P max |X¢| > zaba |[Xo| > adz) =0.
=00 n—oo I<|t|<dn |t€U;i1 D;
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In other words, for any € > 0 and z > 0, there exists [ > 0 such that for all w > [

]P’( max Y| > z> <e.

I<|t|<w|telUs5Z, D;

This, implies that ]P’(‘ llim [Y¢| =0) =1 andso ]P’(l l‘im @] =0)=1fort € U;il D;. Then,
t|—o0 t|—o0

from Lemmas 3] and 277] we obtain the statement.

8.3 Proof of Theorem[12]

By changes of variables we have
/ IE|:6 Ztepj 9(yOy) (1 _ e—g(yeo))]d(_y_a)
0
= B[00, [ ¢ Tre 0O IO ) (1 a0/l gy
0

_ Z E[|@h|a /oo e Zcepj 9(yO®:/(1®lp;u-D; ) (1 _ efg(y@()/\l@\lpjufpj,a))d(_yfa):|
heD,;U—D; 0

From the time-change formula, we obtain that for any h € D; U —D;,
o0
E[‘@hr}l / 6_ ZteDj g(yQDju—Dj,t) _ 6_ Ztevju{o} g(yQDju_Dj)t)d(—y_“)}
0
= E[/Oo e Ete(Dth 9(yQou-Dp;.t) e ZtE(D]‘),hU{—h} g(yQDjU7D]"t)d(_y*Ot):| .
0

Since h is a lattice point then (D;)_n = (D; U —D;) N {t € Z* : t = —h} and since —h is the
first point of (D; U —D;) N {t € Z* : t = —h}. This leads to a telescoping sum structure for any
ke Dj @] 7'Dj

Z ]E /oo e_ Zte(Dg)fh g(yQ’Dju—”Dj,t) - 6_ Etg(’Dj)ihu{fh} g(yQ’DjU*Dji)d(iy*a)}
{—heD,;U—D;:—k=<h=k} 0
— E |:/ 6_ Zt€<Dj)k g(yQDju—‘Dj,t) _ e_ Zte(pj)—ku{*k} g(yQDj U—Dj,t)d(_yfa):| . (23)

0

Since any function g € (C} vanishes in some neighbourhood of the origin and ®; %3 0 and
Qp,u-D; t ¥ 0ast — cofort € D;U—D;, we have monotonically ZtE(Dj)k 9yQp;u-p; ) —

0, and Zte(Dj),ku{—k} 9(yQp;u-p; t) — ZteDju—Dj 9(yQp,;u-p, t) as., as k — oo. Thus,
by monotone convergence theorem the right-hand side in converges, as k — oo, to

E{/OOO 1—exp ( — tep%:_Dj g(yQDjuij,t))d(—y_a)].

One deduces the following expression of the Laplace transform of N*
0

\I/NA(g) = exp < — ZA]/ E|:1 _ 8_ Eteﬁj g(yQﬁj't)}d(—ya)).
j=1

8.4 Poof of Proposition [I3]

The first statement follows from similar arguments as the ones used in the proof of Theorem 2.1 in
[2] and in Lemma 3.1 in [L8]. In particular, it is easy to see that for all s, t € ZF withs < t

P((z7 ' X, ..,a ' Xg) €)  P(|Xo| >2z) P((a7 !X, ...,z 'Xy) € )

P(pr(X) > x) P(px(X) > z) P([Xol > )

Let /i be the tail measure of X with auxiliary regularly varying function P(|Xo| > x). By the
definition of regular variation of X, by homogeneity of the tail measure, and assuming w.l.0.g. that
{0} € T we have (see also Lemma 3.1 in [18]))

P(|Xo| > ) 1
Plor(X) >z) = jir(2 € RITI: p(z) > 1)

€ (0,00).
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Thus, we have
P((x71Xg, ..., 1Xy) € ) . st (+)
P(pr(X) > z) fix(z € RITT: p(2) > 1
Notice that the function x — P(py (X) > x) is regularly varying of index —« and that p restricted
to the set {ys, ....,y¢ : p(Y) > 1} is a probability measure, call it vs¢. Here we have used that

w.lo.g. T C {s,...,t}, indeed if some z € T is not contained in {s, ..., t} then we can consider
fi{s,t}U{z} because by consistency of the measure fi we have fi{s ¢1ufz} (- R) = fis ¢ (-)-

) = /'Ls,t(')-

It is possible to see that (1.t )s tez+ is a family of consistent probability measures and by Kolmogorov
extension theorem we obtain the first statement. The second statement follows from the first and the
continuous mapping theorem.

8.5 Proof of Proposition[14]

This follows from similar arguments used in the proofs of Theorem 3.1 in [2] and of Theorem 3.2 in
[23]. Consider any s € Z* and any i,j € Z* such that Y C {t € Z* : i <t < j}. Then, following
the proof of Theorem 3.1 in [2]] we define the spaces:

Eij={(yi,-¥5) | 0 < pr(y) < oo}, Sij=1{(yi,-¥j) | px(y) =1}
Define the bijection 7" : E; ; — (0, 00) x S; ; by
Yi Yj
Ty‘)"'7y. :(pTy7 9ty )
Girn3) = e ) 20y ()

Let p; ; be the tail measure of (Xj, ..., X;) with auxiliary regularly varying function P(py (X) > z)
(as defined in the proof of Proposition[I3). Define the measure &; j on S; ; by

®;5(B) = pij(T~((1,00) x B))

for Borel-measurable B C S; ;. Since the law of (Y~ 5, ..., Y ;) is equal to the restriction of y; j to
T71((1,00) x S; j), the measure @; j is in fact equal to the law of (@~ ;, ..., O~ ;). Furthermore, as

{44,; 1s homogeneous of order —a, for u € (0, 00) and Borel sets B C Si
pi (T~ ((u,00) x B)) = pij(uT~1((1,00) x B)) = u™®;§(B) (24)

For u > 1, the left-hand side is equal to P(pr(Y) > u, (@, ..., @y ;) € B), while the right hand
side is equal to P(pr(Y) > w)P((®r3,...,Or ;) € B). Thus, py(Y) and (O, ..., Oy ;) are
independent and so py(Y) and (®~ ;)i are independent, where I is any subset of {t € 7k i<
t < j}. Since i and j were arbitrary, point (i) follows.

Concerning point (ii), consider any i, j € Z* and let g : (Rd)Zk — R be a bounded and continuous
function. By stationarity

Elg(Yri-s, - Yri-s)1(pr)_.(Y) > ¢)]
Elg(z™ ' Xi—g, oo, 27 X 6) Lp(r)_, (X) > 26)1(pr(X) > )]

= Jm P(pr (X) > 2)
i Elg(z~1X;, ...,xilxj)l(pT(X) > ze)1(p(r), (X) > z)]
b3 P(or (X) > 7)
- / 9035,y 1(pr(y) > VLo, (v) > Dynldy) 25)

where 1,k € Z¥ are such that {t € Z* : 1<t <k} D {t € Z¥ : i <t < j} U Y U(Y)s. The last
equality follows from the consistency of the measures pi i, 1, k € ZF and the fact that {1,k restricted
on the set {(y1,...,yx) : p(r).(y) > 1} is a probability measure, call it 75 ¢, and this holds for any
s € ZF; indeed by stationarity

P((LE*lX], ...,mlek) € ) IP’((:rlel, ...,x*Xk) S )

o, 050~ Fe@sn O

As a side note observe that Y v is not necessarily stationary because different restrictions (i.e. different
s) of i correspond to potentially different probability measures. That is v ¢, which is the probability
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measure given by p i restricted on {(y1, ..., yk) : p().(y) > 1} (as introduced in the proof of
Proposition [13) is potentially a different from 7 ¢.

Now, by applied to 11 1 we obtain that is equal to

/00 E[g(r@)r,i, ery T@Tﬁj)l(m(r)s (@) > 1)}d(—7“—°‘).

Following the monotone convergence arguments of the proof of Theorem 3.2 in [23] we send € — 0
and drop the continuity assumption of g. Since i and j were arbitrary we obtain the result.

Finally point (iii) follows from @I) applied to the function §(y) = g(y/pcr). (¥))1(p(r). (y) # 0).
8.6 Proof of Lemma (13

Let ¢= := infy, (x>1 /x| and ¢™ = sup,, (<1 [x|- By homogeneity we have that
infy.py (x)>e |X| = ec™ for every € > 0 (and the same holds for ¢™). This implies that if [x| < e then
pr(x) < €/c™, and if py(x) < € then |x| < c¢Te. From the latter we deduce that for every b > 0
we have that |x| > bct implies py(x) > b (or equivalently by homogeneity that |[x| > b implies
pr(x) > b/c™) and from the former that py(x) > b implies that |x| > bc™.

Furthermore, it is easy to see that max¢ey |X¢| is a norm on RITI* and since on any finite dimensional
vector space any norm is equivalent to any other norm, we have that there exists two constants A and
B such that A[x| < max, 4 [x¢| < BJx|. Therefore, for every € > 0 we have that maxgey [x¢| < €
implies that A|x| < e which in turn implies that py (x) < 45=. Moreover, for every ¢ > 0 we have
that max¢ey [X¢| > € implies that B|x| > e which in turn implies that py (x) > 55.

Similarly for the other direction we have that, for every € > 0, py(x) < € implies that |x| < cTe
which implies that maxsey |x¢| < ¢ Be. Moreover, for every € > 0, py(x) > ¢ implies that
|x| > ¢~ e which implies that max¢ey |x¢| > ¢~ Ae. Thus by setting C = Ac™ and D = Be™ we
obtain the result.

8.7 Proof of Theorem[17]
Before proving Theorem [I7]we present the following result on the connection between tail random
fields for different sets Y1 and Y5 and different moduli of continuity p; and ps.

Lemma 28. Let Y1 and Yo be two finite subset of ZF and consider p1 and pa be two moduli of

continuity on RIZ", Let C1 and Cy be the constants such that, for every ¢ > 0, p1 v, (x) > € implies
P27, () > &, and p2 v, (x) > e implies p1 x,(x) > Cre. Then,

d 1
YTz = ClYT1 |p27T2 (YT1) > a
and v
d
YTl = TT; P17y (YT2) > Ca.

Proof. Let = be a finite subset of Z* and let g : R¥=l — R be a bounded and continuous function.
Then, by homogeneity we have

Elg((Yr:(t)yez)]

{(( teE) (p1,7, (X) > )

=% B(p1. 1, (X) > 2)
. Elg((%), )10, (X) > D12, (X) > &) + L2 (X) < &) Bpyr, (X) > &)
T ot P(p1.1, (X) > z) P(p2,v,(X) > &)
= kE[g((3224), )] +El((Yrue)Lama(Yr) < )]
where

]P)(p2 To (X) > 1) ]P(pQ,TQ (X) > %ﬂpqul (X) > 1') 1
K=l o s~ Por, (X > 0) P(p2ea(Yr) > ).
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Thus, we have

2lo((F5),.2)] = Bl (rrih v > ]

Since g and = were arbitrary we obtain the first stated result. The same arguments apply to the second
one. O

For notational purpose we consider the general case of countably many Ds and so of £s. For the
first part of this proof we follow similar arguments as the ones used in the proof of Theorem
By A% (ay,) it suffices to show that for any g € C}, (U g4 (g))*" converges to l) asn — oo: It

suffices to prove that k,,(1 — W 54 (g)) converges to the lo?garithm of asn — oo.

Recall the sets \S; 4;, Sz/’74l’ and S'Z-Al from Proposition@and its proof. Further, let 5‘1-_’41 =S4\ 54)41.

For notational consistency let 5”2»,4l := () for ¢ corresponding to D; bounded. Now, we apply a
telescoping sum argument which generalises the one used in the proof of Theorem [I0]

Letu = |Uicr i<m., S! 4| (we omit the dependency on [ and on n in u) and let 51 < 2 < ... < sy,
denote the points in UiEI*,i<M4z S; - Denote by &;,, ..., &;, the Es associated to s1, ..., s,,. Let
= |Uer i<may S;a1) and let 51 < 32 < ... < §; denote the points in |J

Denote by &; &

Jio e Yl

be the ordered points in A, \ (U?:ﬂgji)sl- U U?:1(‘9L) ;) In this case we associate the set

{0} to any point §,, h = 1,...,4. Denote by u + 4 + @ and by §1,...,8; the points

S1y---Suy 81y ---Suy S1, .-+, Sg indexed such that §; < S < ... < 53, and denote by f:'l, ...,f:'a, the

corresponding sets &, , ..., &, , &5, 5 -+, £, {0}, ..., {0}; for example if 5; = 55 then & = &
—_————

u? >~ J1?

ieI* i<my DAl
the &s associated to 51, ...,55. Let §1,..., 55, for some & € N U {0},

U times

Let

- B {exp ( — Z;T;m Zte(é]‘)éj g(afllXt))},

)

IN
3
IA
— \.§>

S —
I
>
_l’_
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a
m=1

so that for every [ € N weobtain 1 — W5 (g) =) Upmi1(9) — ¥1.m(g). By the stationarity

of X, we have

Vot1(9) — ¥ml(g) (26)

B[ (1 — e Tt 905 X0 g - i > gl X s,)]

i=mtlee(é))s,

- (1 — e Deedn, g(aile)) exp ( - Z g(aﬁlxt))}

teU?:7n+1 (57)-§7 —3m,

=E _(1 — e Ztcém g(a;IX")) exp ( - Z g(a,_LlXt)>1( ~ max |X¢| < 5an)]
- beU_ 1 (83)a, - om Kt teUjm41(85)s;—am \ K21
+ E[(l — e Lieém g(a;lxt)> exp ( - Z g(a;lXt))l( max |X¢| > 6an)}

teUﬁ, 1(éj)A R tEU?:m,+1(Sj)§j—§m\K2l
j=m+ Sj—Sm

= (1o s e - 2 907" X))
VU2 Er)ey o
B[ (1 e (- > g(a;1X4))
N T S

1 max |X¢| > day,)1(max |X¢| > (5an)}
teUS iy (E5)sj—am \ K2 tebm

+ E[(l — e Lteém ﬂa#xt)) exp ( — Z g(a;1Xt>)

teUl i1 (Ei)s;—sm

1( max |X¢| > day,)1(max |X¢| > (5an)}
teUj iy (E5)sj—am \ K2 te€Em
ZEKl e Xtebm g(a,ZlXt)) exp ( — Z g(a;lxt))] + Jl(,:;{)'

t€UT_ iy 1(€))s;—sm NK2t

)

Consider now only the Jz(:}'{ where m is such that §,,, = s; for some ¢ = 1, ..., u. We have that

T < 9m[1( max X¢| > an)1(max [X¢| > 5an)]
’ teU?:m+1(5j)§jf§m\Kzl tes;

< ZIP’(MQ/;:‘::"(“ > 5an,rtréagx|Xt\ > dan). 27)

By Proposition [9| we have that |S! ,,|/|A;,| — 7 as n — oo, and so that lim ] =

n— oo

Zje I* j<ma 7;. Further, since the inequality holds for every n,l € N and since
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> jer- 77 1€j = 1, we obtain that

hm lim sup &, Z \J(;;Z)

=00 n—soo

m=1

= lim limsup k,, Z 2|8} 4 [P(M. A IXI @ > 6an,{cré%x|Xt| > day,)

l—o0
=00 iE€l* i<myy

. A X

< 211_1>r£10‘ Z hmsup|A7 |knP(M. ‘ ‘ OIS 5an,11':rézg<|Xt\ > day)
1€T* i<myy

P(maxteg, | Xt| > dan)

P([Xo| > dan)

=2 lim Z v lim sup A, |P(|Xo]| > 5an)}P’(M2/; ‘TX‘ > day, |max|Xt| > day,)
fmreo 1€l*,i<my oo

. A \X\ (4) [P’(maxtegi |Xt| > 5an)
=21 i P M ) X 1)
Jm >, o7 limsup > dan | Xl > dan) ——p e s
eI i<myy
<2lim > & limsup PV XM > §a, [ max | Xe| > da,,) (28)
l—o00 | - n—oo " tes;
1€T*,i<my;
and since
. ~ AL X, (2 *
E v &l hmsupIP’(Mgl’L HONS dap| max | X¢| > day,) < E V&l < E & =1
. - n—o00 o tes; . - !
1€l* i<myy iel* i<my iel*

by dominated convergence theorem we have that (2Z8) is equal to

2 Z Y& | hm hmsup]P’(MA IXI D> sa, |max|Xt| > dap) =0 (29)
iel*
where the last equality follows by the anti-clustering condition (AC> 1)

Now, let us focus on (26) where m is such that §,, = §; for some i = 1,...,u or §,, = §, for
o - . e %o *|o | :

some ! = 1,...,%. Since by Proposmonlﬂ Y icma V1€ = X ier-771€;] = 1 monotonically
’

|A7"n|_ziel* i<y |S'i,4l||gi‘

as [ — oo, then llir& HILH;O A = 0. Since u + Zielm«n“ 1S, allE:] =
[Ar, | = 2icre icma, [Siail|€il, we obtain that
lim lim “t Zie]*’Km‘“ [Si.allésl = 30)
[—o00 n—00 |Arn|

By combining this with the fact that (26) is bounded by
E[(1 — e Dectn 9<aﬁlxt>)} < P(max [Xe| > dan) < EnlP(|Xo| > ban)
teé
we conclude that

lim lim sup k,, (ﬂP(X0| > da,) + Z 1S; a1l|Ei|P(|Xo]| > §an)>

=0 n—oo
iel* i<myy

U+ Yicre icma 1SiallEi]

=00 n—00 |Ar, |

=0. (31

Now, by construction (recall (7)) when §,,, = s, for some k =1, ..., u we get

E{(l — e Xectm g(a;lxt)) exp(— Z (aﬁlxt))}

€U 41 (E))s;—am MKl

_ IEKl e Deee;, g(aglxt)) exp ( B Z g(a#Xt))}’ (32)

teD;, NKy
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where we used that by definition (D} N Ky;)\ e (0}U—3; (&)s = D;NKo,. Therefore, by combining

(29) and (BT) we have that
zu: \il?m+1(g)f\iflvm(g)fzu: E[(1-e” e 10X Y op (37 g 1Xy))] ‘ =0.
m=1

m=1 teﬁjm NKo;

lim limsup k.,
=00 nooco

Thus, for the remaining part of the proof we focus on

kn, mZ:EKl e s, g(a:‘lxt)) exp ( — Z Q(Clﬁlxt))}-

te’ﬁjm, NKa;

From Lemma|[T3| we have that for every i € I*
)
X n}c{ (X)> 2 n}
{rtrgffl ¢ > dan o C ¢ pei( )>Dia (33)

and thus we have

u

. =D tce. ¢ a;IX _

Jm e STE|(1o e e M o (= 30 gl X))
m=1

teD;,, NKay
. - ~Tiee,, 9larX0) =
= lim k, Z E|(1—e —*m 7" exp | — Z g(a, " X¢))1( max |X¢| > day,
n— 00 oo {( ) ( teﬁjmme ) (tesjm )}
- Y ~Siee,, o0 X0) . Sa,
= nh_)rr;o kn Z E[(l —e €Ejm I ) exp ( - ~Z g(aant))lO)gjm (X) > D, )]
m=1 teDy,, NKa "
S . - ; g(ayjlxt) 1
—HILH;O kn Z ]E[(l —e T*Eim ) exp ( - Z g(a, Xt))
m=1 teD;,, NKay
Sa, 1P(pe;, (X) > 3) Plpe. (X) > an)
- (X) > - L e P(|Xo| > an
’pfm( ) Djm] P(pe,, (X) > an) P(Xo| > an) (o] > an)

_ (%)_ay;ch[@fe*Etesjg%mgj,t))exp(i 3 g(liyggj’t))}

JEI*j<may 7 teD;NKy,
o0 o _ 7
_ Z (;J.)j—a]EKl o Dree; 9(5; st,t)> exp ( - Z g(%(agj,t))}d(—y*a)
jerj<ma ’? J teD,;NKoy !
o0 *
;€4 - 2O, —a
2/ Z 7(DJ,)ia]EK1 _ e Trer; 905 5-7‘)) exp ( - Z g(%(asj,t))}d(—y )-
O eIt j<ma J t€D;NK oy J

By assumption A"} we can apply the dominated convergence theorem (twice) as follows. First since
the integrand is bounded by the constant jer- ;¢ D forevery | € N and since this constant is
bounded by condition A%, which makes it an integrable function for the integral [;~ d(—y~*) for
any § > 0, we can put the limit of / going to infinity inside the integral. Second, consider the finite
counting measure » jer- v;¢iDje;j (+), where ¢ is the Dirac delta measure. Since the integrand is
bounded by 1 and 1 is an integrable function with respect to this finite counting measure, then we can
apply again the dominated convergence theorem. Hence, we obtain

o] X _ Ty
WA T et
s JEI* j<my; J teﬁjﬂKzl J
[e's} i _ .
:/ 3 gy iaE[(lfe Teee, g<Dj@gj,t>) exp(i 3 g(%ggj’t))}d(fyﬂ). 34)
5 i (D;) ted, ’
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Since pg; (©) = 1 ass., by Corollarywe have that maxsee, |©g| < D; a.s.. Further, recall that g

has compact support, in particular for any z € R? with |z| < § we have that g(x) = 0. Then, we
obtain that if y < § then D; Y- O, + < das., and so g(F- (-)g +) = 0 as.. Thus, |i is equal to

/O°° 3 (;ffia]EKl e, 905040 o (— 3 g(%j@gj,t))}d(fy*“)

jer- teD,

oneH corem & —
i 57 [T W (1-e e 05 ) e (=37 g( L@, 0)) a5

Jerr teD; !

(VjerI” lelz——

Z/ VB 176 Sice, 920, *))exp( 3 (z@gj,t))}d(fz*“).

jerr teD;

Finally, Corollary 4.14 in [[16] ensures the existence of the limiting random measure N* and so N*
has the stated Laplace formulation.

8.8 Proof of Proposition

We start by showing the following useful Lemma:

Lemma?29. Let (Yyyt:t € 7*) be an R?-valued random field such that the time change formula
(E’]} is satisfied. Let L be a (not necessarily full rank) lattice. Let O~ ¢ = Yy ¢/pv(Y), t € ZF. Let
H := Useg(T)s where G = LN{t € ZF : t = 0} and such that (Y)sN(Y)s = 0 foreverys,s’' € G
with s # s'. Then |®y | — 0 a.s. as [t| — oo for t € H implies that ), » p(r),(©)* < o0 a.s.,
and that ZtEUsEL(T)s |®Or]* < 0 as.

Proof. The proof is divided in two parts. In the first part we show that |@~ | — 0 a.s. as [t| — o0
fort € Uy (Y)s and then that ), - p(v), (@)% < co ass.

From |@v ¢| — 0 a.s. as [t| — oo for t € 7 by continuity we obtain that p(y), (@) — 0 a.s. as
[t| = oo fort € G. Let € > 0. Observe that £ = G U —G and that for every 0 < ¢ <1

]P’( U {pmt (Y)>c> sup pm,(Y)}>

teg t<z,z€G

= ZE”(P(T)t (Y)>c> sup pmz(Y)) =1,
teg t<z,z€G

because P(pr(Y) >1)=1,and T € H.
Suppose that P(} -, ¢ 1(p(1),(Y) > €) = 00) > 0. We have that

(Y 1), (Y) > €) = )

he—¢g

= ZP( > Loy (Y) > €),pr), (Y) 21> sup pry), (Y))-
teG  he—g t=<2,260

Consider any t € G s.t.

]P’( > pe)(Y) > €),pr), (Y) > 1> sup per), (Y)) > 0.
he—g t<z,z€G
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By the time change formula (9) we get

oo:E[ > 1<p(r)h(Y) > e per),(Y) 21> sup sz(Y)ﬂ

he-g t<z,z€G
=Y ]P’<P(T)h(Y) >epm),(Y)>1> sup pey), (Y))
he—g t<z,zeg
=) / rp(1)_n(©) > Lrp(r),_,(©) =1 >7  sup P(T),(@))d(*rﬂ)
he-gv*€ t—h<z,zeg
r;f —a Z / qEP(T),h (@) > 17q6p(T)t—h (@) >1>qe sup P(T), (@))d(_q*a)
he—-g t—h<z,zeg
i 1 —a
S [TR(n©z > s (©))d(—a)
he—G qe t—h<z,zcg

< e_“/ d(—q™%) =€ * < o0,
1

where we used that foreveryt € Gandh € —G we have thatt —h € G. Thus, we have a contradiction
and so p(v), (@) — 0 as. as [t| — oo for t € —G which by homogeneity and continuity implies that
|®rt| — 0as.as [t| = ocofort € (J,cp(T)s. Assume that P(} 7, - per), (©)* = 00) > 0. We
have that

P} pr) (©)* =00) = > P pr), (©)° = 00, T4 , = 1)

tel iel tel
=D P p1). (@) =00, Tk o =),
ieH tel

where H is the subset of £ s.t. P(3 - p(1), (@) = 00, T% o =1i) > 0 foreveryi € H. Let
i€ H,then

00 = E[ZP(T» 1Ty . =1) } = Z]E[P(T)t(@)al(Th =i)|.
tel tel

Now, we generalise the arguments adopted in the proof of Lemma 3.3 in [23]]. For each i € £ define
a function g; : (RY)%Z" — R as follows. If (@ 4, s € Z¥) is such that

|®T,j| < |®Y,i| fOl"j =< iandj S E, |®’I‘,j| < ‘(")T,i| fOI‘j > iandj S E,

then set g; (O~ 5,z € Z*) = 1. Otherwise set Gi(Or 4,2z € 7ZF) = 0. Then, by time change formula
we have

0= 38|, 01T = 1)| = B[y (0) (O .00 € 27)
tel tel
[ @T z k

=) E p(r)t(®)agi<’,z €Z )]
t; i P(1).(©)

= ZE 9i(Or 4 ¢,z € Z¥)1(p(y)_,(©) # 0)}
tel *-

< ZE 6i(Or 4,z € ZF) ] ZE[ (Ty .= l—t)} 1,
telL - tel

which is a contradiction. Notice that we used the fact that by construction, for every i,t € L, we have
i-tel.

Thus, we have » .. p(), (©)* < oo as., and by homogeneity and continuity we have that
Y ter MaXse |Or 1 45| < coas., and since T is finite we obtain that ZtEUSGL(T)s |®rt]* < 00
a.s. O
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Let j € N. From similar arguments as the ones used in the proof of Proposition[T1] we have that for
every t € D; (andso t € D; N K, for some j,p € N) there existsany € Ns.it. t € R(]) for every

m > ny. Further, choose (dn)neN such that d,, is the highest integer s.t. MaxX|t|<d, teD; nt <7y It
is possible to see that d,, — 0o as n — oo and that for every 2! < 7,

X¢| > aly X, | > A)
<21SItIISndiX|teDj‘ ¢l anx|{%%§| t| > apx

= IE”( max _ 1X¢| > ala ‘ max |X¢| > aﬁgj)
I<[t|<dn |t€D; |t€RE), teE,

§]P’( max |Xt\ > a, z|maX|Xt| >a x)
teRY)
20,A

Since

P( X Al pe (X)) > ab )
2l<|t|<d |t€D X >CJ%~’C|P£,( ) > ayx

P maxy<|¢<d, | tep, | Xe| > Cjanz, pe, (X) > afz\x)
P(pe, (X) > ahz)
]P’(maXQK‘thn ltep, | Xe| > Cj adz, maxgeg, [Xs| > C’jaﬁx)
P(pg; (X) > ahz)

=P IX¢| > Cja x\max|X | > Cjaﬁx)
21<]t| < |t€D

P(maxsee, | Xs| > Cjalz) P(maxges, | Xs| > abz)
P(maxsce, |Xs| > alz) P(pe,(X) > ahz)

by condition (ACQ, 1+) we obtain the following anti-clustering condition:

lim limsup P

( X¢| > Canz |pe,;(X) > aﬁx) =0. (35)
10 manel i<t 2 Nten,

Now, for any z > 0, by the regular variation of pg, (X) (namely of maxgce, |Xs|) and by we
have that

lim limsup P

Xl > > ab ):0,
=00 n—so0 (2l<|t\<d |t€D‘ ol > zapz |pe, (X) > apa

In other words, for any € > 0 and z > 0, there exists [ > 0 such that for all w > [
(1gma_, IYe (01> <e
I<|t|<w \ teD;

This, implies that IP’(l l‘im |Yeg,(t)] =0) =1and so IP’(l llim |®@¢,(t)| =0) = 1fort € D;. The
t|—oo : t|—oo :

argument holds for every 7 € N. Since @j C Dy, from Lemma [29| we obtain the statement.

9 Proofs in Section
9.1 Proofs in Section

Since in Section|6.1|the R9-valued stationary random field (X4 )¢cz» is always considered in modulus
and since (|X¢|)¢ezr is stationary and regularly varying, it is sufficient to prove the results for a
non-negative valued stationary random field (X )ycz», as we do for the remaining proofs.

Theorem 30. Consider the following conditions:

(D) (Xt)iezr is a real valued stationary random field whose marginal distribution F does not have
an atom at the right endpoint x .

(I) For a sequence u, 1 xp and an integer sequence r, — o s.t. ky, = [|An]/|Ar, || = oo the
following anti-clustering condition is satisfied:

lim lim sup P(Ml/};f > up, | Xo > uy) = 0. (36)

=00 nosco
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(IIT) A mixing condition holds:

< - <y, )k
P({Iel%}iXt < un) (P(trél/z\aufz Xt < up) ) — 0, n— oo, 37
where (uy,), (kn) and (r,,) are as in (ID).
(IV) For any 7 > 0 there exists a sequence (u,) = (un (7)) s.t. h_)m |AL|P(Xo > un (7)) =T and

(1) and (INT) are satisfied for these sequences (uy,).

Then, the following statements hold:
(a) If (I) and (IT) are satisfied then

lim lim sup
=00 nosco

DY AP(, mmax Xy < un | Xo > un)| =0, (38)

€D,

Jj=1

and lim inf #* > 0.

n— oo

®) If (D) and (IV) are satisfied and 0{7\ = lim 02 exists, then 99( € (0, 1] exists and 09( = 9{7\.
n—oo
Remark 10. Notice that when u,, = a,x then (@ is the (ACQ ) condition.

Proof. Let us first focus on @ Denote by ¢4, | the highest element of A, according to <, by
t|A,, |1 the second highest one, ..., by t; the lowest one. Further, form =1, ..., A, | let M, :=
Max;_p,, . |A, | Xt; and form = [A, |+ 1let M,, := 0. Thus, we have P(M |5, |41 > upn) =0
an

|A7‘n|+1
P(tléll%:i Xt > up) = 7;:2 —P(My, > ) + P(Mp—1 > uy).

Consider I € Nwith ! < |A,_ | and form = 2,..., |A, | let

o Pp—
My = max Xt and
te€{tm —tm—1,-.t|a,, | —tm-1}

o\ = max X¢. (39
m\l t€{tm —tm—1,nrtja, | —tm—1}\ K} e (39

We have
—P(M;, > up) + PM;, V Xo > uy,) = PM;, < up,Xo > up)
Notice that for m = |A,, | + 1 we have that
—P(M, > up) + P(Mp—1 > up) = P(Xo > uy)

and so when divided by |A,, |P(X > u,,) is asymptotically negligible.
Now, for each j,n € N consider the points ¢,,,, form = 2, ..., |A,, |, such that {t;, —tm 1, ..., {|a, | —
tm—1} N K; = D; N K. For such points we have that is equal to

PMS <wu,, Xo>u max X¢ <uw PMS <wu,,Xo>u max X¢ > u
( m — Un, A0 n’tEDjﬂKl t = n)+ ( m — Un, A0 T“te'DjﬁKl t n)

— (o] . o
= P(Mm < up, Xo > un?te%?g(lﬂ X < un) = P( m\l < Up, Xo > un’te%?#[{, X < un)

=P(Xgo > up, max Xi <u,)—PMS\; > un, Xo > Un, max Xi < up).
( 0 n’tEDjﬂKl t > n) ( m\l ny 0 n7t€D]~F‘|Kl t > n)

and that
P( m\l > Up, Xo > u"’te%?r)w(}(l Xt <up) < ]P’(Mm\l > Up, Xo > Un)
< P(le(rn > Uy, Xo > Up).
For the points ¢,,,, form = 2, ..., |A,. |, such that {¢,,, — t,;,—1, N tm—1} NK; #D; N K
for every j € N, we will use that
P(M?, < up, Xo > uy) 1
|Ar, [P(X > up) ~ A,
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Observe that there are finitely many different subsets of K; and, following the notation of the proof of
Theorem | we denote their total number by 7; and denote them by "(1), e El(”). Further, for z =

1,..., 7, we let u&,} be the number of points ¢,,,, m = 2, ..., |A,_|, m —tm—1, - YA, | —
tme 1}rwrg = =) thatis 4147 = [{tm,m = 2,000, [Ar | {tm — bty oo b, | — b1} NG =
"(Z)}| Recall that "(z ={ieN: :l(z) = D,; N K;}. Then, by (i) and (ii) and in particular by point
(I) in Proposition 3] we have

’uT" — E Ais asn — oo.

()
Notice that if = :l(z) # D, N K, forevery i € N, then J ”( ) is empty and so ‘A — 0,asn — oo, and

we let Z; the subset of {1, ..., 7} of such zs. Further, forz € {1,...,m}\ Zl we let D indicate
the (or one of the) D, such that = "(z) =D, N K;. Thus,

(2)
Z :urn|n—_>><>o Z ZA—ZA—l

ze{l,...,rl}\Z1| n 2€{l. N\ Z1 e

Hence, we have that

o P(maxien,, X¢ > un) B Z Nsi)

P Xt <uplXo > upn) + A1 n
" TAL PX > an) (e . Xe < unlXo > un) 4

‘Arn| tEDj(z)ﬂKl

z€{1,...m}\Z
where A; ,, is such that

(2) (2)
|Al’n| S Z |l/’§7"n |]P)(Ml Tn > 'U/n|XO > un —+ Z |M7‘n |
ze{l,.. Nz "™ zez; 7T

Therefore, applying (36) we obtain that (38).

To show that lim inf #2 > 0 we proceed as follows. Consider the a set of points composed by points
n— oo

{t1, ..., tA,., |} which have a supremum distance of at least 2/, and denote it W,, and its points (in
increasing order according to >) by wq, ..., w,,, for some p,, € N. Observe that the sets

Xw,, > Un, max Xe <upyp,
trwm t€{t1,.. . ta,, | P\Ki—1(wm)

for m = 1, ..., pp, are disjoint and their union is a subset of {maxc A, Xt > uy, }. Observe also
that [A,. | > |[W,| > ||A,,|/(20)*|. Hence, we have

oA P(maxgen,, X¢ > un)
" Ay, |P(X > uy)
Dn P(me > Un, maxttwm,te{tl,...,t|ATn\}\K1_1(wm) Xt S un)

>
- [Ar, [P(X > up)

m=1 Tn
p,
= IPJ(‘X'O > Un, maXttO,te{tl—w7,l,4..,t|AT77‘—wm}\Kl,l Xt < un)

Ay, |P(X > uy)

m=1

i P(XO > Up, Ml—l,rn < un)
A |P(X > u,)

mpn 1
A
U /2],
Ar.]

]P(lelmn > un|X0 > un)]

1-— P(Ml—l,rn > un|X0 > Un)]
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Then

1 .
linrgioréf 0, = QIF 1- hrILILSolipP(Ml_LT" > un|Xo > up)l.
This proves point (a).
Now, assume that 9{} = lim 62 exists. We need to show that 0% = 9A By Taylor expansion we

n— oo
have

(P(trgfixn X < un))k" = exp(ky log(1 — ]P’(trél[%x Xt > up)))

Tn

B Al
= exp (R P(mpx Xe > )1+ o(1))

7 P(maxgen, X > un)
—exp (- 1+0(1)))
eXp( A PXsuy  dtel)

= exp ( — 7021+ 0(1))) —e %7 asn — oo

Hence, by the mixing condition (37) we have

< = < — < kn
P({g}f X < up) [P(yel%f Xt < up) (P(tglgﬁ X <up))™]

+ (]P’(tm/:\ax X <up))fr = e asn — .
€

™n

Since this holds for any 7 > 0, we conclude that 99( = 9?. O

Proof of Theorem 22 Recall ‘; and let ) := lim 77, A\jP(maxeep,nk, Xt < un | Xo >
n— 00 -

uyn), for I € N. By the continuous mapping theorem (and noticing that the sum is actually a

finite sum since there are finitely many different combination of points inside K; for given /) we

have () = ZOO AjP(max¢ep,ni, Y¢ < 1) and by monotonicity of the probability measure

00 L 3227 AjP(supgep, Yo < 1) as I — oo. Given that lim 0() = 6 exists, Theorempomt

l—o00
(a) ensures that for (u,) = (u,(7)) and some 7 > 0 we have that 6 = lim 62 exists and is
n—oo
positive. Then, from Theorempoint (b) for (u,,) = (un(7)) and arbitrary 7 > 0 we obtain that 6%
exists, is positive and it is equal to 9{)\, hence we obtain point (2). Moreover, from these arguments
we immediately obtain the first equality in , while for the others, using ©¢ “=" 1, we have that

o) = Z)\]]P’( sup |O¢| < 1) ZA]- (1 —/ P(y sup ©¢ > 1)d(—y_a))
= teD; j=1 1 teD;
0o 1 0o
:Z)\j<1—/ ]P’(sup@ﬁ>udu> Z)‘J< [sup@t/\l}>
= 0 teD, teD;

j=1

o

1

(el g 00).]) = (el 00 - mp )

j=1

<.
I

O

Theorem 31. Consider the following conditions:

(D) (X¢)¢ezr is a real valued stationary random field whose marginal distribution F does not have
an atom at the right endpoint v .

() For a sequence u,, 1 xr and an integer sequence r,, — o0 s.t. ky, = [|An|/|Ar, || = oo the
following anti-clustering condition is satisfied: for every j € I*

lim limsupP(MQ[;’f’(j) > Uy, | max Xg > uy,) = 0. (40)
=00 nooo o teg;
(IIT) A mixing condition holds:
< uy,) — < kn
]P)({rel%}i Xi < up) (P(tréljz&:i Xt <up))™ =0, n— oo, 41)
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where (uy,), (kn) and () are as in (I).

(IV) For any T > 0 there exists a sequence (uy,) = (un (7)) s.t. lim |A,|P(Xo > un (7)) = 7 and
n— oo

(I) and (I11) are satisfied for these sequences (uy,).

Then, the following statements hold:
(a) If (I) and (IT) are satisfied then

|Sh 4l P(maxgeg, X > un)

lim li
im limsup T PX > u,)

=00 n—soo

:07

92— Z P( max X< u"'{%angt > Up,)

hel* , h<my tE€DRNK2

(42)
and lim inf 62 > 0.
n—oo

(®) If () and (V) are satisfied and 0{7\ = li_>m 97’} exists, then 93} € (0,1] exists and 09{ = 92‘.

Remark 11. Notice that when u,, = a,x then @) is the (AC/; 1+ ) condition.

Proof. Denote by ¢|5, | the highest element of A, according to <, by #|, |_1 the second highest
one, ..., by t; the lowest one. Consider the s, s, and § introduced in the proof of Theorem Let
leN.Form=1,...,4letM,, := max (&), X¢and form = |Ar, |+ 11let 9, := 0. Thus,

we have P(M5, |41 > up) = 0and

teu?

i=m

at1
P X n) = -P m n P m— n)-
(trél/z&r)i t > Up) n; (M > up) + P(Me1 > uy)
For m = 2,..,0 let ;. = MAXeeyn (G s X¢ and imfn\l =
MAXg o (£)a s \K Xt. We have

— PN, > up) + Py —1 > uy) = =P, > uyp) + PO, V. max X¢ > uy,)
te€m_1

=P, <u,, max X¢>u,) (43)
te€m—1

Notice that for m = |A,.,| + 1 we have that

—P P _ =P X <P X,
(M, > up) + PO p—1 > up) (?551( t > Up) < (terlgla}i(to & > Up)

and so when divided by |A,, |P(X > u,,) is asymptotically negligible, for every fixed [ € N.
Moreover, we have that {@3) is equal to

PN, < up, max X¢>wu,, max Xt < up)
te€m—1 teUi, (&i)s;—s,,_ NEK2
{e}
+PON,, <wup, max X¢>wu,,  max Xt > up)
te€m_1 teUl | (Ei)s;—a,, 1 NKa
=P, < wup, max X¢>u,,  max X < up)
te€m—1 teUi (&), —s,, 1 NEK2
=P\ o < tp, max X¢>wun,  max X < up)
te€m—_1 teUl , (Ei)s;—s,, N2
=P( max X¢>w,, max Xt < up)
t€€m 1 tEU,, (Ei)s; s, 1 MK
—P(M)\o > un, max X¢>w,,  max Xt < uyp)
te€m 1 bV, (Ei)s;—5,, 1 NK2
where
P, 0 > un, max Xy >wu,,  max Xt < up)
t€Em_1 teui,, (€i)s;—s,, 1 NE2

oA X (3
< PO\ > un,tmax X > up) < IP’(MQl,rn(J) > u"’?éag},(Xt > Up),

m—1 J
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for some j € I* with j < my;. Hence, we have that

P(maxgen,, X¢ > un)

o) =
n A, [P(X > up)
}P’(maxteg,, Xy > un)
= P( max X; < u,|max X¢ > u, = + Bin
iezu teﬁjiﬁKzl £ = |t€£ji ‘ ) ‘Arn P(X > un) '

where the absolute value of B ,, is such that

Zhe[*,h<m4l |Sh,atllEn| + @
|Ar, |

|Bl,n| S

q|P(maxees; X¢ > up)
Ay, IP(X > uy)

+ Z ]P(MlAT’X’(ji) > u,| max Xg > un)l Ji
L n teg;
i€T* i<my ‘

nd by the same arguments as the ones used in the proof of Theorem [I7} see in particular

2 ), and (3 ) we obtain that hm limsup | By | = 0. Moreover, since
=00 nooo

P(maxiee, X¢ > up)
P( max X <wu,|maxX;>u 2
Z (teﬁjim{m ¢ n‘teg_n ¢ ) A, [P(X > uy)

P X >
E |S;L,41|P( max Xi < u,|max X > uy,) (Iiaxt;a‘;( & > Up)
heI* h<may te€DRNKz tesn A, [P(X > up)

we obtain (42).

To show that lim inf (‘)A > 0 we proceed as follows. Consider S hAl> for some h € I* with h < my;.

n—0o0

Let W\ be the set of points in .S}, ,; that have supremum distance of 4/ from each other. Observe
that the sets

max X¢is,, > Un, max Xe <Upp, Sm€E W,(lh),
teEL tmsm teUL (€:)s, \ K2t
are disjoint and their union is a subset of {maxc¢ Ay, Xt > ty, }. This is because
{ max  Xtys,, > Un, max X; < un}, Sm € W,(Lh)
teKyNAL, tsm tEUL | (£)s, \ K2
are disjoint and their union is a subset of {max¢cp, X¢ > un} and because
{maxe 0, Xots, > un} D {maxeeg, Xeys,, > un}. Observe that [V, | > ‘(Sfi')4é‘~ Then,
we have
oA _ ]P’(maxte/\rn Xt > up) Z P(max¢ce, Xets,, > Un, WA o teUi_ (£)s, \ K2l Xe < up)
no A |P(X > uy,) " A |P(X > uy,)
Sm €Wy
_ Z P(maxtee, X¢ > un, MAXy 0 4cUi | (£)s,— o \Kar Xt < up)
A, IP(X > uy)
s’!n EW’r(Lh) "
AX, (R
> |W(}L)|P(maxtegh Xe > tn, My <)
- A, |P(X > uy)
(h)
AX( | | P(maxtegh X > Un)
= (1 = P(max Xy > u, | ML < )
( (max Xe > un My, ™ < wn) ) T8 =% > )
Then .
TnCr X,(h)
hnn_1>10rc11f9 > L ’ oL — hnm—iipP(le W > up| Xo > ug)] >0,
for some [ large enough. This proves point (a). The proof of point (b) follows from the same
arguments as the ones used for the proof of Theorem 30| point (b). O
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Proof of Theorem 23] Recall (42) and let
|S;L,4l| P(maxseg, X¢ > un)
P(X > uy) ’

M .= lim Z P( max X;< un|£naEXXt > up)
€

n—oo hel* h<mu; teﬁthm h |A”’n

for I € N. Using the arguments in the proof of Theorem[I7] we have that

*P(maxte@hm[(m Xt < up, maxgeg, X¢ > Un, Pg;, (X) > 5777)

@ — 15 i
W0=lm > P(X > u)
hel* h<my; :

Z vzchDﬁP(m%ng,“t > Dy, max Yg, < Dh)
teéy

hel* h<muy teDLNK2y
= Z / Ynen DR P ymax O¢, t+ > Dp,y max Og, ¢ < Dh)d(—y_“),
hel*,h<ma €D, NKa
and
911;\ = li>m o) = lhm Z / yren DR P ymaxG)g, ¢ > Dp,y max Og, ¢ < Dh)Cl(—y’O‘)
- T hert h<ma t€DLNKy
Z / YhenDRP ymax@gh t > Dp,y sup B¢, ¢ < Dh>d( y=)
hel~ teDy,
= Z / hchDh]P’(ymax@gh t > Dp,y sup Og, ¢ < Dh)d(—y*a),
hel* teD),
Given that lim ) = 9} exists, Theorem [30| point (a) ensures that for (u,) = (u, (7)) and some

=00
7 > 0 we have that 9A = lim 97 exists and is positive. Thus, from Theorem [30| point (b) for

(un) = (un(7)) and arbltrary T > 0 we obtain that 6% exists, is positive and it is equal to §;*. From
these arguments we obtain the first equality in (I6) while for the others we have that we have that

oh = Z%QD P(Ymax@g ¢ > D;,Y sup Og, ¢ < D)
iel* teD;

= 3" yeD? (]P’(Yrtrg)i(Gght > DZ-) fIP’(YmaX@g ¢ > Dy, Y sup Og, ¢ > D; ))

il teD;
= nyzcha/ P(ymax@gi,t>Di) —P(ymax@g + > D;,y sup Og, t>D)d( |
ieI* e teD;

Z ~; CZDQ/ (max@g ¢ > uDy ) P({cnz(lgx@gi ¢ > uDy, sup Og , > uD;’)du
€E&; ’ > v

iel* teD;
= Z ~vie; DY (IE [D;a max ©g A 1] — E[D;O‘ max ©g A D; % sup Of A 1})
- tes; & tes; v = v
el* teD;
= Z fy;‘ci<]E[maX®?;‘, ¢ /\D?} —]E[max@g ¢ /\ sup Og, ¢ A DY })
- tes; v &;
S teD;
Z%Cz< {max@e t}fE[max®g ¢ /\ sup Og, t])
te&;
iel* teD;
_ Z Vi [(max g, ¢ — bup @g‘m) ] Z Ve [ sup  ©g, ; — sup @ght},
ieI* eD; icl* te&;UD; teD;

where we used the fact that since pg, (©) = 1 a.s., then maxgcg, O(s < D; a.s. by Corollary
Moreover, applying a change of variable and the time change formula we get the representation

Z%CJ [SHPtEH] ZVJCJ [SUP Qs L t:|

jer* SEHJ |65 S|a jer*
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Finally, by the time-change formula applied to

«
MaXye (), @g,-,z

f ®5j,s seEH;) = o
t(( ) e ) ZSE’HJ- @Ej,s

1(T: = t)

and shifting t to 0, for every t € £;, we have

maXze(g,), OF. ,
Bl s Qf o] = Y B[ Pem <o)

«@ J
t€(5j)Tj* teLl; ZSGHJ 95.7’75

maxzeg, OF, , . § ) *
B Z E[Zseﬂj@o‘l(’rj =0) Z @gj,i} = E{max@gj’zl('rj =0)|.

zEE;
teLl; €58 i€(&;) ¢ !

9.2 Proof of Proposition

For every j > 1 we also denote RI(JK = (Uesean:(an) ooe;y (An)—eN{s € Z¥ : s - 0})) \ K,
and M%) = max,_,) X; so that Condition (AC ;.) is satisfied if for every j € I*
, iR’y =,

lim lim supP(Mﬁ’f’(j) > alx | max Xy > aﬁx) =0.
1500 n—oo in tee;
We start by showing the following Lemma

Lemma 32. Let (X;),cz+ be a stationary max-stable random field. Then (X),cyn is jointly regularly
varying and the finite-dimensional distributions of its tail field (Yy);ezx is given by

IP)(Ytl < ylv"ﬂ)/tn < yn)

forty,....t, € ZF and yy, ..., y, € (0, 00).

Proof. It follows from similar computations as the ones in the proof of Proposition 6.1 in [23]]. For
any 1, ...,x, € (0,00) we have (see Examples 1.5.4 and 4.4.3 in [17])

Vi
P(Xe, <21y, Xy, < ) =exp {—E [ max t’} } .
i=1,...,n IT;

Thus, for any x > 0
P($71X11 < Y1, "'awilth < Yn | XO > CL’)

P(Xy, <zy1,..., X, < ayn) — P(Xy, <zy1,..., Xi, < 2Yp, Xo < )
P(Xo > (E)

exp {—%}E [maxizlw,n ‘;Z } } — exp {—%E [max (maxizlw,n %7 Vb)] }
1 — e EW]/=

T 1 W, 1 W,
~ —7E " _ _7E i

g (oo {-o2 [, ) oo g e (e S )
S exp _EM]_1 E | max %,
E[Vh] x E[W |i=l..n y;

“on{ g e (e, S w) | )

which converges to (@#4) as © — oc. O
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We follow partially the proof of Proposition 6.2 in [23]]. Fix any j € I*, observe that

AL X ()
P(Mlern’(J) > alx {réaguxXt > aﬁx) =1-
J

P(max (]\Zfé\lf(j) Itn%XXt> > aﬁx) —]P’(MAX(J) > aﬁ:c)
€

20,r
J

]P’(maXXt > aA )
tee;

and that
E | max V4 /a T
]P’(maxXt>aﬁm):<l—e Le J d )NE{maXV}}/aﬁx, n— co.
te&; teé&;
Since
0 < —(aha) B[N D] < ~(aha) AL, | - 0,

as n — oo, we also have

IP’(MA’X’(j) > aﬁz) = (1 —e " [M;\li‘:é(j)]/aﬁx) ~ E[MA7V’(j)i|/CL£I, n— 00.

20,7y 21,

Then, the (AC,.) condition is satisfied if and only if

lirn

lim liminf a; x{]P’(maX (Méx’x’(j),{nz}xXt) > a%x) — P(sz\l’f’(j) > aﬁx)} = E[max V4].
E »'n

l—o00 n—oo ’ tes;
(45)
Since
]P’(max (Mﬁ’f’%maxXo > aﬁx) - P(Mé\l’f’(j) > aﬁx)
T T teE; T
oo~ e s (o1 e (9317 g )
o (oA =1 A V() _E|pAVG)
ot (s (33 )] -3
and then (@3) holds if and only if
lim lim infE{max (Mé};/(]) max Vt)] — E[Mé}y(j)} = ]E{max Vt}. (46)
=00 n—o0 te&; o teg;

Then

lim lim infE{maX (Mé}’y’(j)7 max Vt)} — E[sz\l"ﬂ(j)]
o €

l—00 n—00 J Tn

zlimE[( max Vi — max V})l(rtré%i;Vt#O)}.

l=oo teRéJl)A, UE; tER%?AT”
By assumption max V; = max Vi, thus max V4l (max Vi # ()) — 0 a.s.
teR;;an teR,ng)Ar A(Uis1((H)i)+) teR;?Ar

as | — oo under (T8) and then (46)) follows by dominated convergence.
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