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Abstract. In this article, we lay solid foundations for the study of Maximal Entropy Random
Walks (MERWs) on in�nite graphs. We propose an appropriate de�nition that extends the
original one from �nite to in�nite setting. Unlike conventional simple random walks, which
maximize entropy locally, MERWs maximize entropy globally along their paths, representing a
signi�cant paradigm shift. They were introduced by physicists and computer scientists in [1]
and are characterized by strong localization properties in heterogeneous environments. In the
in�nite setting, however, MERWs are not always unique and might not even exist. Despite
this, they continue to maximize the entropy rate, albeit in a less direct way. Our investigation
focuses on weighted spider networks, where we explicitly describe the MERWs and highlight a
phase transition phenomenon related to the model's parameters. In studying the scaling limits
of these random walks, we obtain some interesting Walsh di�usions and the three-dimensional
Bessel process. A uni�ed proof is presented based on submartingale problems. Notably, when
applying our �ndings to particles satisfying to the Pauli exclusion principle, we can deduce the
electrostatic force by solely relying on the maximal entropy principle. We also touch upon how
to achieve these results for continuous time stochastic processes, utilizing the Kullback�Leibler
divergence.
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1 Introduction

The most popular way to randomly explore a locally �nite graph G without any further infor-
mation is to assume that the walker sitting at a node jumps onto any neighboring node chosen
with a uniform probability and does this independently at every time. This Markov process is
known as a Generic Random Walk (GRW). This choice among all possible random walks can
be justi�ed by its property of maximizing the entropy production at each step.

Entropy rate. The concept of entropy, introduced by Ludwig Boltzmann in the 1870s, is funda-
mental in the �elds of Statistical Physics and Thermodynamics. Similarly, the �eld of Informa-
tion Theory, developed by Claude Shannon in the 1940s, also recognizes the importance of this
quantity. We refer to their groundbreaking papers [2, 3]. Here, all we need to know is that the
entropy of a distribution µ on a countable set V is de�ned by

H(µ) = −
∑
x∈V

µ(x) ln(µ(x)) ∈ [0,∞]. (1.1)

WhenX is a random variable on V , the quantityH(X) represents the entropy of the distribution
of X. Furthermore, if card(V ) = N is �nite, the maximum value of H(µ) is attained when µ is
the uniform probability measure on V , and it equals to ln(N). Concerning Markov chain theory
on a countable state space V , a quantity of signi�cant interest is the entropy rate

h = lim
n→∞

H((X0, · · · , Xn))

n
. (1.2)

When (Xn)n≥0 is irreducible and positive recurrent, h is independent of the initial distribution
and only depends on the invariant probability measure π and the transition kernel P as

h = −
∑
x,y∈V

π(x)P (x, y) ln(P (x, y)). (1.3)

For more details, one can refer to [4, 5]. As an example, the entropy rate of a GRW on a �nite
lattice with vertex set V is given by

hGRW =

∑
x∈V d(x) ln(d(x))∑

x∈V d(x)
, (1.4)

2



where d(x) denotes the out-degree of the vertex x.

A brief history of MERWs. Maximum Entropy Random Walks represent a paradigm shift from
a local to a global perspective. In essence, those are RWs that maximize entropy along their
paths or, equivalently, the entropy rate. This approach has been recently introduced in [1, 6, 7].
Among their �ndings, the authors emphasize the strong localization phenomenon of MERWs in
slightly disordered environments. This is especially relevant in Quantum Mechanics, especially
in the context of the Anderson localization phenomenon (refer to [8] for a mathematical sur-
vey). More broadly, MERWs appear to hold signi�cant implications for statistical physics. The
concept of MERW is closely related to that of Parry measures for sub-shifts of �nite type, as
de�ned in [9] and recently explored in [10]. This idea is also subtly present in [11,12]. Further-
more, MERWs could be instrumental in studying and modeling complex networks, as suggested
in [13�15]. Lastly, the MERW concept has found applications in diverse scienti�c areas, such as
community detection [16,17], link prediction [18], and even quasispecies evolution [19].

The �nite setting. While signi�cant progress has been made in the mathematical framework of
MERWs, further inquiry is still required. Current advancements mostly pertain to �nite graphs,
which present advantageous properties. Speci�cally, when dealing with an irreducible �nite
graph, the Perron-Frobenius theorem guarantees the existence and uniqueness of a MERW. As
illustrated in [6], its Markov kernel and invariant probability measure, for all vertices x, y, are
given by

P (x, y) = A(x, y)
ψ(y)

ρψ(x)
and π(x) = ϕ(x)ψ(x), (1.5)

where A represents the adjacency matrix of graph G, ρ is its spectral radius, and ψ (respectively,
ϕ) is the associated positive right (left) eigenfunction of A. The latter is normalized so that π
de�nes a probability measure. The corresponding entropy rate is hMERW = ln(ρ). Intriguingly,
all trajectories of length n between vertices x and y have the same probability, given by

P(X0 = x, · · · , Xn = y) =
ψ(y)

ρnψ(x)
. (1.6)

While the trajectory distribution is not uniform, it becomes uniform when conditioned on tra-
jectory length and endpoints. This property suggests the rich combinatorial features inherent in
MERWs. Equation (1.5) evokes the well-known Doob h-transform, commonly encountered when
conditioning stochastic processes to remain within a speci�c domain. For relevant references we
refer to [20] and [21], as well as Remark 3.2. To broadening the scope, one can substitute the ad-
jacency matrix A with a weighted variant (strictly positive across edges) and require the MERW
to maximize

h(Q) = −
∑
x,y∈G

µ(x)Q(x, y) ln

(
Q(x, y)

A(x, y)

)
, (1.7)

over the positive-recurrent Markov kernels Q on G. Here, µ is the invariant distribution of Q.
When the entries A(x, y) are non-negative integers, this formulation is interpreted as a MERW
on a multi-edge graph. Additional constraints, like energy conditions, can be introduced as
discussed in [22] and [6]. The positive eigenfunction ψ is prominent when assessing node in�uence
in complex networks, forming the crux of the eigenvector centrality method [23]. For physicists,
ψ can be interpreted as a wave function, speci�cally the ground state of a discrete Schrödinger
equation

−∆ψ(x) +H(x)ψ(x) = −ρψ(x), (1.8)
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where ∆ is the graph Laplacian and H is the potential de�ned by

∆f(x) =
∑
y∈G

A(x, y)(f(y)− f(x)) and H(x) = −
∑
y∈G

A(x, y). (1.9)

For symmetric matrices A, we have π(x) = ψ(x)2: the stationary probability distribution is
the square of the wave function. There are only a limited number of solvable models where
the spectral radius and the associated wave function are explicitly known; determining these in
general is a challenging task. For speci�c examples, such as (truncated) Cayley trees and ladder
graphs, we refer to [24]. For small graphs, it is feasible to compute these values numerically and
carry out computer simulations of the MERW.

Beyond the �nite situation. Importantly, and central to this paper's focus, there is a lack
of consistent results for in�nite networks. In�nite periodic lattice are discussed in [7], where
di�usion coe�cients are computed, but many questions remain unanswered:

� How should the MERW be properly de�ned on an weighted in�nite graph ?

� Does a unique MERW exist ?

� How do the scaling limits of MERWs compare with those of GRWs?

Regarding the last question, a quintessential example is Donsker's celebrated result [25]. This
has led to a rich body of literature. Under certain conditions, Donsker's result indicates that
the scaling limits of GRWs are Brownian motions. A key objective of ours is to showcase that
many usual continuous-time stochastic processes can be interpreted as scaling limits of MERWs.

Outline of the article. In Section 2, we �rst provide a generalized de�nition of MERWs on
(possibly in�nite) weighted irreducible graphs that does not involve entropy. Subsequently, we
present the necessary and su�cient conditions for their existence and uniqueness. Examples
where either existence or uniqueness is absent are discussed. We further motivate our de�nition
and we elucidate how these RWs optimize the entropy rate and establish a connection with the
entropy of some dynamical systems. An open question about �nite approximations of these
MERWs is posed, accompanied by an intriguing example. We also describe how to leverage po-
tential symmetries to compute MERWs. In Section 3, we delve into MERWs on weighted spider
networks. A phase transition phenomenon is spotlighted: depending on the parameters, they can
be positive-recurrent, null-recurrent, or transient. The spectral radius and its associated eigen-
functions are determined explicitly. In Section 4, we state the functional scaling limits we have
obtained. In the recurrent situations, these involve Walsh di�usions, speci�cally the standard
Walsh Brownian motion and, in a manner of speaking, attractive Ornstein-Uhlenbeck Walsh
di�usions. In the transient case, scaling limits are related to the renowned three-dimensional
Bessel process. Additionally, in the more intricate context of continuous-time stochastic pro-
cesses, we explain how the latter di�usions can be directly interpreted as those minimizing some
Kullback-Leibler divergence. Finally, the proofs of the functional scaling limits are furnished in
Section 5.

2 General Framework

In what follows, let G represent a countable irreducible weighted graph. We use A to denote
the weighted adjacency matrix and E for the set of edges. For simplicity, we will refer to G as
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the set of vertices. Additionally, we shall assume that

sup
x∈G

∑
y∈G

A(x, y) <∞. (2.1)

2.1 An Expanded De�nition of MERWs

For the primary results on in�nite positive matrices that we make use of, we refer to [26].

De�nition 2.1. For any arbitrary x, y ∈ G, the combinatorial spectral radius, denoted by ρ, is
de�ned as the inverse of the radius of convergence for

∑∞
n=0A

n(x, y)zn. Notably, it is indepen-
dent of the choice of x and y.

In essence, the leading asymptotic behavior of the number of n-step trajectories from x to y
is on the order of ρn.

De�nition 2.2. A random walk on G is termed a MERW if, for all vertices x, y ∈ G, its Markov
kernel is de�ned as

P (x, y) = A(x, y)
ψ(y)

ρψ(x)
, (2.2)

where ψ represents a positive eigenfunction of A associated with the spectral radius ρ.

Analogously to (1.5), if ϕ is a positive left eigenfunction of A associated with the eigenvalue
ρ then π(x) = ϕ(x)ψ(x) is an invariant measure of the MERW. Without loss of generality
we can assume that ψ(o) = 1 for a chosen base point o ∈ G. Moreover the set of positive
solutions to Aψ = ρψ with ψ(o) = 1 is a convex compact set for the pointwise topology. By the
Krein�Milman and Choquet theorems such a solution can be expressed as

ψ(x) =

∫
ψe(x)µ(de), (2.3)

where {ψe : e ∈ K} denotes the set of extremal solutions and µ is a probability measure on K.

2.2 Existence and Uniqueness

To ensure the existence and uniqueness of such MERW, we require further assumptions related
to the recurrence and transience of Markov processes.

De�nition 2.3. Let x, y ∈ G be arbitrary. The matrix A is termed R-recurrent (resp. R-
transient) if ∑

n≥0

An(x, y)

ρn
=∞

resp.
∑
n≥0

An(x, y)

ρn
<∞

 . (2.4)

If A is R-recurrent, it is termed R-null (resp. R-positive) if An(x, y)ρ−n tends to zero (resp.
does not tend to zero). Notably, these de�nitions are independent of the choice of x and y.

Proposition 2.1. Suppose that A is R-recurrent. Then, ρ is an eigenvalue of A, and there
exist unique left and right eigenfunctions associated with ρ (up to a multiplicative constant).
Consequently, there is a unique MERW, which is recurrent. Moreover, this MERW is positive
recurrent if and only if A is R-positive.
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A toy example. In the R-transient case, neither existence nor uniqueness of the MERW is
assured. Consider the example where G = N0 = {0, 1, · · · }. De�ne the adjacency matrix A such
that A(n, n− 1) = 1, A(0, n) = αn for all n ≥ 1, and A(x, y) = 0 elsewhere. It can be observed
that ∑

n≥1

An(0, 0)zn =
1

1−∑n≥1 αnz
n+1

. (2.5)

To go further, if
∑

n≥1 αnz
n+1 has a radius of convergence equal to 1 and

∑
n≥1 αn < 1, then

ρ = 1 and A is R-transient. Furthermore, one can see that no solution exists for the system
ψ0 = 1, ψn = ψn−1 for all n ≥ 1, and ψ0 =

∑
n≥1 αnψn. Consequently, a MERW does not exist

for this setup.

As a matter of facts, it is possible to establish a necessary and su�cient condition for the
existence of a MERW. This condition is closely tied to taboo-like probabilities and draws upon
the foundational work by Harris and Veech on the existence of an invariant measure for a
transient Markov chain. A detailed presentation of this result can be found in [27].

Theorem 2.1. The equation Aψ = λψ with λ > 0 has a positive solution ψ if and only if one
of the following conditions is satis�ed:

(i) λ = ρ and A is R-recurrent;

(ii) (a) λ = ρ and A is R-transient, or (b) λ > ρ, and in both cases, there exists an in�nite
subset K ⊂ G and an exhaustive nested sequence (Gj)j≥0 of G with card(Gj) = j such
that

lim
j→∞,k→∞,k∈K

∑
y/∈Gj A(x, y) xFy,k(λ

−1)

xFx,k(λ−1)
= 0, (2.6)

where the power series xFy,k(z) =
∑∞

n=0 xf
(n)
y,k z

n are recursively de�ned by

xf
(n+1)
y,k =

∑
w 6=x

A(y, w) xf
(n)
w,k and xf

(0)
y,k = δy,k(1− δx,y). (2.7)

Here k → ∞ in G in the sense of the Alexandro� extension, and δa,b = 1 if a = b and
δa,b = 0 otherwise.

Remark 2.1. If G is locally �nite then the Harris-Veech condition (2.6) is met. Consequently,
there exists at least one MERW in that case.

2.3 Entropy Rate characterizations

It should be noted that in case (ii)(b) of Theorem 2.1, one can de�ne a Markov kernel by replac-
ing ρ in (2.2) with the corresponding λ > ρ. Conditionally on their length and their extremities,
the probability of any trajectory remains proportional to its weight. One might question the
reason for not replacing ρ in De�nition 2.2 with an arbitrary λ ≥ ρ when feasible. The primary
motivation is that we want MERWs to genuinely maximize the entropy production along the
paths, in a manner yet to be de�ned.

A toy example. For illustration, consider the standard latticeG = Z. The set of extremal positive
solutions with ψ(0) = 1 exists for any λ = 2 cosh(α), α ≥ 0, and is given by ψ±(x) = e±αx. The
corresponding RWs are the usual biased RWs de�ned by the transition probabilities

P (x, x+ 1) = 1− P (x, x− 1) =
e±α

eα + e−α
. (2.8)
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Starting from any point, it is straightforward to con�rm that the rate of entropy, as de�ned in
(1.2), is maximized for α = 0, corresponding to λ = ρ = 2.

To delve deeper, remember that h(Q) is de�ned in (1.7). Let us introduce

h?(G) = sup{h(Q) : Q is a positive-recurrent kernel on G}, (2.9)

It is important to note that h?(G) <∞ because it is bounded above by the logarithm of (2.1).
For a �nite graph G, the supremum of h(Q) is attained at a unique positive recurrent kernel
represented by the MERW (1.5), and we have h?(G) = ln(ρ(G)) where ρ(G) denotes the spectral
radius of G. Moving forward, when considering a subgraph H ⊂ G, it is naturally endowed with
the weight-structure of G through the restriction of the weighted adjacency matrix. Broadly
speaking, the following result can be inferred from sources such as [28�37]. We provide some
detailed of the results below.

Theorem 2.2. It holds that h?(G) = ln(ρ). Additionally, the supremum in (2.9) is actually a
maximum if and only if G is R-positive. When this condition is met, the maximum is attained
by the unique MERW transition kernel. Moreover, one can express

h?(G) = sup{h?(H) : H ⊂ G is �nite and irreducible}. (2.10)

To �nd the sequence that maximizes this, one can select any exhaustive and increasing sequence
of �nite, irreducible subgraphs, denoted as (Hn). Let Pn represent the unique MERW transition
kernel on each Hn.

1. If G is R-recurrent, then the sequence (Pn) converges pointwise to the unique MERW
transition kernel.

2. If G is locally �nite and R-transient, then the sequence (Pn) is tight, and any of its limit
points is a MERW transition kernel.

To be more speci�c, for unweighted graphs, h?(G) is the Gurevich entropy of the associated
topological Markov chain. It has been established that an equilibrium measure exists if and only
if G is R-positive, and in such cases, it is unique. We refer to [31, 32, 35] for a review of these
results. Those can be extended to weighted graphs and further, using the concepts of topological
pressure and potential (see, for instance, [33, 36]). Regarding the convergence of a maximizing
sequence, references [28�30] and [37] provide insights, with the latter highlighting a connection
to the theory of large deviations. The reason we assume G is locally �nite for transient graphs
is due to the need to exchange the limit in

ρnψn(x) =
∑
y∈Hn

A(x, y)ψn(x), x, y ∈ Hn, (2.11)

where ψn represents the eigenfunction associated with the spectral radius of Hn, and ψn(o) = 1
for a base point o that is present in all the Hn.

An open question and an intriguing example. In light of the previous Theorem, an interesting
question arises: can all MERWs be obtained from �nite approximations when the graph is R-
transient? To gauge the breadth of the problem, let us contemplate a rudimentary example.
Suppose G = Z carries the standard weight-structure, except that A(0,±1) = γ for a certain
γ > 0. In this context, this represents the symmetric spider lattice with two legs, having γ3 = 1,
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γ
(1)
2 = γ

(2)
2 = γ, and γ1 = 0. We �nd that G is R-transient if and only if γ < 1. Under these

conditions, ρ = 2, and the two extremal eigenfunctions are

ψ(±)(n) =

{
1 + Λn if ±n ≥ 0,

1 if ±n ≤ 0,
with Λ =

2(1− γ)

γ
. (2.12)

Let us introduce Hp,q = {−q + 1,−q + 2, · · · , p − 2, p − 1} ⊂ G for p, q ≥ 1. Observe that
ρ(Hp,q) ↑ 2 as p, q grow to in�nity. Let ψp,q be the eigenfunction associated with the spectral
radius and satisfying ψp,q(0) = 1. We can write ρ(Hp,q) = 2 cos(θp,q) where θp,q ∈ (0, π/2) and
thereafter

ψp,q(n) = cos(θp,qn) + (b−1n<0 + b+1n>0) sin(θp,qn). (2.13)

Analyzing the boundary conditions at points 0, p, and −q, we derive

b+ − b− = Λcotan(θp,q), b+ = −cotan(p θp,q) and b− = cotan(q θp,q). (2.14)

One can further express

ψp,q(n) =
sin((p− n) θp,q)

sin(p θp,q)
1n≥0 +

sin((q + n) θp,q)

sin(q θp,q)
1n<0. (2.15)

As θp,q → 0 and since ψp,q is positive, to maximize 2 cos(θp,q) we need

θp,q ∼
π

max(p, q)
. (2.16)

Assume �rst that q ∼ αp for some 0 < α < 1. Then, b− ∼ cot(απ) and

b+ ∼
1

π − p θp,q
∼ Λp

π
. (2.17)

From this, we infer that ψp,q → ψ+ pointwise, and subsequently, ψq,p → ψ−. As a result, we
can identify the two extremal MERWs. Next, let us assume that q ∼ p with p− q = δ for some
δ ∈ N0. Under this assumption,

π − q θp,q ∼
(

1 + δ
θp,q

π − p θp,q

)
(π − pθp,q). (2.18)

We �nd that b± ∼ µ±Λ where µ− = 1 − µ+ and µ+

(
1 + 1

1+δµ+Λ

)
= 1. Interestingly, the non-

extremal MERWs, obtainable through �nite approximations, are quanti�ed and represented by
the eigenfunctions µδψ

(+) + (1− µδ)ψ− for δ ∈ Z, with

µδ =

√
Λ2δ2 + 4 + Λδ − 2

2δΛ
∈ (0, 1). (2.19)

This formula is extended by continuity at δ = 0 by de�ning µ0 = 1/2.

2.4 Automorphism and Reduced Models

In general, computing the combinatorial spectral radius and the associated eigenfunctions can
be quite challenging. In this section, we provide tools to explore simpler models when the graph
exhibits symmetries. For a deeper understanding of graph automorphisms and amenable groups,
we refer the reader to [38]. Let us de�ne T as a subgroup of

Aut(G) = {τ ∈ S(G) : ∀x, y ∈ G, A(τx, τy) = A(x, y)} , (2.20)

where Aut(G) denotes the group of graph automorphisms. The orbit of an element x ∈ G under
the action of T is represented by x, and the entire orbit space is denoted by G.
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De�nition 2.4. The set G is canonically endowed with a weighted graph structure inherited
from that of G. The edges of this structure are de�ned as

E = {(x, y) : ∃(x, y) ∈ x× y with A(x, y) > 0}. (2.21)

The corresponding weighted adjacency matrix is given by

A(x, y) =
∑
y∈y

A(x, y), (2.22)

and this value does not depend on the choice of x ∈ x. Furthermore, if G is irreducible, then G
is also irreducible. This graph is termed the (weighted) reduced graph. In [38], it is also referred
to as the factor graph T \G.

Note that if, for some λ ∈ C and ψ : G → C, we have Aψ = λψ, then Aψ = λψ, where
ψ is de�ned by ψ(x) = ψ(x) for all x ∈ G. Conversely, if Aψ = λψ and ψ is T -invariant, i.e.,
ψ(τx) = ψ(x) for all τ ∈ T and x ∈ G, then Aψ = λψ, where ψ(x) = ψ(x) for all x ∈ G.
Besides, we denote by ρ the combinatorial spectral radius of the reduced graph. Clearly, ρ ≤ ρ,
because for any x, y ∈ G we have

A
n
(x, y) =

∑
y∈y

An(x, y). (2.23)

Below, we shall provide conditions ensuring that ρ = ρ. For a given x0 ∈ G and n ≥ 0, set

B(x0, n) =
{
x ∈ G : ∃ 0 ≤ k ≤ n,Ak(x0, x) > 0

}
. (2.24)

For L ⊂ G, we de�ne ∂L as the set of vertices y ∈ G \L such that there exists x ∈ L with (x, y)
being an edge of G. We use |L| to represent the cardinality of L. Remember that T is termed
quasi-transitive if G is �nite.

Proposition 2.2. We have ρ = ρ if any of the following conditions is met:

i) there exists an x ∈ G such that x is �nite;

ii) G is locally �nite, A is symmetric, and there exist x0, x ∈ G such that

lim
n→∞

ln(|B(x0, n) ∩ x|)
n

= 0; (2.25)

iii) there exists a positive T -invariant function ψ such that Aψ ≤ ρψ;

iv) G is locally �nite, T is quasi-transitive, and either

(a) G does not satisfy a strong isoperimetric inequality, i.e., infL⊂G,L 6=∅
|∂L|
|L| = 0;

(b) or T is amenable.

Proof. i) The power series
∑

nA
n(x, y)zn, for x, y ∈ G, has a common radius of convergence

R = 1/ρ and possesses non-negative coe�cients. From (2.23), we conclude that ρ ≤ ρ. ii)
When A is symmetric and locally �nite, it can be viewed as a bounded linear operator on `2(G).

Besides, it comes from [38, Chap. II.10.] that ‖A‖2 = ρ and limn→∞ ‖An‖1/n2 = ρ. Speci�cally,
considering fn(·) = 1B(x0,n)∩x, we infer ρ ≤ ρ from

lim sup
n→∞

(
A
n
(x0, x)

)1/n ≤ lim sup
n→∞

‖Anfn‖1/n2 ≤ lim sup
n→∞

|B(x0, n) ∩ x|1/2n‖An‖1/n2 . (2.26)
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iii) By setting ψ(x) = ψ(x), we get a positive function with the property Aψ ≤ ρψ and thus
we deduce that ρ ≤ ρ by using [27]. iv) Given that G is �nite, there exists a positive function ψ
such that Aψ = ρψ. Let ψ represent the corresponding symmetric function on G (a lift), and
consider the random walk on G with transition probabilities de�ned as

p(x, y) = A(x, y)
ψ(y)

ρψ(x)
. (2.27)

Given the symmetry of A, ψ2 is a reversible measure. Moreover, ψ2 is bounded both above and
below by positive constants. Referring to Corollary 10.12 in [38], we �nd

lim sup
n→∞

pn(x, y)1/n = 1. (2.28)

This implies ρ = ρ whenever either condition (a) or (b) holds.

Remark 2.2. The preceding proposition can be applied to the in�nite periodic lattices examined
in [7], lending further rigor to their computation of the spectral radius.

3 Spider MERWs

3.1 Model and Settings

The model we consider is a star graph with N half-lines perturbed at the origin. We refer to
Figure 1. It can be parameterized as

G =
{

(n, k) : n ∈ N0, k = 1, · · · , N
}
∪ {0}. (3.1)

For convenience, we make the identi�cation 0 = (0, 1) = · · · = (0, N). We will denote by
∂G = {∞1, · · · ,∞N} the geometric boundary of G. Moreover, given any kernel P (x, y) or
function π(x) on G, we denote by Pk and πk their restrictions to the k-th leg Gk, and we
write Pk(n,m) = P ((n, k), (m, k)) and πk(n) = π((n, k)). The weighted adjacency matrix A we
consider is de�ned for all n ≥ 1 and 1 ≤ k ≤ N as

A(0,0) = γ1, Ak(0, 1) = γ
(k)
2 , and Ak(n, n± 1) = γ3. (3.2)

We assume that γ1 ≥ 0 and γ
(k)
2 , γ3 > 0. Hereafter, we set

S2 = γ
(1)
2 + · · ·+ γ

(N)
2 and Λ = 2γ3 − γ1 − S2. (3.3)

De�nition 3.1. The case when Λ = 0, Λ < 0, or Λ > 0 will be referred to as regular, attractive,
or repulsive, respectively.

It is noteworthy that τ , de�ned by τ((n, k)) = (n, (k + 1) modN) when n ≥ 2 and the

identity otherwise, generates a subgroup T of Aut(G). By additionally assuming that γ
(k)
2 = γ2

is constant on each ray, one can verify that the automorphism group of the model is isomorphic
to the cyclic group of order N . It can be interpreted as rotations of the plane given a proper

embedding. The reduced model is the original one with a single leg and γ
(1)
2 = Nγ2.
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γ1

γ
(k)
2

γ3

γ3

N = 5 half-lines

kth half-line

∞k

Figure 1: The spider network

3.2 Spectral Radius

We �rst observe that the spectral radius exhibits a phase transition phenomenon.

Proposition 3.1. The combinatorial spectral radius is given by

ρ =


2γ3, if Λ ≥ 0,

2γ3(γ2
1 + S2

2 )

γ1(2γ3 − S2) + S2

√
γ2

1 + 4γ3(S2 − γ3)
, if Λ < 0.

(3.4)

Proof. Let Cn be the n-th Catalan number. It is well-known that

S(z) =

∞∑
n=0

Cnγ
2n
3 z2n =

1−
√

1− 4z2γ2
3

2z2γ2
3

. (3.5)

The radius of convergence of S is R0 = (2γ3)−1. Let R = ρ−1 be the radius of convergence
of F (z) =

∑
n≥0A

n(0,0)zn. Using classical tools of algebraic combinatorics, as illustrated
in [39�41], we can express for all |z| < R,

F (z) =
1

1− (γ1z + S2γ3z2S(z))
. (3.6)

Note that the function x 7→ γ1x+ S2γ3x
2S(x) increases on [0, R0]. Moreover, it can be veri�ed

that

γ1R0 + S2γ3R
2
0S(R0) =

γ1 + S2

2γ3
. (3.7)

It follows that R = R0 when Λ ≥ 0. If not, R is the positive solution of γ1R+S2γ3R
2S(R) = 1,

which is given by

R =
γ1(2γ3 − S2) + S2

√
γ2

1 + 4γ3(S2 − γ3)

2γ3(γ2
1 + S2

2 )
. (3.8)

This concludes the proof.
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Remark 3.1. The spectral radius ρ is identical to the model with a single leg where γ
(1)
2 = S2.

When γ
(k)
2 ≡ γ2 is constant, this is a direct result of Proposition 2.2.

3.3 Markov Kernels

Proposition 3.2 (regular case Λ = 0). There exists a unique MERW. The positive right eigen-
function is given by ψ ≡ 1. For all 1 ≤ k ≤ N and n ≥ 1, the transition probabilities are

Pk(n, n+ 1) =
1

2
, Pk(n, n− 1) =

1

2
, Pk(0, 1) =

γ
(k)
2

2γ3
, and P (0,0) =

γ1

2γ3
. (3.9)

The process is null-recurrent with an invariant measure given by πk(n) = γ
(k)
2 and π(0) = γ3.

Proof. It can be readily veri�ed that ψ is a positive eigenfunction associated with ρ = 2γ3.
Referring to the proof of Proposition 3.1, it is apparent that A isR-recurrent. Hence, Proposition
2.1 implies the uniqueness of the MERW. The remainder of the proof follows directly.

Proposition 3.3 (attractive case Λ < 0). There exists a unique MERW. The positive right
eigenfunction is ψk(n) = Γn for all n ≥ 0 and 1 ≤ k ≤ N . The factor Γ is de�ned as

Γ =
ρ− γ1

S2
. (3.10)

The transition probabilities for all 1 ≤ k ≤ n and n ≥ 1 are given by

Pk(n, n± 1) =
γ3

ρ
Γ±1, Pk(0, 1) =

γ
(k)
2 Γ

ρ
, and P (0,0) =

γ1

ρ
. (3.11)

Moreover, the MERW is positive recurrent. Its invariant probability measure is

πk(n) =
γ

(k)
2 (1− Γ2)Γ2n

S2Γ2 + γ3(1− Γ2)
and π(0) =

γ3(1− Γ2)

S2Γ2 + γ3(1− Γ2)
. (3.12)

Proof. From Proposition 3.1, we deduce the R-recurrence, leading us via Proposition 2.1 to the
existence of a unique MERW on G. For all n ≥ 1, consider γ3ψk(n+ 1) + γ3ψk(n− 1) = ρψk(n)
subject to

N∑
k=1

γ
(k)
2 ψk(1) = ρ− γ1 and ψ(0) = 1. (3.13)

Let β be the root of γ3X
2 − ρX + γ3 = 0 in the interval (0, 1). We can express ψk(n) as

ψk(n) = akβ
n + bkβ

−n, (3.14)

with constants ak, bk ∈ R. Using Proposition 3.1, we �nd that ρ satis�es

γ1 + S2

[
γ3ρ
−1S(ρ−1)

]
= ρ, where S(z) =

1−
√

1− 4z2γ2
3

2z2γ2
3

. (3.15)

From (3.15), we deduce

β =
ρ−

√
ρ2 − 4γ2

3

2γ3
= γ3ρ

−1S(ρ−1) = Γ. (3.16)
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We can verify that the function ψk(n) = Γn is indeed the unique solution. The invariant
probability measure of the MERW is found by analyzing the left eigenvector of the system. For
this, we solve the equation γ3ϕk(n + 1) + γ3ϕk(n − 1) = ρϕk(n) for all n ≥ 2 and 1 ≤ k ≤ N
subject to

ϕk(2) =
ρϕk(1)− γ(k)

2

γ3
,

N∑
k=1

ϕk(1) =
ρ− γ1

γ3
, and ϕ(0) = 1. (3.17)

We con�rm that the function de�ned by ϕ(0) = 1 and ϕk(n) =
γ
(k)
2 Γn

γ3
meets these conditions.

Hence, it is the unique solution. The invariant probability measure is then obtained using
standard computations.

In the following, we set δx,y to be 1 if x = y and 0 otherwise.

Proposition 3.4 (repulsive case Λ > 0). There exists an in�nite collection of MERWs generated
by a �nite number N of linearly independent eigenfunctions {ψ(i) : 1 ≤ i ≤ N}. For all
1 ≤ k ≤ N and n ≥ 0, these are given by

ψ
(i)
k (n) = 1 + δi,k

Λ

γ
(k)
2

. (3.18)

More precisely, there exists a one-to-one correspondence between MERWs and probability distri-
butions (µi)1≤i≤N , through

ψ(µ) =

N∑
i=1

µiψ
(i). (3.19)

The associated transition probabilities, for all 1 ≤ k ≤ N and n ≥ 1, are

P
(µ)
k (n, n± 1) =

1

2

γ
(k)
2 + µkΛ(n± 1)

γ
(k)
2 + µkΛn

, P
(µ)
k (0, 1) =

γ
(k)
2 + µkΛ

2γ3
, P (µ)(0,0) =

γ1

2γ3
. (3.20)

Furthermore, let Pµx denote the distribution of the MERW associated with µ, starting from x ∈ G.
Then, for all 1 ≤ k ≤ N , we have

Pµ0
(

lim
n→∞

Xn =∞k

)
= µk. (3.21)

Proof. We aim to solve ψk(n+ 1) +ψk(n− 1) = 2ψk(n) for all 1 ≤ k ≤ N and n ≥ 1, under the
boundary conditions

ψ(0) = 1 and γ1 +
N∑
k=1

γ
(k)
2 ψk(1) = 2γ3. (3.22)

It immediately follows that ψk(n) = 1 + ckn for some constants ck ≥ 0, which leads to the
relation

N∑
k=1

γ
(k)
2 ck = Λ. (3.23)

This yields equations (3.18), (3.19), and (3.20). Expanding upon this, we observe that A is
R-transient, meaning all the MERWs are transient. Let (Xn)n≥0 be the MERW associated with
the probability measure µ. An harmonic function h satis�es Ex[h(Xn)] = h(x) for all x ∈ G and
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n ≥ 0 if and only if h = ψ(ν)

ψ(µ) for some other probability distribution ν. The Martin boundary is

thus represented by {1, · · · , N} and the Martin kernel is given by

K((n, k); i) =
ψ

(i)
k (n)

ψ
(µ)
k (n)

. (3.24)

Standard results on the Martin boundary of random walks assert that if Xn starts from 0, it
almost surely converges within the Martin compacti�cation to i with probability µi. The MERW
corresponding to ψ(i) is a classical symmetric nearest neighbor random walk in {(1, k), · · · } for
all k 6= i. Given its transient nature, limn→∞Xn = ∞i almost surely. Hence, we identify the
Martin boundary with {∞1, · · · ,∞N}.

Remark 3.2. Standard results on hitting times indicate that the distribution of a simple sym-
metric random walk on Z, conditioned to remain in N0, corresponds to the MERW on the spider

lattice when N = 1, γ1 = γ
(1)
2 = 0, and γ3 = 1.

4 Functional Scaling Limits

Let us introduce the space

G =
{
x = (x, k) : x ∈ [0,∞), k = 1, · · · , N

}
∪ {0}. (4.1)

Note that G is canonically embedded in G. We identify 0 = (0, 1) = · · · = (0, N) and denote
by Gk = {(x, k) : x ≥ 0} the k-th leg. Furthermore, we equip G with the usual railway distance
de�ned by

d((x, i), (y, j)) = |x− y|δi,j + (x+ y)(1− δi,j). (4.2)

Restricted to G, this becomes the standard graph distance. For all x = (x, k) ∈ G and α ≥ 0,
we set αx := (αx, k). For a proper planar embedding, the metric d is equivalent to the usual
Euclidean metric, and αx corresponds to the conventional scalar multiplication. Let (C,U)
denote the space of continuous functions from [0,∞) to G, equipped with the topology of uniform
convergence on compact sets. We use =⇒ to signify the convergence in distribution of stochastic
processes in (C,U) with the associated Borel σ-�eld. Let Ft, t ≥ 0, represent the canonical
�ltration on C. For any sequence of real numbers (Xn)n≥0, we de�ne for all t ≥ 0,

Xt = Xbtc + (t− btc)(Xbtc+1 −Xbtc). (4.3)

Here, bxc denotes the largest integer less than or equal to x.

Remark 4.1. It is possible to extend all the functional convergences discussed below to the space
of càdlàg functions, either endowed with the usual Skorokhod topology or the uniform topology
as described above. For more details, we refer to [42, Chap. 18].

4.1 Regular Case

We direct the reader to [43] for the de�nition of the Walsh Brownian motion and to [44] for

the excursion theory of Brownian motion. Let {W(µ,x)
t = (Wt,Kt) : t ≥ 0} be the standard

Walsh Brownian motion on G starting from x = (x, k) with spinning measure µ = (µ1, · · · , µN ).
Notably, when Wt = 0, the value of Kt ∈ {1, · · · , N} is inconsequential. This process can be
roughly described as follows. It is a continuous stochastic process on G where W is a standard
one-dimensional re�ected Brownian motion starting from x. It is noteworthy that Wt can be
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expressed as Wt = |Bt| = Bt + Lt, where B and B are two standard one-dimensional Brownian
motions starting from x, and L denotes the local time at 0 of W . To elaborate further, let τ
represent the right-continuous inverse of L. Each excursion interval of W away from zero can
be expressed as I0 = [0, τ0) or Is = (τs−, τs) for some s > 0. The set di�erence of the union
of these intervals is {t ≥ 0 : Wt = 0} and has Lebesgue measure zero. Moreover, K remains
constant, say αIs , over each Is. We have αI0 = k and, conditionally to W , {αIs : s > 0, Is 6= ∅}
constitutes an independent collection of µ-distributed random variables.

Theorem 4.1. Let {Xn}n≥0 be the MERW presented in Proposition 3.2 and de�ne

µ =

(
γ

(1)
2

S2
, · · · , γ

(N)
2

S2

)
. (4.4)

If X0 = x0 is deterministic and depends on L > 0 in such a way that for some x ∈ G,
x0√
L
−−−−→
L→∞

x, (4.5)

then the following functional scaling limit holds:{
XLt√
L

}
t≥0

===⇒
n→∞

{W(µ,x)
t }t≥0. (4.6)

4.2 Attractive Case

The construction of the Walsh Brownian motion has been extended to various contexts. For
Walsh di�usions, we direct the reader to [45] for a functional analysis approach on graphs and
to [46�50] for semimartingale characterizations on rays. We allude to [51] for the general Itô's
theory of excursions. Fix λ > 0 and x ≥ 0 and let Z be the solution of the re�ecting stochastic
di�erential equation

dZt = dBt − λdt+ dLt, Zt ≥ 0, Z0 = x, (4.7)

with B being a standard one-dimensional Brownian motion and L a B-adapted, non-decreasing,
continuous stochastic process which satis�es∫ ∞

0
1{Zt>0}dLt = 0 and

∫ ∞
0

1{Zs=0}ds = 0 a.s. (4.8)

Introduce the Walsh di�usion {Z(µ,x)
t = (Zt,Kt) : t ≥ 0} on G starting from x = (x, k) with the

spinning measure µ. Similar to the Walsh Brownian motion, when Zt = 0, the speci�c value of
Kt ∈ {1, · · · , N} is irrelevant. Moreover, we have Zt = |Zt|, where Z is a (weak) solution of
dZt = dBt−λ sgn(Zt)dt, with Z0 = x and B a standard one-dimensional Brownian motion. Here
L represents the local time at zero for Z. The spinning measure µ is subject to the condition:

∀i ∈ {1, · · · , N}, lim
ε→0+

1

2ε

∫ t

0
1{0<Zs<ε}1{Ks=i}ds = µiLt a.s. (4.9)

As before, K remains constant across each excursion interval (Is)s≥0 of Z. We have Kt = k
for I0, and the values for (Is)s>0 are independent and distributed according to µ, conditionally
to Z. It is worth noting that Z is an ergodic di�usion with its reversible probability measure
and one can check that the invariant probability measure of Z is the exponential distribution of
parameter 2λ.
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Theorem 4.2. Let {Xn}n≥0 be the MERW described in Proposition 3.3 with parameters γ

dependent on L > 0. Assume there exists ζ ∈ R × RN × R such that Z2 =
∑N

i=1 ζ
(i)
2 > 0 and a

positive constant λ satisfying

Λ

S2
∼

L→∞
− λ√

L
and γ − ζ = O

(
1√
L

)
. (4.10)

Further assume that X0 = x0 is deterministic and that

x0√
L
−−−−→
L→∞

x. (4.11)

Then, for the spinning measure de�ned as µ =

(
ζ

(1)
2

Z2
, · · · , ζ

(N)
2

Z2

)
, the following functional scaling

limit holds: {
XLt√
L

}
t≥0

===⇒
n→∞

{Z(µ,x)
t }t≥0. (4.12)

4.3 Repulsive Case

Firstly, introduce the well-known three-dimensional Bessel process {Y y
t }t≥0 staring from y ≥ 0.

This is the non-negative solution to the stochastic di�erential equation

dY y
t = dBt +

1

Y y
t

dt, Y0 = y, (4.13)

where B denotes a standard Brownian motion. For further details, we refer to [52]. In essence,
this is a transient Markov process satisfying Y y

t > 0 for all t > 0, even when it starts at zero.

Subsequently, for any x ≥ 0 and 1 ≤ k ≤ N , we consider the stochastic process
{
Y

(x,k)
t

}
t≥0

on
G de�ned by

P
(
∀t ≥ 0, Y

(x,k)
t = (Y x

t , k)
)

= 1. (4.14)

This corresponds to the three-dimensional Bessel process on the kth leg. Furthermore, let

µ = (µk)1≤k≤N be a probability distribution. We de�ne the process
{
Y

(µ,x)
t

}
t≥0

as

1. For x = 0: P
(
∀t ≥ 0, Y

(µ,0)
t = Y

(0,k)
t

)
= µk for all 1 ≤ k ≤ N .

2. For x = (x, k) 6= 0:

(a) If µk 6= 0: P
(
∀t ≥ 0, Y

(µ,x)
t = Y

(x,k)
t

)
= 1.

(b) If µk = 0:

Y
(µ,x)
t =

{
(x+Wt, k), for all 0 ≤ t ≤ τ0,

Y
(µ,0)
t−τ0 , for all t ≥ τ0,

(4.15)

where τ0 = inf{t ≥ 0 |x + Wt = 0} and W is a standard one-dimensional Brownian
motion, independent of Y(µ,0).

Theorem 4.3. Let {Xn}n≥0 be the MERW as speci�ed in Proposition 3.4, associated with the
probability distribution µ. If X0 = x0 is deterministic and relates to L > 0 such that

x0√
L
−−−−→
L→∞

x, (4.16)

then the following functional scaling limits holds:{
XLt√
L

}
t≥0

===⇒
n→∞

{Y(µ,x)
t }t≥0. (4.17)
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Remark 4.2. In a manner similar to Remark 3.2, we can state that a Brownian motion con-
ditioned to remain positive is a three-dimensional Bessel process (see, for instance, [53]). Func-
tional scaling limits of random walks conditioned to remain positive have been explored in [54,55].

Remark 4.3. The aforementioned results can be extended to the exclusion process. Consider
two particles on Z which can only jump to the right or to the left but cannot occupy the same
site. This con�guration corresponds to the lattice structure of the standard exclusion process.
We direct the reader to [56, 57] for comprehensive reviews on this topic. Through symmetry,
ψ(x, y) = 1 + (y− x) emerges as a positive eigenfunction related to the spectral radius ρ = 4. In
the scaling limit, the equation

d(Yt −Xt) = dWt +
dt

Yt −Xt
, (4.18)

is derived, where Xt < Yt signi�es the positions of the particles at time t. The interesting point
here is that the standard electrostatic force appears when assuming only a maximum entropy
constraint.

4.4 Continuous-Time counterparts of the MERWs

In light of the described scaling limits, one may wonder if the limit processes can be interpreted
as maximal entropy stochastic processes without involving MERWs. We will concentrate on the
case where N = 1 and explore the possibility of interpreting the three-dimensional Bessel process
and (4.7) as Maximal Entropy Stochastic Processes, the speci�cs of which will be outlined.

Kullback�Leibler Divergence (KLD). Let γn denote the (uniform) distribution of the �rst n-steps
of the simple random walk on the regular graph Z. It is noteworthy that maximizing the entropy
on the right-hand side of (1.2) is equivalent to minimizing the Kullback�Leibler divergence (or
the relative entropy) DKL(νn||γn). Given two probability measures ν, γ where ν is absolutely
continuous with respect to γ, the divergence is de�ned as

DKL(ν‖γ) =

∫
ln

(
dµ

dγ

)
dµ. (4.19)

To adapt this de�nition for continuous stochastic processes, replace γ withW a (Ft)t≥0-adapted
Brownian motion. The selection of stochastic processes that are absolutely continuous relative
toW will be made as follows. Let ψ be an absolutely continuous non-negative function on [0,∞)
with the property that U = {ψ > 0} is an open set in [0,∞). De�ne τ = inf{s ≥ 0 : Ws ∈ U}
and for all t ≥ 0,

Mt = exp

(∫ t

0

ψ′(Ws)

ψ(Ws)
dBs −

1

2

∫ t

0

(
ψ′(Ws)

ψ(Wt)

)2

ds

)
1{t<τ}. (4.20)

Observe that τ =∞ when ψ is positive. Leveraging the results from [58, Chap. 6.3], it is clear
that {Mt}t≥0 is a Ft-martingale under Px for every x ∈ U . Let Qx denote the distribution on
C([0,∞),R) expressed by

dQ(t)
x = Mt dP(t)

x , (4.21)

where Q(t)
x and P(t)

x represent the restrictions of Qx and Px to Ft respectively. Under Qx, the law
of W becomes a ψ2(x)dx-symmetric Markov process, ensuring that it never reaches ∂U when
it starts at x ∈ U . By invoking the Girsanov theorem (as found in [52]), one has under the
probability distribution Qx:

B̃t = Bt −
∫ t

0

(
ψ′(Ws)

ψ(Ws)

)2

ds, (4.22)
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is a Brownian motion. Thus, the stochastic processW satis�es under Qx the re�ected stochastic
di�erential equation

dW̃t = dB̃t +
ψ′(W̃t)

ψ(W̃t)
dt+ dL̃t, (4.23)

with the initial condition W̃0 = x and L̃ is the local time at 0 of W̃ . Consequently, we get

DKL

(
Q(t)
x

∥∥P(t)
x

)
= Ex

∫ t

0

(
ψ′(W̃s)

ψ(W̃s)

)2

ds

 . (4.24)

Nevertheless, when ψ2(x)dx is not a �nite measure, it is possible that

h = lim
t→∞

1

t
DKL

(
Q(t)
x

∥∥P(t)
x

)
=∞. (4.25)

We can state the following lemma whose proof is left to the reader.

Lemma 4.1. Assume that π(dx) = ψ2(x)dx is a probability measure on U . Then, for any x ∈ U
and for s > 0, the relative rate entropy h is given by

h = lim
t→∞

1

t
DKL

(
Q(t)
x

∥∥P(t)
x

)
=

∫
U

(ψ′(x))2dx =
1

s
DKL

(
Q(s)
π

∥∥P(s)
π

)
. (4.26)

Repulsive case. Assume that ψ(x) > 0 on ]0, L[ and ψ(x) = 0 otherwise for some L > 0. If we
are looking for such a function which minimizes (4.26), we obtain that

h =
(π
L

)2
and ψ(x) =

√
2

L
sin
(π
L
x
)
. (4.27)

Thereafter, we retrieve the three-dimensional Bessel process by letting L go to in�nity since for
all x > 0,

ψ′(x)

ψ(x)
∼

L→∞

1

x
. (4.28)

Attractive case. Regarding the case when γ1 = 1 + λ√
L
, γ

(1)
2 = 0 and γ3 = 1, we need to add

constraints on ψ. To be clear, we assume that ψ2(x)dx is a probability distribution on [0,∞)
but we also require that ∫ ∞

0
xψ2(x)dx =

1

2λ
. (4.29)

Let ψ be this minimizer and consider δ, a compactly supported smooth function where δ(0) = 0
and

∫∞
0 δ(x)dx = 0. Then by considering ψ + εδ for su�ciently small ε > 0 and looking at the

�rst and second order terms next to ε and ε2, we obtain that necessarily

− ψ′′(x) + βψ(x) = −αψ(x) (4.30)

and ∫ ∞
0

(δ′(x))2dx+ β

∫ ∞
0

x(δ(x))2dx+ α

∫ ∞
0

(δ(x))2dx ≥ 0. (4.31)

Here α, β are some Lagrange multipliers and the latter ordinary di�erential equation has to
be understood in a weak sense when ψ is not twice di�erentiable. Equation (4.30) is nothing
but a Schrödinger equation in a linear potential. When β 6= 0, solutions can be written as
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AAi(z) +BBi(z) with z = −β−1/3(x+α) and A,B ∈ R where Ai and Bi are the Airy functions
of �rst and second kinds. This can be proved by power series expansions or Fourier transform,
for instance. However, (4.31) implies that α, β ≥ 0 since δ is an arbitrary perturbation. It is
observed that Ai(z) and Bi(z) oscillate around zero as z approaches −∞. This behavior implies
that no non-negative solutions exist when β > 0. Thus β = 0 and then the unique non-negative
normalized square integrable solution satisfying (4.29) is ψ(x) =

√
2λe−λx. Using this, we obtain

the relationship
ψ′(x)

ψ(x)
= −λ. (4.32)

Subsequently, we recover the re�ected di�usion as given in (4.7).

5 Proofs of the Functional Scaling Limits

We will prove these theorems by following the standard approach: �rst establishing tightness and
then identifying the limit. In what follows, let PL represent the law on C of the scaled MERW
such that under the probability distribution PL(dω), the sequence {ω(t)}t≥0 is distributed as
the left-hand side of (4.6), (4.12), or (4.17), depending on the assumptions. The expectation
under this probability distribution will be denoted by EL.

5.1 Tightness

The submartingale argument. To prove tightness, we will employ a submartingale argument as
found in [59, chap. 1.4.]. While this method is applicable to continuous stochastic processes that
take their values in Rd, it can be readily extended to metric spaces, as indicated in [45, Theorem
2.1.]. More speci�cally, we will make use of the following result.

Theorem 5.1. Let {PL : L > 0} be a family of probability distributions on C satisfying

PL
({

ω ∈ C : ∀n ≥ 0, ω is linear over

[
n

L
,
n+ 1

L

]})
= 1. (5.1)

Further, assume that for every ε > 0, there exist Aε and Lε > 0 such that for any y ∈ G, there
is a function fyε on G satisfying

(i) fyε (y) = 1, (ii) fyε (x) = 0 if d(x, y) ≥ ε, (iii) 0 ≤ fyε (x) ≤ 1, (5.2)

and for all L ≥ Lε, {
fyε

(
ω
(n
L

))
+Aε

n

L

}
n≥0

is a PL(dω)-submartingale. (5.3)

Then, as L goes to in�nity, the family of probability measures {PL : L > 0} is tight.

Ito's formula for regular and attractive cases. Let {Xn}n≥0 be the MERW satisfying the as-
sumptions of Theorem 4.1 or 4.2, and let Xn denote its �rst component. Let f be a smooth
function on G with bounded derivatives. For all x = (x, i) ∈ G with x ≥ 1, we de�ne

∆Lf(x) = ∆Lfi(x) = fi

(
x+ 1√
L

)
− fi

(
x− 1√
L

)
and ∆2

Lf(x) = ∆2
Lfi(x) = fi

(
x+ 1√
L

)
− 2fi

(
x√
L

)
+ fi

(
x− 1√
L

)
. (5.4)
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It is noteworthy that

|∆Lf(x)| ≤ 2‖f ′‖∞√
L

and |∆2
Lf(x)| ≤ 2‖f ′′‖∞

L
. (5.5)

The drift is de�ned for all x = (x, i) 6= 0 by

D(x) = Di(x) = E[Xn+1 −Xn|Xn = x]. (5.6)

Utilizing the classical discrete-time version of Ito's formula, as found in [60, p. 180] or [61, p.
132] for instance, we can express for all 0 ≤ m ≤ n,

f

(
Xn√
L

)
= f

(
Xm√
L

)
+

1

2

N∑
i=1

n−1∑
k=m

(
∆2
Lfi(Xk) +Di(Xk)∆Lfi(Xk)

)
1{Xk 6=0}

+ #{m ≤ k ≤ n− 1 : Xk = 0}
N∑
i=1

Pi(0, 1)

(
fi

(
1√
L

)
− f(0)

)
+Mn −Mm, (5.7)

where {Mn}n≥0 is a square integrable (Fn)-martingale. Here, #E denotes the cardinality of a
set E and Fn = σ(X0, · · · , Xn).

Taylor expansions with respect to γ. To go further, introduce

H =

{
(x, y1, · · · , yN , z) ∈ R× RN × R : x+

N∑
k=1

yk − 2z = 0

}
. (5.8)

For a given u ∈ R× RN × R, let π(u) = (π1(u), π2(u), π3(u)) be the orthogonal projection of u
onto H, and let δ(u) = u− π(u) = (δ1(u), δ2(u), δ3(u)). The i-th component of π2(u) or δ2(u) is

denoted by π
(i)
2 (u) or δ

(i)
2 (u) for any 1 ≤ i ≤ N . Observe that for all 1 ≤ i ≤ N ,

δ1(γ) = δ
(i)
2 (γ) = − Λ

N + 5
and δ3(γ) =

2Λ

N + 5
. (5.9)

Let us set

G(x, y, z) =
z(x2 + y2)

x(z − y) + y
√
x2 + 2yz − z2

. (5.10)

Note that ρ = G(γ1,S2, 2γ3). Standard computation shows that ∇G(x, y, z) = (0, 0, 1) when
z = x + y. Furthermore, let Γ(γ) ≡ Γ to highlight the dependence of Γ in Theorem 4.2 with
respect to the parameters γ ∈ R× RN × R. We get

∇Γ(π(γ)) =

(
N∑
i=1

π
(i)
2 (γ)

)−1

(−1, . . . ,−1, 2) . (5.11)

The �rst order Taylor expansion of Γ(γ) at π(γ) in the attractive case becomes

Γ = 1 +
Λ

S2 + NΛ
N+5

+O(Λ2) = 1− λ√
L

+ o

(
1√
L

)
. (5.12)

Besides, still in the attractive case, it holds that

Di(x) =
γ3(Γ2 − 1)

ρΓ
=

Γ2 − 1

Γ2 + 1
. (5.13)
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Consequently, for x ≥ 1, one has

Di(x) = − λ√
L

+ o

(
1√
L

)
. (5.14)

In the regular case, we have Di(x) = 0. In both scenarios, we obtain uniformly on G \ {0}:∣∣∣∣12 (∆2
Lf(x) +Di(x)∆Lf(x)

)∣∣∣∣ = O
(‖f ′‖∞ + ‖f ′′‖∞

L

)
. (5.15)

The Lyapunov functions. Let ε > 0 and let fε be a smooth even function on R satisfying the
following properties: 0 ≤ fε ≤ 1, fε(x) = 0 for |x| ≥ ε, fε(x) = 1 for |x| ≤ ε/2, and fε is
non-increasing on [0,∞). Given y = (y, i) ∈ G, we de�ne for all x = (x, j) ∈ G,

fyε (x) =


fε(x− y) if y ≥ 2ε and j = i,

fε(x− 2ε) if y < 2ε and x ≥ 2ε,

1 if y < 2ε and x < 2ε,

0 otherwise.

(5.16)

It is evident that fyε (y) = 1, 0 ≤ fyε ≤ 1, and fyε (x) = 0 whenever d(x, y) ≥ 5ε. An illustration
of this can be found in Figure 2. Furthermore, we have fyε,i(1/

√
L) − fyε,i(0) = 0 for every L

satisfying 1/
√
L ≤ ε, given that fyε is �at over the set {x ∈ G : d(0, x) ≤ ε}. From equations

(5.15) and (5.7), we deduce that

E
[
fyε

(
Xn√
L

)
− fyε

(
Xm√
L

) ∣∣∣∣Fm] ≥ −Aε (nL − m

M

)
, (5.17)

where Aε depends only on the parameters, ‖f ′ε‖∞, ‖f ′′ε ‖∞, and ε. Consequently, we can establish
the tightness in Theorems 4.1 and 4.2 using Theorem 5.1.

0 GiGj

f yε f yε

2ε 3εε yy

Figure 2: Lyapunov functions

Focus on the repulsive case. We only consider the primary distinctions compared to the previous
cases. For every x = (x, i) 6= 0, we have

D(x) = Di(x) = E
[
Xn+1 −Xn

∣∣Xn = x
]

=
µiΛ

γ
(i)
2 + µiΛx

. (5.18)

It can also be veri�ed that

Di(x)∆Lf
y
ε,i(x) = O

(‖f ′ε‖
εL

)
1{x≥ε

√
L}. (5.19)

Again, we get from the Ito's formula 5.7:

E
[
fyε

(
Xn√
L

)
− fyε

(
Xm√
L

) ∣∣∣∣Fm] ≥ −Aε (nL − m

M

)
, (5.20)

here for all L ≥ ε−2. The constant Aε solely depends on the parameters, ‖f ′ε‖∞, ‖f ′′ε ‖∞, and ε.
Using again Theorem 5.1, we conclude the proof for tightness.
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5.2 Limit Processes

Let P? be a limit point of PL as L approaches in�nity, and let E? represent the associated
expectation. We aim to demonstrate that P? corresponds to the distribution of W(µ,x), Z(µ,x),
or Y(µ,x) as speci�ed in Theorems 4.1, 4.2, or 4.3, depending on the underlying assumptions.
To achieve this, we characterize these stochastic processes in terms of local martingale and/or
submartingale problems. Given a continuous function f on G, which is smooth on every ray, we
de�ne for all x = (x, i) 6= 0:

LWf(x) =
1

2
f ′′i (x), LZf(x) =

1

2
f ′′i (x)− λf ′i(x) (5.21)

and

LYf(x) =
1

2
f ′′i (x) +

1− δµi,0
x

f ′i(x). (5.22)

Martingale and submartingale problems. The following result is referenced in [46] and [62].

Theorem 5.2. Let us de�ne L as either LZ or LW. In the context where L = LZ (resp.
L = LW), the Walsh di�usion Z(µ,x) (resp. W(µ,x)) is the unique solution Q on C to the
martingale and submartingale problem described by

ω0 = x,

∫ ∞
0

1{ωs=0}ds = 0 almost surely with respect to Q(dω), (5.23)

and for every su�ciently smooth and bounded function f on G satisfying either

i)
N∑
i=1

µif
′
i(0) = 0 or ii)

N∑
i=1

µif
′
i(0) ≥ 0, (5.24)

the stochastic process {M f
t }t≥0 is either i) a martingale or ii) a submartingale under the distri-

bution Q(dω) where

M f
t = f(ωt)−

∫ t

0
Lf(ωs)1{ωs 6=0}ds (5.25)

Remark 5.1. As a matter of fact, the class of functions f considered in [46, 62] consists of
continuous functions that are twice continuously di�erentiable on each ray. It is only required
that M f is a local martingale (resp. local submartingale). By using classical localization and
density arguments, one can restrict the domain of functions f as stated above and require that
M f be a martingale (resp. submartingale).

Regarding Y(µ,x), the results in [46, 62] do not apply. Additionally, the drift of the three-
dimensional Bessel process in (4.13) is singular at the origin, presenting an additional challenge.
However, one can state the following result, the proof of which is provided below.

Theorem 5.3. The di�usion Y(µ,0) is the unique solution Q on C of the following martingale
problem, given by

ω0 = 0,

∫ ∞
0

1{ωs=0}ds = 0 Q(dω)-a.s., (5.26)

for all 0 ≤ i ≤ N ,
Q ({ω ∈ C : ∀t ≥ 0, ωt ∈ Gi}) = µi, (5.27)

and for all su�ciently smooth and bounded functions f with compact support included in G \{0},

M f =

{
f(ωt)−

∫ t

0
LYf(ωs)ds

}
t≥0

is a Q(dω)-martingale. (5.28)
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Proof. It is clear that the distribution of Y(µ,0) solves the martingale problem. The challenge
remains to show that it is the unique solution. Initially, we assume that N = 1. In this case,
Y(0,µ) = Y 0 is simply the three-dimensional Bessel process starting from 0. We denote its
distribution by Q0 and its in�nitesimal generator by LY . For η > ε > 0, introduce

ση(ω) = inf{t ≥ 0 : ωt = η} and τε(ω) = inf{t ≥ 0 : ωση+t = ε}. (5.29)

From our assumptions and using standard localization and approximation arguments, we con-
clude that {

f(ωση+t∧τε)−
∫ t∧τε

0
LY f(ωση+s)ds

}
t≥0

is a Q(·|ση <∞)-martingale, (5.30)

for all su�ciently smooth functions f on [0,∞). Letting ε→ 0 and applying standard results on
martingale problems and stochastic di�erential equations, we deduce that Q(·|ση < ∞) equals
the distribution Qη of a three-dimensional Bessel process starting from η. Moreover, from (5.26),
we �nd Q(·|ση <∞) =⇒ Q as η ↓ 0 because

P

⋃
η↓0
{ση <∞}

 = 1. (5.31)

Since the three-dimensional Bessel process is a Feller Markov process, we have Qη =⇒ Q0 as
η ↓ 0. Thus, we obtain Q = Q0. Finally, assuming N is arbitrary, for any 1 ≤ i ≤ N ,
introduce the stopping time τi(ω) = inf{t ≥ 0 : ωt /∈ Gi}. From (5.27) and (5.26), we deduce
that τi ∼ µiδ∞ + (1 − µi)δ0. Speci�cally, {τi = ∞} ∈ ⋂s>0Fs. In the sequel, we denote the

expectation with respect to the conditional probability Q(·|τi =∞) by E(i). For �xed t ≥ s > 0,
let Υ be a bounded Fs-measurable random variable. We obtain

E
[
(M f

t∧τi −M f
s∧τi)1{τi=∞}Υ

]
= µiE(i)

[
(M f

t −M f
s )Υ

]
= 0. (5.32)

Note that the latter equality also holds for s = 0 due to continuity. Hence, M f is a Q(·|τi =∞)-
martingale. Utilizing the result for N = 1, we conclude that Q is the distribution of Y(µ,0).

Bound on the local time at zero. To ensure that conditions (5.23) or (5.26) hold for any limit
point Q?, we require the following lemma.

Lemma 5.1. Let {Xn}n≥0 be the MERW speci�ed in Theorems 4.1, 4.2, or 4.3. Remember that
λ > 0 is provided in Therorem 4.2. For any u, v, η > 0, there exists a positive constant Cv,λ such
that

lim sup
L→∞

E

[
#{0 ≤ k ≤ dLue : d(Xk,0) ≤ η

√
L}

L

]
≤ (u+ v)(1− e−2λη)

Cv,λ
. (5.33)

Proof. Firstly, using a simple coupling argument, we can reduce the problem to proving this
lemma for a MERW starting from the origin under the assumptions of Theorem 4.2. Indeed,
let Q denote the Markov kernel associated with a regular or repulsive MERW. We represent the

corresponding parameters by g ∈ RN+2. Choose ζ ∈ RN+2 such that ζ1 ≥ 0, ζ
(k)
2 ≥ 0 for all

1 ≤ k ≤ N with
∑

k ζ
(k)
2 > 0, ζ3 > 0, and ζ1 +

∑
k ζ

(k)
2 = 2ζ3 subject to the condition

ζ1

2ζ3
>

g1

2g3
. (5.34)
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Let P be the transition kernel associated with the MERW with parameters γ as in Theorem 4.2,
converging to ζ. We then have

P (0,0) =
ζ1

2ζ3
+O

(
1√
L

)
. (5.35)

From this, we get P (0,0) ≥ Q(0,0) for large L. Also, noting that Pk(n, n− 1) ≥ Qk(n, n− 1)
for all n ≥ 1 and 1 ≤ k ≤ N , constructing a coupling for which XP ≤ XQ becomes feasible,
where XP and XQ are the MERW associated with P and Q.

Secondly, let π be the invariant probability distribution of the MERW {Xn}n≥0 in Theorem
4.2. Using (5.12) and (3.12), we deduce

N∑
k=1

πk((η
√
L,∞)) =

S2Γ2bη
√
Lc

γ3(1− Γ2) + S2Γ2
= e−2λη + o (1) , (5.36)

leading to

Eπ
[
#{0 ≤ k < dL(u+ v)e : Xk ≤ η

√
L}
]

L
∼

L→∞
(u+ v)(1− e−2λη). (5.37)

De�ne T = inf{k ≥ 0 : Xk = 0}. Employing the strong Markov property, we have

Eπ

dL(u+v)e−1∑
k=0

1{Xk≤η
√
L}

 ≥
dL(u+v)e−1∑

i=0

Pπ(T = i)E0

dL(u+v)e−1−i∑
k=0

1{Xk≤η
√
L}

 (5.38)

≥ Pπ(T < dLve)E0

dLue−1∑
k=0

1{Xk≤η
√
L}

 . (5.39)

Let Ξk be a random variable distributed as π conditionally on {(x, k) : x ≥ 1} and let (ξi)i≥1

be a sequence of i.i.d. Rademacher random variables with parameter p = γ3Γρ−1 independent
of Ξk. Set Sn = ξ1 + · · ·+ ξn. Through a simple coupling argument, we can infer

Pπ(T < dLve) ≥ π(0) +
N∑
k=1

πk((0,∞))P
(
SdLve−1 ≤ −Ξk

)
. (5.40)

Additionally, we have

P
(
SdLve−1 ≤ −Ξk

)
= P

(
SdLve−1 + λ

√
Lv√

Lv
≤ −Ξk√

Lv
+ λ
√
v

)
. (5.41)

From (5.14), we observe that E[SdLve−1] = −λ
√
Lv + o(

√
L) as L approaches in�nity. Then,

analogously to (5.36) and with the aid of the central limit theorem, we deduce

SdLve−1 + λ
√
Lv√

Lv
⊗ Ξk√

L

(
====⇒
L→∞

U, V ) ∼ N (0, 1)⊗ E(2λ). (5.42)

Given that π(0) converges to 0, we conclude

lim inf
L→∞

Pπ(T < dLve) ≥ P(U +
√

2V ≤ λ√v). (5.43)

Lastly, combining this with the aforementioned equations, the proof is completed.
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Identi�cation of the limit. To go further, one can express

f
(
ω
(n
L

))
= f

(
ω
(m
L

))
+

1

L

n−1∑
k=m

LLf
(
ω

(
k

L

))
+Mn −Mm, (5.44)

where M is a square-integrable PL-martingale. For every x = (x, i) ∈ 1√
L
·G \ {0},

LLf(x) =
L

2

(
fi

(
x+

1√
L

)
+ fi

(
x− 1√

L

)
− 2fi(x)

)

+
LDi

(
x
√
L
)

2

(
fi

(
x+

1√
L

)
− fi

(
x− 1√

L

))
, (5.45)

and

LLf(0) = L

N∑
i=1

Pi(0, 1)

(
fi

(
1√
L

)
− f(0)

)
. (5.46)

Subsequently, we assume that the test functions f are su�ciently smooth and bounded, along
with their derivatives, on each ray. Importantly, uniformly on R, we �nd that

L

2

(
fi

(
x+

1√
L

)
+ fi

(
x− 1√

L

)
− 2fi(x)

)
=

1

2
f ′′i (x) +O

(
1√
L

)
. (5.47)

It is noteworthy that the constant in the big O depends exclusively on ‖f ′′′i ‖∞. Our analysis will
center on the remaining terms in (5.45) and (5.46).

Focus on the regular and attractive cases. We shall prove that P∗ is the solution of the well-posed
martingale/submartingale problem in Theorem 5.2. First, the assumptions of Theorems 4.1 and
4.2 allow us to see that for some α > 0, one has

LLf(0) = α
N∑
i=1

µif
′
i(0)
√
L+O(1). (5.48)

Here we use Pi(0, 1) =
ζ
(i)
2

2ζ3
+O

(
1√
L

)
for the attractive case. Recall that Di(x

√
L) = 0 as soon

as x ∈ 1√
L
· N in the regular case whereas in the attractive case we obtain from (5.14) that

LDi

(
x
√
L
)

2

(
fi

(
x+

1√
L

)
− fi

(
x− 1√

L

))
= −λ f ′i(x) + o(1), (5.49)

By using (5.47) we deduce for L ∈ {LW,LZ} according to the assumptions that

LLf(x) = (Lf(x) + o (1))1{x 6=0} + (ALf +O(1))1{x=0}, (5.50)

where ALf satis�es

N∑
i=1

µif
′
i(0) = 0

(
resp.

N∑
i=1

µif
′
i(0) ≥ 0

)
=⇒ ALf = 0 (resp. ALf ≥ 0) . (5.51)

Let T, ε,R ≥ 0 be given and set for all ω ∈ C,

δω(T, ε) = 1 ∧ sup{d(ω(t), ω(s)) : |t− s| ≤ ε, 0 ≤ s, t ≤ T}. (5.52)
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Here we denote a ∧ b = min(a, b). By using (5.44) one can write for all 0 ≤ s ≤ t ≤ T ,

f (ω(t)) = f (ω(s)) +
1

L

bLtc−1∑
k=bLsc

LLf
(
ω

(
k

L

))
+MbLtc −MbLsc +O

(
δω

(
T,

1

L

))
, (5.53)

where the constant in the big O depends only on the ‖f ′i‖∞ for 1 ≤ i ≤ N . Furthermore, we get
from (5.50) that for all 0 ≤ s ≤ t ≤ T ,

1

L

bLtc−1∑
k=bLsc

LLf
(
ω

(
k

L

))
1{ω( kL)6=0} =

∫ bLtc
L

bLsc
L

LLf
(
ω

(bLuc
L

))
1{

ω
(

bLuc
L

)
6=0
}du

=

∫ t

s
Lf (ω (u))1{ω(u)6=0}du+ o(1) +O

(
δω

(
T,

1

L

)
+

1

L

)
. (5.54)

At this point we need to note that if we assume that bLtc ≥ bLsc + 1 and Ls 6= bLsc then
by using (5.48) and (5.44) one has

EL
[
MbLtc −MbLsc|Fs

]
(ω) = MbLsc+1(ω)−MbLsc(ω) = O

(
δω

(
T,

1

L

)
+

1√
L

)
. (5.55)

Otherwise EL
[
MbLtc −MbLsc|Fs

]
= 0. Finally, we deduce that for all f su�ciently smooth with

bounded derivatives on each ray satisfying the left-hand-side of (5.51) one has

EL
[
f(ω(t))− f(ω(s))−

∫ t

s
Lf (ω (u))1{ω(u) 6=0}du

∣∣∣∣Fs] ≥ (resp. =)

o(1) +O
(
EL
[
δω

(
T,

1

L

)])
+O

(
EL[#{0 ≤ k ≤ bLT c : Xk = 0}]

L

)
. (5.56)

Note that the functional into the expectation of the left-hand-side of (5.56) is continuous and
bounded with respect to ω ∈ C. Besides, it follows from the tightness and Lemma 5.1 (by letting
η → 0) that the second and the third term in the right-hand-side of (5.56) goes to 0 as L goes to
in�nity. We deduce (5.25). To conclude, it remains to prove (5.23). To this end, one can write
for all η > 0,

E?
[∫ T

0
1{d(ω(s),0)<η}ds

]
≤ lim inf

L→∞

EL[#{0 ≤ k ≤ bLT c : d(Xk,0) < η
√
L}]

L
. (5.57)

Here we use {ω ∈ C : d(ω(s),0) < η} is open and the Fatou's Lemma. Applying again Lemma
5.1 and letting η → 0 we obtain (5.23). This completes the proof of Theorems 4.1 and 4.2.

Focus on the repulsive case. The proof follows the main lines as in the regular and attractive
cases above and most of the previous notations are kept. For instance, as for the regular and
attractive cases, we deduce from Lemma 5.1 that

E?
[∫ ∞

0
1{ω(s)=0}ds

]
= 0. (5.58)

The test functions f we consider are supposed to have a compact support in G \ {0} as in
Theorem 5.3. In particular, assuming µi 6= 0, the asymptotic (5.49) becomes

LDi

(
x
√
L
)

2

(
fi

(
x+

1√
L

)
− fi

(
x− 1√

L

))
=

f ′i(x)

x
+ o(1). (5.59)
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Here we use (5.18). Furthermore, we need to distinguish whether or not x = 0 and when
x = (x, i) 6= 0 whether or not µi = 0.

1) Assume that x = (x, i) 6= 0 and µi 6= 0. One can prove as previously that{
f(ωt)−

∫ t

0
LYf(ωs)ds

}
t≥0

is a P?(dω)-martingale. (5.60)

As in the proof of Theorem 5.3, we deduce that P∗ ∼ Y(µ,x) since the hitting time of 0 of a
three-dimensional Bessel process starting from x > 0 is in�nite almost-surely.

2) Assume that x = (x, i) 6= 0 and µi = 0. Again one has (5.60) and we deduce that the
restriction of P? to the σ-algebra Fτ0 is a standard Brownian motion on the ith ray starting to
x up to the hitting time of 0. Then by using the Markov property, we deduce that P∗ ∼ Y(µ,x)

provided the result is proved assuming x = 0.

3) Assume that x = 0. Once again (5.60) still holds and in order to apply Theorem 5.3 we only
need to show that P∗ satis�es (5.27). As a matter of facts, it is a simple consequence of (3.21)
and thus P∗ ∼ Y(µ,x).

This ends the proof the scaling limits. �
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