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A Step toward an Artificial Artificial Intelligence Scientist

Jacques Pitrat1

LIP6
Université Pierre et Marie Curie

Abstract
This paper describes the system CAIA which must perform some activities of an AI scientist. 

It  includes five agents:  the most important ones are MALICE which finds elegant solutions to 
constraint satisfaction problems, MONITOR which monitors MALICE, and MANAGER.  This last 
agent  chooses  the  tasks  it  will  perform,  writes  combinatorial  programs  for  solving  specific 
problems,  generates  the  knowledge used  by  MALICE,  performs  experiments,  explains  why an 
elegant solution has not been found, generates new problems, finds symmetries in the formulation 
of a problem, gathers the information necessary to find a bug, searches for anomalies in the results, 
tries  various methods to solve difficult  problems,  etc.   CAIA has been working several  weeks 
autonomously.  Finally, the results of a “life” of this artificial AI scientist are given and compared 
with those obtained by human AI scientists.

Keywords: autonomous systems, artificial scientist, learning, constraint satisfaction problems.

1. Creating an Artificial Scientist

1.1. A goal for AI
Basically, one main goal of AI is to create an artificial AI scientist: if we succeed, AI will 

progress  alone,  this  artificial  scientist  will  develop  new  systems  to  solve  new  problems,  and 
ultimately will create an artificial AI scientist even better than its artificial author.  This will not 
certainly happen in the next few years, but it is necessary to launch less ambitious projects leading 
in that direction.

Such systems can solve the problems given by a user,  but  their  main goal  is  to improve 
themselves so that they perform well on all of the possible problems in the domain they are familiar 
with.  In order to train themselves, they make experiments, create new problems, understand the 
reasons for their inefficiencies, etc.  Such systems have no « Stop » order, new facts can always be 
discovered or better understood.  They must have some of the following features:

To manage to perform a meta-theoretical study of their domain so that they create new tools to 
solve problems.
To build a new problem solving method and to improve it constantly.
To write, if necessary, a specific program for solving one particular difficult problem.
To perform some experiments where it may find surprising events and to use what it understands 
from this experiment so that it learns.
To discover new useful concepts in order to improve the resolution of the problems.
To create new problems so that it can practice with different and more difficult problems.

No present system can deal with all of these aspects.  However, some systems have some of 
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them:
The first idea of such a system was probably considered in a paper by Newell, Shaw and 

Simon in 1960 [28]; it was an improvement of their General Problem Solver (GPS).  For solving a 
problem, GPS finds a difference between the present state and the goal, then chooses an operator 
relevant to this difference and applies it.  However, it is difficult to find a good set of differences for 
each problem domain.  As GPS is a general problem solver, their idea was to use GPS to solve the 
meta-problem: find a good set  of differences for a particular task environment.  For this meta-
problem, it is necessary to have another set of differences, which are meta-differences between a 
poor set of differences and a good one.  Unfortunately, this idea was too ambitious for what was 
feasible at that time for them to implement: only hand simulations of the behavior of the system 
were tested.

From 1960 to 1966, I developed the system THEOREME [31,32,33]; its goal was to be a 
mathematician.  It received the formulation of a mathematical theory: its axioms and its derivation 
rules.  It had to prove theorems in this theory, but it was able to find new theorems, and also new 
meta-theorems, which were new derivation rules.  For each theory it received, it discovered new 
ways to prove theorems and built a toolbox for this theory.  It received six axiomatizations of the 
propositional logic and was able to find and prove theorems for which Lukasiewicz, one of the best 
experts in these axiomatics, said [23]  “One must be very expert in performing such proofs”.

With AM and EURISKO [7,18,19,20], Douglas Lenat built systems which could find (but not 
prove)  new  conjectures  and  new  concepts  in  arithmetic  for  AM  and  in  several  domains  for 
EURISKO.  The success of this system mainly depended on its ability to observe what happened, to 
understand the reasons of its successes and failures, to perform experiments, to generate new rules 
so that it  could continue to build better concepts.   As with THEOREME, the system creates a 
toolbox of new rules.

Simon Colton [4,5] realized the system HR which forms concepts and makes conjectures in 
domains of pure mathematics. It uses a theorem prover to prove or disprove the conjectures.  It has 
successfully been applied to three different domains: graph theory, group theory and number theory. 
In each domain, the system starts with a few basic concepts; using only seven general rules, which 
are the same for all of the domains, it builds many more sophisticated concepts.  It has defined 
several sequences of integers which were accepted in the Encyclopedia of Integer Sequences.

Bruce  Buchanan  and  Gary  Livingston  [3]  have  developed  a  framework  for  autonomous 
discovery in empirical domains; it peruses large collections of data to find interesting hypotheses. 
This program is able to reason on its priorities and uses domain-independent heuristics to guide the 
program's choice of relationships in data that are potentially interesting.  A prototype, HAMB, was 
demonstrated successfully in the domain of protein  crystallization.

Marvin Minsky, Push Singh and Aaron Sloman [26] suggest building a machine that will use 
a diverse array of resources, which together will deal with a great range of problems.  Using a 
causal diversity matrix, each problem-solving method is assessed in terms of its competence in 
dealing with problem domains which have different causal structures.  They want to define a meta-
theory of AI techniques.  Such a machine would have human-like common sense.

Several AI scientists [13] have implemented systems that are artificial scientists in various 
domains.   They  used  historical  knowledge  on  the  data  and  the  methods  that  enabled  human 
scientists to make these discoveries many years ago.  In the same way, it would be useful to know 
how  human  AI  scientists  are  developing  their  systems;  in  some  papers,  for  instance  in  the 
description of a solver for Sokoban problems [10], the steps that lead to a successful program are 
also given: several of these steps could easily be automatized.  Such AI papers are very useful for 
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our goal.

1.2. CAIA's research domain
CAIA is an acronym for "Chercheur Artificiel en Intelligence Artificielle", that is an Artificial 

Artificial Intelligence Scientist. It is an AI system, which is able to perform some of the activities of 
an AI human scientist.   It  is  not  able  to  work in  every domain,  its  present  domain is  solving 
constraint  satisfaction problems.   This domain was chosen because there is  already a  powerful 
method for finding elegant solutions to such problems with a formalism convenient to define many 
kinds of such problems.  It solves problems and performs experiments; it uses the results of some of 
these experiments for  improving its  problem solving abilities.  The other  experiments show the 
strengths and the weaknesses of the system which could be used for further developments by human 
or artificial scientists.

Jean-Louis Laurière developed ALICE [14,15], a very efficient solver for such problems, and 
it is an excellent starting point for CAIA's problem solving module called MALICE.  ALICE does 
not begin with developing a tree, but it  first works at the meta-level on the formulation of the 
problem.  For instance, it generates new constraints and uses them to cut the search space.  ALICE 
solved a great variety of problems and its results were excellent: ALICE's solutions are very elegant 
and can be easily understood by human beings.  Its solutions are sometimes better than those of a 
good human problem solver because it develops a smaller tree: the reason is that it considers many 
methods to solve a problem.  As it is sufficient to keep only the methods that succeed in order to 
justify  a  solution,  the tree explaining it  may be very small.   Moreover,  in  some cases [16],  it 
occurred that this general problem solver was able to solve a problem faster than a program written 
specifically for solving only this problem.

It is quite surprising that a general system would be better than a specific program, but there 
are three reasons for this: more knowledge, dynamic choices and use of partial information.  The 
first reason is evident: when a system must solve a large variety of problems, it  appears that a 
particular method is essential for one of them.  Thus, we include it in the system which often uses 
this method successfully when it believes that it is useful, and in some cases, for problems where 
the human programmer does not think so.  When ALICE is right, its performance is better than that 
of  the  specific  program.   But  ALICE  also  dynamically  determines  the  unknown  chosen  for 
backtracking; usually,  a specific program takes them in a predetermined order.   When the best 
choice strongly depends on the values given to the already instantiated unknowns,  the specific 
program may perform very poorly.  Finally, the third reason for the superiority of ALICE is that it 
is often able to prove that some constraints are false even without knowing the value of all their 
unknowns; it is easier to write specific programs which must know the value of all the unknowns of 
a constraint for assessing whether it is true or false.  In that case, these programs needlessly develop 
a  very  large  tree  including  the  possible  values  of  all  the  unknowns,  when  most  of  them are 
unnecessary.  We will later see that for some problems, MALICE is actually faster than specific 
programs; in that case, the most efficient specific program must be identical to MALICE!

Moreover if  ALICE's methods are the best  for solving some of  the problems, this  is  not 
always  true,  and  for  the  other  problems,  the  best  method  is  to  write  a  specific  combinatorial 
program.   Several  experiments  [17,22]  have  been  made  for  generating  efficient  programs  for 
solving problems defined in ALICE's formalism.

The  other  main  reason  for  choosing  constraint  satisfaction  problems  is  that  ALICE's 
formalism is powerful and convenient: we can define many problems in a more pleasant way than 
in the first order predicate calculus.  This generality is interesting because we can define not only 
problems, but also some meta-problems, which are problems useful for CAIA when it is performing 
AI  research.   Two  kinds  of  meta-problems  are  defined  and  solved  as  constraint  satisfaction 
problems: finding symmetries, which are variables permutations, in the formulation of a problem 
and generating new problems.  Thus, this is a kind of a reflexivity, some meta-problems appearing 
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while solving a problem are defined in the same formalism and solved with the same methods as 
those used for this problem.  This reflexivity enables us to progress in a promising direction for the 
future of AI: bootstrapping AI.  When we are bootstrapping a system, we choose the next step so 
that it will be helpful for solving the following steps: this is the case since two kinds of meta-
problems are solved without doing no more than defining them.  However, many kinds of research 
meta-problems have not yet been formulated and CAIA is far from performing all of the activities 
of a scientist: this work is only a step in that direction.

In this paper, I do not describe some parts of the system which still need to be developed.  For 
instance, the system performs experiments, analyzes them and finds surprising results; from these 
results, it is possible to learn some improvements, but the learning module, which would be able to 
find them, is not yet written.  In that case, only a part of the system has been implemented: on how 
to find interesting data, but still not on how to use them.

Many scientists have worked on constraint  satisfaction problems and have found efficient 
methods for solving some of them.  A human scientist begins with studying the related work and 
tries either to improve the best methods or to discover a new method better than all the existing 
ones.  However, CAIA works from first principles.   One reason for this choice is that realizing a 
system which  is  able  to  read and understand previous  work is  a  difficult  task.   Moreover  the 
ultimate goal of AI is to realize systems that can have an intelligent behavior, without depending on 
human intelligence; thus it is better to reduce human intervention as much as possible.  Even if a 
system finds results that were already found by human scientists, it is useful if it knows neither 
these results nor the methods that were used: in another domain which has not yet been studied by 
human scientists, it is likely that it will find new interesting results.

Several artificial mathematicians, such AM and HR, are also starting from first principles. 
When describing an artificial mathematical scientist, one does not cite all the mathematicians who 
have made tremendous progress in the domain, but only the works which are compared with the 
results of the system.  In the same way, I do not cite the authors whose work has not been used for 
CAIA even though they have found remarkable improvements for solving constraint satisfaction 
problems, for instance in discovering symmetries in the formulation of these problems.  I only cite 
works that have been used in the conception of the system and works whose results are compared 
with those of CAIA.

1.3. Organization of the paper
I will describe the system CAIA and the results generated during one of its “lives”.  The goal 

of this system is to perform some tasks that are usually performed by human AI scientists.  It is 
difficult to describe such a system because it includes eight thousand conditional actions.  It is not 
possible to begin with papers describing parts of the system because their meaning only appears 
when we have a complete view of the system.  Thus, I describe here the whole system, but most 
modules are presented in a very simplified form.  Many aspects are not even mentioned, I only 
include what is necessary to have a comprehensive view of this system.  It is not possible to give all 
the details on each of the modules: many subsections of this paper could be developed into separate 
papers of their own.

I begin to describe how CAIA solves a difficult problem, a kind of magic cube where the 
space search is huge.  Then I will present another system, MACISTE, which can be considered as 
an operating system for CAIA.  A part of CAIA's knowledge is stated as conditional actions and 
MACISTE translates them into efficient C programs, manages the storage, helps the debugging, etc. 
Moreover,  the language used for describing logical expressions in MACISTE is often used for 
describing CAIA's knowledge when this knowledge is given (or generated by CAIA itself) in a 
form which is more declarative than conditional actions.

We will  see  the  language  used  for  defining  families  of  problems  so  that  MALICE can 
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formalize all of the problems of a family as one set of constraint generators.  Then we describe the 
general method used to choose among several candidates when reasoning is no longer possible; for 
each of the different kinds of choices, the user gives knowledge in a formalism which is easy to 
define and modify.  The method then uses this knowledge to find the best candidate.

The society of mind of the system [25] includes five agents.  First there is a hierarchy of four 
agents: MALICE, MONITOR, MANAGER, ADVISOR.  Each agent is semi-autonomous, but it 
can ask its superior agent for advice when it seems necessary.  The superior agent can also interrupt 
its inferior one in an authoritarian way if it considers that its subordinate would have to ask for 
advice or help.

At the lowest level,  MALICE cleverly tries to solve a problem; this problem is  given by 
MONITOR.  It uses an ALICE like method.

The  second  level  is  MONITOR,  which  monitors  the  behavior  of  MALICE.   When 
MONITOR receives a request, for instance which unknown will be chosen for backtracking, it finds 
and gives  its  choice  to  MALICE.   Moreover,  it  regularly  surveys  whether  MALICE advances 
toward a solution.  When an anomaly is found or when MALICE is trapped in a succession of 
useless derivations, MONITOR takes an emergency action to correct it, for instance it forbids to use 
a particularly explosive derivation rule.

MANAGER is at the third level and it is the most important agent: it is the one that performs 
tasks similar to those achieved by a human scientist.   It  manages the career of the artificial AI 
scientist:  it  chooses which task takes  priority,  it  allocates  some means to  this  task,  it  possibly 
authorizes MONITOR, if required, to exceed them; it can also choose to perform some experiments 
and to analyze them, or to generate new problems.

A fourth agent, ADVISOR, is at the highest level.  It assesses MANAGER's behavior and 
regularly checks that it is always performing interesting tasks.

A fifth agent, ZEUS, is not in the hierarchy, it is regularly called by the interrupt mechanism. 
It checks that the four preceding agents function adequately and do not loop.  If that happens, it 
restarts MANAGER after storing the characteristics of its difficulties.

Finally,  we will  present  the  results  of  the  system and consider  two directions  for  future 
research on this system: solving problems given in a natural language and improving the theorem 
proving abilities of CAIA.

In describing such a system, the difficulty is that all of the subsystems are necessary and 
although we are mainly interested in MANAGER, we must also consider the other subsystems.  It is 
mainly in sections 8 and 11 that CAIA acts as a scientist.  Thus in a first lecture, it is possible to 
skip most of the sections 3-7, which describe important parts of the system, but are not the main 
objective of this realization; it would be sufficient to read the first paragraph of these sections which 
summarizes the function of the corresponding subpart of the system.

2. An explanatory example
Let see how CAIA works.  At the beginning of a life, it knows many problems that were 

given to it or that it has generated in a preceding life.  It begins with building a general method for 
solving problems.  Then it will have to solve the problems given by the user; among them is a  kind 
of magic cube: the goal is to find a bijection F between the 27 small cubes that are in a 3x3x3 large 
cube and the integers between 1 and 27.  The sums of the planes containing 9 cubes must have the 
same value.  There are 15 such planes, 9 horizontal and vertical planes and 6 diagonal planes.  The 
small cubes are numbered in the following way, the first array is for the upper face and the third one 
is for the lower face, as shown in Fig. 1.
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Fig. 1. Numbering of the small cubes.

The nine constraints for the horizontal and vertical planes are for instance:
F(1)+F(2)+F(3)+F(4)+F(5)+F(6)+F(7)+F(8)+F(9) = VAL

F(3)+F(6)+F(9)+F(12)+F(15)+F(18)+F(21)+F(24)+F(27) = VAL
Six other constraints are for the diagonal planes such as:

F(1)+F(4)+F(7)+F(11)+F(14)+F(17)+F(21)+F(24)+F(27) = VAL
 VAL is the unknown common value of the sum for the 15 planes.

The only information received by CAIA for this problem is that it must find the value of VAL 
and define a bijection F between two sets, which are the integers from 1 to 27, so that the 15 
constraints are satisfied.

This  problem  is  both  easy  and  difficult  to  solve.   It  is  very  easy  because  it  is  under-
constrained with 15 constraints for 28 unknowns; there are millions of solutions.  It is very difficult 
because  the  search  space  is  huge,  more  than   2828.   Moreover,  each  constraint  contains  ten 
unknowns: in a combinatorial search, the solver must usually wait to make ten choices before it can 
check whether a constraint is true of false.

MANAGER begins  to  look for  possible  symmetries:  among all  of  the  different  kinds  of 
symmetries, it  is only able to find permutations of the unknowns such as the set of constraints 
remains the same.  This search has been defined as a constraint satisfaction problem and MALICE 
solves it using the same methods as with the main problem.  In the present case, it finds 47 variable 
permutations; some of them are not evident, as the one given in  Table 1.

Table 1. Example of a symmetry for the magic cube

Naturally, the image of VAL is always itself.  These symmetries are used in two ways.  First, 
the system adds new constraints,  14 for this  problem, so that  it  does not  generate symmetrical 
solutions.  One of these new constraints is F(11)<F(17), and with this new constraint, it will not be 
able to generate all of the solutions which can be symmetrical with the preceding symmetry: in all 
of these solutions, F(11) must be less than F(17) so in their symmetrical solutions, as F(11) and 
F(17) are exchanged, F(11) is certainly greater than F(17) and this constraint eliminates all of them. 
For each new solution, MALICE can automatically generate its 47 symmetrical solutions.

MALICE also uses these symmetries for generating new constraints:  when it finds a new 
constraint,  it  also  generates  all  of  the  constraints  where  each  unknown  is  substituted  with  its 
corresponding element.   Naturally,  this  does  not  always generate  47  new constraints,  different 
symmetries can lead to identical  constraints  when the initial  constraint  does not contain all the 
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unknowns.
After finding the symmetries and adding the 14 new constraints, it tries to solve the problem. 

For that it generates new constraints from the old ones, using the rules of algebra.  First, it finds that 
VAL=126 and then many other constraints.  The most interesting is:

F(5)+F(14)+F(23) = 42
which includes only three unknowns.  Using the symmetries, it generates two more new constraints:

F(11)+F(14)+F(17) = 42
F(13)+F(14)+F(15) = 42

Afterwards,  MALICE makes no progress,  it  still  finds many constraints but they are less 
interesting than those it has already found.  So it asks MONITOR for help.  MONITOR decides to 
begin backtracking, chooses an unknown and a value for this unknown, for instance 1 for F(14). 
From that, MALICE deduces as many consequences as it can, then when it is stuck, MONITOR 
chooses  another  unknown  and  so  on  till  MALICE  finds  a  contradiction  or  a  solution. 
Unfortunately, the space search is so large that MALICE finds no solution within a short time, 
although it has found many new constraints with fewer unknowns than the initial ones.  After a few 
minutes,  MONITOR  estimates  that  there  is  lack  of  hope  and  asks  MANAGER  for  help. 
MANAGER considers what has been done and notices than only a very small part of the tree has 
been developed without  any results.   Then,  it  decides  to  take another  approach:  it  generates  a 
combinatorial program, and it compiles and executes it.  This combinatorial program is a C program 
where all of the choices have been made before its generation so no time is spent in modifying the 
formulation of the problem and it is no longer necessary to ask MONITOR to choose the unknowns 
for  backtracking.   Indeed,  for  some  problems,  the  time  saved  by  cutting  the  tree  does  not 
compensate for the time spent on these activities.  However, the system uses the analysis made for 
the initial situation and includes the constraints that are already found, such as the preceding ones, 
in the combinatorial program.  The writing of this program by MANAGER will be described in 
section 8.3.  Generating and compiling it requires a few seconds, and then we are showered with 
solutions.  Table 2 gives one of them:

Table 2. A solution for the magic cube.

After  generating  one  hundred  solutions  (4,800  when  the  symmetries  are  included), 
MONITOR asks MANAGER whether it is worthwhile to continue this program.  MANAGER sees 
that a very small part of the tree has been developed, there are probably millions of solutions, it is 
not interesting nor practical to generate all of them.  It stops the execution of the combinatorial 
program and stores that, if it has no urgent task, it could be interesting to generate more solutions to 
have an idea of their number.  Later on, it will also ask MONITOR to try and solve this problem in 
the ALICE way by choosing other unknowns for backtracking; however this experiment will not 
succeed.

Taking again the combinatorial program, and running it for 13 hours, it has found 2,000,000 
solutions, that makes about 60 solutions at each second.  All of these solutions have the value of 1 
for F(14); however it has only considered one eighth of the tree with this value of F(14).  Since 
there are many solutions for each possible value of F(14), this problem has an enormous number of 
solutions.

It is interesting to compare CAIA's performance with mine on this problem, both of us are 
considered as AI scientists.  I had found some symmetries, but much fewer than 47.  However I had 
found another kind of symmetry that MALICE is not able to find, where 28-V is substituted for 
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each value V.  I had found the value 126 for VAL, but I lost plenty of time trying to prove that 
F(14)=14.  Indeed, in many magic square or cube problems, the value of the central square or cube 
is  the  mean;  here,  this  is  not  the  case  because  the  problem is  underconstrained  and there  are 
solutions for any value between 1 and 27 given to the central cube.  Moreover, I had not found the 
constraints with three unknowns, but only with four unknowns such as F(5)+F(23)=F(11)+F(17); 
they are not as powerful as the constraints with three unknowns and a lot more time is required to 
find a solution.  On the whole, CAIA's performance on this problem was better than mine; this is 
significant since it found results that I was not aware of.

We can also compare this approach with the results given by two of the best CSP programs, 
which are even able to use efficiently the constraints such as "all the unknowns are different".  The 
following experiments were made on a PC with a 1 gigahertz Pentium while CAIA used  a 2.4 
gigahertz Pentium.  ILOG Solver did not find a solution in a reasonable time while ILOG CEPLEX 
found one after 14 hours.  Incidentally, it shows that this program is excellent because the search 
space is enormous when it is not possible to manipulate the formulation of the problem: it does not 
know the value of VAL and all of its constraints have 10 unknowns.  Naturally, if the human user 
finds  the new constraints  found by CAIA and gives  them to these  programs,  they  would  also 
discover many results within a short time.  However, it would be the user and not the system who 
would be intelligent.

3. The system MACISTE
MACISTE [35] is not another agent, but is rather like an operating system for CAIA.  For its 

user, CAIA is not a program, but a knowledge based system; its knowledge is given either as sets of 
conditional actions gathered in what we call MACISTE expertises or in a completely declarative 
form.   For  each task,  there  is  an expertise  which executes  this  task.   An expertise  is  a  set  of 
conditional actions: if all  of the conditions of a conditional action are true,  its actions must be 
executed.  When CAIA uses declarative knowledge, it  is given in the formalism of MACISTE 
expressions;  thus,  it  is  easy  to  define  MACISTE  expertises  which  transform  the  declarative 
knowledge into new MACISTE expertises.  Then MACISTE translates these last expertises into 
efficient C programs; this way the user does not have to write a single line of the programs that 
finally run on a computer, he only gives knowledge in a more convenient formalism.  I will not give 
a full description of MACISTE, but only indicate some aspects necessary to understand how CAIA 
works.

MACISTE has a double role.  Firstly, it translates all its expertises into C programs, including 
those of CAIA.  Secondly, the user can ask it to start CAIA; then, when it is running, MACISTE 
may be called by any agent of CAIA in order to perform several general tasks such as managing the 
short  and  long  term  storage,  printing  messages  to  the  user,  writing  C  programs,  interpreting 
expertises during the debugging of the system, etc.

Basically, all MACISTE knowledge is expressed as objects that are sets of couples: attribute 
and value of the attribute.  The value of an attribute may be an integer, a character, a string, another 
object or a set (or a bag) of the preceding elements.  The expertises, the conditional actions, the 
expressions are represented as objects, but the user is not obligated to know this basic representation 
because some functions enable him to work on expressions without actually using their internal 
representation.

MACISTE is a set of expertises and each expertise allows it to solve a particular task.  In an 
expertise,  no  order  is  defined  for  the  conditional  actions  or  their  conditions:  some MACISTE 
expertises find how to order the execution of the conditional actions and their conditions.  Using 
them  and  some  other  expertises,  MACISTE  can  translate  any  expertise  written  as  a  set  of 
conditional actions into an effective C program.  Another expertise diagnoses anomalies in the 
expertises.  All of the operations performed by the system are given as expertises, including the 
lecture and the printing of its own expertises, the garbage collector, the management of the storage 
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on the disk, etc.  The CAIA subsystem is a particularly interesting set of expertises.

A MACISTE expression may be a function with its arguments (which are also expressions), 
an integer, a character, an object, a variable, the attribute of an expression whose value must be an 
object, a set such as [X1:X2] (which is the set of integers between I1, value of expression X1, and 
I2, value of expression X2), etc.  I will only describe the most important functions.  They may be 
unary such as  MINUS and the absolute value  ABS, binary (such as  +,  =,  ≠,  ∈,  MOD for the 
modulo),  and  variary  (in  that  case  the  argument  is  a  bag  of  expressions)  such  as  SUM, PRD 
(product), OR, AND.  Some functions enable the system to analyze its expressions or to create new 
expressions; since CAIA has to examine its own knowledge and generate new knowledge, these 
functions are essential for defining its expertises.

MATCH(X,P)  is  true  if  the  value  of  the  expression  X matches  with  the  pattern  P.  This 
function is very useful because it enables the user to analyze an expression without knowing how it 
is represented internally:  the language used to define a pattern is similar to the usual algebraic 
representation of expressions.  The function  MATCH can also be used to define variables when 
they appear in P: their value is the subexpression in X corresponding to their place in the pattern. 
For instance, in MATCH(X,SUM(*Z,*Z,5,**)), SUM is a variary function with a bag of arguments; 
naturally the order of the arguments in a bag is not used in the matching process.  *Z indicates that 
the variable Z must be instantiated (if it appears several times, it must be instantiated to the same 
expression) while ** represents any number of arguments.  The preceding condition is true if the 
value of X is the expression SUM(5,T,Y+1,T) and then the value of Z is "T"; it is also true if X is 
SUM(Y,3*Y+2,1,2+Y*3,Y,5)  and  the  value  of  Z  will  be  instantiated  twice,  by  the  expression 
"3*Y+2" (or its equivalent form 2+Y*3) and by the expression "Y": in that case,  the rule including 
MATCH will be executed twice, once for each possible value of Z.  It is false if X is SUM(T,T,4,Y) 
or SUM(T,5,Y,T+1).

While  MATCH is  used  to  analyze  expressions,  other  functions  are  used  to  create  new 
expressions.  For instance  SIGMA is both a unary and variary function that is used for defining 
SUM expressions.  Its value is the sum of the bag generated in substituting in the first argument 
with all of the possible sets of variables defined by the conditions in the variary part.  For instance

SIGMA(I*F(I); I∈[1:6], MOD(I,2)=0)
will generate the expression:

SUM(2*F(2), 4*F(4), 6*F(6))
In the same way, other functions, which are both unary and variary, are defined for generating other 
kinds of expressions, for instance XOR for generating OR expressions, XAND for AND, XPRD for 
PRD;  with  these  functions  it  is  easy  to  define  the  construction  of  new expressions,  the  unary 
argument is the model of the elements of the bag that will be generated by the variary argument.

MACISTE is a reflective system in three ways:
1. Some  MACISTE  expertises  have  been  defined  so  that  they  translate  every  expertise 

(including themselves) into an efficient C program.  It translates its 8,700 conditional actions into 
300,000 lines of C; not a single line of MACISTE or CAIA C programs has been written by a 
human being.  This does not take into account all of the lines of C programs written by CAIA when 
it  tries  to  solve problems using a  combinatorial  method;  in  one of  its  "lives",  it  may generate 
300,000 more lines in these programs.  The only human programs used are the C compiler and the 
Linux operating system.

2. It  can observe its  behavior when it  is  running:  it  may generate  a  trace as  thorough as 
necessary.  Moreover, it can generate new expertises or new C programs and use them immediately 
without restarting the system.

3. It can have access to the pile of all the active subprograms and to the values of all their 
variables.  When there is a particular incident, it can find where it happens and have a complete 
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overview of the situation.
All these possibilities are very useful for CAIA which can write and execute new expertises 

and programs, know what it has done and why it has done it, and also know in what state it is when 
a difficulty happens.

MACISTE is a tool essential for running CAIA.  Since it is easy to understand information 
written in this formalism, it is possible to modify easily the expertises written over 10 years ago. 
Without  MACISTE,  I  certainly  would  not  have  been  able  to  realize  CAIA.   However  the 
conditional actions used in MACISTE are partly procedural: a conditional action must be executed 
when all its conditions are true.  Thus, when it is feasible, I prefer to define part of the knowledge 
used  in  CAIA  in  a  more  declarative  form.   Some  expertises  proceduralizes  this  declarative 
knowledge into sets of conditional actions so that MACISTE can translate them into C programs.

4. Defining a family of problems
CAIA receives the definition of a family of problems in a special language.  Problems are 

gathered into a single family if it is possible to give one definition for all of these problems; then 
each  problem of  the  family is  specified by data  given  by  the user.   For  instance  there  is  one 
definition for the family MAGSQUARE which defines magic square problems: all the numbers in 
the small squares must be different and all the sums of the rows, columns or diagonals must be 
equal.  A particular problem of this family is defined by the value of the number of small squares in 
a line, for instance the magic square 3x3 or the magic square 8x8. The language for defining a 
family of problems stems from the language of Laurière's ALICE [14,15].  The formulation of a 
family of problems includes four parts.  The first one defines the constants, sets, arrays, matrices 
that specify a particular problem of this  family.   The second one defines relations (also called 
correspondences) between two sets: their departure and their arrival sets. The system must specify 
these correspondences in order to solve a problem of this family.  The third one defines constraint 
generators generating the algebraic constraints that must be satisfied by the correspondences.  The 
last one states several kinds of constraints that are not easily defined as algebraic constraints.  We 
must  distinguish  the  formulation  of  a  family  of  problems,  which  usually  includes  constraint 
generators, from the formulation of a particular problem where all the constraints are completely 
specified.

The definition of a particular family of problems will highlight the most important features of 
this problem description language.  To improve the readability of mathematical formulas, I will 
give them in the usual algebraic form rather than in MACISTE formalism: instead of SUM(F('A'), 
PRD(4,F{'M'))), I will write A+4*M.

To explain how a family of problems can be defined, I will take the example of the family 
AUTOREF, which is the generalization of a problem given in the newspaper Le Monde; we will see 
that it is also a generalization of the problem of finding magic sequences.  Each problem is defined 
by two integers P and N; the goal is to find the values of P+2 elements in an ordered list such that 
the value of element I, I varying from 0 to P, is the number of elements whose value is I.  The value 
of the last element is a given value N, which must be less than or equal to P.  For instance, if P=9 
and N=3, we have the problem (9,3); there is only one solution: (5,2,2,1,0,1,0,0,0,0,3).  The first 
element (corresponding to 0) is 5 and there are five occurrences of the value 0. In the same way the 
second element corresponds to 1 and there are two occurrences of 1; there are also two occurrences 
of 2, only one occurrence of 3 and 5 and no occurrence of 4, 6, 7, 8 and 9; the value of the last 
element  is  equal  to  N,  which  is  3.   In  the  formulation  for  MALICE,  it  will  have  to  find  a 
correspondence F, which is in this case a function, defined on the integers from 0 to P+1.  For each 
I between 0 and P, the value of F(I) is the number of times the value of F(J) is equal to I, J taking all 
the values between 0 and P+1.  The value of F(P+1) is the integer N, which is the second given 
value for each of the problems of the family.  Because of the reflective nature of these problems, it 
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is difficult to find all the solutions when P is large.
I will begin with the formulation of this family of problems as given to MALICE.  I will give 

some sketchy commentaries; we will see later in a more general way how theses formulations are 
given to MALICE.

GIVEN CONSTANT P
GIVEN CONSTANT N
MALICE will ask the user the values of the two parameters that define each problem.
GIVEN SET ELEMENTS=[0:SUC(P)]
GIVEN SET VALUES=[0:P]
The set  of  elements  and  the  set  of  their  possible  values  are  defined.   SUC is  the  function 

successor.
FIND FUNCTION  F  ELEMENTS->VALUES
The goal is to find the values of a function F.  Its departure and arrival sets have just been 

defined.
WITH  F(SUC(P))=N
The value of the function for the last element is the value of parameter N.  When P=3 and N=1, 

that gives the constraint F(4)=1.

WITH F(I)=XNBVAL(I; F(J); J∈ELEMENTS) FOR I ∈VALUES
I have defined some new convenient functions for MALICE, one of them is NBVAL: when I is 

an expression and B is a bag of expressions, the value of NBVAL(I;B) is the number of times the 
value of an element of B is I.  For instance, the value of  NBVAL(2; F(0), F(1), F(2), F(3)) is the 
number of times the value of function F is 2.  When the bag B in NBVAL has many elements, it is 
easier to define a formula generating this bag in the same way as we use  SIGMA to generate a 
SUM; this is done with the function XNBVAL(I;X;E) where I and X are expressions while E is a 
set of expressions.  This formula defines an expression NBVAL(I,B), where B is generated by all 
the possible instantiations of expression X with the set of variables that can be defined by the set of 
expressions in E.  If P=2, ELEMENTS is the set (0,1,2,3) and  XNBVAL(I; F(J); J∈ELEMENTS) 
generates the expression NBVAL(1; F(0), F(1), F(2), F(3)) when I=1.

The last  line  in  the  preceding  definition  is  a  constraint  generator  and  it  generates  as  many 
constraints as the expressions after  FOR can instantiate different sets of values for the variables. 
When P=2, VALUES is the set (0,1,2) so three constraints will be generated when the variable I 
takes these values successively.  With I=0, the constraint states that F(0) times the value of  function 
F is 0: F(0)=NBVAL(0; F(0), F(1), F(2), F(3)).

This definition of AUTOREF generalizes the problem of finding magic sequences, defined in 
[39] (prob019: magic squares and sequences).  A magic sequence of length n+1 is a sequence of 
integers A0, A1, A2,.....  An such as, for all i between 0 and n, the number of occurrences of integer 
i is exactly Ai.  As the number of occurrences of the highest number n is always 0, finding the 
magic sequences of length n is an AUTOREF problem with P= n+1 and N=0.  Problems n=3 and 5 
have no solution, there is one solution for n=4 (2,1,2,0,0) and also one solution for every integer 
greater than 5, all of them having the same form, for instance (10,2,1,0,0,0,0,0,0,0,1,0,0,0) for n=13. 

We will now see in a more general way how to define a family of problems for MALICE; a 
definition may include four parts, all except the second part are optional.
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1.  The values of the parameters defining a particular problem of the family are given by a 
formula  beginning  with  GIVEN.   If  it  is  followed  by  CONSTANT,  then  by  the  name of  the 
parameter, the system will ask the user the value of this parameter for each new problem of the 
family.

Another definition is: GIVEN SET parameter=expression.  The value of the parameter will be 
a set defined by the expression.  If this expression is [X1:X2], this set will be the set of integers 
between I1 (value of the expression X1) and I2 (value of the expression X2).  If this expression is 
[V1,V2,....,Vn], where the Vi are integers or characters, the set will include all these elements.  The 
expression may include some of the parameters appearing in other declarations; this expression will 
be evaluated and the value of the set it generates will be given to the parameter.

Another possibility is GIVEN ARRAY parameter E1->E2.  The system will ask the user the 
value of the array for all the elements of set E1; their value must belong to set E2.  E1 and E2 must 
be defined by two orders such as GIVEN SET E1=expression1 and GIVEN SET E2=expression2. 
If the name of the parameter is A, A(I) will be the value of the array for I.

2. A correspondence, which is a relation between two sets, is defined by:
FIND   type of correspondence   name of the correspondence   E1->E2
E1  and  E2  are  the  departure  and  arrival  sets  of  the  correspondence.   The  type  of  the 

correspondence  may  be  FUNCTION,  BIJECTION,  INJECTION,  SURJECTION,  etc.   In  fact, 
MALICE does not use the name of the correspondence when it solves a problem, it only uses this 
type for defining the values of the minimum and maximum degrees for the departure set (DMI and 
DMA) and for the arrival set (AMI and AMA) of the correspondence.  The maximum degree of the 
departure set (DMA) is the maximum number of values for each of its elements and the minimum 
degree (DMI) is the minimum number of values for each element.  The definition is analogous for 
the arrival set.  For a bijection, the values of the degrees are:  DMI=DMA=AMI=AMA=1; for a 
function,  DMI=DMA=1 while AMI and AMA are not defined.  To simplify the explanations, we 
can speak later of a bijection or of an injection, but CAIA only uses the values of the degrees of the 
departure and the arrival sets of the correspondences.

We have seen that the definition of AUTOREF includes only one correspondence:
FIND FUNCTION  F  SQUARES->VALUES

For each correspondence, MALICE builds the elements of the departure and the arrival sets. 
It includes a POSSIBLE link between an element D of the departure set toward an element A of the 
arrival set if it is possible that the value of D is A.  Later on, some CERTAIN links between such 
elements will be generated if it is certain that A is a value of D.  Removing a POSSIBLE link and 
adding a CERTAIN link are essential steps to take toward solving the problem.  When all the values 
of the elements of the departure set using CERTAIN links satisfy all of the constraints, the problem 
is solved.

3. There  may  be  algebraic  constraints;  their  definition  begins  with  WITH.   The 
correspondences appear in these constraints with their name followed between parentheses by the 
reference to the departure node, for instance F(4) or G('H'), where the departure nodes correspond to 
integer 4 or to character 'H'.  If there is still not yet a certain link between these departure nodes and 
an arrival node, F(4) or G('H') are called "unknown".  MALICE has to give a value to all of the 
unknowns that appear in the constraints.  When there is a certain link, the unknown is substituted by 
its  value,  which  is  associated  to  the  corresponding  node  in  the  arrival  set.   Naturally,  only 
correspondences with DMA=1 can be found in such constraints.

A constraint generator can define one constraint or a set of constraints.  Such a generator is 
beginning  with  WITH  followed  by  a  MACISTE  expression  followed  possibly  by  a  set  of 
conditions.  For instance:

WITH XOR(F(I)≠F(J); I∈[1:N], J∈[SUC(I):N])
If the value of N is 3, this generator will generate the following constraint:
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OR(F(1)≠F(2), F(1)≠F(3), F(2)≠F(3))
XOR is a unary and variary function which generates the bag argument of an OR: this bag is created 
with the expression that is the first argument of XOR, its variables are substituted by all the possible 
values of the variables that are in the variary part of XOR.

In the preceding example, the generator generates only one constraint.  If there is a set of 
conditions, they can define several values for the variables that are in these conditions:

WITH  X  FOR C1, C2,..., Cn

For the last constraint generator of AUTOREF, there is only one condition I∈VALUES; the 
P+1 constraints will be F(I)=XNBVAL(I; F(J); J∈ELEMENTS) where I is successively instantiated 
by all the elements of the set VALUES. For instance, when the value of P is 2, the constraints are:

F(0) = NBVAL(0; F(0), F(1), F(2), F(3))
F(1) = NBVAL(1; F(0), F(1), F(2), F(3))
F(2) = NBVAL(2; F(0), F(1), F(2), F(3))

since ELEMENTS is the set (0,1,2,3) and VALUES is the set (0,1,2).  The conditions Ci can use all 
the possibilities of the language of MACISTE. The argument of a variary function such as OR and 
AND is a bag of expressions; its value is a bag of integers for  SUM and PRD, a bag of boolean 
values for OR and AND.

XNBVAL and NBVAL are very convenient for defining family of problems, they were not 
only defined for AUTOREF, but for other problems as well.  For instance, only three constraint 
generators define all SUDOKU problems; they generate 243 constraints for each problem, each one 
indicates that exactly one element on a row, column or small square has a particular value.  The 
following constraint is generated by the first generator:

NBVAL(3; F(1), F(2), F(3), F(4), F(5), F(6), F(7), F(8), F(9)) = 1
It indicates that 3 appears exactly once in the first row.  A few constraint generators can generate 
many constraints: the 12 generators of another  family generated 16,432 constraints for one of its 
problems.

4. It  is  often  useful  to  give  some  constraints  in  a  more  convenient  way  than  algebraic 
expressions.  This is done with constraints beginning with  KNOWING.  Often, at the beginning, 
any element of the arrival set may correspond to any element of the departure set.  When this is not 
true, it is possible to indicate which elements can be the images of F(I):

KNOWING GRAPH F(I)=X
where X is a MACISTE expression defining the set of possible values for F(I).  For instance, the 
Euler knight problem is defined by a correspondence between the departure square and the arrival 
square of a knight.  Thus, the values of F(I) are the set of squares where a knight on square I can 
jump.

For some families of problems, it may happen that there is an incompatibility between some 
elements of the departure set; for instance, elements F(I) and F(J) cannot have the same value.  If it 
is true for all elements, it is sufficient to indicate that the maximum degree of the arrival set for F 
(AMA) is equal to 1.  But if it is only true for a subset of the arrival set, there is a possibility to 
define these constraints easily:

KNOWING INCOMPATIBILITY F(I)=X
where X is a MACISTE expression.  Its value is the set of elements of the departure set of F which 
must not have the same value as F(I).

A new family of problems can be defined in many ways, and the choice made by each user 
can have important consequences on the performance of MALICE.  Let us consider the definition of 
the  crypt-additions  such  as  DONALD+GERALD=ROBERT  or  the  simpler  AB+BCA=ABC. 
Naturally, the goal is to find an injection F between the set of letters that are in the addition and the 
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integers from 0 to 9 (so DMI=DMA=AMA=1).  A first constraint generator indicates that the first 
letter of each line is not 0; for the second problem that gives A≠0 and  B≠0.  It is possible to write a 
second constraint generator which states that the result is the sum of N operands, 2 for both of the 
preceding  problems.   This  generator  generates  only  one  constraint;  for  the  problem  AB,  this 
constraint is:

10*A+B+100*B+10*C+A = 100*A+10*B+C
which MALICE simplifies into:

9*C+91*B = 89*A
But the user may define the same problem in a different way: he can introduce a second 

correspondence, a function R whose values are the carries.  Then, the second constraint generator 
generates as many constraints as there are columns in the addition; with problem AB, this gives 
three constraints:

B+A = C+10*R(2)
A+C+R(2) = B+10*R(1)

B+R(1) = A

The  difficulty  in  solving  a  problem  highly  depends  on  its  formulation.   For  the  crypt-
additions, the definition with carries is usually much easier to solve than the definition with only 
one constraint.  For instance, with DONALD, MALICE develops a tree with only two leaves when 
it receives the formulation with the carries: its only choice is E=0 or E=9.  When E=0 it finds a 
contradiction whereas when E=9 it finds the only solution.  On the other hand, when it works with 
the definition with only one constraint, the tree has 11 leaves: 10 choices lead to a contradiction.

From now on,  I  will  not  give  the  definition  of  families  of  problems as  I  have  done  for 
AUTOREF because this general formalism is not alway easy to understand for someone who is not 
accustomed to  it.   For  a  new problem, I  will  often give only the constraints  such as  they are 
generated by MALICE from the definition of its family of problems.

It is not always easy to define a new family of problems and particularly to write its constraint 
generators.   However,  without  them, we would have to  write  as  many definitions  as there are 
problems and give all the constraints successively for each problem instead of giving a general 
definition.   For  some families  of  problems,  one  single  generator  can  generate  more  than  one 
thousand constraints.

CAIA has received the definition of more than 100 families of problems which represent 
more than one thousand problems.  I do not count here the meta-problems such as those that can 
create new problems or find symmetries in the formulation of a problem.

5. Defining a problem solving algorithm
This section describes MALICE, CAIA's problem solving module, which solves problems 

using procedural knowledge given in a declarative form.  When procedural knowledge is given 
declaratively, it is possible to generate it, improve it, and explain why a result has been (or has not 
been) found.  We begin with the description of this knowledge, then we show how MANAGER 
proceduralizes it so that it can be used efficiently.  In order to solve a problem MALICE uses rules 
to reduce the size of the search space or to find a contradiction; this leads to a meta-combinatorial 
search among the rules.  Then we will see the differences between this meta-combinatorial search 
where  one  considers  the  rules  that  can  be  executed  and  the  combinatorial  search  where  one 
considers the possible values of the unknowns.  When the system has executed all the possible rules 
and has not found a solution or a contradiction, it then performs a step in a classical combinatorial 
search,  choosing  an  unknown  and  considering  all  its  possible  values.   After  each  of  these 
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instantiations it resumes its meta-combinatorial search in the situation that has just been created.
MALICE corresponds only with MONITOR which gives it a problem to solve and answers its 

questions.  It gives MONITOR its results, asks MONITOR what it has to do when it encounters a 
difficulty; even when there is no apparent difficulty, it regularly asks MONITOR to see whether it 
is progressing smoothly toward the solution.

I will only describe the main features of MALICE.  For instance I only mention that it uses 
120  rewriting  rules  to  simplify  and  normalize  expressions  such  as  X*1:=X;  the  procedural 
knowledge that indicates when to use them is also given in a declarative form.  These rewriting 
rules are used for normalizing a new constraint and are completely different from the rules that we 
are going to describe.

5.1. The rules
MALICE uses 95 rules, which are given by the user.  A rule has four parts: the declaration of 

the variables, the conditions, the actions and the links among the variables.
1. The declaration of the variables.  The user must declare the types of the variables that will 

be instantiated when MALICE decides to use this rule.  This is a set of couples: (type-variable 
name).  The type may be CONSTRAINT when the variable must be a constraint of the problem, 
DEPARTURE if it is a departure node for a particular correspondence, ARRIVAL if it is an arrival 
node, CORRESPONDENCE if it is one of the correspondences.

2. The set of conditions.  A condition is a MACISTE expression, as those which are in its 
conditional actions.  Since it is a set, MALICE evaluates these conditions in the order it prefers.

3. There are six kinds of actions:
CONSTRAINT X,  where  X  is  an  expression,  creates  a  new constraint  which  is  the  value  of 
expression X.
LINK ND NA creates a certain link between node ND from a departure set to node NA from an 
arrival set.
UNLINK ND NA removes a possible link between ND and NA.
VALUE ATT X V gives the value V to the attribute ATT of object X: VALUE AMI CP 1 indicates 
that the value of the minimum degree of the arrival set of correspondence CP is now 1.
CONTRADICTION indicates that there is a contradiction.
ELIMINATE X eliminates the constraint that is the value of expression X.

4. Let us begin with explaining why it is necessary to give the links among the variables. 
There may be several ways to use a rule and for each of them, the value of a different variable is 
known.  Indeed, we will later see that the rules are triggered by events and an event instantiates the 
value of only one variable: MALICE must have the possibility of finding the values of the other 
variables which must be known in order to execute the rule.  When MALICE only knows the value 
of one of the variables, the links among variables enable it to find the values of all the other ones.

For instance, MALICE has found a new constraint.  It may be interesting to apply a particular 
rule R which can be executed when a constraint C and a departure node D are known.  Naturally, C 
will be the new constraint, but there are plenty of departure nodes and it is useless to consider most 
of them.  The links among variables enable MALICE to make a selection; they will perhaps indicate 
that D must be a node that corresponds to an unknown of C.  Usually several unknowns are in a 
constraint, each one will give an instantiation for rule R, each of them with the new constraint for C 
and one of the unknowns of constraint C for D.  Inversely, it may occur that a possible value for a 
departure node N has been removed; a trigger of rule R will perhaps indicate that it may be useful to 
use it with node N as the value given to variable D.  For instantiating C, a link between the variables 
of rule R indicates that C must be a constraint containing N among its unknowns.  Thus MALICE 
will execute the rule as many times as there are constraints including unknown N.
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Let us give some examples of rules; for each rule I begin with a simple example of its use.
Rule R1 states that if there is at least one link starting from each node of the departure set of a 

correspondence (DMI=1) and at most one link arriving at each node of its arrival set (AMA=1), 
then there is exactly one node arriving at each node of its arrival set (AMI=1).  MALICE will prove 
AMI=1.  This happens when a crypt-addition (defined as finding an injection between its letters and 
the ten digits from 0 to 9) includes ten different letters; so, in that case, the correspondence is a 
bijection.  Finding out that the correspondence is a bijection is very useful since pruning the tree is 
much more effective.

Declaration: CORRESPONDENCE : CP
Condition: DMI(CP)*CARD(SETDEP(CP))=AMA(CP)*CARD(SETARR(CP))
Action: VALUE AMI CP AMA(CP)

R1  means  that,  if  for  a  correspondence  CP,  the  product  of  the  minimum degree  of  the 
departure set by the cardinality (the function CARD) of its departure set (SETDEP) is equal to the 
product of the maximum degree of its arrival set by the cardinality of its arrival set (SETARR), then 
the value of the minimum degree of its arrival set is equal to the maximum degree of the same set. 
The condition of this rule is true when a correspondence is an injection (DMI=DMA=AMA=1) and 
when the departure and arrival sets have the same number of elements.

Rule R2 finds  that if there is at least one link starting from each of the ND nodes of the 
departure set of a correspondence and at most one link arriving at each of the NA nodes of its 
arrival set, then there is a contradiction if ND>NA: there are nodes of the departure set that cannot 
be linked to nodes of the arrival set.

R2 is similar to R1, but in the condition '=' becomes '>' and the action is CONTRADICTION. 
With  R2,  MALICE  immediately  finds  that  it  is  impossible  to  put  1,000,000  pigeons  (so 
DMI=DMA=1) in 999,999 pigeon-holes which can contain at most one pigeon (so AMA=1).

Rule R3 is usually used when DMI=1 for correspondence F (for instance it is a function, an 
injection, a bijection) and there is only one possible value A for node D: one can state that F(D)=A. 
In a more general form (DMI may be greater than 1), we have:
Declaration : CORRESPONDENCE : CP, DEPARTURE : D
Links between variables : D∈DEPARTURE(CP), CP=FATHER(D)
Conditions:
CARD(POS(D))=DMI(CP)
A∈POS(D)
Action: LINK D A
Let D be a departure node of correspondence CP.  If the number of possible links for D is equal to 
the minimum degree of this node, then all the possible links are certain since it is the only way to 
reach this minimum degree.  This rule can be applied for each correspondence CP and then D is one 
of  its  departure  nodes;  it  can  also  be  applied  for  any  departure  node  D  and  then  CP  is  its 
correspondence, given by the attribute FATHER.

Rule R4 is particularly useful for bijections, where the set of departure nodes has the same 
cardinality as the set of arrival nodes, so the value of every departure node occurs exactly once in 
the arrival set. Thus the sum of the values of the departure nodes is equal to the sum of the elements 
of the arrival set.  In a more general form (AMI and AMA are equal, but may be greater than 1), we 
have:

Declaration: CORRESPONDENCE : CP
Condition: DMI(CP)=1, DMA(CP)=1, AMI(CP)=AMA(CP)
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Action:
CONSTRAINT SIGMA(VALUE(D); D∈DEPARTURE(CP)) =

AMI(CP)*SIGMA(VALUE(A); A∈ARRIVAL(CP))
VALUE(D) is the expression representing node D: for the departure node corresponding to the 
character 'B' of the correspondence F, VALUE(D) is F('B'); for the arrival node A associated with 
integer 4, VALUE(A) is the expression representing the integer 4.  With this rule, MALICE has a 
global vision of the problem: it is very helpful for finding the common value of the lines or of the 
planes in a magic square or cube.  In a 3x3 magic square, there is a bijection S between the integers 
from 1 to 9 on themselves, so DMI=DMA=AMI=AMA=1.  Thus rule R4 generates the constraint:

S(1)+S(2)+S(3)+S(4)+S(5)+S(6)+S(7)+S(8)+S(9) = 45

Finally, I describe rule R5 in a simplified form without giving its MALICE formulation which 
is more general and further complicated.  The idea is that if we know the number Ai of unknowns 
that have the value i, their contribution to the sum of the unknowns is i*Ai.  Thus the value of the 
sum of all the unknowns is: Σ i*Ai.  Let us assume that, among the constraints of a problem, there 
are  the n constraints:

Ai = NBVAL(i; D1, D2,..., Dj,..., Dp)
with i∈[1: n].  The Ai may be any expression; the Dj are unknowns whose value belongs to the set 
[ 0 : n].  Integer n is the number of constraints and also the maximum value that can be taken by a 
Dj while integer p is the number of unknowns in these constraints.  The ith constraint indicates that 
Ai is the number of unknowns Dj whose value is integer i, so the sum of the Ai unknowns Dj that 
have the value i is i*Ai; we can add all these products for all the possible values of i in order to 
obtain the sum of  all  of  the Dj.   The value of  A0,  number  of unknowns with value 0,  is  not 
necessary since it would be multiplied by 0. Thus rule R5 generates the following constraint:

SIGMA(Dj; j∈[1:p] = SIGMA(i*Ai); i∈[1: n])
We will again consider this rule in section 12.2. For AUTOREF with P=3, three of the constraints 
satisfy the conditions of R5 with n=3 (three possible positive values), p=5 (five unknowns), Ai=F(i) 
and Dj=F(j-1); so R5 generates the constraint:

F(0)+F(1)+F(2)+F(3)+F(4) = 1*F(1)+2*F(2)+3*F(3)
and, after simplification, as the value of F(4) is the second parameter N:

F(0)+N = F(2)+2*F(3)
For AUTOREF, the constraint generated with this rule for the large values of P drastically increases 
the efficiency of MALICE.  If P=27, the improvement is spectacular, for instance if the value of N 
is 5, the rule generates the following constraint after simplification:

F(0)+5 = F(2)+2*F(3)+....+25*F(26)+26*F(27)
Each unknown has 28 possible values.  As the value of the left part is at most 32, MALICE will 
easily find with other rules that only two values (0 and 1) are possible for F(16) to F(27), three 
values for F(11) to F(15), four values for F(9) and F(10), etc.  Moreover, when it backtracks with 
F(I)=1 and I large, it immediately finds that F(J)=0 for the other large values of J.

When  the  unknowns  are  boolean,  the  value  of  n  is  1.  So  if  the  Di  are  boolean  and 
NBVAL(1;D1,D2,....,Dp)=X is a constraint, R5 generates the expression: D1+D2+....+Dp=X.  We 
find a well-known result: the sum of boolean unknowns is equal to the number of unknowns with 
value 1.

The  performance  of  the  system  is  strongly  depended  on  these  rules:  another  new  rule  may 
significantly reduce the size of the tree and the time necessary to find the solution.  However, the 
system must learn to use some rules cautiously, so that it  does not generate a large amount of 
uninteresting new constraints which would lead to an increase in computing time.  MALICE uses 
the same set of rules for all of the problems that it solves.  In some cases, the consequences are 
surprising and fortunate: it applies a rule on a problem where human solvers do not think of using it, 
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but which is appropriate.
Each rule is associated with one or several triggers which indicate when it is interesting to 

apply it.  These triggers are gathered into sets linked to events.  I will now describe the events and 
their associated sets of triggers.

5.2. The events
CAIA knows ten different kinds of events;  a set of triggers is associated with each of them. 

When an event occurs, MALICE executes the triggers of its associated set.  The events are:

1. LINK: The value of a node of the departure set is certainly a particular node of the arrival 
set.

2. UNLINK: A node of the arrival set has been removed as a possible value of a node of the 
departure set.

3. CONSTRAINT: A new constraint has been generated.
4 to 7. AMI, AMA, DMI, DMA: A value has been found for the minimum (maximum) degree 

of the arrival (departure) set of a correspondence.
8 to 9. MIN, MAX: The minimum (maximum) possible value for a node of the departure set 

has been defined or increased (decreased).
10. START: This event is only considered at the beginning of the resolution of a problem: it 

starts the process.

An  event  defines  only  one  variable  (except  the  START event  which  defines  none):  a 
constraint with CONSTRAINT, a node with LINK, UNLINK, MIN, MAX, a correspondence with 
DMI, DMA, AMI and AMA.  This explains why it is necessary to include the links among the 
variables in the rules: MALICE must be able to find the values of the other variables that appear in 
the rules triggered by this event.

Finding a solution or a contradiction is not an event.  In that case, MALICE does not have to 
consider applying new rules because it only stops the development of a branch of the tree.

5.3. The sets of rule triggers
A set of rule triggers is linked to each event; when this event occurs, MALICE considers all 

the triggers of this set.  Knowledge for solving a problem, called a "method", is made up of the sets 
for all the events, so it is a cluster of sets of rule triggers.  A method is a proceduralization of the set 
of rules, it indicates whether it is useful to consider some rules after a particular event, and if it 
agrees,  it  defines  when  it  will  be  executed.   Different  methods  may  result  in  very  different 
performance, the quality of the particular method MALICE uses is essential for its performance.  If 
its  triggers  are  inadequate,  it  wastes  a  lot  of  time  executing  rules  unsuccessfully,  delays  in 
considering the useful ones, and perhaps does not try them at all.  I defined such a method and 
MANAGER generated several methods.  In some cases, MANAGER requires that MALICE uses a 
particular method because the methods do not have the same performance: some are faster while 
others take more time to find elegant solutions.

The event START is special because it is a sequence instead of a set of rule triggers.  Indeed, 
it is important to choose the order of the rules considered at the beginning of a resolution. For 
instance, if one million pigeons have to be places in 999,999 pigeon-holes, it is better to consider 
rule R2 before building the departure and arrival sets of this correspondence: building such sets 
including one million elements would waste a lot of time and saturate the memory needlessly if R2 
can be applied.
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There are two kinds of triggers:
1. The first kind of triggers contains only the name of one rule and the name of the variable of 

the rule whose value is the object tied to the event.  This last piece of information is necessary, for 
instance if the values of two variables of a rule are constraints, MALICE must know which of them 
will be instantiated by the new constraint which is the event.  For such triggers, it immediately 
executes this rule.

2. The second kind of triggers indicates that MALICE will only consider executing the rule. 
The task is defined as in the preceding case, but the trigger now contains a priority, which is a 
MACISTE expression; its value may depend on the characteristics of the object tied to the event. 
The rule and the value of its associated variable are stored in a waiting list; MALICE only tries it 
when no other task has a higher priority.  It is convenient to have an expression for defining a 
priority; for instance, if the event is a new constraint, it is usually better to have a higher priority 
when few unknowns are in this constraint.

In  both cases,  there  may be a  set  of  conditions.   The task is  executed only if  all  of  the 
conditions are true for the object tied to the event.  The goal is to avoid wasting computer time 
considering rules that are certainly useless for the object tied to the trigger.  For instance, among the 
triggers of the event CONSTRAINT, the condition may be that this new constraint is linear or that 
it contains exactly two unknowns; in that case, the rule will be ignored for the constraints that are 
not linear or contain more or less than two unknowns.

We will see that MANAGER generates such methods automatically.  In section 11.2, we 
compare the performance of MALICE using these methods and its performance with the method 
that I have defined.

5.4. Backtracking
To solve a  problem, MALICE propagates the consequences of  the events with the rules: 

elimination of a possible value for an unknown, finding the value of an unknown, generating a new 
constraint, etc.  An event triggers the execution of some rules which create new events that trigger 
new rules and this process carries on as long it can.  However, it may occur that not a single rule 
can be executed; in that case, it can successively consider all of the possible values of an unknown. 
Thus MALICE creates a  LINK event  artificially  and generates  all  of  the  consequences of  this 
choice; if it is stuck again, then it chooses another unknown and considers what happens for all its 
possible values.  In that way it generates a tree, but it tries to keep it as small as possible, using the 
rules as long as it can last; the system backtracks only when it cannot do anything else.

Choosing the unknown for the backtrack is difficult but very important, so MALICE asks 
MONITOR to perform this choice.  The worst case that happened for a particular problem: the tree 
had 3446 leaves with the choice made by MONITOR and when MANAGER decided on some 
experiments to improve this result, it found another choice for the unknown that led to a tree with 
only 2 leaves! Fortunately, the choices made by MONITOR are rarely so poor; the experiments 
made by MANAGER show that they are often not the best choices, but the smallest tree is not very 
much smaller than the one generated using MONITOR's choice.

5.5. Combinatorial and meta-combinatorial search 
When MALICE backtracks using the help of MONITOR, it leads to a combinatorial search: 

they choose an unknown and consider all its possible values.  In this way they develop a tree; its 
number  of  leaves  is  equal  to  the  sum  of  the  number  of  solutions  and  of  the  number  of 
contradictions.  To justify the solutions and to show that no other solution exists, the whole of the 
generated tree must be given, even if it has millions of leaves: when a choice has been made in a 
combinatorial program, it must be given in the explanation of the solution, even when it does not 
lead to any results, for instance giving the value 4 to unknown F(6) leads to a contradiction.  Such a 
program must print all of the tree so that the user can see that there are no other solutions than those 
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already found.
We will see in section 8.3 that sometimes the system uses only the combinatorial approach. 

In that case it generates a purely combinatorial program: the system no longer executes rules after 
choosing the value of an unknown, it only checks whether all the constraints that can be evaluated 
are true.  If a constraint is false, it returns to the preceding choice and considers another value for 
this unknown, but if it is true it considers one possible value for another unknown.  This purely 
combinatorial program does not uses MONITOR nor MALICE; it is generated by MANAGER; in 
that case there is no meta-combinatorial search.

However, MALICE first performs a meta-combinatorial search: before considering all of the 
possible values of the unknowns, it executes all the rules suggested by the method that it is using. 
The combinatorial  and the meta-combinatorial  search exist  simultaneously when MALICE uses 
what I call "the intelligent approach"; the goal of the meta-combinatorial search is to execute a lot 
of rules expecting some of them to succeed and reduce the size of the search space.  When all the 
possible  rules  have been executed,  MALICE leaves  the meta-combinatorial  search,  MONITOR 
chooses an unknown, thus creating a new step in the combinatorial search; then MALICE resumes 
the  meta-combinatorial  search  in  the  situations  generated  after  each  of  these  choices.   In  the 
resolution of a problem, there are long periods of meta-combinatorial  search which end with a 
solution, a contradiction or another step in the combinatorial search.

A meta-combinatorial search can waste an enormous amount of time: the time required to find 
a solution may be greater than what is necessary for an efficient combinatorial program.  However, 
the meta-combinatorial search is interesting even when it is slower because it finds more elegant 
solutions, which can easily be checked and explained to human beings.  The justification of the 
solution  of  a  problem  does  not  include  the  application  of  all  the  rules  that  were  executed: 
MANAGER removes those which do not reduce the size of the search space either directly or by 
the results that were possibly deduced from them.  This occurs when MALICE already knows that 
F(4) is different from 3 and it generates the new constraint  F(4)≠3.  This also happens when a new 
constraint  does not eliminate possible values for unknowns and all  of  the constraints that were 
generated from it are also useless: it is unnecessary to indicate the generation of this constraint in 
the explanation of the solution.  The system is in the same situation as the mathematician who 
worked several years trying to prove a new theorem, wrote thousands of pages and finally published 
a proof which is less than one page.  To justify a result, it is unnecessary to describe all of the 
unsuccessful attempts.  If most of the rules are not useful, that means that the meta-combinatorial 
search  is  conducted  poorly,  but  this  does  not  lead  to  solutions  which  are  difficult  to  explain, 
contrary to a poorly conducted combinatorial search.

When MANAGER explains  a  solution obtained  by MALICE using a  meta-combinatorial 
search, it eliminates all of the unsuccessful attempts to present elegant solutions.  Moreover we will 
see in section 8.6 that it can also meta-explain, that is to explain why MALICE has made successful 
as well  as unsuccessful attempts.   This information could be used to learn to reduce the meta-
combinatorial search in order to find the same solutions faster; however this is a difficult task for 
human and artificial scientists.

6. Choosing what will be done
When the system must choose among several possibilities, it can often reason, that means to 

execute a sequence of steps that will lead to the final choice.  In that case, the necessary knowledge 
is given as a set of conditional actions such as the execution of an action is a step toward the goal; 
this succession of steps explains why a certain choice has been made.  However it also occurs that 
the system must choose between two possible decisions and many characteristics of the situation 
must be taken into account in order to find the most satisfactory choice; for instance, this happens 
with the choice of the unknown for backtracking.  In that case, it is difficult to define a good choice 
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by a sequence of conditional actions because there are too many characteristics; therefore, one must 
find a good compromise between the advantages and the drawbacks of each possible choice.  Here 
we describe the method used by MALICE, MONITOR, MANAGER, and ADVISOR to make such 
choices.  For each kind of choice, the knowledge for choosing among several possibilities is given 
with a special kind of conditional actions; thus, the user can easily give and modify this knowledge. 
These conditional actions do not define a step toward the goal, instead they defined many micro-
decisions such as:

The importance of a particular characteristic of the choice is high, but its value is low.
.  Then a general algorithm makes the synthesis of all these micro-decisions and computes a 

degree of interest for each possible choice.  In some applications, only the choice with the highest 
interest is chosen; in other ones, the interest is used to sequence the possible choices in order to 
define which one will be considered first.  As the algorithm is general, it can easily be used in any 
context where a choice must be taken; the user only has to give the conditional actions which must 
be used in this context.  This algorithm stems from the one defined by S. Pinson [30] in a different 
domain.

Nine types of choices are made using the knowledge given in this formalism.
With MALICE:
1. Deciding whether it will keep a new constraint.  It is not always good to store too many 

constraints which can take up a part of the memory and may slow down the system with too many 
unsuccessful attempts.  When this decision is positive, it also gives the value of the interest of this 
constraint, which will condition its future use.

2. Choosing  the  next  attempt,  for  instance  applying  such  a  rule  to  such  constraint.  Each 
possible attempt receives an interest; the system begins with those with the highest interest until it 
finds a solution or a contradiction.

With MONITOR:
3. Choosing  the  unknown  for  the  backtrack  in  the  intelligent  approach.   This  is  done 

dynamically during the resolution; the sequence of choices may be different in different paths of the 
tree.

With MANAGER:
4. Choosing  the  unknown  for  the  backtrack  when  MANAGER  writes  a  combinatorial 

program; this program is a sequence of loops and it has to find the unknown whose values will be 
successively considered in the next loop.  Here, the choice is made only once when it writes the 
program: the sequence of choices is the same in all the paths of the tree.

5. Choosing the following constraint  which will  be inserted in the combinatorial  program 
generated for solving one specific problem.

6. Choosing the family of problems for which it will find new problems.  MANAGER takes 
into account the number and the quality of the problems that are already found in this family.

7. Deciding to keep or discard a new problem that it has just created.  This can also enable it 
to eliminate this problem later if it creates better problems.

8. Choosing the following task which it will have to execute.  In that way, it sequences what it 
will do during its career.

With ADVISOR:
9. Assessing the progress of the system since its last assessment.  Regularly, it considers if 

MANAGER has found interesting results in the last period of time.  If there is little progress, it 
must either be stopped or try other directions of research.

For each of these choices a set of conditional actions is defined.  Their actions are different 
from those used elsewhere in CAIA, which states new facts that are used by other conditional 
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actions.  Here, the execution of an action only defines a micro-decision, and the set of all these 
micro-decisions is given as data to a special algorithm: it considers all of them in order to define an 
interest for this candidate.  These conditional actions have the following form:

set of conditions  => a value and its importance for the candidate
The conditions are given in MACISTE's formalism; the value and the importance of a candidate are 
also MACISTE expressions.  The actions all have the same kind of consequence: they add a micro-
decision which is a couple (value-importance) to the set associated to a particular possible choice. 
The value of a micro-decision may be favorable or unfavorable with seven degrees in each case: 
VERYLOW(VL), LOW(L), RATHERLOW(RL), MEDIUM(M), RATHERHIGH(RH), HIGH(H), 
VERYHIGH(VH).   Its importance can only be positive and has the same seven possible values; the 
higher the importance, the higher will  be the consequences of its associated value for the final 
choice.  This is not an “interest”, which means that something attracts the attention; instead, the 
importance precisely indicates that it has a great influence on the result.  To show why it is useful to 
have simultaneously the value and the importance of some characteristics of a candidate, let us 
consider an example given by S. Pinson where the goal is to find whether a bank will allocate a loan 
to a small firm.  There are expertises for all the aspects of a firm, such as its commercial activities 
and its financial data.  The quality of its managers is also essential, and one of its components is the 
quality of the chairman's successor.  Its value can go from very high unfavorable to very high 
favorable.  However, this value is very important if the chairman is 95 years old but less important 
if he is 40 years old and in good health.

When MONITOR determines if unknown U will be chosen for backtracking, a characteristic 
of the situation may be:

Unknown U appears in an equality constraint C including ten other unknowns
and this activates a conditional action which adds the following micro-decision:

The importance of the occurrence of U in C is RATHERHIGH and its value is LOW.
This conditional action considers that it is rather important that the chosen unknown appears in 
many constraints, that it is better if this constraint is an equality constraint, but that the value of this 
micro-decision is low when there are many other unknowns in this constraint.  There can be many 
micro-decisions only for this conditional action because there may be hundreds of constraints and 
this unknown may appear in dozens of them.  Moreover other conditional actions will generate 
many other micro-decisions.

All  of  these  micro-decisions  are  gathered  into  a  set  of  triples  for  each  candidate:  value-
importance-number, the number indicating the number of times that a micro-decision has both this 
value and this importance.  The algorithm associates an interest to every set of such triples and the 
choice is made using the interest defined by this way for every candidate.  This is different from 
usual MACISTE expertises because the set of conditional actions do not lead to the result by a 
succession of steps,  but only generates the set of micro-decisions which is used as a whole by the 
algorithm  giving  the  result;  in  this  way  it  is  possible  to  take  many  factors  into  account 
simultaneously.

Let us assume that a system has to choose among several candidates for one of the nine kinds 
of choices.  It takes all of the conditional actions tied to this choice and applies them to all of the 
candidates.  For each candidate, this gives a set of triples: value-importance-number.  It applies the 
general  algorithm  to  these  triples,  the  same  for  the  nine  types  of  choices  that  we  have  just 
mentioned.  This algorithm adds the interest of each triple; the interest of a triple is the product of 
its number by a function of its value (negative if it is unfavorable) and by another function of its 
importance.  This gives a number which is the interest of the candidate.  

Let us consider the three following candidates with their sets of triples:

(VH-VH-2),(H-H-1),(H-RH-3),(RH-VH-3),(RH-RH-2),(RH-RL-2),(M-H-1),(RL-RH-1),(L-RH-1)
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(VH-VH-1),(H-H-1),(M-RH-2),(M-RL-1),(RL-RH-3),(L-VH-1),(L-RH-1)
(VH-VH-1),(H-H-1),(L-VH-1),(L-RH-1),(VL-RL-1)

(H-RH-3)  means  that  the  value  HIGH  is  associated  three  times  with  the  importance 
RATHERHIGH.  The interests for these candidates are respectively  644,864, 310,912 et 303,632; 
thus  the  first  candidate  will  be  preferred.   In  the  present  case,  MONITOR  had  to  choose  an 
unknown for backtracking, but the result would have been the same if these sets of triples had been 
generated for any kind of choice.

It is no longer possible to explain such choices.  However, it is possible to know all of the 
micro-decisions that were made for a particular choice, so when one choice seems inappropriate, a 
scientist has all the necessary information to see why this choice was selected.

7. Monitoring the search for a solution
A problem solver may waste a lot of time in dead ends.  To avoid this difficulty, it is better to 

examine what occurs while it is solving a problem.  This is the task of MONITOR which supervises 
the progress of MALICE toward the solution.  Due to MONITOR, MALICE does not get lost in a 
sequence of derivations which does not lead to its goal or saturates the memory.  When an incident 
occurs, either MONITOR solves it or provides MANAGER with enough information to make a 
correct decision.   Finally,  MONITOR stores the information necessary to explain and to learn. 
MALICE  never  asks  any  questions  directly  from  MANAGER,  MONITOR  is  a  required 
intermediary.

MONITOR receives questions and results from MALICE while it gives MALICE the tasks 
which it has to perform.  It answers its questions and changes the behavior of MALICE when it 
does not progress satisfactorily. It receives from MANAGER the tasks which must be performed, 
gives it the results of these tasks, and asks MANAGER to solve the difficulties that it is unable to 
solve.

7.1. Examining the progress toward the solution
MALICE constantly repeats the same cycle, applying a rule to an object.  Every N cycle, 

MALICE asks MONITOR to consider the progress toward the solution.  Among other things, it 
checks that:

1. MALICE has not exceeded the allocated time.  When this occurs, it asks MANAGER if it 
can spend more time on this problem.  MANAGER will decide according to the importance of the 
problem, its progress, and the importance of other awaiting tasks.

 2. Enough memory is available.  If not, it gets rid of many elements which are not necessary 
to find the solution; however, that cuts down the information the system will have on its behavior at 
the end.  For instance, it can decide to erase the part of the tree that has already been developed; in 
that case, a full justification of the solutions can no longer be generated (but it is possible to store it 
in a file).

3. MALICE  does  not  generate  too  many  constraints.   Often  an  explosive  generation  of 
constraints  occurs  because  it  does  not  control  this  mechanism appropriately:  it  generates  new 
constraints from the latest ones unceasingly and this may take a long time without any progress 
toward the solution.  MONITOR can find this happening; in that case, it eliminates some constraints 
that are already generated and restricts (or even forbids) the use of some prolific rules.

4. In  some  experiments,  MALICE solves  a  problem  that  has  been  already  solved  using 
different backtracking choices.  MONITOR regularly compares the progression of the development 
of the tree for these two executions.  If the new execution does not develop the tree any faster than 
the first one, it stops this experiment.
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Finally,  MONITOR may  change  the  value  of  N,  the  number  of  cycles  after  which  it  is 
consulted.  It can increase it if everything goes well or decrease it if the situation is difficult to 
evaluate: in that case it is better to keep a close eye on MALICE.

7.2. An important step has been made
An  important  step  is  a  significant  advancement  toward  the  complete  resolution  of  the 

problem, such as the discovery of a contradiction or a solution; naturally, the end of the resolution is 
also  an  important  step.   MONITOR  considers  whether  it  would  be  interesting  to  keep  the 
circumstances of these events.

The  first  thing  is  to  see  if  there  are  not  too  many important  steps.   For  instance,  some 
problems such as the magic cube seen in the second section have millions of solutions; usually, it is 
not interesting to generate all of them.  If the limit given by MANAGER is exceeded, MONITOR 
will ask MANAGER whether it can continue further.  If the limit is to find 100 solutions and one 
third of the tree has been developed, usually MANAGER will allow it to continue so that it can get 
the complete number of solutions.  If MALICE has developed less than one thousandth of the tree, 
MANAGER certainly will order it to stop.

Another important step occurs when there is nothing more to do when solving a constraint 
satisfaction problem: MALICE has made all of the attempts defined by all of the events that have 
occurred; the only possibility is to backtrack.  MONITOR will choose an unknown according to the 
constraints,  the  number  of  possible  values  for  each  unknown,  the  characteristics  of  the 
correspondences, etc.

MONITOR also considers the tree while MALICE develops it.  For instance, it may occur 
that after all the values have been given to an unknown during a backtrack, another unknown has 
always the same value: the value of F(7) is always 3 when the value of F(2) is 1, 2, 5, 7 and 9.  This 
fact is given to MANAGER and perhaps later, it will ask to make an experiment in order to find if it 
is possible to prove that F(7)=3 before backtracking on the possible values of F(2).  If it succeeds, it 
means that MALICE must apply more rules before backtracking; thus, MONITOR has found that 
there is a possibility to learn by improving the use of the rules.  CAIA is not able to learn from such 
situations,  but  it  can  give  the  information  to  a  human  scientist.   It  may  also  occur  that  a 
contradiction is found shortly after giving a value to an unknown; for instance, MONITOR decides 
to backtrack with unknown F(4) and MALICE finds a contradiction soon after giving value 7 to 
F(4).  Is it possible to find F(4)≠7 before backtracking?

The end of the resolution (with or without success) is a particularly important event where 
MONITOR assesses MALICE's performance.

7.3. Signals from  the Operating System
The Operating System (here Linux), can find some anomalies and report them via a signal. 

For instance SIGILL indicates that the system has tried to execute an illegal instruction  while 
SIGSEGV indicates a segment violation, probably due to an illegal pointer reference or an array 
bound error.  Systematically, MONITOR catches all of these signals.  As MACISTE is a reflective 
system, it finds the subroutine where this occurred, the subroutine that called the preceding one, etc. 
It also knows the value of all the variables of these subroutines.  MONITOR keeps some of this 
information  so  MANAGER can analyze  it  later  on,  then  it  stops  the  resolution  of  the  current 
problem and returns the control to MANAGER, which will find another task to perform.

7.4. Various traces
To explain, learn and choose experiments, MANAGER must know what happened when it 

24



solved a problem.  For this, MONITOR generates two traces.
The first trace is easy to build and many AI systems such as SOAR [12] already use it .  It 

contains all of the attempts that have been made: what rules have been executed, which were their 
arguments, what unknowns have been chosen for backtracking, and what partial results were found 
(new constraints, removal of a possible value for an unknown, etc.).  With this trace, it is easy to 
justify a solution: MANAGER will only keep the steps that were necessary for the solution.  To 
explain, it  does not consider the attempts that have failed, those which gave an already known 
result, and those that were never used for inferring an useful result.  To create an explanation, it 
starts from the contradictions, the solutions, the decisions to remove a possible value of an unknown 
or to give a value to an unknown.  It goes back to the attempts that lead to the preceding results, 
then back to the attempts that lead to the preceding attempts until it reaches the initial data of the 
problem.  In that way, MANAGER or the human user has a rigorous justification of the solution, 
but it also knows when a rule is useful or useless; this will be used to build better methods.

The second trace is a meta-trace, which contains why an attempt has been made.  The events 
that trigger a rule are associated with this rule.  It also includes the decisions to eliminate rules 
because their interest is too low.  The trace keeps track of which attempts have been made, the 
meta-trace stores why a certain attempt has been made.  With the meta-trace, MANAGER can find 
out why MALICE has decided to make useful attempts, and also why a result has not been found; in 
this last case, it compares the meta-trace of a resolution finding the desired result with the meta-
trace of the resolution failing to discover it.  MANAGER only has to find the first useful result of 
the first meta-trace that is not in the second one: the answer is the reason that enables MALICE to 
try the rule that delivered this result.

Monitoring the resolution of a problem is essential for two main reasons: to avoid wasting 
time and to gather information that will be helpful for learning, explaining and finding interesting 
experiments.

8. MANAGER
MANAGER is an autonomous system that must never stop: it takes all its decisions by itself 

and it has been working for several weeks without any human interference.  It has to supervise 
MONITOR when it is monitoring MALICE, but it also has to decide at each step whether it will 
solve  awaiting  tasks,  deepen  its  understanding  of  the  difficulties  found  when  solving  some 
problems, conduct experiments so that it can find interesting events, generate new problems, find 
symmetries in the formulation of a problem, compare the results obtained with different methods, 
meta-explain why a solution is more elegant with one method in comparison to another one, write a 
combinatorial program to solve a particular problem, understand why there was an anomaly during 
the execution of a task, etc.

MANAGER gives orders to MONITOR and receives the results and also the difficulties that 
MONITOR is unable to deal with.  It regularly gives the control to ADVISER which can analyze 
whether it is progressing in its life as a scientist.  When I say that MANAGER asks MALICE to do 
something, it is always via the intermediary of MONITOR.

I call a "life" of the system the sequence of steps MANAGER performs, starting from scratch, 
building methods, solving problems, making experiments, finding new problems, meta-explaining 
differences between solutions, etc.  It had several lives and it starts from the beginning with each of 
them, the only knowledge that is transferred from one life to the following one is: new problems 
generated in the preceding lives, and the fact that some problems are difficult to solve. It would be 
possible  to  transfer  more information,  but  this  has  not  been implemented  because  it  would be 
impossible to find if an improvement is due to a modification of the system or to the knowledge 
transfered from a  preceding life.  Moreover,  as  many changes  are  done between two lives,  old 
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information may be more harmful than useful in the new state of the system.
At the beginning of each new life, MANAGER must bootstrap: it generates an initial method 

and with  this  method,  MALICE solves  all  of  the  problems of  the  learning  set.   When this  is 
completed, MANAGER generates a new learned method and it enters into a loop that may last 
several millions of seconds.

8.1. Supervising MONITOR
MONITOR has to monitor MALICE when it solves a problem, but within the limits that were 

given by MANAGER, for instance it must stop when it has found 50 solutions or after 100 seconds. 
When this number of solutions has been found or when the time limit has been reached, MONITOR 
asks MANAGER whether it must carry on.  Then MANAGER considers many factors such as the 
development of the tree, the importance of the problem, the importance of other awaiting tasks and 
makes its decision.  If it agrees to allocate more time or to find more solutions, MONITOR will tell 
MALICE to carry on its resolution.  But MANAGER can decide to stop this execution completely 
or to wait and resume it later when there will be less important tasks to perform. This decision is 
made as defined in section 6: several conditional actions are associated to this decision and each one 
defines a value and an importance for one of the possible aspects, for instance: is it an experiment, 
how much time has already been spent, what percentage of the tree has been developed, etc.

MANAGER will also decide when MALICE will have to solve the meta-problem to find 
symmetries in the formulation of a problem P.  In that case, it creates the data for the meta-problem 
SYMMETRIES and asks MALICE to solve it.  When this is completed, it stores the results and add 
new constraints to problem P so that it will generate only one solution for each set of symmetrical 
solutions.  MALICE will also be able to use the symmetries for generating all the symmetrical 
constraints of a new constraint.  In the same way, it may ask MALICE to solve another kind of 
meta-problem, generating a new problem in a particular problem family; for each new problem, it 
asks MALICE to solve it and then decides whether it will keep this problem according to its results: 
number of solutions, number of contradictions, time necessary to solve it, difficulty, etc.

8.2. Learning new methods
The performance of MALICE strongly depends on the quality  of  the method (that  is  the 

cluster  of sets  of rule  triggers)  it  uses.   MANAGER automatically  allocates the problems in  a 
learning set and in a testing set; some of these problems have been given by the user and others 
found by CAIA in one of its preceding lives.  In the first step, MANAGER asks MALICE to solve 
all of the problems of the learning set with the initial method.  With the information from this first 
trial, it improves this initial method into a much more efficient one.  

Let  us begin with the construction of the initial  method.  No priority is  associated to its 
triggers, the associated rule will be executed as soon as the event occurs if its conditions are true. 
To decide whether a rule will be associated with an event, MANAGER considers for each rule what 
it is using in its conditions and what it creates in its actions.  For instance, one of the conditions of 
rule R3 tests whether the cardinality of the set of possible values for a node of the departure set is 
equal to a known value.  It can be useful to consider this rule for each event UNLINK that removes 
a  possible value to a node of a  departure set  because that  changes the cardinality of its  set  of 
possible  values;  thus,  this  rule  is  appended  to  the  set  attached  to  the  event  UNLINK.   The 
conditions issued from a function MATCH (defined in section 3) are specially interesting because 
they usually give some necessary characteristics of the constraint, the node or the correspondence 
which is the value of the variable that is the first  argument of this MATCH.  In that case, the 
conditional actions of MANAGER's expertises contain functions MATCH with a function MATCH 
in their pattern argument.  MANAGER is working at the meta-level, examining rules: it is essential 
that it can examine the knowledge used to solve a problem.
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Building the list associated with the event START is more difficult since the triggers are 
ordered.   For that matter,  MANAGER considers the actions and the conditions of the rules:  it 
includes the trigger of a rule R, which uses a particular object, after the triggers of another rule that 
may create this object.  For instance, a rule with a constraint in one of its arguments is placed after 
the rules that generate the initial constraints of the problem.

Surprisingly enough, with this initial method MALICE performs well: it usually finds more 
elegant solutions (that means with fewer backtracks) than those generated using the method I have 
created, but it requires more time.  However, since no priority is associated with each trigger, it 
does not sequence their usage and makes many unnecessary attempts.  In some cases, it generates 
too many constraints, MONITOR must eliminate some of them in order to avoid a combinatorial 
explosion; but important results may be eliminated in that way and MALICE does not solve few of 
the problems that were solved with my own method.

In order to learn, MANAGER asks MALICE to solve all of the problems of the learning set 
with this initial method.  When a problem is solved, MANAGER uses the explanation generated 
from the trace stored with each rule in order to count the number of times this rule was useful for 
justifying the solution and the number of times it was not useful.  Thus, for each problem, it knows 
the number of useful and useless executions of this rule.

Using this information, MANAGER generates another method: the learned method.  It can 
decide not to link a rule to an event because that was rarely useful.  It can also give a low priority to 
a trigger because using this rule was seldom useful: the priority of each trigger is computed with the 
results obtained from the learning set of problems.  On the contrary, it may decide that some rules 
will be executed as soon as they are triggered by a particular event because it was almost always 
useful to execute them after this event.

MANAGER can compare the performance of the three methods: the given method which I 
created, the initial method and the learned method which are created by MANAGER.  Naturally, it 
only uses the testing set of problems, which were not used for generating the learned method.  With 
this new method, these problems are solved much faster than with the initial method, and almost as 
fast as with my method.  Curiously enough, the solutions are slightly more elegant than with the 
initial method, although some rules with very low chances of success have been eliminated.

Usually, MANAGER uses the learned method since it gives positive results.  However, in 
some cases, it requires MALICE to use the initial method, for instance when it wants to make a 
thorough search in a situation where it seems possible to improve the results found with the learned 
method.  If it succeeds, MANAGER compares both meta-traces and meta-explains why MALICE 
has not found a better solution with the learned method; we will later describe how this is done.

8.3. Writing a combinatorial program
For some problems, an elegant solution does not exist and even with the intelligent approach, 

MALICE cannot develop trees with fewer than several thousands of leaves.  No human being can 
understand  such  a  proof  which  also  requires  a  whole  lot  of  computer  time.   Thus,  for  such 
problems,  it  is  better  that  MANAGER  writes  an  efficient  specialized  combinatorial  program. 
Rather than slowly developing a large tree with the intelligent approach, this specialized program 
develops a much larger tree.  However, it develops it quickly because the decisions are made only 
once when it generates the program and no longer when it is developing the tree.  In that case, the 
meta-combinatorial search was not very successful so the system no longer uses it, except for once 
in the initial situation.  Here we have the advantage of compilation over interpretation.  Several 
systems [17,22] have already been able to write such programs.

MANAGER can start from the initial formulation of the problem, but this may not lead to an 
efficient program if the constraints have many unknowns.  With the problem of the magic cube seen 
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in section 2, we have seen that it is very interesting to find new constraints with few unknowns. 
Thus, when MANAGER wants to write a combinatorial program to solve a problem, it first asks 
MALICE to reduce the size of the search space and to generate new constraints.  It is only when 
MALICE can no longer advance without backtracking that MANAGER generates a program, using 
the constraints found by MALICE and taking into account the reduction of the search space.  In that 
case, an intelligent study of the situation, using a meta-combinatorial search among the rules, is 
made only once in the initial situation and not in every choice of an unknown.  MANAGER must be 
meta-intelligent enough to see when it is not useful to continue the intelligent approach and that the 
best solution is to write an efficient combinatorial program.

MANAGER uses  a  lot  of  knowledge to  generate  a  combinatorial  program,  specially  for 
choosing  the  order  of  the  unknowns  whose  possible  values  will  be  considered  first.   Usually 
MANAGER chooses well the order of the unknowns and the combinatorial program generates a 
rather small tree: 176 leaves for the DONALD crypt-addition.  176 is high compared to the 2 leaves 
generated with the intelligent approach, but small when one considers the size of the search space, 
almost 1010.  All of this is done in a very short time: generating, compiling, loading and executing 
such a program requires less than one second for most of the problems, as long as the tree has fewer 
than 10,000,000 leaves.  During one of its lives, MANAGER can generate 400,000 lines of C for 
hundreds of  such programs,  each of  them solving a  specific  problem.  A different  program is 
generated for each problem of the same family of problems.

To explain how such a combinatorial program is generated, let us consider the magic cube of 
section 2.  MALICE has proved several useful constraints, reduced the size of the search space, but 
was unable to find a solution in a reasonable time.  MANAGER starts from the situation such as 
when MALICE was stuck and MONITOR asked it to backtrack.  MANAGER first chooses one 
unknown, preferring those which appear in many constraints, appear in equality constraints, appear 
in constraints with few unknowns, have few possible values, etc.  Once an unknown U has been 
chosen, it creates a C statement which is a "for" loop considering all the possible values of unknown 
U.  Then it checks the bijection constraint: the value given to U has not already been given to 
another unknown.  For each constraint where the value of all the unknowns has been instantiated, it 
adds a C order  to  check that  this  constraint  is  true.   Naturally,  when a  constraint  is  false,  the 
program returns to the last preceding loop.  It may occur that the values of all the unknowns of an 
equality constraint except for one unknown V have been instantiated.  In that case, it creates an 
instruction computing the value of V and resumes the preceding process with unknown V instead of 
U; however,  there is  no loop added to the program.  When MANAGER has created all  the C 
instructions that could be generated after instantiating unknown U, it chooses another unknown, 
adds a new loop to the program and resumes the process.  When all of the unknowns has been 
instantiated and all of the constraints are satisfied, it has found a solution.  The program generated 
for this magic cube has only 17 loops while there are 27 unknowns; finding the value of SUM and 
three  equality  constraints  with  three  unknowns  is  essential  for  reducing  the  size  of  the  tree; 
choosing the order of the unknowns is also very important and this is described in section 6.

In that way, MANAGER is able  to generate efficient  programs for many problems.  For 
instance,  the  goal  of  the  problem G(N,P)  from the  GOLOMB family  is  to  find  an  ascending 
sequence of N numbers beginning with 0 and ending with P such that the N(N-1)/2 differences are 
all different.  In order to discard a symmetry, the first difference must be less than the final one: 
F(2)-F(1)<F(N)-F(N-1).  For G(4,6), there is only one solution: (0,1,4,6) and we can check that the 
six differences are (1,2,3,4,5,6).  Such problems are very difficult when N is large.  MANAGER 
proved in 2,992 seconds that there is no solution for G(13,105), and in 7,251 seconds, that there is 
only one solution for G(13,106): (0,2,5,25,37,43,59,70,85,89,98,99,106).  It also proved in 43,337 
seconds that there is no solution for G(14,126) while 52,190 seconds were necessary to prove  there 
is only one solution for G(14,127) with its 91 differences:

(0,4,6,20,35,52,59,77,78,86,89,99,122,127)
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The smallest number that is not a difference is 56.  It is not easy to write a program that finds such 
results in a reasonable time.

MANAGER is not able to generate a combinatorial program for every problem; however, 
when it considers the formulation of a family of problems, it knows whether it can perform it.  For 
instance,  MANAGER knows that  it  cannot  generate  a  program when  both  the  maximum and 
minimum degrees of the departure set of a correspondence are not equal to 1; this happens when the 
problem  is  to  find  a  circuit  on  a  board  such  as  the  Euler's  Knight.    The  other  important 
impossibility occurs when the argument of a correspondence includes a correspondence in at least 
one  constraint,  for  instance  there  is  somewhere  F(F(3)).   This  often  happens  in  the  family 
QGROUP, the quasi group existence problems (we will define it in section 11.4).  There is no 
difficulty with the constraints defining a quasi-group, nor with some other additional constraints 
such as those demanding that the quasi-group is idempotent.  But with most additional constraints, 
MANAGER  can  no  longer  generate  a  combinatorial  program,  for  instance  for  any  a  and  b, 
(a*b)*b=a*(a*b) must be true.  However, all of these problems can be solved by MALICE using the 
intelligent approach.

When I am speaking of the intelligent approach in opposition to the combinatorial approach, 
this does not mean that the system is not intelligent when it uses such methods: it must be meta-
intelligent  to  see  that  the  combinatorial  approach  is  the  best  one  for  some  problems  and  be 
intelligent to write a very efficient combinatorial program.  However, the combinatorial program 
which is generated is not in itself intelligent.

8.4. Choosing experiments
When  MONITOR  monitors  the  resolution  of  a  problem,  it  can  inform  MANAGER  if 

something is abnormal in order to experiment and understand it.  Once MANAGER has chosen to 
perform an experiment, this decision is stored in a waiting list with a priority that depends on the 
problem, the time it may require, its type, etc.  The following five examples of experiments are 
collected by MONITOR and decided by MANAGER to perform:

1. There is a contradiction shortly after giving value V to unknown U in a backtrack.  It is 
natural  to  ask whether it  would be possible to find U≠V before backtracking.   If  MANAGER 
decides to perform this experiment, it places MALICE in the situation just before backtracking and 
asks it to prove U≠V using the rules thoroughly.  If it succeeds, it is possible in this situation to 
improve the method used by MALICE.

When using the rules thoroughly, MALICE is using the initial method and it can make a 
greater number of formal derivations on the constraints than in a normal resolution; particularly, it 
is less restrictive for the overuse of dangerous rules. For MANAGER, a dangerous rule is a rule 
which creates at least one new constraint and where at least two of its variables are constraints: this 
rule,  applied  to  the  old  constraints  and  to  the  new constraint  that  it  has  just  generated,  could 
generate  an  infinity  of  constraints.   In  a  thorough search,  MALICE does  not  use  most  of  the 
heuristics  that  limit  the use of the rules,  and MONITOR no longer  has the right  to forbid the 
utilization of a rule.  This may require a lot of time, but it can find solutions that could otherwise be 
found.

2. As we have already seen, MONITOR may notice that an unknown U always has the same 
value V, whatever value has been assigned in a backtrack to another unknown W.  Is it possible to 
prove that U=V before backtracking with W? As in the preceding case, MALICE is placed in the 
situation just before this last backtrack and it uses the rules thoroughly.  If it succeeds, MANAGER 
knows another situation where it would be possible to improve MALICE.

3. When it  is  necessary to make some backtracks and when the CPU time is  reasonable, 
MANAGER may try to solve the same problem again; but is asks MALICE and MONITOR  to use 
the  rules thoroughly during all  the resolution of the problem and not only for solving a small 
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subproblem as in both preceding cases.  For some problems, it may find a solution which develops a 
smaller tree and MANAGER will try to understand why MALICE did not find this more elegant 
solution in its first attempt.

4. When MALICE has solved a problem, it has often made some backtracks; let U be the 
unknown chosen at the first backtrack.  MANAGER may ask MONITOR to try another choice 
instead of U for this first backtrack and asks MALICE to solve the same problem once again.  If it 
succeeds by coming up  with a more elegant solution, that means it is possible to improve the 
knowledge for choosing the unknown for the backtrack. Thus, MANAGER knows a good choice 
and a poor one; this information could be used by the user or by a future learning program. 

In that case, MANAGER performs a meta-combinatorial search completely different from 
what we have seen in section 5.5.  When it backtracks, it can see the outcome of alternative choices 
for the unknowns.  When it chooses another unknown, MALICE generates another tree.  In that 
way, MANAGER generates a sequence of trees where each of them gives a solution to the problem. 
Naturally, at the end it chooses the smaller tree.  Thus, it may find a more elegant solution: this new 
tree tree may have 2 leaves instead of 3446 as we have seen in section 5.4.  In that case, there is a 
superposition of two meta-combinatorial searches: the first among the rules, made by MALICE in 
order to find an elegant solution and the second made by MANAGER in order to choose among the 
elegant solutions generated after various backtracking choices.  Even though this is very costly, it 
may lead to solutions justified by very small trees.

5. When MALICE has to backtrack in order to solve a problem, it  may be interesting to 
compare this intelligent solution with the one obtained by a combinatorial program.

With type 1 to 4 experiments, a by-product may be to find a more elegant solution than the 
one that was found in the first attempt to solve a problem.

In the preceding cases, the problem had been solved.  But it is more important to make other 
kinds of experiments when MALICE fails.  If that occurs, MANAGER may perform some of the 
following experiments:

1. Asking to generate a combinatorial program.  It often succeeds, but this can be applied only 
for the problems where MANAGER knows how to generate such a program.

2. Asking MONITOR to choose another unknown for its first backtrack.  For some problems, 
that  may result  in  a  radical  improvement,  mainly  for  the  impossible  problems which  have  no 
solution and are very responsive to the choice of this unknown.

3. Asking MALICE to inhibit some rules.  Indeed, MALICE may fail because some rules can 
create many new constraints which lead to the execution of many more rules which in turn can 
create more constraints, etc.  MONITOR can already find this occurring and can also inhibit some 
dangerous rules, but it is often too late.  Thus, to avoid this combinatorial explosion, MANAGER 
asks to inhibit these rules from the start.

MANAGER  assesses  its  experiments.   It  notices  the  particularly  interesting  results  and 
informs them to the user.  Unfortunately, it is unable to use most of these results by itself.  For 
instance, if it has tried to backtrack with some unknowns other than the one chosen by MONITOR, 
it will only write a message with the following information:

MONITOR chose to backtrack first with F(16) and there were 2,061 contradictions.  The best 
choice is to backtrack first with F(11) and there are only 552 contradictions.  Four other choices are 
better: F(2) with 1,494 contradictions, F(4) with 831 contradictions, F(7) with 638 contradictions, 
and F(10) with 1,153 contradictions.  The three choices: F(12), F(1) and F(13) are worse than F(16).
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8.5. Understanding anomalies
MONITOR often detects anomalies and informs MANAGER, which then stores them.  It 

usually stops the resolution of the current problem so that it can later understand what happened.
Some anomalies come from a bug that leads to a Linux SIG message or an infinite loop 

(which is  detected by ZEUS as we will  see later).   MONITOR catches the signal and informs 
MANAGER about the situation of the problem and the subroutine that was running when the signal 
or the loop occurred.  Usually, MANAGER demands to stop working on this problem, but later it 
will try to understand what happened.  In that case, it asks to solve the problem in exactly the same 
way in order to be sure that it is not due to a transient problem coming from the operating system. 
If  this  error  happens  again,  MONITOR  or  ZEUS  indicates  that  the  difficulty  occurs  in  the 
translation of a particular expertise.   MANAGER tries to find exactly where it  comes from: it 
recompiles this expertise, but after each instruction, it inserts another instruction which changes the 
value of a new variable: when the anomaly reoccurs, it  knows exactly the C instruction that is 
responsible  from the  value  of  this  variable.   Since  it  wrote  this  subroutine,  it  can  relate  this 
instruction  to  a  condition  of  a  particular  conditional  action  whose  translation  contains  this 
instruction.  However, it is unable to correct this condition and the expertise that includes it, but it 
gives a lot of useful information to the user.

Some other anomalies are not seen by the operating system but are detected by MANAGER, 
when it analyzes the results found by MALICE.  Some years ago, there were still many bugs in the 
system and a rather frequent anomaly occurred: MALICE found a different number of solutions 
when it solved the same problem with different methods or when a combinatorial program was 
generated.  In that case, MANAGER asks MALICE to solve this problem again, but it must check 
that each solution satisfies all of the initial constraints.  If this verification fails for one solution, it 
means that it has found too many solutions and it knows one of them.  If this does not occur, it 
means that it has missed one solution in one resolution; when comparing the solutions found with 
both resolutions,  it  knows which one it  has missed.   Therefore,  it  always finds the missing or 
erroneous solutions.  The user has to complete the debugging of the system.

8.6. Explaining and meta-explaining
MALICE generates  a  trace including all  of  the rules  it  tries  to  apply.   Thus,  the system 

explains its solution starting from the events LINK and UNLINK as well as from the contradictions 
and solutions it has found; from the rules that create these events, it knows the events that trigger 
these rules,  and then the rules that  create  these events,  and so on until  it  comes to  the initial 
constraints of the problem.  All of the trials that are not found in this process are unnecessary to 
explain the solution.  This method generates an explanation in the same way as an Explanation 
Based Learning system [27,34].

This explanation is sufficient enough to convince the user, but it is difficult to follow when 
the tree contains more than ten leaves: MALICE applies many rules and dozens of them may be 
applied in any path from the root to a solution or a contradiction.  Although it is possible to check 
such a proof, it is a lengthy and difficult process.  For instance, the tree for the solution of the crypt-
addition DONALD has only two leaves and it is not so easy to check it.

I defined a heuristic concept, the  "difficulty" of the explanation of a problem.  It does not 
evaluate the difficulty in finding a solution, but the difficulty in understanding the solution found by 
MALICE.   Its  value  is  the  number  of  "important" rules  that  appear  in  the  explanation.   This 
definition depends on the rules defined as important and this choice is made by the user.  I consider 
a rule as important if using it is not evident for a human being; for instance, I did not classify the 
rules as important when they remove possible values for an unknown using the maximum degree of 
a node.
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With this definition, the difficulty of the solution of the crypt-addition DONALD is 101 when 
the tree has only two leaves.  If the system is forbidden to use some of the rules, it may find the 
solution while generating a tree with 5 leaves, which is also what a good human problem solver 
finds.  Although the tree is larger, the difficulty of this new proof is only 91.  Indeed it occurs that 
solutions with a small tree are a bit more difficult to understand than solutions with a larger tree; the 
reason for this is that it is necessary to apply many rules in order to reduce the size of the tree. 
However, I preferred to consider the smallest tree as the best solution: the concept of the number of 
leaves in a tree is objective while my concept of difficulty is subjective since it depends on the 
classification of  rules being easy or  difficult  to  understand.  With this  new solution,  MALICE 
generates  fewer  constraints  using  algebraic  derivations;  these  constraints  enable  the  system to 
reduce backtracking, but increase the difficulty in understanding the solution.  In practice, it is not 
easy for a human being to understand a solution when its difficulty is greater than 100.  However, 
this is not true for MANAGER, which can efficiently use explanations for solutions that have a 
difficulty much greater than 1,000.

The explanation of a solution is used for learning.  MANAGER counts as useful the number 
of times a rule is used in the explanation and as useless the number of times it was triggered and 
was not kept in the explanation.  In this way, for all of the problems of the learning set and for each 
possible way of applying a rule, it knows the number of its useful and useless applications.  With 
this  information,  MANAGER decides  whether  to  keep  or  eliminate  this  possible  trigger:  if  it 
decides to keep it, it defines its priority.

We have just seen why it is interesting to generate a trace to explain solutions and to learn 
how to use the rules.  The meta-trace is useful for answering "why not?" questions that MANAGER 
asks itself.  There are several kinds of "why not?" questions; for instance, at a bridge game, we can 
ask why 4 hearts have not been declared.  Here, I consider another kind of  "why not?" question: 
MANAGER asks itself why MALICE has not generated in one resolution the smaller tree that was 
found  in  another  resolution.   Let  us  assume that  MALICE has  used  method  M1 for  the  best 
resolution and M2 for the worst one.  First, the reason for the difference in the tree sizes may be that 
the first unknown chosen for backtracking is not the same in both executions, one choice C1 may be 
better than the other choice.  When this occurs, it orders MONITOR to choose C1 for the first 
backtrack.  If, with this choice, both trees have the same size, MANAGER has meta-explained why 
the solution was not elegant with the second method: the choice of the unknown for backtracking 
was poor.  If the solution is always less elegant, it will compare the solutions with methods M1 and 
M2 using the same choice C1 for this first backtrack.

Thus,  when the first  unknown chosen for backtracking is  the same and the solution with 
method M2 is always less elegant, there must be another meta-explanation.  Then, MANAGER 
compares both explanations in order to find the first useful result that is in the explanation when 
using M1 but not when using M2.  With the meta-trace, it knows why this result was considered in 
the first place so that it can answer its "why not?" question.

Let us explain this with an example.  The crypt-addition:
  THIS + ISA + GREAT + TIME = WASTER

has only one solution.  We consider here the formulation with the carries; using method M2 (which 
was my method), MALICE found a solution with two contradictions (so the tree had 3 leaves), 
while using another method M1 (which was the learned method) it found a solution with only one 
contradiction.   It  compared both traces and in both instances it  found that it  had generated the 
following constraint:

T+10*M+11*S+10*I = 9*E+100*R(4)+R
where R(4) is the carry of the second column from the right.  Unfortunately, it discovers from the 
meta-trace that when it generated the solution using M2, it has decided to eliminate this constraint 
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because it found that its interest was too low.  So now the "why not?" question has been answered. 
Furthering this study, it finds that when it kept this constraint, the system is able to generate from 
this constraint a new constraint: R(4)≥1.  With the possible values of the variables at this stage of 
the solution, it is easy to see that the left member of the equality is larger than 9*E+R, which is the 
value of the right member if R(4)=0.  From this inequality, it finds 1 as the only possible value for 
R(4); now it is no longer necessary to backtrack with unknown R(4), as it occurred in the resolution 
using M2.  Thus the best tree has only two leaves.

Although MANAGER generates useful information, it does not use it: the information is only 
given to the user who has to make the improvement.  In the preceding example, this is difficult 
because the reason for eliminating the useful constraint is probably that MALICE generated too 
many constraints using method M2.  One can decide either to keep more constraints or to modify 
the evaluation of the interest of a constraint so that the interest of the useful constraint is higher. 
Unfortunately, when one makes a modification that is good for a problem, one can also be very 
wrong for another problem.

In many other situations, MALICE missed the best solution not because it had eliminated a 
useful  constraint  but  because  it  has  not  considered  a  sequence  of  derivations  leading  to  an 
interesting  result.   When  this  occurs,  MANAGER  may  generate  a  more  interesting  meta-
explanation for the reason of the failure than in the preceding example.  For instance, in a problem it 
was required to find 5 bijections A, B, C, D and E, each bijection is from a set of 5 elements on 
itself.  I will give the description found by MANAGER of the reason why an elegant solution was 
not found by method M2 although it was found by method M1.  Here is the useful sequence of steps 
found by M1 and not by M2 for the same problem:

Constraint 14=A(1)+A(2)+A(4)+B(1) found applying rule R8 to the constraints A(3)=B(1) and 
14=A(4)+A(3)+A(2)+A(1)
Constraint 14=B(1)+A(4)+A(2)+D(2) found applying rule R8 to the constraints A(1)=D(2) and 
14=A(1)+A(2)+A(4)+B(1)
MALICE backtracks, giving the value 5 to the unknown D(2)
Constraint  7=B(1)+A(2)  found applying rule  R79 (at  that  time in  both executions  MALICE 
knows the value of A(4) and of D(2) to the constraint 14=B(1)+A(4)+A(2)+D(2)
Constraint 7=B(1)+E(1) found applying rule R8 to the constraints A(2)=E(1) and 7=B(1)+A(2) 
Constraint E(4)=E(1) found applying rule R8 to the constraints 7=B(1)+E(1) and 7=B(1)+E(4)

Rule R8 substitutes an unknown found in an equality constraint into another constraint; for 
the last constraint, the unknown is B(1) and is substituted in the second constraint by 7-E(1).  Rule 
R79 normalizes a constraint; in particular, it replaces the unknowns whose value is known by this 
value.  We can see why it is interesting to prove the last constraint E(4)=E(1): when a bijection 
gives the same value for two different elements, there is a contradiction since two different elements 
must have a different value (the maximum degree of the arrival set is 1).  In the poor solution, 
MALICE had not generated this constraint, so it had to backtrack with unknown E(1), and it had 
naturally found a contradiction for each of its possible values:  the tree included one more leaf 
because E(1) had two possible values.  MANAGER knows the steps that is missing in the solution 
with M2: R8 was not applied to constraints A(3)=B(1) and 14=A(4)+A(3)+A(2)+A(1).  In this case, 
I  had  wrongly  put  in  my  method  a  condition  which  forbade  to  consider  R8  in  this  context. 
Naturally  I  used  the  results  found  by  CAIA  and  modified  my  method  so  that  R8  could  be 
considered in such situations.

MANAGER only gives the steps that were not found in the poor resolution.  For instance, 
both methods M1 and M2 found A(4)=2 that leads to a simplification with R79 and the constraint 
7=B(1)+E(4) which is used in the last step.  It is unnecessary to put the derivations that lead to these 
constraints in this "why not?" meta-explanation.

In other cases, MANAGER finds that the reason for a poor solution is that a trigger includes a 
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condition that prevents MALICE from considering a useful rule.  It occurred several times with my 
method because I  had included too many conditions  in  some triggers.   This  explains why my 
method is  often faster  than the  learned method:  some rules  are  applied less  frequently.  In  the 
contrary, its solutions are often less elegant since it rejects interesting applications for some rules. 
More examples are given in [36].

Sometimes the system can also find in the meta-trace that a useful rule has been wrongly 
delayed, wasting a lot of computer time.  These are the useful rules with a very low priority; at the 
end of each execution, MANAGER lists all of the occurrences of such events.  The user can use this 
information  to  improve  the  priority  in  the  trigger  of  its  rules.   Moreover,  in  the  explanation 
MANAGER highlights the useful rules with a low priority: it is likely that they are difficult yet 
important steps in the resolution.

With a meta-explanation, MANAGER can know why the execution of a useful rule has been 
delayed or has not been made at all, what are the difficult steps in a resolution and which triggers 
must be modified.  It is better to meta-explain the resolution of simple problems: not only is it easy 
for  MANAGER  to  generate  the  meta-explanation  but  it  is  also  easy  for  the  human  user  to 
understand it.   In the same way,  a  human scientist  prefers  to  analyze the resolution of  simple 
problems when he may want to understand why his system is inefficient.  However, when a reason 
has been found, the method can be improved, which is useful for all of the problems, even for the 
most complex ones.  Although MANAGER can make interesting meta-explanations, it is unable to 
use them to improve its methods.

8.7. Generating new problems
MANAGER  can  find  new  problems  in  a  family  when  it  receives  the  definition  of  the 

constraints that must be satisfied by any problem of this family.  However, it is unable to define 
new families of problems.  It is important that MANAGER can generate new problems.  Firstly it 
increases the number of problems so that the system will be well trained.  Secondly, the problems 
found in the journals or in the books are often too easy because they are to be solved by human 
beings.  In some cases, we can make them even more difficult to solve.  For example, the problem 
DOMINOES given in the journal Paris Match: 8 dominoes are given and the goal is to place them 
on a 4x4 square so that it is magic, where the sum of the lines, columns and diagonals have the 
same value.  Such as it is given, this problem is quite easy to solve because 3 dominoes are already 
placed on the board; the problem is further difficult when none of the dominoes is on the board at 
the beginning, but there may be many solutions.  The problems of this family are given to MALICE 
without initially placing any dominoes on the board.

To generate a new problem, it is sometimes sufficient to change the value of some of the 
parameters  that  define  a  familiar  problem.   For  instance,  the  Euler's  Knight  problem may  be 
generalized into the problem of finding a circuit for a hopper (P,Q) on a board NxN.  A hopper 
(P,Q) on square (X,Y) can move to eight squares (X+P,Y+Q), (X+P,Y-Q), (X-P,Y+Q), (X-P,Y-Q), 
(X+Q,Y+P), (X+Q,Y-P), (X-Q,Y+P), (X-Q,Y-P) as long as they are on the board.  Euler's Knight is 
a special case with P=1, Q=2 and N=8.  For these new problems, N must be even if the hopper must 
return to the starting point and P+Q must be odd so that the hopper can move on the white and the 
black squares.  For instance, a new problem is to find whether the hopper (1,4), called giraffe, can 
complete a circuit on a board 8x8 (MALICE found that it is impossible) or 10x10 where there are 
many solutions.  In order to generate a new problem for the family AUTOREF, it is sufficient to 
find one value for N and another for P with the meta-constraint N<P.

The user does not need any help in order to generate such new problems.  However, for many 
problems it is not sufficient to modify the value of one or two parameters.  For some of these 
problems, MALICE receives the formulation of a meta-problem with constraints, which could be 
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called meta-constraints because they define the constraints that must be satisfied by each problem of 
this family.  In this way, MANAGER can ask MALICE to find new problems, but only for the 
families where the meta-problem of finding new problems has been stated, it is unable to define 
new families of problems.  There are 15 formulations of such meta-problems, for instance the first 
one generates new crypt-additions, the second one generates crypt-multiplications, the third one 
covers a square with dominoes so that it is magic, the fourth one defines cubes to superpose such as 
for  the  "instant  insanity" problem, the  fifth  one  generates  Kakuro  problems,  etc.   Some meta-
constraints of the meta-problem check if the problem is correct, for instance that the result of a 
crypt-addition is equal to the sum of its operands.  Some other meta-constraints prevent the system 
from generating too many impossible problems or from exploring areas where it is unlikely to find 
an  interesting  problem.   The  function  NBVAL is  very  useful  to  express  such  heuristic  meta-
constraints.

When MANAGER has created a new problem, it asks MALICE to solve it.  Then it considers 
whether it is interesting to keep this new problem.  This interest depends on the resolution: one 
prefers problems with few solutions,  specially those with only one solution.   MANAGER also 
considers the characteristics of the other problems of the family: an impossible problem is more 
interesting when it is the first one in this family.  It prefers problems that can only be solved after 
developing a very large tree because they are difficult.  It also tries to keep some problems with 
only one solution which are solved without finding a contradiction, their tree has only one leaf: 
these problems are interesting for human beings because they are not too difficult.  However, that 
does not mean that we can solve them easily: it is not alway easy to find a solution as elegant as 
those found by MALICE and we often have to backtrack in order to solve problems that MALICE 
directly solves.

Thus, MANAGER knows many difficult problems which are far more difficult than those 
found in the journals.  One example of crypt-addition that it has created:

ABC + DEFG + ECHHGB + BFIHFC = IJECAD
The difficulty of this problem is 1,674; in comparison, DONALD with a difficulty of 101 is very 
easy.  There is only one solution and MALICE never found a tree with fewer than 100 leaves. 
Another difficult problem in the DOMINOES family requires to build a magic square with the 
following dominoes: (0-5), (0-6), (1-5), (1-6), (2-3), (2-5), (3-4), and (4-5).  The common value of 
the sums is 13 and there is only one solution if one takes the symmetries into account.  MALICE 
must generate a very large tree to find the solution and prove that it is unique.

Let us give an example of a problem from the family LOGIGRAPHE [38].  The goal of these 
problems is to blacken some squares in a rectangular board so that the sequences of consecutive 
black squares agree with the sequence of numbers given for each row and column.  For instance, if 
a particular row has the sequence (2, 4) there must be two consecutive black squares, at least one 
white square, and then four consecutive black squares.  There may be any number of white squares 
(including zero square) at the beginning and at the end of the row.  The left side of Fig. 2 gives a 
problem found by the system for a 10x10 board while its unique solution is on the right.  The board 
is  rather small,  for instance some problems are for  a  55x40 board.  However this  is  a difficult 
problem, MANAGER rated 535 as the difficulty in understanding the solution found by MALICE. 
It is easy to see that, on the second row, we must blacken the seventh square: this square is always 
black for the ten possible ways to blacken 2 squares and then 4 squares on a row of 10 squares.  In 
the same way, the four middle squares of the third row, where there is only a sequence of 7 black 
squares, must also be blackened.
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Fig. 2. A LOGIGRAPHE problem found by MANAGER and its solution.

The left board in Fig. 3 describes a third problem generated by MANAGER; it derives from 
the family ARROW.  On a board NxP, each square contains an arrow with four possible directions: 
right, left, up and down.  The goal is to find an integer for each square so that it is equal to the 
cardinality of the set of the integers of the squares pointed by the arrow: if the arrow points to the 
right, this is the number of different values which are at the right of the arrow.  For instance, in 
figure 3, the top left square has a right arrow.  Its value must be the cardinality of the set of numbers 
of the six squares on its right, their ordinate is 6 and the abscissa 2, 3, 4, 5, 6, and 7.  The size of the 
search space is very high since there are 42 squares with up to 7 possible values.

The right board in Fig. 3 presents the only solution.  It  is easy to check this solution, for 
instance the number in square (1,6) is 4, the value of the squares on its right are 4, 1, 3, 2, 2, 4 , the 
corresponding set is (1,2,3,4), whose cardinality is 4.  It is really difficult to find this solution and to 
prove  that  it  is  unique.   With the  intelligent  approach,  the  smaller  tree  has  93 leaves  and the 
difficulty  of  this  proof  is  2457.   When  MANAGER  generated  a  combinatorial  program,  it 
developed a tree with more than 3 billions leaves.

The idea to consider this family of problems came from a problem published in the newspaper 
Le Monde, where MALICE found the only solution without backtracking.  MANAGER decided to 
keep three of the easy problems that it generated and about 40 more difficult problems on boards of 
various sizes.
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Fig. 3. An ARROW problem found by MANAGER and its solution.

8.8. Finding symmetries
Since Gelernter [7], we have been trying to realize programs that are able to find symmetries 

in the formulation of a problem.  This is useful to prove new theorems easily or to reduce the size of 
the search space.  Geometrical symmetries are a special case, but many problems have other kinds 
of  symmetries:  there  is  a  symmetry  when one  or  several  other  solutions  can  be  automatically 
generated for each new solution.  If that occurs, it is possible to add new constraints so that only the 
first solution can be found; then, the search space can be reduced, in some cases significantly.  The 
main goal here is not to exploit symmetries [24], but to find them.  A lot of research has been done 
in  finding  symmetries  for  constraint  satisfaction  problems;  however,  as  we  have  seen  at  the 
beginning of this paper, the system tries to find solutions from first principles, and if possible, it 
does not use research conducted by human scientists.  This application is interesting because, in 
order to solve a meta-problem, it uses the same methods than those used for solving problems; this 
reflexivity makes the development of such systems much easier.

MANAGER is only able to find symmetries in the formulation of a problem P that are a 
permutation of the unknowns; for that it defines a family of meta-problems whose goal is to find a 
bijection between the equality constraints that lead to a bijection between the unknowns of P.  For 
each new meta-problem, it tries to find whether there are such bijections.  This meta-problem is 
defined as a constraint satisfaction problem, but its data are generated by MANAGER from the 
formulation  of  problem P.   When  it  has  found  such  bijections,  it  uses  them to  generate  new 
constraints from each constraint it creates while solving P as we have seen it with the magic cube. 
Moreover, for each symmetry, it checks whether the set of constraints of P, including even those 
that are not equality constraints, is converted into the same set by this symmetry.  If that occurs, a 
symmetry  has  been  found  for  problem  P:  from  each  solution  A,  another  solution  B  can  be 
automatically generated where each unknown has the value of its symmetrical unknown in A.

Naturally, MALICE must not waste its time generating solutions symmetrical to those that 
have  been  already  found;  thus,  MANAGER adds   some  constraints  to  the  formulation  of  the 
problem so the symmetrical solutions are no longer generated.  As Puget [37] shows, when the 
value  of  the  unknowns  are  all  different,  if  there  is  a  symmetry  between  the  unknowns 
(V1,V2,...,Vn) and (W1,W2,...,Wn), all of the symmetrical solutions are eliminated if the constraint 
V1<W1 is added. Since the same constraint may be added to remove different symmetries, the 
number of these constraints is usually less than the number of symmetries.  For the problems where 
the variables are not all different, Crawford et al. [6] show that one must add more complicated 
constraints  to  eliminate  all  of  the  symmetrical  solutions;  for  instance,  if  there  is  a  symmetry 

37



between the unknowns (U,V,W) and (X,Y,Z), the associated constraint is:

U<X ∨ (U=X∧V<Y) ∨ ( U=X∧V=Y∧W<Z) ∨ ( U=X∧V=Y∧W=Z)
These constraints are cumbersome when there are many unknowns; therefore, MANAGER also 
adds the weaker  constraint  U≤X which MALICE easily  uses   in  order  to  remove most  of  the 
symmetrical  solutions.   Only  the  few  remaining  symmetrical  solutions  are  eliminated  by  the 
stronger constraints, which are kept only if they are not too complicated.

Many symmetries are transformations such as geometrical  symmetries or rotations,  as  we 
have seen with the magic cube, but some symmetries are not geometrical.  For instance, the crypt-
addition:

ABCDE + FGHAFC = FFIGIA
has a symmetry where every unknown corresponds to itself,  except B which corresponds to H. 
Thus, MANAGER adds the constraint H<B so that the symmetrical solution cannot be generated.

MANAGER must be careful that MALICE does not generate the same symmetry twice when 
it solves the meta-problem: it  is looking for a bijection between the constraints and a bijection 
between the unknowns.  I was surprised to find that two different bijections on the constraints were 
often associated with the same bijection on the unknowns; for the meta-problem, these are different 
solutions.  However, we are only interested in the bijection on the unknowns, so MANAGER must 
check, before storing a bijection on the unknowns, that it has not already been found associated with 
a different bijection on the constraints.

There are other kinds of symmetries that MANAGER is not able to find for the following two 
main reasons.  Firstly, it has not received the definition of the meta-problem that could find this new 
kind of symmetry.  Secondly, it only performs the search for symmetries on the initial formulation 
of a problem.  For instance, with the magic cube, MANAGER has found 47 symmetries, but there is 
another symmetry which it has not found: a new solution is obtained when the value V of each 
unknown is replaced by 28-V.  In order to find this symmetry, it is necessary to know when to apply 
this kind of substitution.  This would be a new kind of symmetry, easy to implement; moreover, it 
also appears in many problems.  But this symmetry cannot be found in the initial formulation of the 
problem: in order to prove that a constraint does not change when each unknown V is replaced by 
28-V, it is necessary to know that 126 is the value of VAL because 28=(126*2)/9, 9 being the 
number  of  the  remaining  unknowns  in  a  constraint.   The  constraint  F(14)≤14  eliminates  the 
symmetrical solution: it divides the size of the search space by almost 2.  So, it would be necessary 
to give MANAGER the possibility to search for symmetries while MALICE is solving a problem.

MANAGER is not able to find other kinds of symmetries.  A particularly interesting family of 
problems is DOMINOES, as seen in the preceding section,  where a magic square is built with 
dominoes.  Naturally, there are the geometrical symmetries of the square, but there are also two 
other kinds of symmetries.  Firstly, there may be one or more double dominoes among the given 
ones, where both numbers are the same.  It would be clumsy to count two solutions as different 
when the only difference is that one of these double dominoes has been rotated.  Secondly, it is 
possible that the same domino comes up twice and exchanging them does not give an interesting 
new solution.  For instance, MANAGER has generated the following problem with the dominoes 
(1,6), (2,3), (3,5), (3,5), (3,6), (3,6), (4,4), and (5,5).  There are many symmetries since (3,5) and 
(3,6) come up twice and there are also two doubles: (4,4) and (5,5).  These symmetries multiply the 
number of solutions by 16 even when the geometrical symmetries are removed.  For this family of 
problems, I had to give two more constraint generators so that such symmetrical solutions are no 
longer  generated;  with  these  constraints,  MALICE  finds  only  one  solution  for  the  preceding 
problem.

Finding symmetries is a very complex meta-problem and MANAGER is not able to find all of 
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them; moreover, there are many problems where there are no symmetries at all.  It  has actually 
found symmetries  for  67  problems;  for  some of  them the  number  of  symmetrical  solutions  is 
enormous.  For instance, the family MAGICYL is a variant of the magic square where the board is 
cylindrical; in that case, there are 2*N diagonals instead of 2, all the squares are equivalent because 
each unknown occurs in exactly four constraints and there are no longer center or corner squares; 
consequently, there are plenty of symmetries.  For N=3, there are 431 symmetries, but no solution; 
for N=4 there are 127 symmetries and only 3 basic solutions.  There are 799 symmetries for N=5 
and only 36 solutions when symmetries are taken into account; without using any symmetries there 
would be 28,800 solutions!

8.9. Choosing which tasks to perform
For a human being, managing a large set of possible tasks can be described with the attraction 

exerted on these tasks.  The attraction of a task depends on three factors: the cost, the importance 
and the presence of cognitive attractors [11].  A cognitive attractor is an element that is presented to 
the perception of the subject more or less strongly: for us a telephone ring, an order from a superior, 
a file on our desk are powerful cognitive attractors.  MANAGER finds its next task using these 
three  factors;  they  are  determined  in  the  conditional  actions  evaluating  the  triples  (value-
importance-number) for each candidate task.  Human beings (including scientists) are not the best 
to make this kind of choice, they favor tasks with a low cost and with powerful cognitive attractors: 
naturally, at the end of the day, they feel that they wasted their time on uninteresting tasks.  With its 
knowledge  for  choosing  the  next  task,  MANAGER  chooses  its  tasks  satisfactorily  during  an 
execution that lasts several weeks, it does not procrastinate as so many human beings do.

Thus, at the beginning of each loop, MANAGER chooses its next task.  That may be any 
activity we have already seen: solving a problem which has not yet been solved with a particular 
method, conducting an experiment so that it can find interesting events, generating new problems, 
comparing the results obtained with different methods, meta-explaining why a resolution is more 
elegant  with  a  particular  method,  writing  a  combinatorial  program  to  solve  a  problem, 
understanding why there was an anomaly during the resolution of a problem, learning new methods, 
etc.  In order to choose its next task, it uses the algorithm as described in section 6 with a set of 
conditional actions that enables it to compute the interest of the possible tasks, then it chooses the 
most interesting one.

To illustrate this point,  Fig. 4 presents a problem found by MANAGER after running for 
about 2 millions of seconds.  In the ROOK family of problems, the goal is to find a circuit for a 
rook on a board where some squares are forbidden.  The rook must go once and only once on each 
square that is not forbidden and return to its starting square.  MANAGER generated this problem 
for a human being so that it is neither too easy nor too difficult; its difficulty is 47 which is fairly 
good for this goal.  There is only one solution.  Naturally, it generated more difficult problems in 
this family, specially with larger boards, but only for its own use.

Although CAIA can run for several months, I stop it after 2 or 3 millions of seconds.  I do not 
kill it but I freeze it so that it is possible to restart.  However, this is no longer very interesting 
because, while it was running, I watched what it was doing, which in turn gave me many ideas to 
improve its behavior in a new version. Thus, I prefer to start the life of a new and improved CAIA.
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Fig. 4. A ROOK problem found by MANAGER.
The goal is to find a circuit for a rook

9. ADVISOR
Regularly a fourth agent, ADVISOR, assesses the behavior of MANAGER.  It considers what 

problems have not yet been solved, analyzes the experiments, compares the results obtained with 
the three methods,  compares the results of the combinatorial programs with those found in the 
intelligent approach, and also considers the new problems MANAGER has generated.  Finally, it 
synthesizes these analyzes in a report for the user.  In this report, it describes the important events 
and gives a summary of its experiments and their results.   ADVISOR only communicates with 
MANAGER.

ADVISOR  selects  problems  with  interesting  solutions,  for  instance  a  crypt-addition 
formulated without carries was one of the most difficult resolutions to understand:

 ABCDE+FFGHFI=FDICCC
There are 36 solutions and the difficulty is 7,011.  The difficulty of:

ABC + DAEDDF + BEDB + GGDCHA = IJFGAI
is  only  4,004,  but  ADVISOR notices  it  because  there  is  only  one  solution.   It  gathers  useful 
information to improve the system such as the problems where the choice of the unknown for 
backtracking was particularly poor and the families of problems where this happened frequently.

ADVISOR also considers MANAGER's advancement since the preceding assessment: it has 
succeeded in solving a very difficult problem or it has discovered very interesting problems.  If 
there are few or no such results, perhaps the time has come to freeze the life of this CAIA.

These analyzes are useful for MANAGER.  For instance, ADVISOR can decide to eliminate 
some problems because even more interesting problems have been found in their family.  It may 
also prompt MANAGER to give a special effort to a very difficult problem that it has not yet been 
able to solve.

ADVISOR guides MANAGER the same way as MONITOR guides MALICE.

10. ZEUS
MONITOR is able to see that MALICE is always applying the same rules with the same 

arguments or that it is always generating the same  constraints.  It can stop such loops, for instance 
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it may inhibit or restrict the use of some rules.  In the same way, MANAGER can see that it is 
always performing the same experiment.   But  there  are  loops  that  MANAGER or  MONITOR 
cannot detect in order to regain the control.  This may occur for instance when if is a loop when 
MALICE is executing a rule.

ZEUS is acting independently of the other agents.  It can examine some of their results and 
their  recent  actions.   From  the  value  of  this  observation,  it  may  change  the  value  of  some 
parameters so that the various agents will modify their behavior, it may even stop them and restart 
MANAGER after storing some indications of the serious anomaly that it has just seen.

Interrupts by the alarm clock are used to stop these loops: the system calls the agent ZEUS for 
every S seconds no matter what ADVISOR, MANAGER, MONITOR or MALICE is doing.  ZEUS 
examines whether CAIA has advanced since its preceding interruption.  If it is always at the same 
point, ZEUS gives CAIA a second chance; but at the next interruption, if it is still at the same point, 
ZEUS assumes that the system is in an infinite loop.  In that case, it stores some information on the 
current  task,  particularly  the  subroutine  that  is  looping.   Then  it  indicates  MANAGER  to  be 
cautious if it tries this task again, and automatically restarts it: CAIA does not stop and it does not 
forget the information on its past.  Later on, MANAGER will try to understand what happened, for 
instance after recompiling the dubious subroutine so that it can trace each instruction.

ZEUS is also necessary when MANAGER solves a problem with a combinatorial program 
that it has generated.  When the allocated time is exhausted, it orders the program to stop, but if it 
does not comply then it is interrupted.

ZEUS functions well: when it believes there is a loop, it is correct, it stores all the necessary 
information to find where it occurred and then gives the control to MANAGER.  Such a module is 
essential for a system that has to function for weeks without stopping or looping needlessly.

11. Results
MANAGER compared the results for three methods: G is the given method that I generated 

myself, I is the initial method it generated, and L is the learned method.  In the final step of its third 
life, MALICE has more than 1,000 problems from more than 100 families.  In these results the 
meta-problems are not included; there are 38 meta-problems for generating new problems and they 
belong to 15 families of meta-problems; another meta-problem finds symmetries in the formulation 
of a problem.  The problems were taken from various newspapers and journals, several interesting 
and difficult problems were found in the CSPLib [39].  When there are many solutions, several 
millions or even billions could be found in some problems, MANAGER does not try to find all of 
them, instead it stops at 100 except if it has already developed a large part of the tree.  In that case, 
MANAGER may allow MALICE to find all of the solutions.

A PC with a 2.4 gigahertz Pentium 4 was used by CAIA.

11.1. General results
We will compare the results obtained with the three methods: the given method (G), the initial 

method (I), and the learned method (L).  I do not take into account the results for the meta-problems 
as well as those for the problems created by MANAGER but which were not kept because their 
interests were too low: these problems were only solved with the learned method.  This learned 
method has been generated using only the solutions of the problems in the learning set.  I do not 
include 17 problems which were not completely solved because there were too many solutions, 
more than one thousand.  Indeed, the time necessary to find a small subset of a large number of 
solutions does not have any meaning because in an execution the system may be in a search space 
area where there are many solutions, while in another execution it may be in an area where they are 
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scarce.  Now it has 1,053 problems to consider.  Moreover I do not keep 20 of them since they 
require a whole lot of time, more than 1,000 seconds: the CPU time for solving one of them is so 
high  that  it  is  as  lengthy  as  solving  many  other  problems.   For  these  few problems,  a  small 
difference in the choice of the unknown to backtrack may considerably increase the time and the 
number of contradictions necessary to solve the problem so the results would have no meaning at 
all.  The results describe what occurred for the 1,033 remaining problems.

Table 3 presents the results for the 512 problems of the testing set which have 4,862 solutions. 
MANAGER defines the problems which will be in this set; they are randomly chosen, but if a 
family includes two or more problems, at least one of these problems must be in the testing set and 
one of the others must be in the learning set.  The number of leaves in a tree is the sum of the 
number of its solutions and of its contradictions.  “Nodes” is the total number of nodes of all the 
trees in the solutions of this set of problems.

contra-
dictions

seconds nodes

Method G 149045 11352 829295

Method I 118668 33676 643504

Method L 117833 16436 712706

Table 3. Results for the 512 problems of the testing set.

Table 4 shows the results for all of the problems, including those of the learning set, there are 
1,033 problems and 10,027 solutions.

contra-
dictions

seconds nodes

Method G 225745 16044 1514205

Method I 190136 77673 1241779

Method L 187196 24617 1394486

Table 4. Results for all of the problems.

The  explanations  given  by  the  three  methods  are  completely  different,  even  when  they 
develop exactly the same tree.  Each method has preferred rules and it is natural that they more 
frequently occur in the final explanation of the solution.  Two solutions given by two methods are 
as different as two solutions given by two human problem solvers.

Let us now compare the results with methods G and L.  With G, the one I generated, the 
solutions are usually less elegant because the trees are larger, but MALICE is faster with G than 
with L: the tree generated with G is larger than with L for 296 problems while it is smaller for only 
127 problems; both trees have the same size for the other problems.  Comparing both versions I and 
L made by MANAGER, the initial version I is very slow, which is normal, but it generates trees 
with a few more leaves than L even for the problems of the testing set.  However, the number of 
nodes for I is lower: L develops more nodes after a backtrack before finding out that there is a 
contradiction.  The methods generated by MANAGER stands in comparison with the method that I 
created.  In all fairness, the comparison would be more in favor of MANAGER because I often 
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modified my own method by taking account of my mistakes, which I found from the analyzes made 
by MANAGER.

It is interesting to understand why version L usually gives more elegant solutions than version 
G.  The main reasons are that I have made some mistakes and was too lazy.  In some cases, I 
thought that some rules could not be useful in certain contexts, thus I added conditions so that 
MALICE would not also use them.  This speeds up the system and it is one of the reasons why G is 
usually faster; however, if it is sometimes better to use this rule then MALICE cannot conclude 
faster with version G, thus the tree is too large.  Moreover, generating and modifying a method is a 
difficult process.  It is tempting not to add a rule to the set of rules which would be considered after 
an event when we think that it would be not likely be useful.  In that case, version G does not use 
the set of rules in the best possible way.  On the contrary, MANAGER is never lazy because it 
generates a new method in less than one second.

11.2. Failures
Naturally, there are many problems that MANAGER is unable to solve.  Several families of 

problems depend on a parameter and the difficulty of the problem grows with the value of the 
parameter.  For instance, if N is the size of a magic square, which includes NxN squares, it is rather 
easy to solve it when N=3, but it is quite difficult for MALICE to solve it when N is greater than 11. 
In the same way, the difficulty of AUTOREF grows fast with the value of P; among its problems 
there is one with P=27, but it would certainly fail with larger values of P.

For two of the problems given to MALICE, the value of one of the parameters was too high 
and it failed; it is interesting to give such problems to see how MANAGER reacts when it finds a 
problem too difficult to solve.  It writes a combinatorial program, backtracks with other unknowns, 
inhibits some rules, but these attempts were not sufficient enough to solve these problems.  It would 
be necessary to write a more powerful combinatorial program and find new methods to restrict the 
growth of the search tree.

The third problem it failed to solve is the only problem in its family: it is kind of a magic 
5x5x5 cube.  All of the lines with 5 small cubes, including the diagonals of the faces and those of 
the cube, must have the same value.  The goal is to find a bijection from the set of numbers 1 to 125 
on itself and also the value of the common sum.  There are 109 constraints and each one contains 6 
unknowns; each unknown may have 125 values, thus the search space is enormous.  MANAGER 
has  found 191 symmetries,  so  it  created  42  new inequality  constraints  to  remove symmetrical 
solutions.   Finding these symmetries is already a  difficult  problem since its  definition includes 
8,838 constraints.  When it tries to solve the main problem, it quickly finds 315 as the common 
value of the sums and also 63 as the value of the center square.  This last result is certainly difficult 
to  find,  it  was  only  discovered  in  1972 by  Schroeppel.   Now most  of  the  constraints  have  5 
unknowns, and some of them only have 4 unknowns.  The system finds some new constraints, but 
all of them have at least 4 unknowns, which is not enough to restrict the search.

Since the system was not able to find any solutions with the intelligent approach, it generated 
a combinatorial program.  This program contains 44 loops, and for each of them the variable can 
have more than 100 values, thus the program has not found any solutions.  This problem is very 
difficult: its first solution has just been found in 2004.

11.3. The intelligent approach
It  is  interesting  to  compare  the  performance  of  the  intelligent  approach  with  the  results 

obtained after generating a combinatorial program.  When the time for finding a solution with the 
intelligent  approach  is  short,  at  most  a  few  seconds,  the  times  are  almost  the  same:  writing, 
compiling, loading the new program already takes some time and even if the running time is almost 
nil, the whole process takes at least one second.

However, when the solution with the intelligent approach takes at least 10 seconds, in most 
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cases the solution with the combinatorial program is much faster.   For instance, in most crypt-
arithmetic problems, there are at most 10 unknowns which can take at most 10 values each.  When 
the combinatorial program is written cleverly, it only backtracks with the unknowns that appear in 
the  operands,  not  with  those  that  only  appear  in  the  result  of  the  operation.   Moreover,  as 
MANAGER begins with the intelligent approach, it has already removed many possible values for 
the unknowns.  Thus, for most crypt-arithmetic problems, the tree has fewer than 100,000 leaves 
and the combinatorial program solves the problem in less than one second.

Not all of the problems were solved using these both approaches.  The first reason is that the 
combinatorial approach is tested only for problems where the intelligent approach had to backtrack. 
Moreover,  for  several  problems  MANAGER  knows  that  it  does  not  know  how  to  write  a 
combinatorial program: this is the case for 9 families of problems, which include 106 problems. 
For  these  problems,  the  intelligent  approach  is  the  only  way  to  find  a  solution.   Among  the 
problems that were simultaneously solved by the intelligent and the combinatorial approach, there 
were 337 problems where the combinatorial program was faster whereas for 299 problems the times 
were equivalent.  Finally, there are 19 problems where the intelligent approach is better than the 
combinatorial program.  For 13 of them, the intelligent approach was much faster, but for the last 6 
problems the combinatorial  program was not  even able  to  find a  solution while  the intelligent 
approach  was  able  to  find  all  of  them.   On  the  other  hand,  4  problems  were  solved  by  the 
combinatorial program but were not solved by the intelligent approach because it required too much 
time.  In order to solve them, it would require at least half a day of CPU; MANAGER estimated 
that  too  much  time  would  be  wasted  for  problems  which  had  already  been  solved  using  the 
combinatorial approach.

When  the  intelligent  approach  is  the  best  one,  the  problems  usually  contain  a  kind  of 
reflexivity such as AUTOREF or ARROWS.  For the problem of ARROWS given in 8.7,  the 
intelligent approach was able to solve the problem in 29 seconds while 952 seconds were necessary 
for  the combinatorial  program.  For  the  AUTOREF problems,  the advantage  of  the  intelligent 
approach increases with P: for P=27 and N=5, it was able to find the two solutions in 379 seconds 
while the combinatorial program had developed only 7 thousands of the tree after 40,000 seconds. 
Let  us explain the reason for  this  failure of  the combinatorial  program; we have seen that  for 
AUTOREF problems, MALICE finds a new constraint with the rule R5.  For P=27 and N=5, this 
constraint is:

F(0)+5 = F(2)+2*F(3)+...  +25*F(26)+26*F(27)

As MALICE knows that F(0)≤27, it immediately finds that if it gives the value 1 to two of the F(I) 
where I is large, the preceding constraint is FALSE because their coefficient in this constraint is 
large so the right part is greater than F(0)+5.  Thus, when the value 1 is given to one of the F(I)'s 
where I is large, it immediately finds that 0 is the value of all the other F(I)s where I is large.  The 
combinatorial program does not find this and it checks the constraint only when it knows the value 
of all the F(I)s; for almost all of these combinations of values, the constraint is false because the 
right part is much larger than the left one when the value of two F(I)s is 1.  When there are many 
unknowns, the specific combinatorial program unnecessarily develops a large tree and it takes too 
much time.  However, the combinatorial program is reasonably efficient because it uses the fact 
found by MALICE, that for large I, the F(I)s have only two possible values, 0 and 1, instead of 27 
possible values for each unknown.  Naturally, for I small, both the intelligent and the combinatorial 
programs have to try more values for each F(I), but this is feasible.

Finding  Langford's  numbers  is  particularly  interesting  because  the  intelligent  approach is 
obviously the best one.  For the Langford problem L(K,N), the goal is to arrange K sets of numbers 
1 to N so that each appearance of the number m is m numbers on from the last: two successive 
appearances of number m are separated by m numbers.  For example, L(2,4) has only one solution 
41312432.  Naturally, the symmetrical solution obtained by reversing a number is not considered. 
For L(3,9), MALICE finds the 3 solutions in 31 seconds and proves that there is no other solution. 
One of them is:

347839453674852962752816191
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We can check that every number from 1 to 9 occurs exactly three times and that there are 7 numbers 
between the first and the second occurrence of 7 and between the second and the third.   On the 
other hand, the combinatorial program generated for solving this problem had only developed a tiny 
part of the tree after 10 hours.  The reason for the success of the intelligent approach is that for such 
problems it is not adequate to choose the order of the unknowns for backtracking a priori: the best 
choice strongly depends on the values taken by the unknowns that  were already defined.   On 
different  paths  from the  root  to  the  leaves,  the  best  choices  of  the  unknowns  are  completely 
different.

MANAGER can write a combinatorial program from the start, without having an intelligent 
phase.  For most problems, they take the same amount of time; for instance, with the crypt-addition 
DONALD the tree has 1,296 leaves instead of 176 leaves when the program is generated after some 
intelligent deductions (and only 2 with the intelligent approach).  Most of the time is spent on 
writing, compiling and loading the program, the running time for such small trees is completely 
negligible, but it becomes large with trees that have at least one hundred million leaves.  However, 
for some problems it is essential to begin with an intelligent phase before writing the program.  For 
instance, for the AUTOREF problem with P=23 and N=5, both solutions are found in 15 seconds 
with the  intelligent  approach,  and in  48,154 seconds with  the  combinatorial  approach after  an 
intelligent phase.  The program was stopped after 40,000 seconds when it was generated without an 
intelligent phase; it had developed less than one thousandth of the tree.  The reason for this is that it 
is not aware of facts that were found in the intelligent stage: for large values of I, F(I) can take only 
two values 0 and 1, and there is also a restriction for the smaller values of I.  Thus it tries the 24 
values between 0 and 23 for each of the 24 unknowns, which is over the limit even for a fast 
combinatorial program.  On the contrary, it is much faster to generate the combinatorial program 
without an intelligent stage in the case where it wastes a lot of time without significantly decreasing 
the size of the search space.  This occurs for the problems of the GOLOMB family as defined in 
section 8.3.

11.4. Quasi-groups
An order  N quasi-group is  defined  by  a  multiplication table  of  size  NxN in  which  each 

element occurs exactly once in every row and column.  It is idempotent if a*a=a for every element 
a.  It is interesting to determine the existence (or non existence) of quasi-groups of a given size with 
additional properties.  Fujita, Slaney and Benett [9] have made many experiments with a general 
theorem prover called MGTP; this system solved the problem of the existence of several quasi-
groups.  For the quality of its results, this paper won the award for the best paper at the IJCAI'93. 
MALICE considered problems with one of the following properties which must be true for every 
couple of elements a and b:

QG3: (a*b)*(b*a)=a
QG4:  (b*a)*(a*b)=a
QG5: ((b*a)*b)*b=a
QG6: (a*b)*b=a*(a*b)
QG7: (b*a)*b=a*(b*a)

It is useful to add some symmetry breaking constraints.  In his experiments Fujita included, in 
the definition of this family of problems, the constraints a*N≥a-1 for a∈[1:N-1] where N is the 
order of the quasi-group.  This symmetry was not found by MANAGER but these constraints were 
included in the definition of the family so the problems were exactly the same for both systems; in 
that way we can compare their performance.

The definition of this family includes the symmetry breaking constraint, the five properties 
QG3-7 and possibly the idempotent constraint; for these last constraints, the value of a parameter 
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indicates which ones must be considered for a particular problem of this family.  The quasi-group 
constraint is given by a KNOWING INCOMPATIBILITY constraint.

Table 5 presents the results of MGTP and those of MALICE for some of these problems. 
QG7-8 indicates that the problem is the existence of quasi-groups of size 8 with property QG7.  It is 
followed by N if the idempotent constraint is not included as with QG5-10N.  For this family of 
problems, MALICE is unable to generate a combinatorial program, so these results are those of the 
intelligent approach.  Table 5 summarizes those results. "Leaves" indicate the number of leaves of 
the tree generated for these experiments while "CPU" is the computer time in seconds.

Problem Leaves MGTP Leaves MALICE CPU MGTP CPU MALICE

QG3-7 183 102 6 6

QG3-8 3875 2101 28 132

QG3-9 312321 113507 1022 9465

QG4-7 123 85 6 5

QG4-8 3516 1781 23 125

QG4-9 314925 145122 1127 13149

QG5-7 9 5 3 1

QG5-8 34 15 7 2

QG5-9 239 32 12 4

QG5-10 7026 275 66 34

QG5-11 51904 625 224 121

QG5-12 2749676 7956 13715 1938

QG5-10N 4474508 193359 13101 20912

QG6-7 7 5 2 1

QG6-8 20 11 6 3

QG6-9 160 54 14 6

QG6-10 2881 329 43 26

QG6-11 50888 4931 248 359

QG6-12 2420467 54880 8300 5154

QG7-7 182 38 4 2

QG7-8 160 244 5 10
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Problem Leaves MGTP Leaves MALICE CPU MGTP CPU MALICE

QG7-9 37026 2165 90 88

QG7-10 1451992 33187 2809 1467

Table 5. Results for the quasi-groups.

Naturally, the number of solutions is always the same in both experiments, for instance 178 
solutions for QG4-9 and no solution for QG4-8 or for QG5-12.  The sizes of the trees are always 
smaller with MALICE.  The CPU times are roughly the same, but it is difficult to compare the 
computers: MGTP ran in 1993 on a computer with 256 processors, the parallelism nature of their 
method enabled them to have an almost linear speed-up with the number of processors.   With 
Moore's law, 256 correspond to 8*1.5 years, that is 12 years which correspond roughly to my 2004 
PC.  Thus the performance of MALICE for this family of problems is, for the CPU time, equivalent 
to the performance of MGTP and even better when we consider the size of the tree.  MALICE also 
solved  QG5-13,  which  was  not  solved  by  MGTP:  no  solution  and  530,746  leaves  in  55,844 
seconds.

11.5. Experiments
The experiments made by MANAGER are very useful.  Some of them, such as helping to find 

bugs, were interesting at the beginning of the implementation of the system because they really 
helped me to find some bugs.  For some other experiments, MANAGER is not able to use them to 
improve its behavior although it has all the information necessary to do so.  However, this is an 
important  step  in  the  collaboration  between  an  artificial  and  a  human  scientist:  MANAGER 
performs and analyzes experiments more thoroughly than human beings so we can use its results to 
create an even better problem solver.  Each part is doing what he/it does the best, although using the 
results of these experiments to improve the system can be very difficult even for human beings.

One particularly useful experiment is conducted when MANAGER asks MALICE once again 
to solve a problem choosing another unknown for its first backtrack; often it finds more elegant 
solutions than the one found with its initial  choice.  MANAGER tried this experiment for 673 
problems and for 514 of them MALICE found a solution with a smaller tree, with fewer leaves.  On 
the whole, there were 8,495 attempts to solve a problem using another choice than the one selected 
by MONITOR and for 2,676 attempts, that is 31%, a tree with fewer leaves was generated.  If we 
consider the problems instead of the attempts, this experiment was made for 673 problems, and for 
519 of them, that is 77%, at least one choice leads to a smaller tree.  Often the improvement is only 
one or two leaves, but for 155 problems, the new tree had fewer than one half of the leaves of the 
tree  generated  with  the  first  choice.   For  instance,  MANAGER  created   the  crypt-addition 
ABAC+DBEADB=DAGFBH formulated without the carries (only one constraint expresses that it 
is an addition).  This problem has 18 solutions and when MONITOR first chose to backtrack with 
H, MALICE found 1,216 contradictions.  In the experiments, it found only 2 contradictions when it 
first backtracked with B.  Such differences are rare when a problem has at least one solution, but it 
is very frequent for impossible problems; for such problems, it often occurs that it is possible to find 
a contradiction locally.  If the unknown is chosen in that area A, MALICE quickly finds that there 
is a contradiction, but if it is in another area, it develops a large tree before if goes to the area A and 
finds the contradiction.  It is not always easy to find places strongly constrained, even for human 
beings.  Most of the problems where the choice of the unknown was very poor were created by 
MANAGER; usually this choice is rather satisfactory for the problems found in books or journals. 
This shows how it is interesting to give a system the possibility to generate very difficult problems.
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Some other  experiments  were  made for  the  cases  where  MALICE found a  contradiction 
shortly after backtracking or when an unknown had the same value for all of the possible values 
given to the unknown chosen for backtracking: this shows that there is perhaps a possibility to 
reduce the size of the tree if it uses more rules before deciding to backtrack.  In the experiments 
performed in those situations, MANAGER has found that it is sometimes possible to eliminate a 
few backtracks, but this seldom occurs and it would also increase the time necessary to solve a 
problem.  On 3,894 situations, it quickly found the value of an unknown and decided to see whether 
it could find the same value before backtracking, there were only 237 cases where it could be found 
before  backtracking;  these  situations  were  found  while  solving  415  problems and  for  only  46 
problems at least one trial was successful.

There were 264 situations where an unknown always had the same value after choosing an 
unknown for backtracking; in 149 of them it could find this value before backtracking, which is in 
56% of the cases.  These situations were found while solving 111 problems and the system was 
successful at least once for 27 of these problems, so there are a few problems in which this happens 
more frequently.  Moreover, among the 149 successes, 141 was made for problems of one particular 
family; this fact would certainly be useful to create a more clever MANAGER.  From these results, 
we can see that an improvement is feasible, but it is not a priority because these situations seldom 
occur.

In 128 problems, MANAGER asked MALICE to be less restrictive in the use of potentially 
dangerous rules.  For only 37 of them it found a better solution, but that required much more time. 
For these 37 problems, on the whole there are only 91 contradictions instead of 181, but it takes 540 
seconds instead of 109.  Thus this improvement is costly, and except for some interesting problems 
where MANAGER wants to find a more elegant solution, it is not necessary to spend more time on 
these rules.

When  there  are  several  attempts  to  solve  the  same  problem,  MANAGER  often  tries  to 
understand why it has not found the best solution in all of its attempts; in many cases it has found a 
meta-explanation.  Firstly it may be due to a poorer choice of the unknowns when it backtracked. 
Secondly, it may be that it has found the "good" constraint, but it has not kept it due to low interest. 
Thirdly, it may not have applied a rule with the appropriate arguments, and in that case there is a 
flaw in its method.  Finally MONITOR may have over-restricted the use of the dangerous rules. 
Overall, it tried to compare 202 problems where the number of contradictions were different when 
MALICE used different methods.  It was not able to find a meta-explanation for 5 problems.  For 
67 problems, the reason was that the choice of the first unknown for backtracking was not the same: 
when MALICE chose the same unknown in both cases, the number of leaves of the trees was the 
same.  For each of the 130 remaining problems, MANAGER found a correct meta-explanation.

These experiments show that there is one serious possibility to improve the quality of the 
solutions: to modify the choice of the unknown for backtracking.  On the contrary MALICE may 
not improve a whole lot in modifying the choice of its rules, it seems they have already been used 
efficiently.   Unfortunately,  for  all  of  these  experiments,  although  MANAGER  has  all  the 
information to improve the system, it does not know how to learn from the failures it detected; 
however, this information can be utilized by the user of the system.

12. Future work
Trying to improve the performance by modifying the learning expertises could only lead to a 

small improvement, for very few problems it could solve them perhaps 5 times faster.  However, 
when we find a better formalization of a problem or when we add a new rule, it may occur that 
MALICE solves  the  same  problem 10,000  times  faster;  moreover  it  generates  a  considerably 
smaller  tree.  This happened for instance for AUTOREF with large values of P or for the last 
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formalization that I found for LOGIGRAPHE problems.  Thus, we have to work on two more 
important limitations of the system.   Firstly, a family of problems is given in a formalized language 
and a large part of the work has been made by the user when he makes this translation: it would be 
better to describe the family in a natural language.  Secondly, it would be necessary to increase the 
theorem proving ability  of  the system significantly:  it  must  be  able  to  generate  new rules and 
modify the formulation of a particular problem more drastically.  For both of these reasons, I am 
over-helping the system. The user's importance is too high in CAIA, the final goal is to build a 
system that does not depend on human intelligence at all.

12.1. Understanding problems given in a natural language
A system can be helped significantly by the way a problem given in a natural language is 

formalized.  It would be better to state problems in a natural language so the system would translate 
it  into MALICE's language to define families of problems.  More than forty years ago,  Daniel 
Bobrow [2] had already shown that STUDENT could solve electricity problems stated in English. 
For constraint satisfaction problems, C. Lopez-Laiseca [21] had realized a system translating some 
of these problems from French into ALICE's formalism.  This attempt had shown that this goal is 
possible  for restricted families of problems, but it  is  difficult  to generalize it  for every family. 
Human  beings  even  have  difficulties  in  formalizing  a  problem  given  in  a  natural  language. 
Defining a problem as a constraint satisfaction problem is one of the most difficult steps in research.

Let us consider the following problem, given to the students who begin the study of algebra:
A father is 40 years old and his son 10 years old.  When will the father be twice as old as his son?

Good students give the following solution: if X is the wanted number of years, in X years the 
father will be 40+X years old and the son 10+X.  Thus they write 40+X=2*(10+X) and the solution 
is 20.  In 20 years the father will be 60 years old and the son will be 30.  Everybody, including the 
teacher,  is  happy,  but  the  formulation  of  the  problem is  wrong:  a  staircase  function  has  been 
replaced by a linear function.  If we want to solve this problem correctly, we must know the father's 
and the son's dates of birth.  This problem was given to MALICE with the following parameters: 
DS, MS and YS for the day, month and year of the son's date of birth and DF, MF and YF for the 
father.   N  is  the  coefficient  multiplying  the  son's  age,  2  in  the  preceding  problem.   In  the 
formulation given to MALICE, it has to find 3 unknowns, R, S and T.  The value of T is 1 if the 
father's birthday is before the son's, otherwise its value is 2.  Four constraints define the value of T 
from the parameters DS, MS, DF, and MF; I do not present them here because they are obvious. 
The value of R is the year where the event occurs.  The value of S is 1 if it occurs between the 
beginning of the year and the first birthday, 2 if it occurs between both birthdays and 3 if it occurs 
after the second birthday.  There are four constraints defining R and S when T is known: 

OR(S≠1,  R-YF-1 = N*(R-YS-1))
OR(S≠2, T≠1,  R-YF = N*(R-YS-1))
OR(S≠2, T≠2,  R-YF-1 = N*(R-YS))

OR(S≠3,  R-YF = N*(R-YS))
If the father was born on February 1, 1900 and the son on August 1, 1930, the problem was stated 
between August 1, 1940 and January 31, 1941.  MALICE finds T=1 and three periods where the 
father is twice as old as his son:

1-8-1960 to 31-12-1960 with S=3, R=1960.  The father is 60 years old and the son is 30.
1-1-1961 to 31-1-1961 with S=1, R=1961.  The father is 60 years old and the son is 30.
1-2-1962 to 31-7-1962 with S=2, R=1962.  The father is 62 years old and the son is 31.

There are two separate periods of time and their sum is exactly one year.  This is general when 
N=2; for N=3 there is only one solution which covers less than a year and for the higher values of N 
there is one or zero solution depending on the father's and the son's dates of birth.
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This problem is complicated only because it is difficult to formalize it from its English definition, 
for MALICE it is trivial.

Let us consider another problem where the difficulty comes from its translation from English 
into a formalized language:

Peter and Sophie are two mathematicians; the first one receives the product of two integers 
between 2 and 100 and the second one receives their sum.  Each of them does not know the number  
that is given to the other person but they must find these integers.  Peter says: « I cannot find 
them! » .  Sophie replies: « I knew it. » .  Then Peter says: « Then I know them! » and Sophie 
concludes: « Then I also know them! » .  The question is: what are these numbers?

It is very difficult to formalize this problem, but once it is formalized, it is quite easy for 
MALICE to find the solution.  I defined five parameters, whose value is the set of possible products 
or sums after each of the preceding sentences.  With this formalization of the problem, MALICE 
immediately finds  that the set  of possible  sums after  the last  sentence of Sophie has only one 
element which is 17 and finally the set of possible products has only one element which is 52.  Thus 
the numbers  are  4  and 13.   The  definition  of  the  problem directly  gives  the solution,  so  it  is 
impossible to find an easier problem for MALICE! The difficulty of this problem is only in its 
formalization: it is not easy to define correctly the five sets.  MALICE has not really solved the 
problem, it only reaped the benefits of the user who formalized the problem.

Moreover there is a serious ambiguity in the formulation of this problem: do Peter and Sophie 
know that the integers are less than 100?  That is not explicitly stated, and in my first formulation I 
assumed that they knew this restriction.  However, if the problem is reformulated assuming that 
they do not know it, MALICE finds another solution: the product is 244, the sum is 65 and the 
integers are 4 and 61.  That seems paradoxical, both integers are less than 100, nevertheless they are 
not found when it is assumed that Peter and Sophie know that they are less than 100! The reason is 
that 244 has two decompositions, 4*61 and 2*122; if Peter knows that the integers are less than 
100, the second decomposition is not acceptable, so if the product given to Peter were 244, the 
solution could only be 4*61: he would have immediately found the integers.  Thus, 244 would not 
belong to the first set of possible products and it is normal that the second solution was not found. 
On the contrary, if they do not receive an upper bound for these integers, 244 belongs to the set of 
possible products: Peter cannot find the integers since there are two acceptable decompositions and 
this  will  lead  to  the  second  solution.   This  remark  shows  the  difficulty  for  human  beings  in 
formalizing a problem: in the literature I have always seen only the first solution.  It seems that 
most people do not see that there is an ambiguity and those who see it erroneously believe that it 
does not matter.  I, on the other hand, had the chance to be helped by CAIA.

Formalizing problems is a very difficult task which requires much intelligence.  Therefore it 
must be conducted by an AI system and not by human AI scientists.

12.2. Increasing MALICE's theorem proving ability
MALICE's mathematical possibilities are too restricted.  It is able to simplify a mathematical 

formula, to generate new constraints or to find some symmetries in the formulation of a problem, 
but this is not sufficient.  For instance, it cannot create new rules.  Let us take the example of rule 
R5 as seen in 5.1.

Rule R5 is very helpful for solving AUTOREF problems.  I have given it to MALICE, but 
this is not a rule that everybody is familiar with, I did not know it when I tried to solve these 
problems.  To discover it, I first had to perform a special kind of theorem proving since I did not 
know which theorem to prove.  Let us present this rule in a simplified form: n unknowns D1, 
D2,...., Dn are taking their values among the integers 0, 1, 2,..., p and there are p constraints:

Ai = NBVAL(i; D1, D2,.., Dn)
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So Ai is the number of unknowns that have the value i.  In this case, the rule states that:
0xA0 + 1xA1 + 2xA2 + 3xA3+=....+ pxAp = D1 + D2 + D3 +....+ Dn

 This rule is evident for a human being: if K unknowns have the value L, their contribution to the 
sum of the unknowns is KxL.  The rule requires p and not p+1 constraints: the knowledge of A0 is 
unnecessary because it  is  multiplied by 0.   In  order to  find or understand this  proof,  we used 
information on NBVAL that is not given in a formalized language.  Rule R5 is essential for the 
performance of the system: for the problem AUTOREF with P=17 and N=3, MALICE solves the 
problem in 28 seconds when it can use rule R5 and in 7,648 seconds when it is forbidden to use it. 
For  P=27,  it  is  unable  to  solve  the  problem without  using  this  rule.   Although it  seems very 
specialized, it can also be used with other problems: if the unknowns Di are boolean and if there is 
the constraint:

A = NBVAL(1; D1, D2,..., Dn)
 Rule R5 generates the new constraint:

D1+D2+....+Dn = A
The formulation of the problem has been changed, the constraint with  NBVAL becomes a usual 
algebraic constraint.

It is essential that MANAGER could find such new rules: when a new problem is defined, it 
is often important to add such rules.  They are general because the system can use them to solve any 
problem, but we cannot find all of them at the beginning.  A good human problem solver is able to 
find and use such new rules when it is useful for a new problem, an intelligent system must also be 
able to do this.  If it is unable to do this and if all of the rules are given by the user, it is still the user 
that has to do most of the work.  Unfortunately, finding new rules such as R5 and proving them is 
very different from what has been done in automatic theorem proving.  Personally, I found R5 
before proving it because it was quite evident to me.

Another interesting example is building Magic Squares.  MALICE receives the definition of a 
magic square as constraints expressing that the sums of the lines, columns and diagonals are the 
same.  With this formulation, MANAGER is able to generate a combinatorial program that finds a 
11x11  magic  square,  but  it  is  almost  running  out  of  time.   MALICE succeeds  in  finding  the 
common value  of  the  sums,  but  the  program has  to  instantiate  11  unknowns before  finding  a 
contradiction; it requires a lot of backtracking is necessary so the tree is very large.

However,  mathematicians  have  found  several  efficient  algorithms  for  generating  magic 
squares of size N.  More than three hundred years ago an algorithm for generating magic squares for 
odd N has been found by the Belgian canon Poignand and improved by the French mathematician 
La Hire.  It generates magic squares for N odd and greater than or equal to 5, although it is not able 
to generate all of the possible magic squares.  In fact, it finds solutions to the more constrained 
family of problems MAGICYL where the board is cylindrical: 2*N diagonals must have the same 
value instead of only 2.  I have implemented this algorithm into a C program which only has 25 
lines.  In 8,382 seconds, it has generated (but not printed) a magic square for N=500,001, so it has 
found a bijection of the set of  integers from 1 to 250,001,000,001 into itself that satisfies 1,000,003 
constraints  (and even the 2,000,004 constraints  of  the MAGICYL problem).   Thus,  studying a 
problem and using mathematical results can improve the performance considerably.  MANAGER is 
completely unable to generate algorithms such as Poignand's.

Reformulating  the  definition  of  a  problem  and  theorem  proving  are  certainly  the  most 
efficient ways to improve the performance of a problem solver; this is why AI scientists spend a 
great amount of time trying to improve their systems.  Certainly, it is also interesting to find a better 
way to remove some leaves in the tree or to generate the useful constraints more quickly.  But that 
cannot bring forth a discontinuity as significant as what occurs when a new rule is added or when a 
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new specific algorithm is generated.  Unfortunately, MANAGER is able to perform such tasks in a 
very restricted manner; it is essential to improve its possibilities in these directions.  However the 
problem of finding a good formulation of a problem is related to the possibility of defining it in a 
natural language: it  is much easier to find a good formulation from the initial definition of the 
problem than from a formulation in a language such as ALICE where many choices have already 
been made.  For instance, some auxiliary correspondences may have been added, such as the carries 
in a crypt-addition problem; if it is a poor choice, it may be difficult to go back to the original 
formulation in natural language.  To avoid the difficulties which come from natural languages, it 
would be interesting to define an artificial language where the problems would be stated in a similar 
way  as  in  the  natural  language,  but  with  simple  grammar  and  without  the  ambiguities  that 
complicate the processing of natural language texts.

13. Conclusion
CAIA is not able to carry on all of the activities of a human AI scientist.  MANAGER is the 

agent whose activities are similar to those of a human AI scientist; we have seen that it can perform 
several of these tasks satisfactorily although many others are still beyond its scope.  However, it 
developed some decent results: the general problem solving system that it generated found elegant 
solutions  for  many constraint  satisfaction  problems and it  can  write  an  efficient  combinatorial 
program for solving problems when the combinatorial approach is the best one.  It can also inspect 
the formulation of a problem and find results that will improve the resolution considerably.  Besides 
conducting experiments, it analyzes their results and finds some defects that would be interesting to 
modify.  Unfortunately, it is not able to use these results to ameliorate itself, but they are very useful 
for a human AI scientist.  For instance, knowing the good choices of unknowns for backtracking 
would be useful to improve these choices.  In the same way, finding out that some good choices 
were missed by a module is helpful to improve this module as well.  Finding out where is the bug is 
the first step correcting it.  Finding an elegant solution after wasting a whole lot of computer time 
could enable the system to find the same solution within a more reasonable time.  The experiments 
made by CAIA also helped me to improve the system.  I am bootstrapping it and the collaboration 
between CAIA and myself was very productive: I was unable to choose and analyze all of the 
experiments made by CAIA but I was able to use its results to improve the system in a way that 
CAIA was not capable of doing.  Finally, the autonomy of the system is satisfactory since it is still 
able to find interesting results after 3,000,000 seconds, this is more than one month.

It would be relatively easy to improve the performance of the system with better learning 
capabilities.  However, I do not want to develop the system in that way: why try to run the computer 
10 times faster  when it  would be  possible  to  run it  millions  of  times faster  by modifying the 
formulation of the problem drastically?  This is one of the directions we have considered in the 
preceding  section:  using  theorem  proving  methods  in  order  to  change  the  formulation  of  the 
problems.  It  has been a long time since AI scientists [1,29] and more recently [8] have been 
convinced of the importance of reformulating problems; usually, this is done by an AI scientist and 
much  of  the  intelligence  used  for  solving  a  problem  is  human.   CAIA  needs  to  be  a  better 
mathematician so that it can modify the formulation of the problems, define new rules, and find 
new methods to simplify mathematical expressions.

An effective improvement would be to define MANAGER's knowledge in the same form as 
MALICE's  knowledge:  MANAGER'  behavior  would  also  be  supervised  by  using  rules  and 
methods.  It would be easier to define and modify this knowledge, and we could give MANAGER 
the possibility to change some parts of its own triggers.  This is certainly a promising direction: the 
events must be defined (which is not very difficult) as well as the rules (which is not easy to do).

The far-reaching goal of creating a complete artificial AI scientist has not been fulfilled and 
there will be many years before we, AI scientists, will succeed.  However, the results were much 
better than what I expected.  Using powerful computers, it  is feasible to perform a large meta-
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combinatorial search on the rules that can be used to solve a problem; thus, a general system may be 
able to find elegant solutions in a reasonable time.  Moreover, a human scientist does not have the 
time required to analyze all of the results found by its system so much in depth as an artificial 
scientist because he does not have the time to launch and analyze many experiments.  With all its 
limitations, CAIA performed better choices than myself in several situations; as a result, it created a 
general problem solver and wrote combinatorial programs whose results were comparable to those 
of the general problem solver that I had generated.  The quality of CAIA's performance definitely 
surprised me.

In conclusion, when CAIA is able to perform a task, it is rather a little better than myself; 
unfortunately, there are many activities that it has not been able to perform completely.  However, 
for some of these activities, its partial results have already been very helpful for a human scientist.
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