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Abstract

This article presents the development of a radiographic characterization method for microshells. In

the LMJ (Laser MegaJoule) framework, microshells are tiny plastic spheres used in inertial fusion

laser experiments. For this work, these microshells were characterized using low energy radiog-

raphy. In the microshell radiographs, phase contrast was noted at the edges of the microshells.

The origin of this phenomenon has been identified as sharp variation of gray scale amplitude due

to refraction. Our theoretical model links pixel information with microshell geometry and is used

for contour detection and characterization. Finally, an estimation of surface defects described by

spherical harmonics is calculated.

Keywords — X-rays radiography, Geometrical optics, Image processing, Inverse problem
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I. INTRODUCTION

In this paper, we developed a non-destructive characterization method of surface defects of

tiny microshells. These microshells are the targets of LMJ, involved in experiments in the field

of inertial fusion technology. These targets have stringent constraints for their roughness and

sphericity [1, 2].

The method we propose in this paper is based on X-ray radiography. Indeed, shadowgraphy-

based techniques have already been applied to such problems (see for instance [3] and references

within), but, due to reflection and absorption phenomena, they give little information about the

interior of the microshell wall. On the other hand, since the material composing the microshells

is weakly X-ray absorbing and reflecting, the radiographs are more adapted to inspect the interior

wall of the microshell. However, on the microshell radiographs, another phenomenon, besides

absorption or reflection, is observed : phase contrast. In this paper, we will show that the origin

of this phenomenon has been identified as sharp variation of amplitude due to refraction at the

inner and outer surface of the shell.

To characterize these microshells, several techniques based on X-rays, including tomography,

are commonly used [4–6]. In this paper, we are more concerned with sample throughput, in order

to speed-up the characterization process.

Indeed, a complete tomograpic image usually takes few days to be accomplish and process. A

half a day is needed for image acquisition due to large number of radiographs needed to reconstruct

the whole microshell surface and adequately capture the low mode features. Several more hours (i.e.

1-2 days) is often needed to post-process the tomographic image. The proposed method consists

of taking several X-ray radiographs of the sphere, from different viewpoints. The acquisition and

processing time by this method is less than two hours.

To establish a link between the microshell surface and the radiographs, here we propose a

model of the propagation of the X-rays through the plastic sphere based on geometrical optics.

This model allows us to detect the contour of the microshell, as they are closely related to the

inflection points of the intensity profile detected by the detector [7, 8]. More precisely, locating

some inflection points allows us to recover the edge of the sphere. Additionally, this model is able

to recover quantitatively the phase and absorption contrast observed in the radiographs.

The microshell deviations from a perfect sphere is considered a defect and can be described by
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spherical harmonics, that is, the disturbances of the nominal radius is developed in the orthonormal

basis defined by them (see [9, 10] for instance). Spherical harmonics coefficients are computed by

the least squares estimation method. In this paper, we focus on the application of our radiographic

method to low deformation modes (that is, for instance, flattening, decentering, form defects), and

not on high ones (texture). Indeed, we want to reconstruct an object using a minimal number of

radiographic views. Following the classification in [11] concerning data insufficiency in computed

tomography, we are concerned with the first approach of this classification: interpolation of missing

data thanks to spherical harmonics. Therefore, we will see in this paper that only low mode

issues can be estimated. The results obtained by our method allow the microshell surface defects

characterization with a micrometric accuracy.

The structure of the paper is the following: in section II, the coherence of the radiographic

system is studied. In section III, a model is elaborated using geometrical optics. In section IV, a

method to estimate the surface disturbance is developed. The method is applied and validated in

section V. In section VI, the uncertainty of surface disturbance measurement is given.

II. COHERENCE

The following section is dedicated to the system coherence which affects our study.

In our experimental set up, a micrometric source emits a poly-chromatic X-ray and a detector

is at a distance of 0.4 m from the source with a pixel size of 55 µm. The temporal coherence length

is:

Lc =
v

∆ν
,

with:

• v, the wave speed, here equivalent to the speed of light v ' c = 3× 108m/s;

• ∆ν, the spectral width.

The main energies of the generator are the L spectral lines of tungsten (Energies: 8, 9, and 11.6

keV). Between 8 and 11.6 keV, ∆ν = 8.7× 1017 Hz. Lc = 3.5× 10−10 m which is smaller than our

distance d between the source and the sensor (d = 0.4 m). Therefore, the temporal coherence is

not sufficient to have interference.
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Fig. 1. Radiograph of a typical capsule

The spatial coherence length is:

Ls =
λd

∆S
,

with:

• λ, the wave length;

• ∆S, the source width.

For the energy 11.6 keV, λ = 1.07 × 10−10 m. The source width is about 7 × 10−6 m. Ls =

6.11 × 10−6 m which is smaller than the pixel size (55 µm). Here, we can also conclude that the

spatial coherence is not sufficient to cause interference.

Thus, the coherence needed to obtain interference is not reached. We conclude that phase

contrast is created by an amplitude variation from refraction. The wave optics can model refraction

in capsule [12] but in this paper we will present a common model based on the geometrical optics.

III. GEOMETRICAL OPTICS

III.A. Theory

In this section, a simulated microshell radiography is used. The propagation of light rays

is computed by using the coordinates chosen in [3, 13], that we will briefly cover here. The wave

phenomena of the light are not taken into account in this paper. For an insight on these issues,

see [12].
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Fig. 2. Lines configuration

III.A.1. General case

Since we are going to proceed by small variations around the ideal case, let us first consider

a perfect sphere. Let (z, x, y) be an orthogonal frame centered in the sphere center. Let z be the

optical axis, oriented from the source to the sensor. There is a radial symmetry around this axis

so we will only consider the plane (z, x). In this plane, the source lies in the point (−a, 0) and the

sensor is the vertical line z = d.

Straight lines are parameterized by ρ and ϕ, where ρ is the x-intercept and ϕ the angle

between the z-axis and the line (see Figure 2), then the equation of a straight line is x = z tan(ϕ)+ρ.

This parametrization is well adapted to the geometry of our system, although it does not describe

vertical lines; these lines being orthogonal to z-axes, play no role in our model. The lines passing

through the source are described by the relation ρ = a tan(ϕ).

Refraction is the deviation of the light rays when they change their medium of propagation.

Let S be a surface and n be the normal vector to this surface. Let us denote α the angle between

an incident ray and n, and α′ the angle between the corresponding refracted ray and −n. We

denote n the complex refractive index of the medium where is the incident ray (with <(n) = γ

and =(n) = β), and n′ the refractive index of the medium of the refracted ray (with <(n′) = γ′

and =(n′) = β′). While these refractive indices depend on wavelength λ, the dependence to the
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wavelength is omitted for nowa. The Snell-Descartes law relates these quantities as follows:

γ sinα = γ′ sinα′ (1)

We write (1) in the coordinates proposed by Choux (cf. [13, lemma 14 and 17]). Let Si be

the ith interface a ray crosses; the incident ray is characterized by the parameters (ρi, ϕi), the

outgoing one by (ρi+1, ϕi+1). ρi and ρi+1 are linked by the relation:

ρi+1 =
γρi cosϕi
γ′ cos(ϕi+1)

The relation between ϕi and ϕi+1 depends on the direction of the ray with respect to the

center of the sphere. If the ray is incoming the sphere (that is, if it is approaching to its center)

then:

ϕi+1 = ϕi − arcsin

(
ρi cos(ϕi)

r

)
+ arcsin

(
γρi cos(ϕi)

γ′r

)
, (2)

while when the ray is exiting the sphere then:

ϕi+1 = ϕi + arcsin

(
ρi cos(ϕi)

r

)
− arcsin

(
γρi cos(ϕi)

γ′r

)
. (3)

There are two refractions by interface, one upon entering and the other exiting the microshell.

The gas inside the microshell is assumed to be air. Each outgoing ray is refracted by one or more

interfaces. The number of crossed interfaces depends on the angle of the outgoing ray.

In order to determine the transmitted and reflective energy, the Fresnel coefficients are com-

puted. The wall of the microshell is plastic, which is not magnetic nor conductive. For transmission

(Tra) and reflection (Ref) the Fresnel laws are:

Tra =
2γ cos(θ)

γ cos(θ) + γ′ cos(θ′)
(4)

Ref =
γ cos(θ)− γ′ cos(θ′)

γ cos(θ) + γ′ cos(θ′)
(5)

where
aA way to incorporate polychromatic spectrum into model is to superimpose simulation obtained for different

energies. The result stays a good approximation if the energy band is not too large.
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• θ is the incident angle in
]
0, π2

[
;

• θ′ is the refracted angle;

• γ and γ′ are the real part of the refractive index respectively in incident and refracting

medium.

The absorption in a medium follows the Beer-Lambert law. Let X be the distance covered

by a ray in an absorbing medium of refractive index n(λ) = γ(λ)+ iβ(λ), and let I be the intensity

of ray before absorption and Iabs be the intensity after absorption. The Beer-Lambert law is:

Iabs = I e−
4πβ(λ)
λ X (6)

III.A.2. Full ball case

We develop a model based on geometrical optics. In order to illustrate our approach, we will

first consider a full plastic ball of radius R. In this case, equations are easy to state and to solve

explicitly. The refractive index of air is 1 and the refractive index of the ball is denoted n′ ∈ C.

The emitted rays are parameterized by,

ρ0 = a tanϕ0,

and their intensity is set arbitrarily to I1 = 1.

For an outgoing ray, there are two possibilities:

1. if ϕ0 < arcsin R
a , then the ray intersect the ball and is subject to refraction, reflection and

absorption,

2. if ϕ0 > arcsin R
a , then the ray does not goes across the ball and it keeps its linear propagation

until it reaches the sensor.

If the ray goes across the ball, its directions and absorption are computed. The first refraction

is an incoming one. It is computed thanks to (2):

ρ1 =
ρ0 cosϕ0

γ′ cosϕ1
(7)

ϕ1 = ϕ0 − arcsin
ρ0 cosϕ0

R
+ arcsin

ρ0 cosϕ0

γ′R
(8)
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Fig. 3. Angles notations

The ray undergoes a refraction when exiting the ball. Following (3), we obtain:

ρ2 =
γ′ρ1 cosϕ1

cosϕ2
(9)

ϕ2 = ϕ1 + arcsin
ρ1 cosϕ1

R
− arcsin

γ′ρ1 cosϕ1

R
(10)

By replacing (7) and (8) into (9) and (10), we obtain:

ρ2 =ρ0
cosϕ0

cosϕ2

ϕ2 =ϕ0 + 2

(
arcsin

ρ0 cosϕ0

γ′R
− arcsin

ρ0 cosϕ0

R

)

Due to the absorption, the intensity of the ray decreases when passing through the ball. The

distance X covered being X = 2

√
R2 − (ρ2 cos(ϕ2))

2, the intensity of the outgoing ray is given by

(6). The outgoing ray propagates until it reaches the detector, that is, up to the vertical line z = d

The intensity of the refracted wave is computed by the Fresnel coefficients. Let v, v′, w, w′

be the angles showed in Figure 3, where v′ = w and w′ = v. The following relations express the
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Fig. 4. Two rays arriving to the same sensor point, a direct and a refracted.

angles v, v′, w, w′ in function of the refractive angles:

sin v = ρ0

sin
(
π
2 − ϕ0

)
R

= ρ0
cosϕ0

R

sin v′ = ρ1
cosϕ1

R

sinw = −ρ1

sin
(
π
2 + ϕ1

)
R

= −ρ1
cosϕ1

R

sinw′ = ρ2

sin
(
π
2 + ϕ2

)
R

= −ρ2
cosϕ2

R

The Fresnel coefficients are obtained thanks to (5). For the first refraction we have:

Ref1 =
cos v − γ′ cos v′

cos v + γ′ cos v′

=

√
R2 − ρ2

0 cos2 ϕ0 −
√
γ′2R2 − ρ2

0 cos2 ϕ0√
R2 − ρ2

0 cos2 ϕ0 +
√
γ′2R2 − ρ2

0 cos2 ϕ0

,

and similarly for the second refraction:

Ref2 =

√
γ′R2 − ρ2

0 cos2 ϕ0 −
√
R2 − ρ2

0 cos2 ϕ0√
γ′R2 − ρ2

0 cos2 ϕ0 +
√
R2 − ρ2

0 cos2 ϕ0

.

Finally, the theoretical profile is obtained by these geometrical computation. It is propor-

tional to the intensity of the X-rays impinging upon the detector. Every point of the detector may

be reached by a maximum of two raysb, one direct with an angle ϕd and another refracted with

an angle ϕr (see Figure 4).

We denote respectively pd(ϕd) and pr(ϕr), the intensity of a refracted ray and the intensity
bthe reflected rays are neglected
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of an absorbed ray. By convention, when the outgoing ray with the angle ϕ reaches the sensor

directly (respectively when it is refracted), the intensity of this ray is set to pr(ϕ) = 0 (respectively

pd(ϕ) = 0).

The received power on a little 1D element [x, x + dx] coming from direct rays emitted with

the angles [ϕd, ϕd + dϕd] and the refracted rays emitted with the angles [ϕr, ϕr + dϕr] is:

P[x,x+dx] =

∫ ϕd+dϕd

ϕd

pd(ϕ)dϕ+

∫ ϕr+dϕr

ϕr

pr(ϕ)dϕ

Let x = fd(ϕ) (respectively x = fr(ϕ)) be the final point of a direct ray (respectively

refracted) emitted with the angle ϕ. In the two integrals, by writting x = f(ϕ), dϕ = 1
f ′(f−1(x)) ,

the coordinates change is applied:

P[x,x+dx] =

∫ x+dx

x

pd(f
−1
d (x))

f ′d(f
−1
d (x))

dx+

∫ x+dx

x

pr(f
−1
r (x))

f ′r(f
−1
r (x))

dx,

so that we can compute the intensity received in x:

p(x) =
pd(f

−1
d (x))

f ′d(f
−1
d (x))

+
pr(f

−1
r (x))

f ′r(f
−1
r (x))

.

This intensity is the sum of two functions. The first has a discontinuity at x̄ point defined by

the line from the S source and microshell’s tangent. The second function is continuous. So px is

discontinuous in x̄.

III.B. Simulations

III.B.1. Plastic microshell

From now on, we will consider a hollow sphere. In this section, we simulate a microshell

radiograph, where the microshell is a refracting and absorbing ball, with refractive index n′ =

1− 8× 10−7 + i 1.3× 10−9. This value is chosen in data [14] for plastic with a 10 keV energy (in

agreement with the experimental parameters), and has been adapted during simulation to fit the

experimental results (because the density of plastic is unknown).

To perform the simulations, we used the following parameters:

• a ball with a radius of 722 µm;
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• the distance source-center of the ball equal to 1, 5 cm;

• the distance source-sensor equal to 40 cm;

• the pixel size equal to 55 µm (therefore, we have a zoom of about 30×).

An experimental profile obtained with a plastic ball with a radius of 722 µm is compared to

a simulated profile. The support is a plastic membrane which is weakly X-ray absorbing.

If ϕ < arcsin R
a , this ray is refracted a first time when entering the microshell and a second

time when it leaves the microshell. At the exit of the microshell, the ray has been deviated and

the angle between this ray and (Oz) is ϕ′ which is superior to ϕ. The ray parallel to (Oz) is not

deviated, and when ϕ −→ arcsin R
a , the refracted rays are increasingly refracted.

This fact is observed on the Figure 5. In abscissa, we plot the distance of the point in

the sensor from (d, 0); the blue dashed line shows the refracted power, and the red solid line the

direct power. The refracted power is non-zero for distances less than 22.5 mm, while the direct

power is non-zero and almost constant for distances greater than 20 mm and lower than 25 mm.

In particular, in the interval [20 mm, 22.5 mm], the sensor receives contributions both from the

refracted and direct wave.

The result is shown on Figure 6(a). We observe that the absorption of the simulated curve

(red) is similar to the experimental profile (blue). The difference of absorption from pixel 1 to pixel

130 is due to the plastic membrane alveolusc. The main difference between the two profiles is at

the interface: a peak linked to the phase contrast is present, but this peak has a superior amplitude

compared to the peak in the experimental profile. Moreover, the peak of the experimental profile is

larger than the simulated peak. These observations are in accordance with the explanations given

on the difference between the experimental profile and the simulated one (blur due to non-point

source and sensors effects).

On Figure 6(a) the discontinuity corresponding to the microshell shape is clearly visible. In

the experimental situation, the profile is not directly measured because the image is "pixelized"

and blurred (for many reasons including the fact that the source spot is not a point source, and

not monochromatic). To simulate the geometric blur, the theoretical profile p(x) (Figure 6(a))

is convoluted with a function g which represents the acquisition process. g is supposed to be
cOn this capture, the microshell is compressed between 2 plastic membranes with holes in order to block it in

a centered position
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Fig. 5. Refracted rays and direct rays.

a positive convolution kernel with small support in [−η, η], unimodal and differentiable (like a

Gaussian kernel). The derivative of profile after convolution is:

d

dx
p ∗ g(x) =

∫ η

−η
p(x− t)g′(t)dt.

If p(x) is smooth between x− η and x+ η, p(x− t) = p(x) +O(t) and so this integral is:

p(x)

∫ η

−η
g′(t)dt+

∫ η

−η
O(t)g′(t)dt = O(η).

On the other hand, if p(x) has a first kind discontinuity at x̄ ∈ [x− η, x+ η], then

d

dx
p ∗ g(x) = p(x̄−)

∫ x−x̄

−η
g′(t)dt+ p(x̄+)

∫ η

x−x̄
g′(t)dt+O(η)

=
[
p(x̄−)− p(x̄+)

]
g(x− x̄) +O(η),

where p(x̄−) = limx→x̄− p(x) and p(x̄+) = limx→x̄+ p(x). The second derivative at x̄ is null and

changes its sign. Thus, a discontinuity of the theoretical intensity profile corresponds, on the

blurred profile, to an inflection point.

The standard deviation is chosen to be equal to the pixel size, e.g. 2 × 10−7 m. Results in
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Fig. 6. Profile, for a microshell of Rext = 722 µm outer radius and with refractive index n′ =
1− 8× 10−7 + i 1.3× 10−9, experimental and simulated by model of refraction and absorption.

figure 6(b) indicate that the simulated curve is very similar to the experimental curve. The mean

error between the two curves is 0.6% and the maximum error is 5%.

Moreover, we compare the two profiles: one in which we also model the reflection (using the

Fresnel coefficients), and one in which we do not. As the two curves are in agreement, with a local

maximal variation of 0.1%, the intensity variation as a function of the incident angle is neglected.

This is justified by the fact that the reflection is neglected, because it contributes to 0.1% of the

theoretical profile.

We can conclude that the model based on geometrical optics gives good results and that

information of great interest can be extracted from the experimental curves.

Indeed, the inflection point in the experimental profile corresponds exactly to the disconti-

nuity, i.e. the place where the X-rays are tangent to the surface of the sphere. Therefore, from the

location of the inflection point we can deduce the radius of the sphere.

Figure 7 shows the second derivatives of the profiles, experimental and simulated, from curves

of Figure 6(b). On Figure 7, the position of the computed interface is plotted by the black vertical

line. The second derivatives of the profiles, on the experimental (blue) and on the simulated (red),

are superposed. We note that the vertical line crosses the curves when they are between a minimum

at pixel 455 and a maximum at pixel 460. Between these two values, the curves change their sign

which defines an inflection point.
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III.B.2. Numerical example

We now simulate a microshell of radius 722 µm and thickness 122 µm. The detector is

positioned at 40 cm from the source, the microshell center is at 1 cm from the source.

We denote by C1 the external surface of the microshell, and by C2 the interface between the

two layers. Ω1 is the ray tangent to C1; the ray Ω2 emitted by the source and tangent to C2 is

composed by three parts: the Ωa2 ray, emanating from the source, the Ωb2 ray, the refraction of Ω2

when it passes through C1 (see Figure 8), Ωc2 the ray leaving the sphere and crossing the sensor.
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Let ϕmaxC1
, ϕmaxC2

and ϕmaxC1,C2
be respectively, the angle of Ω1, the angle of Ω2 and the angle of Ωb2.

Let x be the distance between the center and a point of the detector. For each ray, the

distance x at their arrival on the detector is computed. The Ω1 rays are not refracted, the Ω2 rays

are refracted twice (incoming and outgoing refraction).

The tangent ray is found numerically as the maximum ray refracted by C1 and not refracted

by C2 corresponding to the maximum angle ϕC2 .

The intersection of Ω1 with the sensor, is located at x = 2.888 cm; the tangent ray to C2

(without refraction) is located at x = 2.4 cm.

The position of the ray that tangents the second interface, refracted by the first surface,

entering and exiting the microshell, is imaged on the detector. The deviation is then the difference

of the position of this ray with the position of the tangent ray to C2 (without refraction). For a

refractive index of n = 1− 8.10−7, the deviation of the second interface is 0.01 cm. For a stronger

refraction index of n = 1 − 5.10−6, the deviation of the second interface is 0.04 cm. For a lower

refraction index of n = 1 − 5.10−7, the deviation of the second interface is close to 0 (up to the

numerical accuracy).

Since the detector has a pixel size of 55 µm, depending on the refraction index, this variation

can change the position of the interface on the sensor.

This variation and the geometric blur must be weak in order to have a correct approximation

achieved by the use of geometrical optics. The hypothesis of a very weak diffraction, stated to apply

the geometrical optics, may not be accurate. Indeed, the diffraction can slightly modify the values

obtained experimentally. Moreover, the results obtained depend on several parameters, including

the refractive index. The refractive index is estimated from the experimental data because the

microshell composition is unknown. It is possible that the estimated refractive index is slightly

different from the experimental refractive index (the X-ray beam does have a bandwidth which

will have a slightly varying refractive index over the wavelengths).

IV. SURFACE DISTURBANCE

IV.A. Theory

The surface of the microshell can be described as a deformed sphere. In spherical coordinates,

a perfect sphere of radius R is determined by the equation ρ(θ, ϕ) = R, where ϕ ∈ [0, 2π] and
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θ ∈ [0, π]. We recall that the relation between spherical and Cartesian coordinates is:

x = ρ(θ, ϕ) sin θ cosϕ,

y = ρ(θ, ϕ) sin θ sinϕ,

z = ρ(θ, ϕ) cos θ.

For a sphere deformed by a small perturbation, this equation becomes:

ρ(θ, ϕ) = R+ ε(θ, ϕ) (11)

where ε(θ, ϕ) represents the small radial deformation around R in (θ, ϕ). The ε(θ, ϕ) deformation

can be developed in a series of spherical harmonics [15, Chapter 1, page 14]:

ε(θ, ϕ) =

∞∑
l=0

l∑
m=−l

λl,mY
m
l (θ, ϕ) (12)

where,

• l is the spherical harmonics mode;

• m is the spherical harmonics order at mode l;

• Y ml (θ, ϕ) ∈ R is a normalized real spherical harmonic, defined here below;

• λl,m are the coefficients of the development.

Definition 1 (Spherical harmonic)

For every l ≥ |m|, the real spherical harmonics are defined as follows (cf. [16]):

• if m < 0,

Y ml (θ, ϕ) =

√
(2l + 1)(l − |m|)!)

2π(l + |m|)!
P
|m|
l (cos θ) sin(|m|ϕ),

• if m = 0,

Y 0
l (θ, ϕ) =

√
2l + 1

4π
P 0
l (cos θ),

• if m > 0,

Y ml (θ, ϕ) =

√
(2l + 1)(l − |m|)!)

2π(l + |m|)!
P
|m|
l (cos θ) cos(|m|ϕ)
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where Pml are the associated Legendre polynomial.

The contours of the sphere are discretized, on one hand by the measurement process (because

the image is composed of pixels), on other hand by an averaging and interpolating operation that

we perform on measured data, in order to reduce the noise level of the pixels. Indeed, knowing

the center of a surface of the microshell, the pixels are interpolated to give the gray-scale level

depending on its distance to the center. Then the average for a chosen opening angle is computed.

After discretization, equation (11) becomes:

∀(i, j) ∈ (N \ {0})2 with i ≤ N and j ≤M,

ρ(θi, ϕj) = R+ ε(θi, ϕj) (13)

where

• N is the number of points on a contour;

• M is the number of radiographs taken from different view angles.

Replacing ε(θi, ϕj) in (13) by its expression (12), the following equation is obtained:

ρ(θi, ϕj) = R+

∞∑
l=0

l∑
m=−l

λl,mY
m
l (θi, ϕj). (14)

Remark

Being Y 0
0 (θi, ϕj) constant, the equation (14) can be written as:

ρ(θi, ϕj) = λ̃0,0Y
0
0 +

∞∑
l=1

l∑
m=−l

λl,mY
m
l (θi, ϕj).

where R+ λ0,0Y
0
0 =

(
R
Y 0
0

+ λ0,0

)
Y 0

0 = λ̃0,0Y
0
0 .

The spherical harmonics forming an orthogonal system for the scalar product on S2 with the

measure sin θdθdϕ, the equation (14) is easy to solve. The coefficients of spherical harmonics λl,m

can be estimated up to order L by orthogonal projection on the basis (Y ml )0≤|m|≤l≤L. From the

values ρ(θi, ϕj) this projection can be computed by using a weighted least squares method. Indeed,

the spherical harmonics are described in the spherical coordinates, while the points measured on
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the contours are in the Cartesian coordinates. A transformation of the variables from the Cartesian

coordinates (z, x, y) to the spherical coordinates (ρ, θ, ϕ) with θ ∈ [0, π] and ϕ ∈ [0, 2π] is done

in order to apply the least squares method. The Jacobian of the change of variables is equal to

ρ2 sin θ. A weighting by ρ2 sin θ is then performed to take into account the distribution of the

points.

Let T be the vector of the spherical harmonic coefficients:

T =

[
λ̃0,0 λ1,0 λ1,1 . . . λL,L

]
,

and let A be the values of spherical harmonics in each point:

A =



Y 0
0 Y 1

0 (θ1, ϕ1) . . . Y LL (θ1, ϕ1)

Y 0
0 Y 1

0 (θ1, ϕ2) . . . Y LL (θ1, ϕ2)

...
...

. . .
...

Y 0
0 Y 1

0 (θN , ϕ2M ) . . . Y LL (θN , ϕ2M )


,

Indeed, a single radiograph gives the points ρ(θi, ϕj) and ρ(θi, ϕM+j) where ϕM+j = ϕj + π.

The relation giving the coefficients of spherical harmonics is:

T = (AtQA)−1(AtQb)

where b is the vector of the points which composed the contours, and Q the weighted matrix.

The coefficients of the spherical harmonics are obtained and represent the deformations of

the surfaces and the thicknesses. The coefficients characterizing the thickness are equal to the

difference of the coefficients modeling the surfaces of this thickness, by linearity of (12).

IV.B. Numerical validation

We now validate the algorithm described in previous section. In order to do so, a microshell

with known deformations, described by spherical harmonics (see Figure 9(a)), is simulated. A

numberM of contours on this microshell is taken, with a uniform rotation pitch ϕ ∈ [0, 2π] around

the axis x.

On these contours, we add to the radius an error, distributed by a uniform law in [−0.01%, 0.01%].
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(a) Simulated surface. (b) Estimated surface.

Fig. 9. Estimation for a surface.

The value of 0.01 % corresponds to the typical measurement error for microshells of 1 mm, which

is of the order of a micrometer.

From the M contours, the coefficients of the spherical harmonics are estimated (see Figure

9(b)). The error between the coefficient and their estimation is computed.

This operation is repeated for 30 microshells in order to quantify the error among the coef-

ficients and their estimation. With 11 radiographs and 7 estimated modes, the variance between

the 30 results is very low ∼ 10−5 mm. The precision decreased significantly when the number

of radiographs tends toward the number of estimated modes and if the number of radiographs is

lower than the number of the estimated mode, the estimation fails.

When the number of images is greater than the estimated mode, the error on the coefficient

is of the order of magnitude of the uniform noise added to the contours during the simulation. On

the other hand, if the number of images is too small compared to the estimated modes, it is not

possible to reconstruct this mode.

Indeed, although the Nyquist-Shannon sampling theorem does not apply, aliasing may exist

[17], and we need a sufficient number of images compared to the order of the mode to correctly

estimate each mode.
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V. APPLICATIONS

V.A. Taking a radiograph

Radiography conditions play an important role in characterization. The generator set energy,

the acquisition time, the position of the different elements, and the type of support chosen have

an impact on the quality of the data recorded & their processing.

The choice of the support is important; indeed, the coefficients of the spherical harmonics

will be disturbed if part of the microshell contour is missing. The choice of a conical support allows

a total edge detection. Absorption is heterogeneous but does not impact edge detection, since the

contact between the microshell and the support is minimum.

The support-microshell assembly is positioned on the X-ray bench, in the set of motorized

tables. The microshell and the support are aligned with the X-ray beam, close to the micro-focus

generator to ensure maximum magnification and thus the largest microshell image possible.

The radiography follows the following procedure: a first radiograph is made by choosing the

parameters of acquisitions, namely:

• the accelerating voltage, chosen around 20 keV to have an absorption by plastic material

observable on the radiographs,

• an intensity and exposure time that enhances the contrast, that is that increases the number

of photons received on the detector during acquisition (usually 30 seconds for an intensity

on the generator target of 5 µA).

Radiographs with a regular angular rotation, dependent on the number of shots, are carried

out. For example, for 11 shots, the step is 32.7 degrees for the full 360 degrees rotation to collect

the entire series of radiographs needed.

The microshell moves slightly from image to image because the theta rotation stage may

have runout. To measure the coefficient of magnification, we use a standardd. The magnification

is known by the position of the microshell, and the size of the microshell can be measured.

In order to identify spherical harmonics coefficients, one point of the microshell must serve

as a reference for all images. Since it is not possible to make a reference mark on the microshell,
dThe selected standard is a sapphire ball of 1002 µm ± 0.5 µm
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we assume that the centroid of the inner surface is a fixed point on our images. This hypothesis

implies an error that can not be evaluated e.

V.B. Contour detection

An outline detection is performed on the acquired radiographs. A classical method for

edge detection is the application of a Canny filter, without thresholds or with thresholding (see

Figure 10(b)). It is noticed that the detection by the Canny filter is noisy and depends strongly

on the contrast of the image (itself related to the flux of the generator and the acquisition time of

a radiograph). Therefore, this filter is not robust.

To achieve more robust filtering at experimental conditions, two pieces of information about

the X-ray microshell are used:

• the radiograph of a microshell is approximately a disk centered on the image;

• the interfaces are defined by an inflection point on the X-ray profiles.

The geometry of the system suggests adopting polar coordinates. This approach implies an

accurate estimation of the center position.

To do so, a Gaussian filter is applied, allowing the background noise to be reduced according

to the standard deviation σ of the Gaussian. However, this filter may induce a bias that is not

quantifiable. Indeed, the Gaussian filter blurs the image by distorting the contours because the

convolution between the image and the filter is discretef. So it is a first step and the center will

be estimated with accuracy in a future step.

Knowing that the contour is defined by a point of inflection on each profile, a Laplacian filter

is applied in order to amplify the contrast (see Figure 10(c)). The variations around the contours

make the inflection point more visible. In addition, this filtering is performed in polar coordinates

to amplify the variations on the profiles passing through the center of the image.

After filtering, the image is transformed back into Cartesian coordinates. A Canny filter

with segmentation gives the contours (see Figure 10(d)). The filter is more robust, as it can be
eIndeed, it would be necessary to have a reference, a surface for example. However, the objective of the

measurement is the knowledge of the surfaces which is not known a priori. This error is therefore inherent to the

method if there is not a way to establish a link between the different relative references of radiograph and an absolute

reference for the set of radiographs (and microshell).
fContrary to a continuous convolution which does not move the edge, as shown in section III.B.1.
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(a) Radiograph (b) Canny filter with
thresholds 0.15% and
0.22% of points

(c) Gaussian filter (σ =
10 pixels) and derivation

(d) Canny filter, after
Gaussian filtering and
derivation, with thresh-
olds 0.1% and 0.3% of
points

Fig. 10. Edge detection.

seen on microshell shots with a different X-ray instruments, for example, a shot taken from X-ray

tomography of the same microshell as before (see Figure 11).

Using a Circle Hough Transform [18], a first estimate of the center of the microshell can be

found, but the error is still too large (Hough’s Transform does not provide a precision less than a

pixel). Then, on each profile passing through the previously defined center, a maximum amplitude

is computed: it corresponds to the contrast peak observed on the contours.

The inflection points in each profile located at the left of the contrast peak (the center being

at the origin) correspond to the border of the microshell and are used for next step.

The P points defining each contour are located for each radiograph (cf. Figure 12).

These points are used in the weighted least-squares method previously presented, to estimate

the coefficients of the spherical harmonics (see the values of the coefficients of the first 3 modes for

the different surfaces, table I).

We perform a last correction on the estimated center of the microshell. Indeed, mode 1 of

the inner surface should be equal to zero since the center of the inner surface has been chosen as

the origin. Therefore, we force the mode 1 to zero and transfer the translation to mode 1 of the
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(a) Microshell radiograph
on X-rays tomography sys-
tem

(b) Canny filter, after
Gaussian filtering and
derivation, with thresh-
olds 0.1% and 0.3% of
points

Fig. 11. Edge detection on a radiograph from a tomography system (experimental conditions
different from radiography).
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Fig. 12. Radiograph of a polished plastic microshell doped of silicon with an outer diameter of
2230 µm, with the outer and inner contour detected points.
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TABLE I
Estimated coefficients λl,m (see (12)) of outer and inner surfaces.

l m outer (µm) inner (µm)
0 0 +1578,137 +1340,433
1 -1 -0,543 +0
1 0 +0,013 +0
1 1 -2,257 +0
2 -2 +0,021 +0,016
2 -1 +0,115 +0,046
2 0 -0,05 -0,023
2 1 +0,013 +0,011
2 2 +0,044 +0,069

Fig. 13. Measured microshell wall thickness.

outer surface.

These results characterize the surfaces and thicknesses of the microshell, and it is possible to

reconstruct the surface of the microshell in 3D as shown in Figure 13.
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V.C. Method validation

To validate the method, the same microshell is characterized several times with 7 differ-

ent initial orientations. The microshell is composed of plastic doped of silicon with a radius of

1115 µmg. The mean power and the standard deviation of the 7 measures is given in table II. The

results are identical up to a variation about 2 µm.

TABLE II
Mean power

√∑
m λ

2
l,m and standard deviation of 7 measurements.

l mean (µm) std
0 945.7 1.9

inner 1 0 0
2 1.5 0.8
0 1109.8 1.9

outer 1 5.8 0.6
2 4.5 1.5
0 164.2 0.5

thickness 1 3.7 2.5
2 3.5 0.6

VI. MEASUREMENT UNCERTAINTY

To perform the error analysis, we apply the Guide to the expression of Uncertainty in Mea-

surement (GUM) [19]. Sources of errors include geometry of the system, the distortion of the

image, and the variation of the magnification, the standard deviation during measurement and so

on. Let us detail.

On a radiograph for a view angle ϕ, we measure ρ, the distance between the microshell center

and a point on a contour, with:

ρ(θ, ϕ) ∈ [ρ̄(θ, ϕ)− U, ρ̄(θ, ϕ) + U ] ; (15)

where ρ̄ is the true value of the distance, and U is called coverage uncertainty. The coverage

uncertainty U takes into accounts multiple parameters: the uncertainty u and a coefficient k

depending of Nm, the number of measurements.
gthis radius is an a priori estimation obtained from another method of characterization.
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This uncertainty u is given by:

u2 = C2
j + C2

q + C2
m

where

• Cj is the correction due to systematic accuracy error,

• Cq is the correction due to quantification error (the resolution of X-ray instrument),

• Cm is the correction linked to the repeatability (standard deviation).

We will discuss these corrections below.

Accuracy error The error of systematic accuracy is obtained by characterizing a measurement

standard. If the characterization of this standard with our method gives results in the range of

the uncertainty of the standard, then the correction taken into account is the uncertainty of the

measurement standard taken from its calibration certificate.

The available sapphire standard is spherical. The uncertainty of this sample is only given for

the radius. The assumption that this uncertainty is identical for all modes is done. The correction

of the error of accuracy follows a uniform law of uncertainty 0.5 µm.

Quantification error The resolution of the device is the error induced by the measuring device.

In the case of an X-ray detector, the size of the pixels, the distortion of the image, and the variation

of the magnification are taken into account in this coefficient.

The microshell is an almost spherical object, of medium radius R, contained in a 2R side

cube centered at the origin. For an identical height x = R, the difference of position on the sensor

between the point projection in (−R, 0, R) and the point in (R, 0, R) is then:

∆x = R

(
d

a−R
− d

a+R

)

For R = 1 mm, a = 1 cm and d = 40 cm, ∆x = 80 µm. This error is about 1.5 pixel

(55× 55 µm) on the image intensifier sensor, several pixels (9× 9 µm) on the digital sensor. The

image intensifier sensor has approximately 1000× 1000 pixel. The distance from the center of the
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microshell to a point on the contour is about half the pixels h. The pixel deviation dr is therefore

1.5
500 = 0.003 pixel = 0.165 µm. This pixel deviation is considered to be the most important device

resolution error. It is assumed that this uncertainty follows a uniform law, the standard uncertainty

is then dr
Nm.2

√
3
µm.

Repeatability The metrology is measured as follows: the acquisition of radiographs and estima-

tion of the spherical harmonics coefficients is repeated several times, with a microshell positioned

randomly between each series of shotsi.

Let ȳ be the true value (the physical value) of the spherical harmonic deformation coefficients

of a microshell surface, and ε the error committed at each measurement. A y measure is y = ȳ+ ε

and ε is the realization of a random variable with centered normal distribution.

This principle is applied for the X-ray characterization of a microshell. Seven measurements

are made to decrease the error (under the assumption that the error follows a Gaussian law) and

the results are compared to the expectation of y.

The position of the microshell is not known, so the different rotations that the microshell

undergoes during the various measurements imply that the coefficients of the spherical harmonics

do not have the same values. In order to compare the results of the different measurements, the

power of each mode will be compared and not each coefficient separately. For a l mode of spherical

harmonics, the power Pl is defined by:

Pl =

√√√√ l∑
m=−l

λ2
l,m

and should be invariant with respect to rotation in space [20].

The results of this metrology are given in the table II, for 7 first modes and 11 radiographs

for each measurement. The variance on all modes is less than 2.5 µm.

In the case of the mean squares applied to spherical harmonics, only the variance between the

estimated coefficient powers is known. It is the variance obtained for Nm measurements. It follows

a normal law, with the type uncertainty σ√
Nm

. For 7 independent measurements of a microshell,

hAt the X-ray the maximum magnification is sought, and the microshell is projected on the whole sensor.
iIn fact, the microshell is removed from the support with a brush and then replaced in its support by having

rotated the brush. The microshell rolls and slides on the wall of the support to reach a new position.
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the maximum of standard deviation for all the spherical harmonic modes is
√

0, 500 µm.

Numerical calculation The uncertainty for 7 measurements is then:

u2 =
0, 500

7
+

(
0, 165

7 ∗ 2
√

3

)2

+ 0, 5002 = 0, 3215 µm.

The coverage factor for 7 measurement is k = 2.45 (cf. GUM annexes) and then, the coverage

uncertainty is:

U = ku = 1.3891 µm.

The measure of spherical harmonics coefficients is given with a coverage uncertainty of 1.4 µm,

which is in accordance to the expected micrometer accuracy. This uncertainty is the maximal

uncertainty on all modes measured.

VII. CONCLUSIONS

The phase contrast is modeled by geometrical optics. Theoretical model of X-ray propagation

gives information on particular points on simulated radiograph. These points are used for a shape

detection and an estimation of surfaces defects described in spherical harmonics. The uncertainty of

the model is given for our radiography system. Improving the quality of the information which can

be found from phase contrast, especially on the physical and chemical composition of microshell,

is still a work in progress.
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