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Abstract. In this article, we establish solid foundations for the study of Maximal Entropy
Random Walks (MERWs) on infinite graphs. We introduce a generalized definition that extends
the original concept, along with rigorous tools for handling this generalization. Unlike conven-
tional simple random walks, which maximize entropy locally, MERWs maximize entropy globally
along their paths, marking a significant paradigm shift and presenting substantial computational
challenges. Originally introduced by physicists and computer scientists in [1], MERWs have con-
nections to concepts such as Parry measures and Doob h-transforms. Our approach addresses
the challenges of existence, uniqueness, and approximation, illustrated through examples and
counterexamples. Even in the infinite setting, MERWs continue to maximize the entropy rate,
albeit in a less direct manner. Additionally, we conduct an in-depth analysis of weighted spi-
der networks, including scaling limits, revealing various phenomena characteristic of the infinite
framework, notably a phase transition. A unified proof of scaling limits based on submartingale
problems is presented. Furthermore, we consider some extended models, where the spider lat-
tice provides valuable insights, highlighting the complexity of studying these walks for general
infinite weighted graphs.
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1 Introduction

The most popular way to randomly explore a locally finite graph G without any additional
information is to assume that a walker at a given node jumps to any neighboring node chosen
uniformly at random, and does so independently at each time step. This stochastic process is
known as a Simple Random Walk (SRW), or, as referred to in [1], a Generic Random Walk
(GRW). This choice, among all possible random walks, can be justified by its property of max-
imizing entropy production at each step. Following many classical references, such as [2], we
shall refer to a random walk on a graph simply as a Markov chain.

Entropy rate of a random walk. The concept of entropy, introduced by Ludwig Boltzmann,
is fundamental in the fields of Statistical Physics and Thermodynamics. Similarly, the field of
Information Theory, developed by Claude Shannon in the 1940s, also recognizes the importance
of this quantity. We refer to their groundbreaking papers [3,4]. Here, all we need to know is that
the entropy of a distribution µ on a countable set V is defined by H(µ) = −∑x∈V µ(x) ln(µ(x)).
When X is a random variable on V , H(X) represents the entropy of the distribution of X.
Besides, if card(V ) = N is finite, the maximum value of H(µ) is attained when µ is the uniform
probability measure on V , and it equals ln(N). Concerning Markov chains, the quantity of
significant interest is the entropy rate h (see [5,6] for instance). When (Xn)n≥0 is an irreducible
and positive recurrent Markov chain on V , h is independent of the initial distribution and
depends only on the invariant probability measure π and the transition kernel P :

h ≡ lim
n→∞

H(X0, · · · , Xn)

n
= −

∑
x,y∈V

π(x)P (x, y) ln(P (x, y)). (1.1)

As an example, for the GRW on a finite graph with vertex set V , one has

π(x) =
d(x)∑
y∈V d(y)

, P (x, y) =
A(x, y)

d(x)
, and hGRW =

∑
x∈V d(x) ln(d(x))∑

x∈V d(x)
, (1.2)
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where A denotes the adjacency matrix of the graph, and d(x) =
∑

y∈V A(x, y) represents the
out-degree of the vertex x.

A brief history of MERWs and their applications. Maximum Entropy Random Walks
represent a paradigm shift from a local to a global perspective. In essence, these are random
walks that maximize entropy along their paths or, equivalently, the entropy rate (2.2). This
approach was recently introduced in [1, 7, 8]. Among their findings, the authors emphasize the
strong localization phenomenon of MERWs in slightly disordered environments. This property
is particularly relevant in Quantum Mechanics, especially in the context of the Anderson lo-
calization phenomenon (we refer to [9] for a mathematical survey). More broadly, MERWs
appear to hold significant implications for statistical physics (we can allude to [10, 11]). The
concept of MERW is closely related to that of Parry measures for subshifts of finite type, as
defined in [12] and recently explored in [13]. They are also referred to as Ruelle-Bowen random
walks (see [14, 15] for instance). This idea is also subtly present in [16, 17] and an alternate
interpretation of these random walks based on large deviation theory is given in [18]. Further-
more, MERWs could be instrumental in studying and modeling complex networks, as suggested
in [19–21]. Lastly, the MERW concept has found applications in diverse scientific areas, such as
community detection [22,23], link prediction [24], and even quasispecies evolution [25].

The finite setting. While significant progress has been made in the mathematical framework of
MERWs, further inquiry is yet required. Current advancements mostly pertain to finite graphs,
which present advantageous properties. Specifically, when dealing with an irreducible finite
graph G, the Perron-Frobenius theorem guarantees the existence and uniqueness of a MERW.
As illustrated in [1, 7, 8], its Markov kernel P and its invariant probability measure π, for all
vertices x, y, can be written as

P (x, y) = A(x, y)
ψ(y)

ρψ(x)
and π(x) = φ(x)ψ(x). (1.3)

Here, A still denotes the adjacency matrix of the graph, ρ is its spectral radius, and ψ and φ
are respectively the positive right and left ρ-eigenvectors of A, suitably normalized so that π
defines a probability measure. Besides, it can be shown that the corresponding entropy rate
is hMERW = ln(ρ). Intriguingly, all trajectories of length n between vertices x and y have the
same probability, given by ρ−nψ(y)/ψ(x). While the trajectory distribution is not uniform, it
becomes uniform when conditioned on trajectory length and endpoints. This property suggests
the rich combinatorial features inherent in MERWs. Equation (1.3) evokes the well-known Doob
h-transform, commonly encountered when conditioning stochastic processes to remain within a
specific domain. For relevant references, we refer to [26–30] and Remarks 2.2 and 3.2. However,
we emphasize that the MERW perspective is quite different: there is no underlying random
walk, the domain is fixed, and it is this domain that determines the probability transitions (see
also Remark 1.1). Furthermore, to broaden the scope, one can substitute the adjacency matrix
A with a weighted variant (strictly positive across edges) and require the MERW to maximize

h(Q) = −
∑

x,y∈G
µ(x)Q(x, y) ln

(
Q(x, y)

A(x, y)

)
, (1.4)

over the positive-recurrent Markov kernels Q on G, where µ denotes the invariant probability
distribution of Q. When the entries A(x, y) are non-negative integers, this formulation can be
interpreted as a MERW on a multi-edge graph. Additional constraints, like energy conditions,
can be introduced as discussed in [7, 31]. The positive eigenfunction ψ is prominent when
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assessing node influence in complex networks, forming the crux of the eigenvector centrality
method [32]. For physicists, the function ψ in (1.3) can be interpreted as a wave function,
specifically the ground state of the following discrete Schrödinger equation

−∆ψ(x) +H(x)ψ(x) = −ρψ(x), (1.5)

where ∆ is the graph Laplacian and H is the potential defined by

∆f(x) =
∑
y∈G

A(x, y)(f(y)− f(x)) and H(x) = −
∑
y∈G

A(x, y). (1.6)

For symmetric matrices A, we have π(x) = ψ2(x): the stationary probability distribution of the
MERW is the square of the wave function. There are only a limited number of solvable models
where the spectral radius and the associated wave function are explicitly known and determining
these in general is a challenging task. For specific examples, such as Cayley trees with a finite
number of generation or periodic ladder graphs, we refer to [33] and [8] respectively. Obviously,
for sufficiently small graphs, it is feasible to compute these values numerically and carry out
computer simulations of the MERW.

Remark 1.1. This method of generating random walks may initially seem confusing. Typically,
transition probabilities are chosen in an ad hoc manner. Here, however, the primary object is the
weighted graph, and the transition kernel of the MERW is merely a consequence of its structure.
Once the network is fixed, the random walk to be studied is fully determined. For example, it is
not possible, as is often the case, to impose additional conditions such as a null-drift criterion,
square-integrable jumps, and so on.

Motivation, contribution and scope of this paper. To our knowledge, there is a lack of
consistent results for infinite networks. Some infinite periodic lattices are briefly investigated
in [8, Section 7.1], where some diffusion coefficients are computed, but no theoretical framework
has been established. Additionally, some unweighted star graphs, as shown in Figure 1, are
examined in [10,11], but only from a combinatorial perspective. Phase transitions related to the
number of paths are observed as the number of rays varies. However, no MERW is defined or
investigated in these cases. Our main objectives are to go beyond the finite setting and begin
expanding the bestiary of MERWs by providing compelling examples and counterexamples. In
particular, we aim to address and elucidate the following questions:

(a) How can MERWs be properly defined on infinite graphs? Does a unique MERW exist?

(b) What about the entropy? What are the connections with MERWs on finite graphs?

(c) How do the scaling limits of MERWs compare with those of GRWs?

Additionally, we aim to clarify transversal issues:

(∗) To which classical notions can this concept be related? What are the main challenges?
What are the main tools to study these walks?

We now detail the questions (a), (b), (c), and (∗) by outlining the structure of this paper.
First, we define the spectral radius ρ of an infinite graph in Section 2.1, based on the con-
vergence parameter R introduced by Vere-Jones [34]. Computing ρ can be challenging, as it
requires asymptotic estimates of the number of walks. Next, analogous to the left-hand side
of (1.3), a MERW is defined using a positive eigenfunction ψ associated with ρ. For infinite
graphs, finding or approximating such a positive harmonic function can be a very difficult task.
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Uniqueness and existence of MERWs are discussed in Section 2.2. In Section 2.4, we discuss
how graph symmetries can be used to reduce the computation of ρ and ψ to smaller, possibly
finite lattices. In Section 3, we focus on the weighted spider network shown in Figure 1. The
investigation of this type of graph is motivated in [10, 11] by the study of the conformational
statistics of an ideal polymer chain. Here, the essentially unidirectional structure of this graph,
coupled with nearest-neighbor interactions, allows for the explicit computation of the associated
MERWs. We demonstrate phase transitions between positive recurrent, null-recurrent, and tran-
sient behaviors, in accordance with those highlighted in [10, 11] regarding the second moment
asymptotics of the number of paths (the bifurcation region plays the role of an entropy trap).
In this paper, the phase transitions find a more precise and quantified probabilistic interpre-
tation, while introducing weights into the model. We also touch on non-nearest-neighbor and
two-dimensional extensions in Section 5, illustrating how combinatorial problems can rapidly
become more complex.

γ1

γ
(k)
2

γ3
γ3

N half-lines

kth half-line

Figure 1: The weighted spider network

Definition 2.2 may seem questionable for several reasons. First, it does not always ensure the
maximization of the entropy rate (1.4), as the corresponding Markov chain may not be positive
recurrent. Additionally, if we replace ρ with any r > ρ and ψ with an r-positive eigenfunction
φ in (2.2), the resulting random walk still maximizes the entropy of paths of fixed length with
given endpoints (see Theorem 2.1 and the example at the beginning of Section 2.3). Why, then,
choose ρ, and how does it relate to the entropy rate? Section 2.3 addresses this, synthesizing
known results from dynamical systems in the context of MERWs. It turns out that ln(ρ) is
the supremum of the entropy rate (1.4) over all positive recurrent kernels Q, and even over all
irreducible kernels on finite subgraphs (see Theorem 2.2). A surprising example, at the end of
Section 2.3, demonstrates that some MERWs, as defined in Definition 2.2, cannot be approxi-
mated by MERWs on finite subgraphs.

Regarding scaling limits, a classic example is Donsker’s celebrated result [35], which has
inspired extensive research. Under certain conditions, Donsker’s theorem shows that scaling
limits of GRWs are Brownian motions. We aim to demonstrate that many continuous-time
stochastic processes can be interpreted as scaling limits of MERWs. In Section 4, we present the
functional scaling limits derived from the three type of MERWs obtained in Section 3. These
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limits include standard and drifted Walsh Brownian motions, as well as the three-dimensional
Bessel process. The phase transitions presented above are also reflected in these scaling limits.
In the more complex context of continuous-time processes, Section 4.4 shows how these diffusions
minimize certain Kullback-Leibler divergences but in a less accessible manner. Section 6 offers a
unified proof of these limits using a submartingale problem approach, addressing challenges like
the singularity of Walsh diffusions and the drift of the three-dimensional Bessel process at the
origin. Notably, the MERW in the R-transient case on a spider lattice with N = 1 is a Bessel-like
random walk (or Lamperti Markov chain), whose scaling limit is studied in [36]. Finally, Section
5 extends some of these results to particular two-dimensional networks and non-nearest-neighbor
adjacency structures based on the spider lattice.

2 General Framework

In what follows, let G represent a countable irreducible weighted graph. We use A to denote
the weighted adjacency matrix and E for the set of edges. For simplicity, we will refer to G as
the set of vertices. Additionally, we shall assume that

sup
x∈G

∑
y∈G

A(x, y) <∞. (2.1)

When G is unweighted, meaning that A(x, y) ∈ {0, 1} for all x, y ∈ G, this condition simply
means that the out-degrees of vertices are uniformly bounded.

2.1 An Expanded Definition of MERWs

For the primary results on infinite positive matrices that we make use of, we refer to [34].

Definition 2.1. For any arbitrary x, y ∈ G, the combinatorial spectral radius, denoted by ρ, is
defined as the inverse of the radius of convergence for

∑∞
n=0A

n(x, y)zn. Notably, it is indepen-
dent of the choice of x and y.

In essence, the leading asymptotic behavior of the number of n-step trajectories from x to y
is on the order of ρn. Assumption (2.1) above ensures that ρ is finite.

Definition 2.2. A random walk on G is termed a MERW if, for all vertices x, y ∈ G, its Markov
kernel is defined as

P (x, y) = A(x, y)
ψ(y)

ρψ(x)
, (2.2)

where ψ represents a positive eigenfunction of A associated with the spectral radius ρ (also
referred to as a positive ρ-harmonic function).

Analogously to (1.3), if φ is a positive left eigenfunction of A associated with the eigenvalue ρ,
then π(x) = φ(x)ψ(x) is an invariant measure of the MERW. Besides, without loss of generality,
we can assume that ψ(o) = 1 for a chosen base point o ∈ G.

Remark 2.1. The set of positive solutions φ to Aφ = ρφ with h(φ) = 1 is a convex compact
set for the pointwise topology. Let C denote this set and let E ⊂ C be the subset of extremal
solutions. By the Krein–Milman and Choquet theorems, for any ψ ∈ C, there exists a probability
measure µ on E such that

ψ(x) =

∫
E
φ(x)µ(dφ). (2.3)
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2.2 Existence and Uniqueness

To ensure the existence and uniqueness of such MERW, we require further assumptions related
to the recurrence and transience of Markov processes. The following definition is based on [34]
where R = 1/ρ is named the convergence parameter.

Definition 2.3. Let x, y ∈ G be arbitrary. The weighted adjacency matrix A is termed R-
recurrent (resp. R-transient) if

∑
n≥0

An(x, y)

ρn
= ∞

resp.
∑
n≥0

An(x, y)

ρn
<∞

 . (2.4)

If A is R-recurrent, it is termed R-null (resp. R-positive) if An(x, y)ρ−n tends to zero (resp.
does not tend to zero). Notably, these definitions are independent of the choice of x and y.

The following proposition follows easily from (2.2), the preceding definition, and [34].

Proposition 2.1. Suppose that A is R-recurrent. Then, ρ is an eigenvalue of A, and there
exist unique (up to a multiplicative constants) left and right eigenfunctions associated with ρ.
Consequently, there is a unique MERW, which is recurrent. Moreover, this MERW is positive
recurrent if and only if A is R-positive. Furthermore, if A is R-transient and a MERW exists,
then it is necessarily transient.

Remark 2.2. In the R-transient situation, there may exist an infinite number of MERWs (see
the example of spider lattice in Section 3 for instance). Moreover, if P is one of these Markov
kernels, say associated with ψ as in (2.2), one can easily check that every positive harmonic
function h for P , that is, satisfying Ph = h, can be written as h = ψ/φ, where φ is another
positive solution of Aφ = ρφ. In particular, the classical Martin boundary theory can be used
to describe all MERWs, similarly to (2.3), and each of these walks can be seen as a true Doob’s
h-transform of P since

P (x, y)
h(y)

h(x)
= A(x, y)

φ(y)

ρφ(x)
. (2.5)

An example of weighted graph with no existence. In the R-transient case, neither the
existence nor uniqueness of the MERW is assured. Consider G = N0 = {0, 1, · · · } and define A
such that A(n, n− 1) = 1, A(0, n) = αn > 0 for all n ≥ 1, and A(x, y) = 0 elsewhere. It can be
observed that ∑

n≥1

An(0, 0)zn =
1

1−∑n≥1 αnzn+1
. (2.6)

Therefore, if
∑

n≥1 αnz
n+1 has a radius of convergence equal to 1 and

∑
n≥1 αn < 1, we obtain

that ρ = 1 and A is R-transient. Since no solution exists for ψ0 = 1, ψn = ψn−1 for all n ≥ 1,
and ψ0 =

∑
n≥1 αnψn, no MERW exists for this setup.

As a matter of facts, it is possible to establish a necessary and sufficient condition for the
existence of a MERW. This condition is closely tied to taboo-like probabilities and draws upon
the foundational work by Harris and Veech on the existence of an invariant measure for a
transient Markov chain. A detailed presentation of this result can be found in [37].

Theorem 2.1. The equation Aψ = λψ with λ > 0 has a positive solution ψ if and only if one
of the following conditions is satisfied:

(i) λ = ρ and A is R-recurrent;
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(ii) (a) λ = ρ and A is R-transient, or (b) λ > ρ, and in both cases, there exists an infinite
subset K ⊂ G and an exhaustive nested sequence (Gj)j≥0 of G with card(Gj) = j such
that

lim
j→∞,k→∞,k∈K

∑
y/∈Gj

A(x, y) xFy,k(λ
−1)

xFx,k(λ−1)
= 0, (2.7)

where the power series xFy,k(z) =
∑∞

n=0 xf
(n)
y,k z

n are recursively defined by

xf
(n+1)
y,k =

∑
w ̸=x

A(y, w) xf
(n)
w,k and xf

(0)
y,k = δy,k(1− δx,y). (2.8)

Here k → ∞ in G in the sense of the Alexandroff extension, and δa,b = 1 if a = b and
δa,b = 0 otherwise.

Remark 2.3. If G is locally finite then the Harris-Veech condition (2.7) is met. Consequently,
there exists at least one MERW in that case.

2.3 Entropy Rate characterizations

It should be noted that in case (ii)(b) of Theorem 2.1, one can define a Markov kernel by replac-
ing ρ in (2.2) with the corresponding λ > ρ. Conditionally on their length and their extremities,
the probability of any trajectory remains proportional to its weight. One might question the
reason for not replacing ρ in Definition 2.2 with an arbitrary λ > ρ when feasible. The primary
motivation is that we want MERWs to genuinely maximize the entropy production along the
paths, in a manner yet to be defined.

A toy example. Consider the standard lattice G = Z. The set of extremal positive solutions
to λψ(x) = ψ(x+ 1) + ψ(x− 1) with ψ(0) = 1 exists for any λ = 2 cosh(α), α ≥ 0, and is given
by ψ±(x) = e±αx. The corresponding MERWs (Xn)n≥0 are the usual biased random walks.
Starting from an arbitrary point X0 = x, it is not difficult to see that the asymptotic rate of en-
tropy h defined in the left-hand side of (1.1) is maximized for α = 0, corresponding to λ = ρ = 2.

To delve deeper, recall that h(Q) is defined in (1.4) and introduce

h⋆(G) = sup{h(Q) : Q is a positive-recurrent kernel on G}. (2.9)

Note that h⋆(G) is bounded by the logarithm of the right-hand side of (2.1). If G is finite,
the supremum of h(Q) is attained at a unique positive recurrent kernel given by (1.3), and
we have h⋆(G) = ln(ρ(G)), where ρ(G) denotes the spectral radius of G. In the sequel, when
considering a subgraph H ⊂ G, it is naturally endowed with the weight structure of G through
the restriction of the weighted adjacency matrix. The following result can be inferred from
sources such as [38–47]. Further details will be provided below.

Theorem 2.2. It holds that h⋆(G) = ln(ρ). Additionally, the supremum in (2.9) is actually a
maximum if and only if G is R-positive. When this condition is met, the maximum is attained
by the unique MERW transition kernel. Moreover, one has

h⋆(G) = sup{h⋆(H) : H ⊂ G is finite and irreducible}. (2.10)

Furthermore, let (Hn) be an exhaustive and increasing sequence of finite, irreducible subgraphs
such that h⋆(Hn) −→ h⋆(G) and let Pn represent the unique MERW transition kernel on Hn.
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1. If G is R-recurrent, then the sequence (Pn) converges pointwise to the unique MERW
transition kernel.

2. If G is locally finite and R-transient, then the sequence (Pn) is tight, and any of its limit
points is a MERW transition kernel.

To be more specific, for unweighted graphs, h⋆(G) represents the Gurevich entropy of the
associated topological Markov chain. It has been established that an equilibrium measure (specif-
ically, a Parry measure) exists if and only if G is R-positive, and in such cases, this measure is
unique. We refer the reader to [41, 42, 45]. These results can be extended to weighted graphs
using the concepts of topological pressure and potentials (see, for instance, [43,46]). Regarding
the convergence of a maximizing sequence, references [38,39], Chapter 6.4 of [40] and [47] provide
insights, with the latter highlighting connections to the theory of large deviations. The reason
for assuming that G is locally finite in the context of transient graphs is due to the necessity of
exchanging the limit and summation in the expression

ρnψn(x) =
∑
y∈Hn

A(x, y)ψn(y), x, y ∈ Hn, (2.11)

where ψn denotes the eigenfunction associated with the spectral radius of Hn, normalized such
that ψn(o) = 1 for some fixed base point o present in all Hn.

Remark 2.4. At first glance, one might think that even in the transient case, all MERWs
defined as in (2.2) could be approximated by MERWs on finite subgraphs. However, as the
following intriguing example demonstrates, this does not appear to be the case.

An example with quantized limit points. Suppose G = Z carries the standard weight
structure, except that A(0,±1) = γ with γ > 0. This is a specific case of the symmetric spider
lattice investigated in Section 3 and represented in Figure 1 when N = 2. In particular, we find
that G is R-transient if and only if γ < 1. Under these conditions, ρ = 2, and the two extremal
eigenfunctions are

ψ(±)(n) =

{
1 + Λn if ±n ≥ 0,

1 if ±n ≤ 0,
with Λ =

2(1− γ)

γ
. (2.12)

In particular, there is a one-to-one correspondence between {λψ(+) + (1 − λ)ψ(−) : 0 ≤ λ ≤ 1}
and the set of all MERWs. Let us introduce Hp,q = {−q + 1,−q + 2, . . . , p − 2, p − 1} ⊂ G
for p, q ≥ 1. Observe that ρ(Hp,q) ↑ 2 as p, q grow to infinity. Let ψp,q denote the unique
eigenfunction associated with the spectral radius ρ(Hp,q) and satisfying ψp,q(0) = 1.

Proposition 2.2. The set of all limit points of ψp,q as p, q → ∞ is given by the functions of
the form µδψ

(+) + (1− µδ)ψ
(−), with δ ∈ Z ⊔ ±∞ and

µδ =

√
Λ2δ2 + 4 + Λδ − 2

2δΛ
∈ [0, 1]. (2.13)

This probability is extended by continuity at δ ∈ 0,±∞. In particular, the set of all MERWs
that can be obtained as limits of classical MERWs on finite subgraphs is quantized.

Proof. Since ρ(Hp,q) < 2 we can write ρ(Hp,q) = 2 cos(θp,q) where θp,q ∈ (0, π/2). It comes

ψp,q(n) = cos(θp,qn) + (b−1n<0 + b+1n>0) sin(θp,qn), (2.14)
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for some b± ∈ R. Analyzing the boundary conditions at points 0, p, and −q, we derive b+−b− =
Λcotan(θp,q), b+ = −cotan(p θp,q) and b− = cotan(q θp,q). One can further express

ψp,q(n) =
sin((p− n) θp,q)

sin(p θp,q)
1n≥0 +

sin((q + n) θp,q)

sin(q θp,q)
1n<0. (2.15)

Since ψp,q is positive, we obtain max(p, q)θp,q < π. Besides, since and θp,q → 0 as p, q → ∞, one
has b+ − b− → ∞ and then max(p, q)θp,q → π.

Assume that q ∼ αp for some 0 < α < 1. Then, we get b− ∼ cot(απ) and

b+ ∼ 1

π − p θp,q
∼ Λp

π
. (2.16)

From this, we infer that ψp,q → ψ+ pointwise, and subsequently, ψq,p → ψ−. As a result, we
can identify the two extremal MERWs.

Next, assume that q ∼ p with p− q = δ for some δ ∈ N0. We get

π − q θp,q ∼
(
1 + δ

θp,q
π − p θp,q

)
(π − pθp,q). (2.17)

We find that b± ∼ µ±Λ where µ− = 1−µ+ and µ+
(
1 + 1

1+δµ+Λ

)
= 1. By symmetry, we deduce

that the non-extremal MERWs obtainable through finite approximations are represented by the
eigenfunctions µδψ(+) + (1− µδ)ψ

− for δ ∈ Z.

2.4 Automorphism and Reduced Models

In general, computing the combinatorial spectral radius and the associated eigenfunctions can
be quite challenging. In this section, we provide tools to explore simpler models when the graph
exhibits symmetries. For a deeper understanding of graph automorphisms and amenable groups,
we refer the reader to [2]. Let us define T as a subgroup of

Aut(G) = {τ ∈ S(G) : ∀x, y ∈ G, A(τx, τy) = A(x, y)} , (2.18)

where S(G) denotes the symmetric group over G and Aut(G) is the subgroup of graph auto-
morphisms. The orbit of an element x ∈ G under the action of T is represented by x, and the
entire orbit space is denoted by G.

Definition 2.4. The set G is canonically endowed with a weighted graph structure inherited
from that of G. The edges of this structure are defined as

E = {(x, y) : ∃(x, y) ∈ x× y such that A(x, y) > 0}. (2.19)

The corresponding weighted adjacency matrix is defined by A(x, y) =
∑

y∈y A(x, y), for any
choice of x ∈ x. Furthermore, if G is irreducible, then G is also irreducible. This weighted graph
is termed the reduced graph. In [2], it is also referred to as the factor graph T \G.

Definition 2.5. The set G is canonically endowed with a weighted graph structure inherited
from that of G. The edges of this structure are defined as

E = {(x, y) : ∃(x, y) ∈ x× y with A(x, y) > 0}. (2.20)

The corresponding weighted adjacency matrix is defined by A(x, y) =
∑

y∈y A(x, y), for any
choice of x ∈ x. Furthermore, if G is irreducible, then G is also irreducible. This weighted graph
is termed the reduced graph. In [2], it is also referred to as the factor graph T \G.

10



If, for some λ ∈ C and ψ : G → C, we have Aψ = λψ, then Aψ = λψ, where ψ is defined
by ψ(x) := ψ(x) for all x ∈ G. Conversely, if Aψ = λψ and ψ is T -invariant, i.e., ψ(τx) = ψ(x)
for all τ ∈ T and x ∈ G, then Aψ = λψ, where ψ(x) = ψ(x) for all x ∈ G.

Remark 2.5. Unfortunately, eigenfunctions of A are not necessarily T -invariant, so finding all
the λ-eigenfunctions of A does not guarantee that we have found all the λ-eigenfunctions of A.

Furthermore, denote by ρ the combinatorial spectral radius of the reduced graph G. Clearly,
we have ρ ≤ ρ because, for any x, y ∈ G and n ≥ 1,

A
n
(x, y) =

∑
y∈y

An(x, y). (2.21)

We shall provide conditions ensuring that ρ = ρ. For a given x0 ∈ G and n ≥ 0, let us define
B(x0, n) =

{
x ∈ G : ∃ 0 ≤ k ≤ n,Ak(x0, x) > 0

}
. For any subset L ⊂ G, we define ∂L as the

set of vertices y ∈ G \L such that there exists x ∈ L with (x, y) being an edge of G. We use |L|
to represent the cardinality of L. Recall that T is termed quasi-transitive when G is finite.

Proposition 2.3. We have ρ = ρ if any of the following conditions is met:

i) There exists x ∈ G such that x is finite.

ii) G is locally finite, A is symmetric, and there exist x0, x ∈ G such that

lim
n→∞

ln(|B(x0, n) ∩ x|)
n

= 0. (2.22)

iii) There exists a positive T -invariant function ψ such that Aψ ≤ ρψ.

iv) G is symmetric, locally finite, unweighted, T is quasi-transitive, and either

(a) G does not satisfy a strong isoperimetric inequality, i.e., infL⊂G,L ̸=∅
|∂L|
|L| = 0;

(b) or T is amenable and unimodular.

Proof. i) The power series
∑

nA
n(x, y)zn, for x, y ∈ G, has a common radius of convergence

R = 1/ρ and possesses non-negative coefficients. From (2.21), we conclude that ρ ≤ ρ.
ii) When A is symmetric and locally finite, it can be viewed as a bounded linear operator

on ℓ2(G). Besides, it comes from [2, Chap. II.10.] that ∥A∥2 = ρ and limn→∞ ∥An∥1/n2 = ρ.
Specifically, considering fn(·) = 1B(x0,n)∩x, we infer ρ ≤ ρ from

lim sup
n→∞

(
A

n
(x0, x)

)1/n ≤ lim sup
n→∞

∥Anfn∥1/n2 ≤ lim sup
n→∞

|B(x0, n) ∩ x|1/2n∥An∥1/n2 . (2.23)

iii) By setting ψ(x) = ψ(x), we get a positive function with the property Aψ ≤ ρψ and
thus we deduce that ρ ≤ ρ by using [37].

iv) Given that G is finite, there exists a positive function ψ such that Aψ = ρψ. Let ψ
represent the corresponding symmetric function on G (a lift), and consider the random walk on
G with transition probabilities P given by (2.2), but with ρ in place of ρ. Given the symmetry
of A, ψ2 is a reversible measure which is bounded below and above. In other words, P is a
strongly reversible kernel. Referring to Theorem 10.3 and Corollary 12.12 in [2], we find that
lim supn→∞ Pn(x, y)1/n = 1, which implies ρ = ρ, whenever either condition (a) or (b) holds.

Remark 2.6. The preceding proposition can be applied to the infinite periodic lattices examined
in [8], lending further rigor to their computation of the spectral radius.
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3 Focus on spider MERWs

3.1 Model and Settings

The model we consider (see Figure 1) is a star graph with N half-lines perturbed at the origin.
It can be parameterized as G =

{
(n, k) : n ∈ N0, k = 1, · · · , N

}
∪ {0}. For convenience, we

make the identification 0 = (0, 1) = · · · = (0, N). We will denote by ∂G = {∞1, · · · ,∞N} the
geometric boundary of G. Moreover, given any kernel P (x, y) or function π(x) on G, we denote
by Pk and πk their restrictions to the k-th leg Gk, and we often write Pk(n,m) = P ((n, k), (m, k))
and πk(n) = π((n, k)). The weighted adjacency matrix A is defined for all n ≥ 1 and 1 ≤ k ≤ N

by A(0,0) = γ1, Ak(0, 1) = γ
(k)
2 and Ak(n, n± 1) = γ3. The tuple γ = (γ1, γ

(1)
2 , . . . , γ

(N)
2 , γ3) is

assumed to belong to R+ × (R∗
+)

N+1 and in the following, we shall set

S2 = γ
(1)
2 + · · ·+ γ

(N)
2 and Λ = 2γ3 − γ1 − S2. (3.1)

Definition 3.1. The case when Λ = 0, Λ < 0, or Λ > 0 will be referred to as regular, attractive,
or repulsive, respectively.

3.2 Spectral Radius

We first observe that the spectral radius exhibits a phase transition phenomenon.

Proposition 3.1. The combinatorial spectral radius is given by

ρ =


2γ3, if Λ ≥ 0,

2γ3(γ
2
1 + S2

2 )

γ1(2γ3 − S2) + S2

√
γ21 + 4γ3(S2 − γ3)

, if Λ < 0.
(3.2)

Proof. Let Cn be the n-th Catalan number. It is well-known that

S(z) =
∞∑
n=0

Cnγ
2n
3 z2n =

1−
√
1− 4z2γ23

2z2γ23
. (3.3)

The radius of convergence of S(z) is R0 = (2γ3)
−1. Let R = ρ−1 be the radius of convergence

of F (z) =
∑

n≥0A
n(0,0)zn. Using the classical arch-decomposition, see [48, Chap. V.4.1] for

instance, one can write

F (z) =
1

1− (γ1z + S2γ3z2S(z))
. (3.4)

This standard method in algebraic combinatorics consists simply of decomposing excursions
into elementary types. Here, we distinguish between those that start at 0 and return to 0 after
one step and those that move from 0 to 1 on some leg k, make an excursion from 1 to 1 while
staying greater than 1 on that leg, and then return to 0.

Thereafter, note that the function x 7→ γ1x+ S2γ3x
2S(x) increases on [0, R0]. Moreover, it

can be verified that
γ1R0 + S2γ3R

2
0S(R0) =

γ1 + S2

2γ3
. (3.5)

It follows that R = R0 when Λ ≥ 0. If not, R is the positive solution of γ1R+S2γ3R
2S(R) = 1,

which is given by

R =
γ1(2γ3 − S2) + S2

√
γ21 + 4γ3(S2 − γ3)

2γ3(γ21 + S2
2 )

. (3.6)

This concludes the proof.

Remark 3.1. The spectral radius ρ is identical to the model with a single leg where γ(1)2 = S2.
When γ

(k)
2 ≡ γ2 is constant, this is a direct result of Proposition 2.3.
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3.3 Markov Kernels

Proposition 3.2 (regular case Λ = 0). There exists a unique MERW. The positive right eigen-
function is given by ψ ≡ 1. For all 1 ≤ k ≤ N and n ≥ 1, the transition probabilities are

Pk(n, n+ 1) =
1

2
, Pk(n, n− 1) =

1

2
, Pk(0, 1) =

γ
(k)
2

2γ3
, and P (0,0) =

γ1
2γ3

. (3.7)

The process is null-recurrent with an invariant measure given by πk(n) = γ
(k)
2 and π(0) = γ3.

Proof. It can be readily verified that ψ is a positive eigenfunction associated with ρ = 2γ3.
Referring to the proof of Proposition 3.1, it is apparent that A is R-recurrent. Hence, Proposition
2.1 implies the uniqueness of the MERW. The remainder of the proof follows directly.

Proposition 3.3 (attractive case Λ < 0). There exists a unique MERW. The positive right
eigenfunction is ψk(n) = Γn for all n ≥ 0 and 1 ≤ k ≤ N . The factor Γ is defined as

Γ =
ρ− γ1
S2

. (3.8)

The transition probabilities for all 1 ≤ k ≤ n and n ≥ 1 are given by

Pk(n, n± 1) =
γ3
ρ
Γ±1, Pk(0, 1) =

γ
(k)
2 Γ

ρ
, and P (0,0) =

γ1
ρ
. (3.9)

Moreover, the MERW is positive recurrent. Its invariant probability measure is

πk(n) =
γ
(k)
2 (1− Γ2)Γ2n

S2Γ2 + γ3(1− Γ2)
and π(0) =

γ3(1− Γ2)

S2Γ2 + γ3(1− Γ2)
. (3.10)

Proof. From Proposition 3.1, we deduce the R-recurrence, leading us via Proposition 2.1 to the
existence of a unique MERW on G. For all n ≥ 1, consider γ3ψk(n+1)+ γ3ψk(n− 1) = ρψk(n)
subject to

N∑
k=1

γ
(k)
2 ψk(1) = ρ− γ1 and ψ(0) = 1. (3.11)

Let β be the root of γ3X2 − ρX + γ3 = 0 in the interval (0, 1). We can express ψk(n) as
ψk(n) = akβ

n + bkβ
−n, with constants ak, bk ∈ R. Using Proposition 3.1, we find that

γ1 + S2

[
γ3ρ

−1S(ρ−1)
]
= ρ, where S(z) =

1−
√

1− 4z2γ23
2z2γ23

. (3.12)

From (3.12), we deduce

β =
ρ−

√
ρ2 − 4γ23
2γ3

= γ3ρ
−1S(ρ−1) = Γ. (3.13)

We can verify that the function ψk(n) = Γn is indeed the unique solution. The invariant
probability measure of the MERW is found by analyzing the left eigenvector of the system. For
this, we solve the equation γ3φk(n + 1) + γ3φk(n − 1) = ρφk(n) for all n ≥ 2 and 1 ≤ k ≤ N
subject to

φk(2) =
ρφk(1)− γ

(k)
2

γ3
,

N∑
k=1

φk(1) =
ρ− γ1
γ3

, and φ(0) = 1. (3.14)

We confirm that the function defined by φ(0) = 1 and φk(n) =
γ
(k)
2 Γn

γ3
meets these conditions.

Hence, it is the unique solution. The invariant probability measure is then obtained using
standard computations.

13



In the following, we set δx,y to be 1 if x = y and 0 otherwise.

Proposition 3.4 (repulsive case Λ > 0). There exists an infinite collection of MERWs generated
by a finite number N of linearly independent eigenfunctions {ψ(i) : 1 ≤ i ≤ N}. For all
1 ≤ k ≤ N and n ≥ 0, these are given by

ψ
(i)
k (n) = 1 + δi,k

Λ

γ
(k)
2

n. (3.15)

More precisely, there exists a one-to-one correspondence between MERWs and probability distri-
butions (µi)1≤i≤N , through

ψ(µ) =
N∑
i=1

µiψ
(i). (3.16)

The associated transition probabilities, for all 1 ≤ k ≤ N and n ≥ 1, are

P
(µ)
k (n, n± 1) =

1

2

γ
(k)
2 + µkΛ(n± 1)

γ
(k)
2 + µkΛn

, P
(µ)
k (0, 1) =

γ
(k)
2 + µkΛ

2γ3
, P (µ)(0,0) =

γ1
2γ3

. (3.17)

Furthermore, let Pµ
x denote the distribution of the MERW associated with µ, starting from x ∈ G.

Then, for all 1 ≤ k ≤ N , we have

Pµ
0

(
lim
n→∞

Xn = ∞k

)
= µk. (3.18)

Proof. We aim to solve ψk(n+1)+ψk(n− 1) = 2ψk(n) for all 1 ≤ k ≤ N and n ≥ 1, under the
boundary conditions

ψ(0) = 1 and γ1 +

N∑
k=1

γ
(k)
2 ψk(1) = 2γ3. (3.19)

It immediately follows that ψk(n) = 1 + ckn for some constants ck ≥ 0, which leads to the
relation

N∑
k=1

γ
(k)
2 ck = Λ. (3.20)

This yields equations (3.15), (3.16), and (3.17). Expanding upon this, we observe that A is
R-transient, meaning all the MERWs are transient. Let (Xn)n≥0 be the MERW associated with
the probability measure µ. A harmonic function h satisfies Ex[h(Xn)] = h(x) for all x ∈ G and
n ≥ 0 if and only if h = ψ(ν)/ψ(µ) for some other probability distribution ν (see Remark 2.2).
The Martin boundary is thus represented by {1, · · · , N} and the Martin kernel is given by

K((n, k); i) =
ψ
(i)
k (n)

ψ
(µ)
k (n)

. (3.21)

Standard results on the Martin boundary of random walks assert that if Xn starts from 0, it
almost surely converges within the Martin compactification to i with probability µi. The MERW
corresponding to ψ(i) is a classical symmetric nearest neighbor random walk in {(1, k), · · · } for
all k ̸= i. Given its transient nature, limn→∞Xn = ∞i almost surely. Hence, we identify the
Martin boundary with {∞1, · · · ,∞N}.

Remark 3.2. Standard results (see [27] for instance) indicate that the distribution of a simple
symmetric random walk on Z, conditioned to remain in N0, corresponds to the MERW on the
spider lattice described in Proposition 3.4 when N = 1, γ1 = γ2 = 0, and γ3 = 1 (a three-
dimensional Bessel-like random walks, as investigated in [36, 49] and [50, Chap. 3]). However,
MERWs cannot always be seen as non-trivial Doob’s h-transforms of some other random walk,
except when there is no uniqueness (see Remark 2.2).
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4 Spider Functional Scaling Limits

Let us introduce the space

G =
{
x = (x, k) : x ∈ [0,∞), k = 1, · · · , N

}
∪ {0}. (4.1)

Note that G is canonically embedded in G. We identify 0 = (0, 1) = · · · = (0, N) and denote
by Gk = {(x, k) : x ≥ 0} the k-th leg. Furthermore, we equip G with the usual railway distance
defined by

d((x, i), (y, j)) = |x− y|δi,j + (x+ y)(1− δi,j). (4.2)

Restricted to G, this becomes the standard graph distance. For all x = (x, k) ∈ G and α ≥ 0,
we set αx := (αx, k). For a proper planar embedding, the metric d is equivalent to the usual
Euclidean metric, and αx corresponds to the conventional scalar multiplication. Let (C,U)
denote the space of continuous functions from [0,∞) to G, equipped with the topology of uniform
convergence on compact sets. We use =⇒ to signify the convergence in distribution of stochastic
processes in (C,U) with the associated Borel σ-field. Let Ft, t ≥ 0, represent the canonical
filtration on C. For any sequence of real numbers (Xn)n≥0, we define for all t ≥ 0,

Xt = X⌊t⌋ + (t− ⌊t⌋)(X⌊t⌋+1 −X⌊t⌋). (4.3)

Here, ⌊x⌋ denotes the largest integer less than or equal to x.

Remark 4.1. It is possible to extend all the functional convergences discussed below to the space
of càdlàg functions, either endowed with the usual Skorokhod topology or the uniform topology
as described above. For more details, we refer to [51, Chap. 18].

4.1 Regular Case

We direct the reader to [52] for the definition of the Walsh Brownian motion and to [53] for
the excursion theory of Brownian motion. Let {W(µ,x)

t = (Wt,Kt) : t ≥ 0} be the standard
Walsh Brownian motion on G starting from x = (x, k) with spinning measure µ = (µ1, · · · , µN ).
Notably, when Wt = 0, the value of Kt ∈ {1, · · · , N} is inconsequential. This process can be
roughly described as follows. It is a continuous stochastic process on G where W is a standard
one-dimensional reflected Brownian motion starting from x. It is noteworthy that Wt can be
expressed as Wt = |Bt| = Bt + Lt, where B and B are two standard one-dimensional Brownian
motions starting from x, and L denotes the local time at 0 of W . To elaborate further, let τ
represent the right-continuous inverse of L. Each excursion interval of W away from zero can
be expressed as I0 = [0, τ0) or Is = (τs−, τs) for some s > 0. The set difference of the union
of these intervals is {t ≥ 0 : Wt = 0} and has Lebesgue measure zero. Moreover, K remains
constant, say αIs , over each Is. We have αI0 = k and, conditionally to W , {αIs : s > 0, Is ̸= ∅}
constitutes an independent collection of µ-distributed random variables.

Theorem 4.1. Let {Xn}n≥0 be the MERW presented in Proposition 3.2 and define

µ =

(
γ
(1)
2

S2
, · · · , γ

(N)
2

S2

)
. (4.4)

If X0 = x0 is deterministic and depends on L > 0 in such a way that for some x ∈ G,
x0√
L

−−−−→
L→∞

x, (4.5)

then the following functional scaling limit holds:{
XLt√
L

}
t≥0

===⇒
n→∞

{W(µ,x)
t }t≥0. (4.6)
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4.2 Attractive Case

The construction of the Walsh Brownian motion has been extended to various contexts. For
Walsh diffusions, we direct the reader to [54] for a functional analysis approach on graphs and
to [55–59] for semimartingale characterizations on rays. We allude to [60] for the general Itô’s
theory of excursions. Fix λ > 0 and x ≥ 0 and let Z be the solution of the reflecting stochastic
differential equation

dZt = dBt − λdt+ dLt, Zt ≥ 0, Z0 = x, (4.7)

with B being a standard one-dimensional Brownian motion and L a B-adapted, non-decreasing,
continuous stochastic process which satisfies∫ ∞

0
1{Zt>0}dLt = 0 and

∫ ∞

0
1{Zs=0}ds = 0 a.s. (4.8)

Introduce the Walsh diffusion {Z(µ,x)
t = (Zt,Kt) : t ≥ 0} on G starting from x = (x, k) with the

spinning measure µ. Similar to the Walsh Brownian motion, when Zt = 0, the specific value of
Kt ∈ {1, · · · , N} is irrelevant. Moreover, we have Zt = |Zt|, where Z is a (weak) solution of
dZt = dBt−λ sgn(Zt)dt, with Z0 = x and B a standard one-dimensional Brownian motion. Here
L represents the local time at zero for Z. The spinning measure µ is subject to the condition:

∀i ∈ {1, · · · , N}, lim
ε→0+

1

2ε

∫ t

0
1{0<Zs<ε}1{Ks=i}ds = µiLt a.s. (4.9)

As before, K remains constant across each excursion interval (Is)s≥0 of Z. We have Kt = k
for I0, and the values for (Is)s>0 are independent and distributed according to µ, conditionally
to Z. It is worth noting that Z is an ergodic diffusion with its reversible probability measure
and one can check that the invariant probability measure of Z is the exponential distribution of
parameter 2λ.

Theorem 4.2. Let {Xn}n≥0 be the MERW described in Proposition 3.3 with a N + 2-tuple of
parameters γ = (γ1, · · · , γ2) depending on L > 0. Assume there exists ζ ∈ R×RN ×R such that
Z2 =

∑N
i=1 ζ

(i)
2 > 0 and a positive constant λ satisfying

Λ

S2
∼

L→∞
− λ√

L
and γ − ζ = O

(
1√
L

)
. (4.10)

Further assume that X0 = x0 is deterministic and that
x0√
L

−−−−→
L→∞

x. (4.11)

Then, for the spinning measure defined as µ =

(
ζ
(1)
2

Z2
, · · · , ζ

(N)
2

Z2

)
, the following functional scaling

limit holds: {
XLt√
L

}
t≥0

===⇒
n→∞

{Z(µ,x)
t }t≥0. (4.12)

Remark 4.2. The stochastic process obtained when N = 1 is the reflected Brownian motion
with negative drift. This process plays a crucial role in queueing theory, particularly in the
context of heavy-traffic approximations; see the seminal papers [61, 62] and the survey [63]. In
this context, the MERW can be interpreted as the workload of a discrete-time queueing system.
Assumption (4.10) is essential to obtain a non-trivial limit, since the MERW converges to a
stationary distribution by Proposition 3.3.
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4.3 Repulsive Case

Firstly, introduce the well-known three-dimensional Bessel process {Y y
t }t≥0 starting from y ≥ 0.

This is the non-negative solution to the stochastic differential equation

dY y
t = dBt +

1

Y y
t

dt, Y0 = y, (4.13)

where B denotes a standard Brownian motion. For further details, we refer to [64]. In essence,
this is a transient Markov process satisfying Y y

t > 0 for all t > 0, even when it starts at zero.
Subsequently, for any x ≥ 0 and 1 ≤ k ≤ N , we consider the stochastic process

{
Y

(x,k)
t

}
t≥0

on
G defined by

P
(
∀t ≥ 0, Y

(x,k)
t = (Y x

t , k)
)
= 1. (4.14)

This corresponds to the three-dimensional Bessel process on the kth leg. Furthermore, let
µ = (µk)1≤k≤N be a probability distribution. We define the process

{
Y

(µ,x)
t

}
t≥0

as

1. For x = 0: P
(
∀t ≥ 0, Y

(µ,0)
t = Y

(0,k)
t

)
= µk for all 1 ≤ k ≤ N .

2. For x = (x, k) ̸= 0:

(a) If µk ̸= 0: P
(
∀t ≥ 0, Y

(µ,x)
t = Y

(x,k)
t

)
= 1.

(b) If µk = 0:

Y
(µ,x)
t =

{
(x+Wt, k), for all 0 ≤ t ≤ τ0,

Y
(µ,0)
t−τ0

, for all t ≥ τ0,
(4.15)

where τ0 = inf{t ≥ 0 |x +Wt = 0} and W is a standard one-dimensional Brownian
motion, independent of Y(µ,0).

Theorem 4.3. Let {Xn}n≥0 be the MERW as specified in Proposition 3.4, associated with the
probability distribution µ. If X0 = x0 is deterministic and relates to L > 0 such that

x0√
L

−−−−→
L→∞

x, (4.16)

then the following functional scaling limits holds:{
XLt√
L

}
t≥0

===⇒
n→∞

{Y(µ,x)
t }t≥0. (4.17)

Remark 4.3. Similarly to Remark 3.2, we note that a Brownian motion conditioned to remain
positive is a three-dimensional Bessel process (see, for instance, [65]). Functional scaling limits of
random walks conditioned to remain positive have been studied in [66,67]. Furthermore, in [49],
a coupling between Bessel processes and Bessel-like random walks is constructed, providing an
alternative proof of the scaling limit in this context.

Remark 4.4. The aforementioned results can be extended to the exclusion process involving two
particles on Z that can jump left or right but cannot share a site. See [68,69] for detailed reviews.
By symmetry, ψ(x, y) = 1+ (y−x) is a positive eigenfunction with spectral radius ρ = 4. In the
scaling limit, one can obtained the equation

d(Yt −Xt) = dWt +
dt

Yt −Xt
, (4.18)

where Xt < Yt are particle positions. Maximizing entropy reveals a standard electrostatic force.
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4.4 Continuous-Time counterparts of MERWs

In light of the scaling limits described, one may wonder whether the limit processes can be
interpreted as maximal entropy stochastic processes without directly involving MERWs. We
focus on the case N = 1 and explore the possibility of interpreting the three-dimensional Bessel
process and the solution of (4.7) as Maximal Entropy Stochastic Processes.

Kullback–Leibler Divergence (KLD). Let γn denote the (uniform) distribution of the first
n-steps of the simple random walk on the regular graph Z. It is noteworthy that maximizing
the entropy on the right-hand side of (1.1) is equivalent to minimizing the Kullback–Leibler
divergence (or the relative entropy) DKL(·||γn). Given two probability measures ν, γ where ν is
absolutely continuous with respect to γ, the KL-divergence is defined as

DKL(ν∥γ) =
∫

ln

(
dν

dγ

)
dν. (4.19)

To adapt this definition for continuous stochastic processes, replace γ with W a (Ft)t≥0-adapted
Brownian motion. The selection of stochastic processes that are absolutely continuous relative
to W will be made as follows. Let ψ be an absolutely continuous non-negative function on [0,∞)
with the property that U = {ψ > 0} is an open set in [0,∞). Define τ = inf{s ≥ 0 : Ws ∈ U}
and for all t ≥ 0,

Mt = exp

(∫ t

0

ψ′(Ws)

ψ(Ws)
dBs −

1

2

∫ t

0

(
ψ′(Ws)

ψ(Wt)

)2

ds

)
1{t<τ}. (4.20)

Observe that τ = ∞ when ψ is positive. Leveraging the results from [70, Chap. 6.3], it is clear
that {Mt}t≥0 is a Ft-martingale under Px for every x ∈ U . Let Qx denote the distribution on
C([0,∞),R) expressed by dQ(t)

x = Mt dP
(t)
x , where Q(t)

x and P(t)
x represent the restrictions of

Qx and Px to Ft respectively. Under Qx, the law of W becomes a ψ2(x)dx-symmetric Markov
process, ensuring that it never reaches ∂U when it starts at x ∈ U . Recall that (Xt)t≥0 is a
ψ2(x) dx-symmetric Markov process on U if ψ2(x) dx is a reversible measure: for all sufficiently
smooth test functions f , g and for all t ≥ 0,∫

U
Ptf(x)g(x)ψ

2(x) dx =

∫
U
f(x)Ptg(x)ψ

2(x) dx, (4.21)

where (Pt)t≥0 is the Markov semigroup associated with (Xt)t≥0. Invoking the Girsanov theorem,
as found in [64], one has under Qx:

B̃t = Bt −
∫ t

0

(
ψ′(Ws)

ψ(Ws)

)2

ds, (4.22)

is a Brownian motion. Thus, the stochastic process W satisfies under Qx the reflected stochastic
differential equation

dW̃t = dB̃t +
ψ′(W̃t)

ψ(W̃t)
dt+ dL̃t, (4.23)

with the initial condition W̃0 = x and L̃ is the local time at 0 of W̃ . Consequently, we get

DKL

(
Q(t)

x

∥∥P(t)
x

)
= Ex

∫ t

0

(
ψ′(W̃s)

ψ(W̃s)

)2

ds

 . (4.24)
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Nevertheless, when ψ2(x)dx is not a finite measure, it is possible that

h = lim
t→∞

1

t
DKL

(
Q(t)

x

∥∥P(t)
x

)
= ∞. (4.25)

We can state the following lemma whose proof is straightforward.

Lemma 4.1. Assume that π(dx) = ψ2(x)dx is a probability measure on U . Then, for any x ∈ U
and for s > 0, the relative rate entropy h is given by

h = lim
t→∞

1

t
DKL

(
Q(t)

x

∥∥P(t)
x

)
=

∫
U
(ψ′(x))2dx =

1

s
DKL

(
Q(s)

π

∥∥P(s)
π

)
. (4.26)

Repulsive case. Assume that ψ(x) > 0 on ]0, L[ and ψ(x) = 0 otherwise, for some L > 0. We
are looking for such a function that minimizes (4.26). We obtain that, for all ε ∈ R sufficiently
small and all sufficiently smooth functions h with compact support in ]0, L[,∫ L

0
(ψ′(x) + εh′(x))2 dx+ λ

(∫ L

0
(ψ(x) + εh(x))2 dx− 1

)
≥
∫ L

0
(ψ′(x))2 dx, (4.27)

where λ denotes the Lagrange multiplier. By examining the first-order term in ε, and integrating
by parts, we obtain the equation −ψ′′(x) + λψ(x) = 0. By positivity of ψ(x), we find that the
solution is given by

λ =
(π
L

)2
and ψ(x) =

√
2

L
sin
(π
L
x
)
. (4.28)

We retrieve the three-dimensional Bessel process by letting L go to infinity since for all x > 0,

ψ′(x)

ψ(x)
∼

L→∞

1

x
. (4.29)

Attractive case. When γ1 = 1 + λ√
L
, γ(1)2 = 0 and γ3 = 1, we need to add constraints on ψ.

We still assume that ψ2(x)dx is a probability distribution on [0,∞) but we also require that∫ ∞

0
xψ2(x)dx =

1

2λ
. (4.30)

Let ψ be this minimizer and consider h, a compactly supported smooth function where h(0) = 0.
Then by considering ψ+ εh for sufficiently small ε ∈ R and looking at the first and second order
terms next to ε and ε2, we obtain as previously that necessarily

−ψ′′(x) + λψ(x) + µxψ(x) = 0, (4.31)

and also ∫ ∞

0
h′(x)2dx+ β

∫ ∞

0
xh(x)2dx+ α

∫ ∞

0
h(x)2dx ≥ 0. (4.32)

Here, λ, µ are Lagrange multipliers, and the latter ordinary differential equation needs to
be understood in a weak sense when ψ is not twice differentiable. Equation (4.31) is nothing
but a Schrödinger equation with a linear potential. When λ ̸= 0, solutions can be written
as AAi(z) + BBi(z) with z = −β−1/3(x + µ) and A,B ∈ R, where Ai and Bi are the Airy
functions of the first and second kinds. This can be proven using power series expansions or the
Fourier transform, for instance. However, (4.32) implies that λ, µ ≥ 0 since h is an arbitrary
perturbation. It is observed that Ai(z) and Bi(z) oscillate around zero as z approaches −∞. This
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behavior implies that no non-negative solutions exist when λ > 0. Thus, λ = 0, and the unique
non-negative, normalized, square-integrable solution satisfying (4.30) is ψ(x) =

√
2λe−λx. Using

this, we obtain
ψ′(x)

ψ(x)
= −λ. (4.33)

Subsequently, we recover the reflected diffusion as given in (4.7).

5 Extended Models

In this section, we discuss how our results can be used to study more general lattices, specifically
two-dimensional generalizations and non-nearest-neighbor extensions.

5.1 The true spider lattice

Consider the spider lattice with N rays, where the nth level of each ray is connected to the
nth level of its two neighboring rays (see Figure 2). In the sequel, we will assume rotational
invariance of the graph. Therefore, the weighted structure can be described by a four-parameter
family γ = (γ1, γ2, γ3, γ4), with, for all n ≥ 1 and k ∈ Z/NZ, A(0,0) = γ1, A(0; (1, k)) = γ2,
A((n, k); (n± 1, k)) = γ3, and A((n, k); (n, k ± 1)) = γ4. All other weights being equal to 0.

γ2

γ3

γ3 γ4

γ4

γ1

0

(n, k)

(n, k + 1)

(n, k − 1)

(n+ 1, k)

Figure 2: The true spider lattice embbeded into R2

By symmetry, the reduced model corresponds to the spider lattice in 3.1 with N = 1,
γ2 := Nγ2, but with additional loops of weight 2γ4 above each positive integer. The spectral
radius of this simplified model can be computed as before, by replacing the Catalan generating
function in (3.3) with the Motzkin one, which is given by

S(z) =
1− 2γ4z −

√
(1− 2γ4z)2 − 4γ23z

2

2γ23z
2

. (5.1)

Again, equation (5.1) can be obtained by applying the ARCH decomposition, leading to

S(z) =
1

1− 2γ4z − γ23z
2S(z)

. (5.2)
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Proposition 2.3, along with the same arguments as in the proof of Proposition 3.1, allows us to
conclude that the spectral radius of the true spider lattice satisfies ρ = 2(γ3 + γ4) or

ρ =
2γ3(γ

2
1 + (Nγ2)

2)− 4Nγ1γ2γ4

γ1(2γ3 −Nγ2)− 2Nγ2γ4 +Nγ2
√
γ21 + 4γ3(Nγ2 − γ3) + 4γ4(γ4 − γ1)

, (5.3)

according wheither or not Λ := 2(γ3 + γ4) − γ1 −Nγ2 ≥ 0. Besides, Propositions 3.2, 3.3, and
3.4 can be easily generalized, at least in the R-recurrent situation Λ ≤ 0. When Λ > 0, the
unique symmetric positive ρ-harmonic function is given, for all n ≥ 0 and k ∈ Z/NZ, by

ψ(n, k) = 1 +
Λ

Nγ2
n, (5.4)

However, we point out that it is not certain that all positive harmonic functions are symmetric
in that case (see Remark 2.5), further work is needed to determine whether non-symmetric
harmonic functions exist. Note that, for a symmetric MERW, the probability of moving from a
ray to one of its two neighboring rays is equal to γ4/ρ. Regarding the scaling limits, it seems
necessary to let N → ∞ to obtain interesting limits. However, this case is outside the scope of
this article and is left for future work.

5.2 Non-nearest neighbor situation

It is natural to ask whether our results can be extended to the non-nearest neighbor case. We
will explore the challenges involved but, for simplicity, we assume N = 1 (we refer to Figure 3).

Fix k ≥ 1 and γ > 0, and assume that A(n, n± i) = γ for all n ≥ k and 1 ≤ i ≤ k, and that
A(n,m) = 0 whenever |m− n| > k. Additionally, suppose there are a finite number of non-zero
values A(i, j) for 0 ≤ i < k and j ≥ 0, and that the corresponding weighted graph is connected.

0 · · · · · · k n− k · · · n− 1 n n+ 1 · · · n+ k

γ γ

· · · · · ·· · ·

Figure 3: A model with 2k-neighbors

Here, the arch decomposition used throughout this paper, particularly in (3.4), does not
apply as easily, making it unlikely to obtain a necessary and sufficient criterion for R-transience.
However, we can provide a sufficient criterion. Let us introduce

δ := max

∑
j≥0

A(i, j) : 0 ≤ i < k

 . (5.5)

Theorem 5.1. If δ ≤ 2γk, then the spectral radius of A is equal to ρ = 2γk. If strict inequality
holds, then A is R-transient. In that case, there exists a unique MERW. More precisely, the
unique positive ρ-harmonic function can be written as

ψ(n) = a+ bn+O(βn), (5.6)

for some a ∈ R, b > 0, and 0 < β < 1. Moreover, when X0/L −→ y ≥ 0, we have{
XLt√
L

}
t≥0

===⇒
n→∞

{
Y y
σ2
kt

}
t≥0

, with σ2k =
1

k

k∑
i=1

i2, (5.7)

where Y y is the standard three-dimensional Bessel process defined in (4.13).
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Proof. We first show that A is R-transient and ρ = 2γk. To this end, let B be a weighted
adjacency matrix such that A(i, j) ≤ B(i, j) for all i, j ≥ 0, A(i, j) = B(i, j) for all i ≥ k and
j ≥ 0, and

∑
j≥0B(i, j) = 2γk for all i < k (and thus for all i ≥ k). One can easily note that∑

j≥0B
n(i, j) = (2γk)n and thus ρ ≤ 2γk. Moreover, A(n)(k, k) is greater than the weighted

number of excursions of length n from k to k that remain above k. Using [71, Theorem 3,
equation (37), p. 61], there exists a constant C > 0 such that for n sufficiently large,

A(n)(k, k) ≥ C
(2γk)n

n3/2
, (5.8)

showing that ρ ≥ 2γk. Note that the spectral radius of B, as defined above, is also equal to ρ.
Furthermore, when δ < 2γk, one can choose B ̸= A, differing only on a finite number of edges,
in such a way that [72, Theorem 5 (b)] implies that A is R-transient.

Secondly, we prove the uniqueness of ψ and (5.6). Note that any ρ-harmonic function satisfies

∀n ≥ k, 2kψ(n) =
k∑

i=1

(ψ(n+ i) + ψ(n− i)). (5.9)

Introduce P (X) = X2k + · · · + Xk+1 − 2kXk + Xk−1 + · · · + 1, which is the characteristic
polynomial of the corresponding linear recurrence relation. We claim that 1 is the only root of
P on the unit circle U. Indeed, let ω ∈ U be such that P (ω) = 0. We can write

1 = 2k|ω| =

∣∣∣∣∣∣
2k∑

i=0,i ̸=k

ωi

∣∣∣∣∣∣ ≤ 2k. (5.10)

However, equality in the triangle inequality implies that all the ωi, for i ̸= k and 0 ≤ i ≤ 2k,
are proportional. It follows that ω = 1. Moreover, the root 1 has multiplicity 2 since

P (X) = (X − 1)2(1 + · · ·+ Sk−1X
k−2 + SkX

k−1 + Sk−1X
k + · · ·+X2k−2), (5.11)

where Sn = 1 + 2 + · · · + n. In addition, we obtain that 1 is the only non-negative root of P .
Furthermore, since P is self-reciprocal (i.e., palindromic), we have that, for z ̸= 0, P (z) = 0 if
and only if P (1/z) = 0. Let I and O be, respectively, the sets of all complex roots of P , counted
with their multiplicities, strictly inside and outside the unit disc. Note that I and O both have
cardinality k−1. Any real solution of (5.9) can be written as ψ(n) = a+bn+ψi(n)+ψo(n), where
ψi and ψo correspond to the roots in I and O. In particular, ψi and ψo are each characterized
by k− 1 real parameters. The positivity of solutions to linear recurrence relations is an old and
difficult problem. Recently, it was shown in [73] (see Theorem 2) that any non-zero solution with
no positive characteristic root of maximal modulus oscillates around zero. As a consequence,
we obtain that ψo ≡ 0 for any positive solution ψ. As a consequence, any positive solution is
characterized by k+1 real coefficients. Besides, such a solution satisfies the k+1 linear boundary
equations given by ψ(0) = 1 and, for all 0 ≤ n < k,

2kγψ(n) =
∑
m≥0

A(n,m)ψ(m) = Φn(ψ(0), · · · , ψ(k − 1)), (5.12)

where Φn is some linear functional. We deduce that there exists at most one positive solution.
By Theorem 2.1, in particular Remark 2.3, there exists at least one positive harmonic function,
which proves the existence and uniqueness. Finally, expression (5.6) can be simply obtained by
choosing β = supζ∈I |ζ|+ δ < 1 for some δ > 0.
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It remains to prove that b > 0. First, if b = 0 and a = 0, then Theorem 2 in [73] still applies
and ensures that the solution is either zero or oscillating, which is not the case. So if b = 0, we
must have a ̸= 0. Then, one can check that for all 1 ≤ i ≤ k,

ψ(n+ i)− ψ(n− i)

ψ(n)
= O (βn) . (5.13)

In other words, the drift of the corresponding MERW goes to zero exponentially fast. However,
it is well known that the resulting Markov chain is recurrent in that case. For instance, by
noting that there exists C > 0 such that

E[
√
Xk+1 −

√
Xk|Xk = n] ∼

n→∞
− C

n3/2
, (5.14)

one can apply a standard Foster-Lyapunov method (see [74, Proposition 2.2] for instance) and
prove the recurrence. But this contradicts the fact that A is R-transient. Finally, we conclude
that necessarily b > 0.

Finally, let us briefly explain how to deduce the scaling limit (5.7). First, note that

ψ(n+ i)

ψ(n)
= 1 +

i

n
+O

(
1

n2

)
. (5.15)

Hence, for all sufficiently smooth functions f , we get

E
[
f

(
Xn+1√
L

)
− f

(
Xn√
L

) ∣∣∣∣Xn√
L

= x

]
∼

L→∞

σ2k
L

(
1

2
f ′′(x) +

1

x
f ′(x)

)
. (5.16)

Adapting the proof given in Section 6, we can obtain the desired scaling limit.

The case δ > 2γk seems out of reach, even for the computation of the spectral radius ρ.
The latter can be greater than or equal to 2γk. Moreover, one can choose δ as large as desired
while keeping ρ = 2γk, R-transience, and the results above. For instance, taking k = 2 with
A(0, 1) = δ, A(1, 2) = ε and A(0, i) = A(1, j) = 0 for all i ̸= 1 and j ̸= 2, we obtain by the Arch
decomposition that the generating function of the walks starting and ending at 0 satisfies

F0,0(z) =
1

1− δεz3F≥1
2,2 (z)

, (5.17)

where, the generating function F≥1
2,2 corresponds to the walks starting and ending at 2, remaining

in {1, 2, . . . }. As previously, the subgraph {1, 2, · · · } is R-transient with spectral radius 2γk. In
particular, F≥1

2,2 (1/(2γk)) is finite, and thus, for all δ > 0, it is possible to choose ε > 0 such that
F0,0(1/ρ) <∞, implying the R-transience and ρ = 2γk.

6 Proofs of the Functional Scaling Limits

We will prove these theorems by following the standard approach: first establishing tightness and
then identifying the limit. In what follows, let PL represent the law on C of the scaled MERW
such that under the probability distribution PL(dω), the sequence {ω(t)}t≥0 is distributed as
the left-hand side of (4.6), (4.12), or (4.17), depending on the assumptions. The expectation
under this probability distribution will be denoted by EL.
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6.1 Tightness

The submartingale argument. To prove tightness, we will employ a submartingale argument as
found in [75, chap. 1.4.]. While this method is applicable to continuous stochastic processes that
take their values in Rd, it can be readily extended to metric spaces, as indicated in [54, Theorem
2.1.]. More specifically, we will make use of the following result.

Theorem 6.1. Let {PL : L > 0} be a family of probability distributions on C satisfying

PL

({
ω ∈ C : ∀n ≥ 0, ω is linear over

[
n

L
,
n+ 1

L

]})
= 1. (6.1)

Further, assume that for every ε > 0, there exist Aε and Lε > 0 such that for any y ∈ G, there
is a function fyε on G satisfying

(i) fyε (y) = 1, (ii) fyε (x) = 0 if d(x, y) ≥ ε, (iii) 0 ≤ fyε (x) ≤ 1, (6.2)

and for all L ≥ Lε, {
fyε

(
ω
(n
L

))
+Aε

n

L

}
n≥0

is a PL(dω)-submartingale. (6.3)

Then, as L goes to infinity, the family of probability measures {PL : L > 0} is tight.

Ito’s formula for regular and attractive cases. Let {Xn}n≥0 be the MERW satisfying the as-
sumptions of Theorem 4.1 or 4.2, and let Xn denote its first component. Let f be a smooth
function on G with bounded derivatives on each leg Gi, 1 ≤ i ≤ N . For all x = (x, i) ∈ G with
x ≥ 1, recall that fi(x) = f(x, i) and define

∆Lf(x) = ∆Lfi(x) = fi

(
x+ 1√
L

)
− fi

(
x− 1√
L

)
and ∆2

Lf(x) = ∆2
Lfi(x) = fi

(
x+ 1√
L

)
− 2fi

(
x√
L

)
+ fi

(
x− 1√
L

)
. (6.4)

It is noteworthy that |∆Lf(x)| ≤ 2∥f ′∥∞/
√
L and |∆2

Lf(x)| ≤ 2∥f ′′∥∞/L. The drift is defined
for all x = (x, i) ̸= 0 by

D(x) = Di(x) = E[Xn+1 −Xn|Xn = x]. (6.5)

Utilizing the classical discrete-time version of Ito’s formula, as found in [76, p. 180] or [77, p.
132] for instance, we can express for all 0 ≤ m ≤ n,

f

(
Xn√
L

)
= f

(
Xm√
L

)
+

1

2

N∑
i=1

n−1∑
k=m

(
∆2

Lfi(Xk) +Di(Xk)∆Lfi(Xk)
)
1{Xk∈Gi\{0}}

+#{m ≤ k ≤ n− 1 : Xk = 0}
N∑
i=1

Pi(0, 1)

(
fi

(
1√
L

)
− f(0)

)
+Mn −Mm, (6.6)

where {Mn}n≥0 is a square integrable (Fn)-martingale. Here, #E denotes the cardinality of a
set E and Fn = σ(X0, · · · , Xn).

Taylor expansions with respect to γ. To go further, introduce

H =

{
(x, y1, · · · , yN , z) ∈ R× RN × R : x+

N∑
k=1

yk − 2z = 0

}
. (6.7)
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For a given u ∈ R× RN × R, let π(u) = (π1(u), π2(u), π3(u)) be the orthogonal projection of u
onto H, and let δ(u) = u− π(u) = (δ1(u), δ2(u), δ3(u)). The i-th component of π2(u) or δ2(u) is
denoted by π(i)2 (u) or δ(i)2 (u) for any 1 ≤ i ≤ N . Observe that for all 1 ≤ i ≤ N ,

δ1(γ) = δ
(i)
2 (γ) = − Λ

N + 5
and δ3(γ) =

2Λ

N + 5
. (6.8)

Let us set

G(x, y, z) =
z(x2 + y2)

x(z − y) + y
√
x2 + 2yz − z2

. (6.9)

Note that ρ = G(γ1,S2, 2γ3). Standard computation shows that ∇G(x, y, z) = (0, 0, 1) when
z = x + y. Furthermore, let Γ(γ) ≡ Γ to highlight the dependence of Γ in Theorem 4.2 with
respect to the parameters γ ∈ R× RN × R. We get

∇Γ(π(γ)) =

(
N∑
i=1

π
(i)
2 (γ)

)−1

(−1, . . . ,−1, 2) . (6.10)

The first order Taylor expansion of Γ(γ) at π(γ) in the attractive case becomes

Γ = 1 +
Λ

S2 +
NΛ
N+5

+O(Λ2) = 1− λ√
L

+ o

(
1√
L

)
. (6.11)

Besides, still in the attractive case, it holds that

Di(x) =
γ3(Γ

2 − 1)

ρΓ
=

Γ2 − 1

Γ2 + 1
. (6.12)

Consequently, for x ≥ 1, one has

Di(x) = − λ√
L

+ o

(
1√
L

)
. (6.13)

In the regular case, we have Di(x) = 0. In both scenarios, we obtain uniformly on G \ {0}:∣∣∣∣12 (∆2
Lf(x) +Di(x)∆Lf(x)

)∣∣∣∣ = O
(∥f ′∥∞ + ∥f ′′∥∞

L

)
. (6.14)

The Lyapunov functions. Let ε > 0 and let fε be a smooth even function on R satisfying the
following properties: 0 ≤ fε ≤ 1, fε(x) = 0 for |x| ≥ ε, fε(x) = 1 for |x| ≤ ε/2, and fε is
non-increasing on [0,∞). Given y = (y, i) ∈ G, we define for all x = (x, j) ∈ G,

fyε (x) =


fε(x− y) if y ≥ 2ε and j = i,

fε(x− 2ε) if y < 2ε and x ≥ 2ε,

1 if y < 2ε and x < 2ε,

0 otherwise.

(6.15)

It is evident that fyε (y) = 1, 0 ≤ fyε ≤ 1, and fyε (x) = 0 whenever d(x, y) ≥ 5ε. An illustration
of this can be found in Figure 4. Furthermore, we have fyε,i(1/

√
L) − fyε,i(0) = 0 for every L

satisfying 1/
√
L ≤ ε, given that fyε is flat over the set {x ∈ G : d(0, x) ≤ ε}. From equations

(6.14) and (6.6), we deduce that

E
[
fyε

(
Xn√
L

)
− fyε

(
Xm√
L

) ∣∣∣∣Fm

]
≥ −Aε

(n
L

− m

L

)
, (6.16)
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Figure 4: Lyapunov functions

where Aε depends only on the parameters, ∥f ′ε∥∞, ∥f ′′ε ∥∞, and ε. Consequently, we can establish
the tightness in Theorems 4.1 and 4.2 using Theorem 6.1.
Focus on the repulsive case. We only consider the primary distinctions compared to the previous
cases. For every x = (x, i) ̸= 0, we have

D(x) = Di(x) = E
[
Xn+1 −Xn

∣∣Xn = x
]
=

µiΛ

γ
(i)
2 + µiΛx

. (6.17)

It can also be verified that

Di(x)∆Lf
y
ε,i(x) = O

(∥f ′ε∥
εL

)
1{x≥ε

√
L}. (6.18)

Again, we get from the Ito’s formula 6.6:

E
[
fyε

(
Xn√
L

)
− fyε

(
Xm√
L

) ∣∣∣∣Fm

]
≥ −Aε

(n
L

− m

M

)
, (6.19)

here for all L ≥ ε−2. The constant Aε solely depends on the parameters, ∥f ′ε∥∞, ∥f ′′ε ∥∞, and ε.
Using again Theorem 6.1, we conclude the proof for tightness.

6.2 Limit Processes

Let P⋆ be a limit point of PL as L approaches infinity, and let E⋆ represent the associated
expectation. We aim to demonstrate that P⋆ corresponds to the distribution of W(µ,x), Z(µ,x),
or Y(µ,x) as specified in Theorems 4.1, 4.2, or 4.3, depending on the underlying assumptions.
To achieve this, we characterize these stochastic processes in terms of local martingale and/or
submartingale problems. Given a continuous function f on G, which is smooth on every ray, we
define for all x = (x, i) ̸= 0:

LWf(x) =
1

2
f ′′i (x), LZf(x) =

1

2
f ′′i (x)− λf ′i(x) (6.20)

and
LYf(x) =

1

2
f ′′i (x) +

1− δµi,0

x
f ′i(x). (6.21)

Martingale and submartingale problems. The following result is referenced in [55] and [78].

Theorem 6.2. Let us define L as either LZ or LW. In the context where L = LZ (resp.
L = LW), the Walsh diffusion Z(µ,x) (resp. W(µ,x)) is the unique solution Q on C to the
martingale and submartingale problem described by

ω0 = x,

∫ ∞

0
1{ωs=0}ds = 0 almost surely with respect to Q(dω), (6.22)
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and for every sufficiently smooth and bounded function f on G satisfying either

i)

N∑
i=1

µif
′
i(0) = 0 or ii)

N∑
i=1

µif
′
i(0) ≥ 0, (6.23)

the stochastic process {M f
t }t≥0 is either i) a martingale or ii) a submartingale under the distri-

bution Q(dω) where

M f
t = f(ωt)−

∫ t

0
Lf(ωs)1{ωs ̸=0}ds (6.24)

Remark 6.1. As a matter of fact, the class of functions f considered in [55, 78] consists of
continuous functions that are twice continuously differentiable on each ray. It is only required
that M f is a local martingale (resp. local submartingale). By using classical localization and
density arguments, one can restrict the domain of functions f as stated above and require that
M f be a martingale (resp. submartingale).

Regarding Y(µ,x), the results in [55, 78] do not apply. Additionally, the drift of the three-
dimensional Bessel process in (4.13) is singular at the origin, presenting an additional challenge.
However, one can state the following result, the proof of which is provided below.

Theorem 6.3. The diffusion Y(µ,0) is the unique solution Q on C of the following martingale
problem, given by

ω0 = 0,

∫ ∞

0
1{ωs=0}ds = 0 Q(dω)-a.s., (6.25)

for all 0 ≤ i ≤ N ,
Q ({ω ∈ C : ∀t ≥ 0, ωt ∈ Gi}) = µi, (6.26)

and for all sufficiently smooth and bounded functions f with compact support included in G \{0},

M f =

{
f(ωt)−

∫ t

0
LYf(ωs)ds

}
t≥0

is a Q(dω)-martingale. (6.27)

Proof. It is clear that the distribution of Y(µ,0) solves the martingale problem. The challenge
remains to show that it is the unique solution. Initially, we assume that N = 1. In this case,
Y(0,µ) = Y 0 is simply the three-dimensional Bessel process starting from 0. We denote its
distribution by Q0 and its infinitesimal generator by LY . For η > ε > 0, introduce

ση(ω) = inf{t ≥ 0 : ωt = η} and τε(ω) = inf{t ≥ 0 : ωση+t = ε}. (6.28)

From our assumptions and using standard localization and approximation arguments, we con-
clude that {

f(ωση+t∧τε)−
∫ t∧τε

0
LY f(ωση+s)ds

}
t≥0

is a Q(·|ση <∞)-martingale, (6.29)

for all sufficiently smooth functions f on [0,∞). Letting ε→ 0 and applying standard results on
martingale problems and stochastic differential equations, we deduce that Q(·|ση < ∞) equals
the distribution Qη of a three-dimensional Bessel process starting from η. Moreover, from (6.25),
we find Q(·|ση <∞) =⇒ Q as η ↓ 0 because

P

⋃
η↓0

{ση <∞}

 = 1. (6.30)
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Since the three-dimensional Bessel process is a Feller Markov process, we have Qη =⇒ Q0 as
η ↓ 0. Thus, we obtain Q = Q0. Finally, assuming N is arbitrary, for any 1 ≤ i ≤ N ,
introduce the stopping time τi(ω) = inf{t ≥ 0 : ωt /∈ Gi}. From (6.26) and (6.25), we deduce
that τi ∼ µiδ∞ + (1 − µi)δ0. Specifically, {τi = ∞} ∈ ⋂s>0Fs. In the sequel, we denote the
expectation with respect to the conditional probability Q(·|τi = ∞) by E(i). For fixed t ≥ s > 0,
let Υ be a bounded Fs-measurable random variable. We obtain

E
[
(M f

t∧τi −M f
s∧τi)1{τi=∞}Υ

]
= µiE(i)

[
(M f

t −M f
s )Υ

]
= 0. (6.31)

Note that the latter equality also holds for s = 0 due to continuity. Hence, M f is a Q(·|τi = ∞)-
martingale. Utilizing the result for N = 1, we conclude that Q is the distribution of Y(µ,0).

Bound on the local time at zero. To ensure that conditions (6.22) or (6.25) hold for any limit
point Q⋆, we require the following lemma.

Lemma 6.1. Let {Xn}n≥0 be the MERW specified in Theorems 4.1, 4.2, or 4.3. Remember that
λ > 0 is provided in Theorem 4.2. For any u, v, η > 0, there exists a positive constant Cv,λ such
that

lim sup
L→∞

E

[
#{0 ≤ k ≤ ⌈Lu⌉ : d(Xk,0) ≤ η

√
L}

L

]
≤ (u+ v)(1− e−2λη)

Cv,λ
. (6.32)

Proof. Firstly, using a simple coupling argument, we can reduce the problem to proving this
lemma for a MERW starting from the origin under the assumptions of Theorem 4.2. Indeed,
let Q denote the Markov kernel associated with a regular or repulsive MERW. We represent the
corresponding parameters by g ∈ RN+2. Choose ζ ∈ RN+2 such that ζ1 ≥ 0, ζ(k)2 ≥ 0 for all
1 ≤ k ≤ N with

∑
k ζ

(k)
2 > 0, ζ3 > 0, and ζ1 +

∑
k ζ

(k)
2 = 2ζ3 subject to the condition

ζ1
2ζ3

>
g1
2g3

. (6.33)

Let P be the transition kernel associated with the MERW with parameters γ as in Theorem 4.2,
converging to ζ. We then have

P (0,0) =
ζ1
2ζ3

+O
(

1√
L

)
. (6.34)

From this, we get P (0,0) ≥ Q(0,0) for large L. Also, noting that Pk(n, n− 1) ≥ Qk(n, n− 1)
for all n ≥ 1 and 1 ≤ k ≤ N , constructing a coupling for which XP ≤ XQ becomes feasible,
where XP and XQ are the MERW associated with P and Q.

Secondly, let π be the invariant probability distribution of the MERW {Xn}n≥0 in Theorem
4.2. Using (6.11) and (3.10), we deduce

N∑
k=1

πk((η
√
L,∞)) =

S2Γ
2⌊η

√
L⌋

γ3(1− Γ2) + S2Γ2
= e−2λη + o (1) , (6.35)

leading to

Eπ

[
#{0 ≤ k < ⌈L(u+ v)⌉ : Xk ≤ η

√
L}
]

L
∼

L→∞
(u+ v)(1− e−2λη). (6.36)
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Define T = inf{k ≥ 0 : Xk = 0}. Employing the strong Markov property, we have

Eπ

⌈L(u+v)⌉−1∑
k=0

1{Xk≤η
√
L}

 ≥
⌈L(u+v)⌉−1∑

i=0

Pπ(T = i)E0

⌈L(u+v)⌉−1−i∑
k=0

1{Xk≤η
√
L}

 (6.37)

≥ Pπ(T < ⌈Lv⌉)E0

⌈Lu⌉−1∑
k=0

1{Xk≤η
√
L}

 . (6.38)

Let Ξk be a random variable distributed as π conditionally on {(x, k) : x ≥ 1} and let (ξi)i≥1

be a sequence of i.i.d. Rademacher random variables with parameter p = γ3Γρ
−1 independent

of Ξk. Set Sn = ξ1 + · · ·+ ξn. Through a simple coupling argument, we can infer

Pπ(T < ⌈Lv⌉) ≥ π(0) +
N∑
k=1

πk((0,∞))P
(
S⌈Lv⌉−1 ≤ −Ξk

)
. (6.39)

Additionally, we have

P
(
S⌈Lv⌉−1 ≤ −Ξk

)
= P

(
S⌈Lv⌉−1 + λ

√
Lv√

Lv
≤ −Ξk√

Lv
+ λ

√
v

)
. (6.40)

From (6.13), we observe that E[S⌈Lv⌉−1] = −λ
√
Lv + o(

√
L) as L approaches infinity. Then,

analogously to (6.35) and with the aid of the central limit theorem, we deduce

S⌈Lv⌉−1 + λ
√
Lv√

Lv
⊗ Ξk√

L
====⇒
L→∞

(U, V ) ∼ N (0, 1)⊗ E(2λ). (6.41)

Given that π(0) converges to 0, we conclude

lim inf
L→∞

Pπ(T < ⌈Lv⌉) ≥ P(U +
√
2V ≤ λ

√
v). (6.42)

Lastly, combining this with the aforementioned equations, the proof is completed.

Identification of the limit. To go further, one can express

f
(
ω
(n
L

))
= f

(
ω
(m
L

))
+

1

L

n−1∑
k=m

LLf

(
ω

(
k

L

))
+Mn −Mm, (6.43)

where M is a square-integrable PL-martingale. For every x = (x, i) ∈ 1√
L
·G \ {0},

LLf(x) =
L

2

(
fi

(
x+

1√
L

)
+ fi

(
x− 1√

L

)
− 2fi(x)

)

+
LDi

(
x
√
L
)

2

(
fi

(
x+

1√
L

)
− fi

(
x− 1√

L

))
, (6.44)

and

LLf(0) = L

N∑
i=1

Pi(0, 1)

(
fi

(
1√
L

)
− f(0)

)
. (6.45)
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Subsequently, we assume that the test functions f are sufficiently smooth and bounded, along
with their derivatives, on each ray. Importantly, uniformly on R, we find that

L

2

(
fi

(
x+

1√
L

)
+ fi

(
x− 1√

L

)
− 2fi(x)

)
=

1

2
f ′′i (x) +O

(
1√
L

)
. (6.46)

It is noteworthy that the constant in the big O depends exclusively on ∥f ′′′i ∥∞. Our analysis will
center on the remaining terms in (6.44) and (6.45).

Focus on the regular and attractive cases. We shall prove that P∗ is the solution of the well-posed
martingale/submartingale problem in Theorem 6.2. First, the assumptions of Theorems 4.1 and
4.2 allow us to see that for some α > 0, one has

LLf(0) = α
N∑
i=1

µif
′
i(0)

√
L+O(1). (6.47)

Here we use Pi(0, 1) =
ζ
(i)
2
2ζ3

+O
(

1√
L

)
for the attractive case. Recall that Di(x

√
L) = 0 as soon

as x ∈ 1√
L
· N in the regular case whereas in the attractive case we obtain from (6.13) that

LDi

(
x
√
L
)

2

(
fi

(
x+

1√
L

)
− fi

(
x− 1√

L

))
= −λ f ′i(x) + o(1), (6.48)

By using (6.46) we deduce for L ∈ {LW,LZ} according to the assumptions that

LLf(x) = (Lf(x) + o (1))1{x ̸=0} + (ALf +O(1))1{x=0}, (6.49)

where ALf satisfies

N∑
i=1

µif
′
i(0) = 0

(
resp.

N∑
i=1

µif
′
i(0) ≥ 0

)
=⇒ ALf = 0 (resp. ALf ≥ 0) . (6.50)

Let T, ε,R ≥ 0 be given and set for all ω ∈ C,

δω(T, ε) = 1 ∧ sup{d(ω(t), ω(s)) : |t− s| ≤ ε, 0 ≤ s, t ≤ T}. (6.51)

Here we denote a ∧ b = min(a, b). By using (6.43) one can write for all 0 ≤ s ≤ t ≤ T ,

f (ω(t)) = f (ω(s)) +
1

L

⌊Lt⌋−1∑
k=⌊Ls⌋

LLf

(
ω

(
k

L

))
+M⌊Lt⌋ −M⌊Ls⌋ +O

(
δω

(
T,

1

L

))
, (6.52)

where the constant in the big O depends only on the ∥f ′i∥∞ for 1 ≤ i ≤ N . Furthermore, we get
from (6.49) that for all 0 ≤ s ≤ t ≤ T ,

1

L

⌊Lt⌋−1∑
k=⌊Ls⌋

LLf

(
ω

(
k

L

))
1{ω( k

L )̸=0} =

∫ ⌊Lt⌋
L

⌊Ls⌋
L

LLf

(
ω

(⌊Lu⌋
L

))
1{

ω
(

⌊Lu⌋
L

)
̸=0

}du

=

∫ t

s
Lf (ω (u))1{ω(u)̸=0}du+ o(1) +O

(
δω

(
T,

1

L

)
+

1

L

)
. (6.53)
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At this point we need to note that if we assume that ⌊Lt⌋ ≥ ⌊Ls⌋ + 1 and Ls ̸= ⌊Ls⌋ then
by using (6.47) and (6.43) one has

EL
[
M⌊Lt⌋ −M⌊Ls⌋|Fs

]
(ω) =M⌊Ls⌋+1(ω)−M⌊Ls⌋(ω) = O

(
δω

(
T,

1

L

)
+

1√
L

)
. (6.54)

Otherwise EL
[
M⌊Lt⌋ −M⌊Ls⌋|Fs

]
= 0. Finally, we deduce that for all f sufficiently smooth with

bounded derivatives on each ray satisfying the left-hand-side of (6.50) one has

EL

[
f(ω(t))− f(ω(s))−

∫ t

s
Lf (ω (u))1{ω(u) ̸=0}du

∣∣∣∣Fs

]
≥ (resp. =)

o(1) +O
(
EL

[
δω

(
T,

1

L

)])
+O

(
EL[#{0 ≤ k ≤ ⌊LT ⌋ : Xk = 0}]

L

)
. (6.55)

Note that the functional into the expectation of the left-hand-side of (6.55) is continuous and
bounded with respect to ω ∈ C. Besides, it follows from the tightness and Lemma 6.1 (by letting
η → 0) that the second and the third term in the right-hand-side of (6.55) goes to 0 as L goes to
infinity. We deduce (6.24). To conclude, it remains to prove (6.22). To this end, one can write
for all η > 0,

E⋆

[∫ T

0
1{d(ω(s),0)<η}ds

]
≤ lim inf

L→∞

EL[#{0 ≤ k ≤ ⌊LT ⌋ : d(Xk,0) < η
√
L}]

L
. (6.56)

Here we use {ω ∈ C : d(ω(s),0) < η} is open and the Fatou’s Lemma. Applying again Lemma
6.1 and letting η → 0 we obtain (6.22). This completes the proof of Theorems 4.1 and 4.2.

Focus on the repulsive case. The proof follows the main lines as in the regular and attractive
cases above and most of the previous notations are kept. For instance, as for the regular and
attractive cases, we deduce from Lemma 6.1 that

E⋆

[∫ ∞

0
1{ω(s)=0}ds

]
= 0. (6.57)

The test functions f we consider are supposed to have a compact support in G \ {0} as in
Theorem 6.3. In particular, assuming µi ̸= 0, the asymptotic (6.48) becomes

LDi

(
x
√
L
)

2

(
fi

(
x+

1√
L

)
− fi

(
x− 1√

L

))
=

f ′i(x)

x
+ o(1). (6.58)

Here we use (6.17). Furthermore, we need to distinguish whether or not x = 0 and when
x = (x, i) ̸= 0 whether or not µi = 0.

1) Assume that x = (x, i) ̸= 0 and µi ̸= 0. One can prove as previously that{
f(ωt)−

∫ t

0
LYf(ωs)ds

}
t≥0

is a P⋆(dω)-martingale. (6.59)

As in the proof of Theorem 6.3, we deduce that P∗ ∼ Y(µ,x) since the hitting time of 0 of a
three-dimensional Bessel process starting from x > 0 is infinite almost-surely.

2) Assume that x = (x, i) ̸= 0 and µi = 0. Again one has (6.59) and we deduce that the
restriction of P⋆ to the σ-algebra Fτ0 is a standard Brownian motion on the ith ray starting to
x up to the hitting time of 0. Then by using the Markov property, we deduce that P∗ ∼ Y(µ,x)

provided the result is proved assuming x = 0.
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3) Assume that x = 0. Once again (6.59) still holds and in order to apply Theorem 6.3 we
only need to show that P∗ satisfies (6.26). As a matter of facts, it is a simple consequence of
(3.18) and thus P∗ ∼ Y(µ,x).

This ends the proof the scaling limits. □
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