Davide Invernizzi 
  
Marco Lovera 
  
Luca Zaccarian 
  
Global robust attitude tracking with torque disturbance rejection via dynamic hybrid feedback

In this paper an approach to the design of robust global attitude tracking controllers for fully actuated rigid bodies is proposed. The challenge of simultaneously dealing with topological obstructions to global attitude tracking and with disturbances affecting the attitude dynamics is tackled by means of a hybrid hierarchical design that exploits the cascade structure of the underlying mathematical model. The proposed hierarchical strategy is based on an inner-outer loop paradigm comprising a dynamic control law for angular velocity tracking (inner loop) and a hybrid control law for attitude tracking (outer loop). By leveraging recent tools for the stability analysis of hybrid systems, we prove a robust global tracking property by assuming mild properties on the dynamics of the velocity feedback. We also discuss a few relevant examples satisfying these properties, encompassing harmonic disturbance compensators and conditional integrators, capable of rejecting unknown constant disturbances with an intrinsic anti-windup action.

Introduction

Attitude tracking is a well-known problem yet it is still an active topic of research, with applications in aerospace, robotics and underwater vehicles, to name a few. Robust control designs based on continuous time-invariant control laws guarantee at best an almost global stability result due to topological obstructions of the three-dimensional special orthogonal group (SO(3)) [START_REF] Lee | Robust adaptive attitude tracking on SO(3) with an application to a quadrotor UAV[END_REF][START_REF] Maithripala | An intrinsic PID controller for mechanical systems on Lie groups[END_REF][START_REF] Lee | Global exponential attitude tracking controls on SO(3)[END_REF][START_REF] Invernizzi | Hierarchical dynamic control design for robust attitude tracking[END_REF]. When looking for a global solution to the problem, discontinuous or hybrid control designs are needed [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF]. While controllers with global guarantees have been developed in the last decade by leveraging recent tools of hybrid control theory [START_REF] Goebel | Hybrid Dynamical Systems[END_REF], most of the designs neglect disturbance torques [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF][START_REF] Berkane | Hybrid global exponential stabilization on SO(3)[END_REF][START_REF] Casau | Robust global exponential stabilization on the n-dimensional sphere with applications to trajectory tracking for quadrotors[END_REF] or they only consider constant disturbances [START_REF] Su | Globally stabilizing proportionalintegral-derivative control laws for rigid-body attitude tracking[END_REF][START_REF] Lee | Global exponential attitude tracking controls on SO(3)[END_REF].

In this work we extend the smooth hierarchical control design of our preliminary work [START_REF] Invernizzi | Hierarchical dynamic control design for robust attitude tracking[END_REF] to achieve global tracking in the presence of disturbances through dynamic hybrid feedback. The hierarchical architecture is Email addresses: davide.invernizzi@polimi.it (Davide Invernizzi), marco.lovera@polimi.it (Marco Lovera), zaccarian@laas.fr (Luca Zaccarian). 1 Research supported in part by ANR via grant HANDY, number ANR-18-CE40-0010 built upon the cascade structure of the model for rigidbody attitude control to split the problem of designing a robust and global controller in two simpler subproblems: A) stabilization of the attitude kinematics, whose model is exact but evolves on a nonlinear manifold and B) stabilization of the angular velocity dynamics, which evolves in a Euclidean space but is affected by unknown disturbances and model uncertainties. To implement such ideas, the control law that we develop relies on an inner-outer loop paradigm where: a quaternionbased proportional control law is employed for kinematic tracking (inner loop); a dynamic control law based on the internal model principle is employed to reject exogenous disturbances while ensuring angular velocity tracking (outer loop); a hybrid logic is implemented to ensure global tracking results while avoiding the unwinding phenomenon [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF]. The main advantage of the proposed control law over existing formulations is that one can deal with the design of the inner loop controller by referring to the angular velocity dynamics alone: the challenging part of attitude control (related to topological obstructions) is handled by the outer loop controller. Indeed, most designs exploiting a dynamic control law for disturbance rejection deal with the case of constant disturbances [START_REF] Su | Globally stabilizing proportionalintegral-derivative control laws for rigid-body attitude tracking[END_REF][START_REF] Lee | Global exponential attitude tracking controls on SO(3)[END_REF][START_REF] Maithripala | An intrinsic PID controller for mechanical systems on Lie groups[END_REF] and rely on the development of sophisticated Lyapunov functions [START_REF] Su | Globally stabilizing proportionalintegral-derivative control laws for rigid-body attitude tracking[END_REF][START_REF] Lee | Global exponential attitude tracking controls on SO(3)[END_REF][START_REF] Maithripala | An intrinsic PID controller for mechanical systems on Lie groups[END_REF] which involve mixed terms among the kinematic and dynamic states, sometimes leading to important constraints on the gains [START_REF] Lee | Global exponential attitude tracking controls on SO(3)[END_REF][START_REF] Maithripala | An intrinsic PID controller for mechanical systems on Lie groups[END_REF], and thereby affecting the achievable performance. The increased architectural complexity of our solution is balanced by the possibility of focusing on the development of individual Lyapunov functions for the inner and outer loop dynamics. This simplifies the use of non-trivial dynamic controllers in the inner loop, capable of compensating for the effect of classes of exogenous disturbances of interest.

Exploiting an internal model approach to obtain an autonomous characterization of the perturbed angular velocity error dynamics (inner loop), which takes the form of a differential inclusion, and then relying on invariance principles for hybrid inclusions [START_REF] Seuret | A nonsmooth hybrid invariance principle applied to robust event-triggered design[END_REF], our control design allows proving global tracking, e.g., when using a harmonic compensator or when using conditional integrators [START_REF] Burger | Disturbance Rejection using Conditional Integrators: Applications to path manoeuvring under environmental disturbances for single vessels and vessel formations[END_REF], which are nonlinear integral controllers embedding an anti-windup action. The outer loop controller that we adopt here is based on the stabilizer proposed in [START_REF] Mayhew | Synergistic hybrid feedback for global rigid-body attitude tracking on SO(3)[END_REF] exploiting the quaternions parametrization, the use of which is widespread in aerospace applications. While quaternion-based controllers require a consistent path-lifting extraction algorithm to avoid undesired phenomena as shown in [START_REF] Mayhew | On path-lifting mechanisms and unwinding in quaternion-based attitude control[END_REF], they provide simplified expressions of the control logic over synergistic rotation matrixbased stabilizers [START_REF] Mayhew | Synergistic hybrid feedback for global rigid-body attitude tracking on SO(3)[END_REF][START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocityfree hybrid attitude stabilization[END_REF] and allow us to focus on the development of the inner loop controllers, which is the main objective of this work. Nonetheless, we underline that recently developed hybrid stabilizers exploiting alternative parametrizations ( [START_REF] Berkane | Hybrid attitude and gyro-bias observer design on SO(3)[END_REF][START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocityfree hybrid attitude stabilization[END_REF][START_REF] Casau | Hybrid control for robust and global tracking on smooth manifolds[END_REF]) could be used within our hierarchical construction with minor adjustments.

Notation. We report below some essential notation. 1) Vectors. R (R >0 , R ≥0 ) denotes the set of (positive, nonnegative) real numbers, R n denotes the ndimensional Euclidean space and R m×n the set of m × n real matrices. The i-th vector of the canonical basis in R n , i.e., the vector with a 1 in the i-th coordinate and 0's elsewhere, is denoted as e i and the identity matrix in R n×n is

I n := [e 1 • • • e i • • • e n ].
Given a bound M ∈ R >0 , the symmetric saturation function is defined as sat M (x) := min(max(-M, x), M ) for x ∈ R while its unit version (M = -m = 1) is simply denoted with sat(x) := sat 1 (x). The decentralized vector saturation function is also denoted sat(•) and sat M (•) with a slight abuse of notation.

2) Rotation matrices and quaternions. The set SO(3 3 where × represents the cross product in R 3 . The attitude kinematics can be lifted by parametrizing SO(3) with unit quaternions, which live in S 3 := q ∈ R 4 : q q = 1 , through the formula R : S 3 → SO(3) defined as R(q) := I 3 + 2ηS( ) + 2S( ) 2 where η ∈ R, ∈ R 3 are the scalar and vector components of the quaternion q = [ η ] , respectively. We recall that for every R ∈ SO(3) there exist two antipodal unit quaternions ±q, namely, R(q) = R(-q): the mapping R(•) is everywhere a local diffeomorphism but globally a two-to-one mapping. Multiplication between two quaternions is given by the quaternion product • : S 3 × S 3 → S 3 such that:

) := {R ∈ R 3×3 : R R = I 3 , det(R) = 1} denotes the three-dimensional Special Orthogonal group. Given ω ∈ R 3 , the map S• : R 3 → R 3 := {Ω ∈ R 3×3 : Ω = -Ω } is such that S(ω)y = ω × y, ∀y ∈ R
q 1 • q 2 := η1 -1 1 η1I3+S( 1 ) [ η2 2 ]
. The quaternion q I := [ 1 0 0 0 ] satisfies q • q I = q I • q for any q ∈ S 3 and is called the identity element. It can be verified that for each q = [ η ] , the inverse quaternion q -1 = [ η -] satisfies and q • q -1 = q -1 • q = q I . Finally, given any two quaternions q 1 , q 2 , R(q 1 )R(q 2 ) = R(q 1 • q 2 ), and given any vector v ∈ R 3 and any quaternion q ∈ S 3 ,

q -1 • [ 0 v ] • q = 0 R(q)v .
3) Hybrid dynamical systems. According to [START_REF] Goebel | Hybrid Dynamical Systems[END_REF], a hybrid dynamical system comprises a flow map F : R n ⇒ R n that can be evaluated in a flow set C ⊂ R n and similarly a jump map G : R n ⇒ R n and a jump set D ⊂ R n . Solutions to hybrid dynamical systems take values on hybrid time domains E ⊂ R ≥0 × N corresponding to the union of infinitely many sets [t j , t j+1 ] × j, j ∈ N where 0 = t 0 ≤ t 1 ≤ t 2 ≤ . . ., or of finitely many of such sets, with [t j , t j+1 ] × j, [t j , t j+1 ) × j or [t j , ∞) × j.

Rigid body attitude control problem

Consider an inertial reference frame and a body-fixed frame whose origin is located at the center of mass of a rigid body. The attitude dynamics of the rigid body is described by the equations:

Ṙ = RS(ω) (1) J ω = -S(ω)Jω + τ c + τ e (2) 
where R ∈ SO(3) is the rotation matrix describing the attitude of the body-fixed frame, ω ∈ R 3 is the angular velocity, J = J ∈ R 3×3 >0 is the inertia matrix with respect to the center of mass, τ c ∈ R 3 is the control torque exerted by the actuators and τ e ∈ R 3 is the disturbance torque accounting for unknown exogenous effects, all expressed in the body frame. The objective of this work is to introduce dynamic controllers to globally solve the attitude tracking problem for a fully actuated rigid body in the presence of disturbances τ e . Before proceeding, let us consider the following standard assumption.

Assumption 1 The desired trajectory t → (R d (t), ω d (t)) ∈ SO(3) × R 3 satisfies Ṙd (t) = R d (t)S(ω d (t)) ∀t ≥ 0 and t → ω d (t) is continuously differentiable and uniformly bounded.
The state feedback dynamic attitude tracking problem can then be formalized as follows.

Problem 1 Consider the attitude dynamics in equations (1)- [START_REF] Berkane | Hybrid global exponential stabilization on SO(3)[END_REF]. Given a desired trajectory t → (R d (t), ω d (t)) ∈ SO(3) × R 3 satisfying Assumption 1, design a statefeedback dynamic controller delivering a control torque τ c ∈ R 3 such that the trajectory t → (R d (t), ω d (t)) is globally asymptotically tracked, robustly with respect to the disturbance torque generated by the exosystem

ẇ = s(w), τ e = τ (w), w ∈ W ( 3 
)
where W is a nonempty compact set and where τ e is not available for measurement.

The class of torques described through the exosystem (3) includes several kinds of disturbances of engineering interest (e.g., constant, ramp-like, harmonic). The solution to Problem 1 proposed in this work relies on an internal model principle, requires the knowledge of the exosystem in (3) and of the velocity ω d and acceleration ωd of the reference trajectory.

Control law design and stability analysis

In this section a hierarchical control architecture solving Problem 1 is presented. The proposed solution is based on an inner-outer loop paradigm and gives freedom in selecting different stabilizers of the inner and outer loops.

Control architecture, closed-loop error dynamics

As motivated in the introduction, we use unit quaternions to parametrize the attitude of the rigid body. Accordingly, the kinematics (1) is "lifted" onto S 3 as

q = 1 2 q • 0 ω = W (q)ω, (4) 
where q = [ η ] ∈ S 3 , W (q) := 1 2 -ηI3+S( ) and t → q(t) satisfies R(q(t)) = R(t) ∀t ≥ t 0 . Equation (4) can be split in the scalar part η ∈ R and the vector part ε ∈ R 3 of the quaternion as η = -1 2 ω, ε = 1 2 (ηI 3 + S( )) ω. The tracking Problem 1 can be cast as a stabilization problem by introducing suitable error coordinates. To this aim, let the quaternion error be defined as

q e := q -1 d • q = η e ε e ∈ S 3 , (5) 
where t → q d (t) is a continuously differentiable function satisfying qd = W (q d )ω d and R(q d (t)) = R d (t) for all t ≥ t 0 . As for the the angular velocity error, consider

ω e := ω v -ω ∈ R 3 , (6) 
where ω v is a virtual angular velocity to be assigned by the outer loop of the controller. The velocity error [START_REF] Casau | Robust global exponential stabilization on the n-dimensional sphere with applications to trajectory tracking for quadrotors[END_REF] that we consider is different from existing approaches where ω e = ω -R e ω d is usually employed [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF]. The selection ( 6) is motivated by our hierarchical construction, as clarified in the following.

To solve Problem 1, we design the control torque τ c as the output of the following hybrid dynamic controller having a continuous state x c and a logical state h ∈ {-1, 1}: ẋc = γ c (x c , ω e , ω v ) ḣ = 0 (h, q e , ω e ) ∈ C (7a)

x + c = x c h + = -h (h, q e , ω e ) ∈ D (7b) τ c = S(ω)Jω + Jω vd + γ ω (x c , ω e , ω v ) (7c) 
where

ω v := γ q (h, q e ) + R e ω d (8 
)

ω vd = 1 2 hK R (η e I 3 + S(ε e ))
(ω e -γ q (h, q e )+ + S(ω e -γ q (h, q e ))R e ω d + R e ωd .

In ( 8)-( 9), R e := R(q e ) = R(q

-1 d • q) = R(q -1 d )R(q) = R d
R is the rotation matrix describing the relative error between the frames associated with R d and R, γ q (•,

•) : {-1, 1} × S 3 → R 3 , γ ω (•, •, •) : R nc × R 3 × R 3 → R 3 , γ c (•, •, •) : R nc × R 3 × R 3 → R 3 are
stabilizers to be designed. The overall state x a := (h, q e , ω e , x c ) of the error dynamics belongs to the manifold χ := {-1, 1} × S 3 × R 3 × R nc . The flow and jump sets C and D will be specified in Section 3.3: here we emphasize that these sets do not depend on x c . The hierarchical structure of controller (7a)-(7c) is clearly visible in Figure 1: the control torque τ c (inner loop) is in charge of tracking the virtual angular velocity input ω v (equation ( 8)) provided by the outer loop. The outer loop controller comprises a feedforward term related to the desired angular velocity reference t → ω d (t) and a kinematic stabilizer

γ q (h, q e ) := -hK R ε e . (10) 
Using the angle-axis representation (φ, n) ∈ (-π, π]×S 2 , since q e = cos( φ

2 ) n sin( φ 2 ) 
, stabilizer [START_REF] Lee | Global exponential attitude tracking controls on SO(3)[END_REF] acts as a proportional-like controller γq (n, φ) = -h sin( φ 2 )K R n.

Remark 1 The additional state x c is included in our architecture to allow for the use of dynamic controllers, such as PIDs, often necessary in practical applications, where the disturbance τ e may comprise an unknown bias to be compensated. Two relevant cases will be presented in Section 4, a different one can be found in [START_REF] Invernizzi | Hierarchical dynamic control design for robust attitude tracking[END_REF].

The closed-loop error dynamics obtained by using ( 5), ( 7), ( 10) and ( 2)-( 4) is characterized by the following proposition, stated without proof for space limitations.

Outer loop γq

Inner loop γc, γω

Plant (2)-(4)
q d , ω d ωv, ω vd τc q ω Fig. 1. Proposed inner-outer loop control architecture.

Proposition 1 Consider the plant dynamics (2)-( 4) and the dynamic controller [START_REF] Goebel | Hybrid Dynamical Systems[END_REF]. Using the tracking errors in (5)-( 6), we have ωv ≡ ω vd along all flowing solutions. Moreover, the closed-loop dynamics reads

qe = -W (q e )(hK R ε e + ω e ) J ωe = -γ ω (x c , ω e , ω v ) -τ e ẋc = γ c (x c , ω e , ω v ) ḣ = 0        (h, q e , ω e ) ∈ C (11a) q + e = q e ω + e = ω e + 2hK R ε e x + c = x c h + = -h          (h, q e , ω e ) ∈ D. ( 11b 
)

Exosystem and error dynamics

For a suitable rejection of the disturbance τ e in (2) our control law is designed by following the regulation theory approach where τ e originates from an exosystem as defined in [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocityfree hybrid attitude stabilization[END_REF]. Then, τ e can be regarded as an internal signal of an autonomous description of the error dynamics. To illustrate the regulation approach, consider the elementary case of a scalar system ẋ = u + d, where the disturbance is generated by the exosystem ẇ = 0, d = w.

Using the control law ẋc = x, u = -k p x -k i x c , the change of coordinates xc = x c -w/k i results in the au- tonomous closed-loop system ẋ = -k p x-k i (x c +w/k i )+ w = -k p x -k i xc , ẋc = x -ẇ/k i = x.
Generalizing this idea, one can typically define a shifted set of coordinates xc = x c -ψ(w) for some function ψ(•) such that the following set-valued nonlinear regulator equations are satisfied for all

(x c , ω e , ω v , w) ∈ R nc × R 3 × R 3 × W, γ c (x c + ψ(w), ω e , ω v ) -Dψs(w) ∈ Γ c (x c , ω e , ω v ) (12) γ ω (x c + ψ(w), ω e , ω v ) + τ (w) ∈ Γ ω (x c , ω e , ω v ) (13) for some suitable set-valued maps Γ c (•, •, •) : R nc × R 3 × R 3 ⇒ R 3 , Γ ω (•, •, •) : R nc × R 3 × R 3 ⇒ R 3
, where D(•) denotes the Jacobian operator. In some simpler scenarios, one may have Γ

c (x c , ω e , ω v ) = {γ c (x c , ω e , ω v )} and Γ ω (x c , ω e , ω v ) = {γ ω (x c
, ω e , ω v )} (this is the case discussed in Section 4.1). However, more sophisticated solutions, such as that of Section 4.3, require the nontrivial set-valued inclusion in ( 12)-( 13). Moreover, we only require (mild) regularity properties of maps Γ c and Γ ω , so that even discontinuous selections of γ c and γ ω (suitably embedded in Γ c and Γ ω , possibly through a Filippov regularization) are allowed by our framework. This might be relevant when using sliding mode controllers or similar discontinuous approaches providing finite-time convergence. The rationale behind ( 12)-( 13) is that the velocity error dynamics in the coordinates (ω e , xc ) is independent of w and τ e . We formalize this requirement with the following Property.

Property 1 (Internal model property). Given exosystem (3), there exists a continuously differentiable function ψ and two outer semicontinuous2 and locally bounded set-valued maps Γ c and Γ ω such that the stabilizers γ c , γ ω satisfies (12) and ( 13), respectively.

Based on Property 1, we may remove the dependence on τ e of (11a) by using the shifted velocity coordinates (ω e , xc ). However, to have a fully autonomous error system representation, we need also to remove the "external" input ω v from (11a). To this end, as noted in [START_REF] Invernizzi | Hierarchical dynamic control design for robust attitude tracking[END_REF], a possible strategy is to resort to the boundedness of hK R ε e and the uniform boundedness of ω d in Assumption 1. In particular, these properties imply that there exists a uniform bound ω M > 0 on ω v (t), namely that the following quantity is finite:

ω M := sup t≥0,qe∈S 3 h∈{-1,1} -hK R ε e + R(q e ) ω d (t) . (14) 
Exploiting this bound, all solutions to (11) can be embedded in the larger funnel of solutions of the following hybrid inclusion:

ḣ = 0 qe = -W (q e )(hK R ε e + ω e ) ωe ẋc ∈ F ω (ω e , xc )        (h, q e , ω e ) ∈ C (15a) h + = -h q + e = q e ω + e = ω e + 2hK R ε e x+ c = xc          (h, q e , ω e ) ∈ D. (15b) 
where

F ω (ω e , xc ) := co ωv ≤ω M -J -1 Γ ω (x c , ω e , ω v ) Γ c (x c , ω e , ω v ) , (16) 
with co(•) denoting the convex hull. Also note that C and D in ( 7) and ( 11) being independent of x c ensures that they remain unchanged in the error system [START_REF] Nikiforov | Adaptive non-linear tracking with complete compensation of unknown disturbances[END_REF].

Remark 2

The structure of hybrid system (15) does not depend on the chosen coordinates to represent the attitude but only on the given (hierarchical) control architecture. While we use unit quaternions for the reasons mentioned in the Introduction, the closed-loop stability analysis proposed in the next section would follow the same ideas also for other representations possibly avoiding issues related to double-covering.

ω e , xc inner loop error dynamics h, q e outer loop error dynamics jump perturbation flow perturbation Fig. 2. Closed-loop error dynamics.

Selection of C, D and main stability theorem

In view of the double covering of SO(3) by S 3 , since both q I and -q I correspond to the identity rotation matrix, following [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF], the tracking objective in Problem 1 can be cast as the (robust) global asymptotic stabilization of the compact set

A := A q × A ω , (17) 
for the closed loop [START_REF] Nikiforov | Adaptive non-linear tracking with complete compensation of unknown disturbances[END_REF], where A q := {(h, q e ) ∈ {-1, 1} × S 3 : q e = hq I }, A ω := {(ω e , xc ) ∈ R 3 × R nc : ω e = 0, xc = 0}. In particular, the following statement is a straightforward consequence of the derivations of the previous sections.

Lemma 2 If the set A is globally asymptotically stable for [START_REF] Nikiforov | Adaptive non-linear tracking with complete compensation of unknown disturbances[END_REF], then controller (7) solves Problem 1 for the class of disturbances described by the exosystem (3).

Rather than providing a single solution to Problem 1, we parametrize here a set of possible solution approaches, requiring the following stabilization property from the controller dynamics γ c and γ ω . Two relevant selections satisfying the next property are illustrated in Section 4.

Property 2 (Stabilization Property). The inner loop stabilizers γ ω , γ c satisfy Property 1 for some suitable selections of Γ c and Γ ω . Moreover, there exist a continuously differentiable positive definite and radially unbounded function

(ω e , xc ) → V ω (ω e , xc ), a diagonal matrix K ω = diag(k ω1 , k ω2 , k ω3 ) > 0, and a continuous function (ω 1 , ω 2 ) → δ ω (ω 1 , ω 2 ) satisfying δ ω (0, 0) = 0, such that V ω (ω 1 +ω 2 , xc )-V ω (ω 1 , xc ) ≤ δ ω (ω 1 , ω 2 ), ∀ω 1 , ω 2 , xc , (18) 
max

f ∈Fω(ωe,xc) ∇V ω (ω e , x c ), f ≤ -ω e K ω ω e , ∀ω e , xc . (19) 
Furthermore, no complete solution to ( ωe , ẋc ) ∈ F ω (ω e , xc ) can evolve forever in the set {(ω e , xc ) ∈ R 3 × R nc : ω e = 0}, unless it is identically zero.

With Property 2 we establish bounds on the variation of V ω along flowing and jumping solutions of the inner loop component of the error dynamics [START_REF] Nikiforov | Adaptive non-linear tracking with complete compensation of unknown disturbances[END_REF]. Using these bounds we are ready to define the jump and flow sets C and D appearing in ( 7) and ( 15), thereby completing the construction of our hybrid controller. Let us first introduce the positive scalars:

k V > max i=1,2,3 (4k ωi k Ri ) -1 , δ ∈ (0, 1), (20) 
and select C and D as the following closed sets:

C := {(h, q e , ω e ) : 4(hη e + δ) + k V δ ω (ω e , 2hK R ε e ) ≥ 0} D := {(h, q e , ω e ) : 4(hη e + δ) + k V δ ω (ω e , 2hK R ε e ) ≤ 0} . (21) 
Based on the construction completed above, we are now ready to state the main stability result of this paper.

Theorem 3 For any γ ω and γ c satisfying Property 1 and Property 2 and any k V and δ satisfying (20), the attractor A in (17) is uniformly globally asymptotically stable for the error dynamics (15), (21).

Due to Lemma 2, the global asymptotic stability result established in Theorem 3 implies that the proposed controller [START_REF] Goebel | Hybrid Dynamical Systems[END_REF] with jump/flow sets as in (21), solves Problem 1 in the sense that with this controller, for any disturbance torque τ e generated by exosystem (3), and for any desired trajectory t

→ (R d (t), ω d (t)) ∈ SO(3) × R 3
satisfying Assumption 1, the corresponding attitude is uniformly asymptotically tracked from any initial condition. This fact is stated in the next corollary. A relevant structural property enjoyed by our solution is that it satisfies the hybrid basic conditions of [7, As. 6.5], which in turn imply the well-posedness property studied in [START_REF] Goebel | Hybrid Dynamical Systems[END_REF]Ch. 6,[START_REF] Goebel | Hybrid Dynamical Systems[END_REF]. This fact is stated next and is a necessary step towards proving Theorem 3.

Lemma 5 For any γ ω and γ c satisfying Property 2, the error dynamics (15), (21) satisfies the hybrid basic conditions of [7, As. 6.5].

Remark 3 According to Theorem 3, the proposed design guarantees UGAS of the equilibrium set [START_REF] Seuret | A nonsmooth hybrid invariance principle applied to robust event-triggered design[END_REF] for any choice of the parameters δ and k V as in (20). Therefore, the control law avoids the unwinding problem 3 by design. More specifically, the uniform convergence ensured by UGAS avoids arbitrary long transients.

Remark 4 Tuning of δ and k V helps assigning a desirable transient when starting "far" from the equilibrium set A: the switching mechanism ruled by δ and k V essentially selects what quaternion point the solution should approach. As noted in [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF], values of δ too close to the upper limit δ = 1 may induce long transient, but values of δ too close to the lower limit δ = 0 may lead to undesired chattering-like jumps with noisy measurements. As a consequence, δ should be selected as a suitable trade-off, depending on the measurement noise level. In practice, a value of δ = 0.5 typically works well. The role of k V is to also take into account the kinetic effects captured by V ω , so that switches are partly inhibited if the velocity points the correct direction. In practice, it is reasonable to choose k V close to the lower bounds in (20), so that this inhibition is not too pronounced, thereby avoiding undesirable long transients.

Proof of Theorem 3

The proof of Theorem 3 is based on the following corollary of [17, Thm 1], which we state here without proof.

Proposition 6 Consider a compact set A and hybrid system [START_REF] Nikiforov | Adaptive non-linear tracking with complete compensation of unknown disturbances[END_REF], satisfying the hybrid basic conditions of [7, As. 6.5]. Assume that there exists a continuously differentiable function V , positive definite with respect to A and radially unbounded, such that

V (x) := ∇V (x), ẋ ≤ 0, ∀x ∈ C × R nc , (22a) ∆V (x) := V (x + ) -V (x) ≤ 0, ∀x ∈ D × R nc . (22b)
Assume also that no complete solution of (15) keeps V constant and nonzero, namely no complete solution φ bad exists satisfying V (φ bad (t, j)) = V (φ bad (0, 0)) = 0 ∀(t, j) ∈ dom(φ bad ). Then A is robustly uniformly globally asymptotically stable.

We are now ready to prove Theorem 3, by exploiting Proposition 6 with the Lyapunov function candidate

V (x) := 2(1 -hη e ) + k V V ω (ω e , xc ), ( 23 
)
3 Unwinding is the problem for which solutions starting close to one of the two points in A experience a large overshoot because they are (unreasonably) forced to approach the other point (due to the double coverage of quaternions, these two points represent the same physical attitude, see, e.g., [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF]).

in which the first (kinematic) component is inspired by [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF]. Due to the properties of V ω in Property 2, function V in ( 23) is positive definite with respect to A and radially unbounded. Let us now characterize the time derivative of V along flowing solutions to [START_REF] Nikiforov | Adaptive non-linear tracking with complete compensation of unknown disturbances[END_REF]. We have

V (x) = -2h ηe + k V Vω = -2h ηe + k V ∇V ω (ω e , xc ), f (24) 
where f ∈ F ω (ω e , xc ). Hence, we can derive the following chain of inequalities based on (19),

V (x) ≤ -2he 1 W (q e )(-hK R ε e -ω e ) -k V ω e K ω ω e = hε e (-hK R ε e -ω e ) -k V ω e K ω ω e ≤ - 3 i=1 |εe i | |ωe i | k R i -1 2 -1 2 k V kω i |εe i | |ωe i | ≤ -α V [ εe ωe ] 2 ,
(25) where α V > 0 is a small enough scalar constant, whose existence is guaranteed by the fact that, by design of k V in (20), we have 4k V k ωi k Ri > 1 for all i = 1, 2, 3. Consider now the variation of V across jumps and let us use ( 21) and ( 18) to obtain, for all x ∈ D,

∆V (x) := V (x + ) -V (x) = 2(1 -h + η e ) + k V V ω (ω + e , xc ) -2(1 -hη e ) -k V V ω (ω e , xc ) ≤ 4hη e + k V (V ω (ω e + 2hK R ε e , xc ) -V ω (ω e , xc )) ≤ 4hη e + k V δ ω (ω e , 2hK R ε e ) ≤ -4δ. (26) 
Based on (25) and (26), we can now apply Proposition 6 to complete the proof using function V in (23), which is continuously differentiable, positive definite with respect to A and radially unbounded, due to Property 2.

The flow and jump inequalities in (22) follow directly from (25) and ( 26), therefore it remains to show that no solution φ bad exists keeping V constant and nonzero. To this end, first note that (26) with its strict decrease, implies that such a solution, if it exists, can never jump and must be continuous. From (25), φ bad must evolve forever in the set where both ε e and ω e are zero (in this set we have V (x) = 0), however from the last statement in Property 2 and the cascade structure of the flow dynamics, φ bad must necessarily evolve in the set where ε e , ω e and xc are all zero. This implies that (ω e , xc ) ∈ A ω and that q e = [ ηe εe ] ≡ -h 0 for some h ∈ {-1, 1} (as a matter of fact, these are the only two points in {-1, 1} × S 3 outside A q and where ε e = 0). Replacing these constraints in the definition of the flow/jump condition in (21), one obtains 4(hη e + δ) + k V δ ω (ω e , 2hK R ε e ) = 4(δ -1) < 0, where we exploited h 2 = 1, the identity δ ω (0, 0) = 0 from Property 2, and the fact that δ < 1. The above inequality implies that neither of those two points are in the flow set, where continuous evolution is allowed, thereby proving that the solution φ bad does not exist and completing the proof.

Sample stabilizers design

To illustrate the generality of our control scheme we list here two possible selections of the controller function γ ω and γ c satisfying Property 1 and 2, thereby guaranteeing the applicability of Theorem 3. In particular, we consider: A) a stabilizer robust to harmonic disturbances, B) a conditional integrator, which is a dynamic controller embedding a proportional-integral action with anti-windup to reject constant disturbances.

Harmonic disturbances compensator

Non-global (and non-uniform) attitude tracking with a disturbance torque τ e comprising a linear combination of constant and harmonic signals with known frequencies but unknown amplitudes and phases has been addressed in [START_REF] Sanyal | Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization[END_REF], where a continuous control law induces almost global results. In this Section we show how the problem of harmonic disturbances can be solved globally (and uniformly) by our solution. Any such disturbance can be generated by the exosystem (3) with

s(w) = A w w, τ (w) = C w w, (27) 
where

A w = blkdiag 0, 0 -Ω1 Ω1 0 , • • • , 0 -Ωn d Ωn d 0 (28) 
and C w ∈ R 3×3+n d are assumed to be an observable pair and Ω i , i ∈ {1, 2, . . . , n d }, are known frequencies. The ensuing dynamics is marginally stable in the sense that it generates a homogeneous family of closed bounded orbits and we can select W as the union of all the possible orbits generated by bounded initial conditions |w(0)| ≤ w M , where w M is not required for the control design. Assuming the initial condition w(0) be unknown is equivalent to assuming the amplitudes and phases of the harmonic components be unknown. We propose the internal model-based controller selection:

γ c (x c , ω e , ω v ) := A w x c + K c C w ω e γ ω (x c , ω e , ω v ) := C w x c + K ω ω e + S(ω e )J(ω v -ω e ) δ ω (ω 1 , ω 2 ) := 1 2 ω 2 J(ω 2 + 2ω 1 ) (29) 
with the tunable matrix

K c = blkdiag(K I , k c1 I 2 , . . . , k c d I 2 ) ∈ R 3+n d ×3+n d >0 , K I = diag(k I1 , k I2 , k I3 ) ∈ R 3×3 >0 , k ci > 0 ∀i ∈ {1, 2 
, . . . , d}. For this special case, a simple singlevalued selection of the set-valued maps

Γ c (x c , ω e , ω v ) := {γ c (x c , ω e , ω v )}, ∀x c , ω e , ω v Γ ω (x c , ω e , ω v ) := {γ ω (x c , ω e , ω v )}, ∀x c , ω e , ω v , (30) 
is enough for proving that controller (29) satisfies Property 1 and Property 2, as established next. Proof. Using the error coordinate xc := x c -ψ(w), where ψ(w) = -w, the linearity of γ c and γ ω in (29) immediately proves ( 12) and ( 13) (thus, Property 1) with the trivial selection (30). Consider now Property 2 and the ensuing differential inclusion which, using (29) and (30), corresponds to

ωe ẋc ∈ F ω (ω e , xc ) (31) 
:= ωv ≤ω M J -1 (S(ω e )J(ω e -ω v ) -K ω ω e -C w xc ) A w xc + k c C w ω e . ( 32 
)
Let us use the quadratic function

V ω (ω e , xc ) := 1 2 ω e xc J 0 0 K -1 c ω e xc ( 33 
)
within Property 2 and first note that (18) holds straightforwardly with an equality sign when using δ ω in (29). Moreover, to the end of checking 

+ x c K -1 c A w xc + x c C w ω e = -ω e K ω ω e , (34) 
where we used the fact that A w is block-diagonal and skew-symmetric, with the first block being the null matrix. This proves (19).

To prove the last part of Property 2, consider any solution t → x ω (t) := (ω e (t), xc (t)) to (31) and assume, by contradiction, that it starts and only evolves in the set G := (ω e , xc ) ∈ R 3 × R nc : ω e = 0 \ {(0, 0)}. Then, analyzing dynamics (31) restricted to G, we get

ωe ẋc ∈ F ω (G) = -J -1 C w xc A w xc , (35) 
whose second component gives (by linearity) xc (t) = exp(A w (t -t 0 ))x c (t 0 ), and then the fact that the first component is identically zero, provides 0 = J ωe (t) = C c exp(A c (t -t 0 ))x c (t 0 ), for all t ≥ 0. Since (C w , A w ) is observable, this establishes a contradiction, thus no such solution can exist and the proof is completed.

Adaptive observer design

By virtue of the modular architecture of our control law it is possible to extend our scheme to the challenging case of three independent harmonic disturbances with unknown frequencies (in addition to unknown amplitudes and phases). Such a decentralized disturbance can be generated by the exosystem in (27) with

A w = blkdiag (A w1 , A w2 , A w3 ) = blkdiag 0 -Ω1 Ω1 0 , 0 -Ω2 Ω2 0 , 0 -Ω3 Ω3 0 C w = blkdiag(c w1 , c w2 , c w3 ), (36) 
where Ω i are unknown constant frequencies and c wi ∈ R 2 are unknown constant vectors ∀i ∈ {1, 2, 3} associated with each axis. To avoid overloading the notation with trivial settings, we assume that the norm of each substate w i is bounded away from zero. For this case, based on the adaptive observer construction of [START_REF] Nikiforov | Adaptive non-linear tracking with complete compensation of unknown disturbances[END_REF], we consider the selection:

γ ci (x ci , ω ei , ω v ) :=   A oi ζi -b oi k ωi ω ei -θ i ζi + ω ei -k ci ζi ω ei   , γ ωi (x ci , ω ei , ω v ) := k ωi ω ei -θ i ζi + ω ei δ ω (ω 1 , ω 2 ) := 1 2 ω 2 J(ω 2 + 2ω 1 ), ( 37 
) ∀i ∈ {1, 2, 3}, where x ci := [ η i θ i ] ∈ R 2+2 , ζi := η i -b oi J i ω ei , the pair (A oi , b oi ) ∈ R 2×2 <0 × R 2 satisfies M i A wi -A oi M i = b oi
c wi for some non-singular matrix M i ∈ R 2×2 , and k ci > 0 is the adaptation gain. Without loss of generality we assume to be working with a principal axes body frame so that the inertia matrix is diagonal, i.e., J = diag(J 1 , J 2 , J 3 ). Following [15, Lemma in Section 3], the exosystem is first reformulated in a suitable parameter-dependent form. Specifically, the following dynamical system is considered in place of ( 27), (36):

ζi = A oi ζ i + b oi θ i ζ i (38) τ i (ζ i ) = θ i ζ i , (39) 
∀i ∈ {1, 2, 3}, where θ i := c wi M -1 i ∈ R 2 is an unknown vector because it depends on the unknown matrix A wi through M i , and on the unknown vector c wi . Setting w i := ζ i as the new state vector associated with the exosystem (27), we note that the solutions to (38) evolve in a compact set Z i (since A oi is Hurwitz and τ i is a sinusoidal, therefore bounded, function), which are then contained in a ball of radius ζ M , ∀i ∈ {1, 2, 3}, for a large enough ζ M . For the case under investigation, we need to consider non-trivial selections for the set-valued maps in ( 12)- [START_REF] Mayhew | On path-lifting mechanisms and unwinding in quaternion-based attitude control[END_REF]. Specifically, we propose the following expressions for each sub-component xci , ω ei , i ∈ {1, 2, 3}, of xc , ω e :

Γ ci (x ci , ω ei , ω v ) := ζi ≤ζ M A oi ζi -k ci ( ζi + ζ i )ω ei Γ ωi (x ci , ω ei , ω v ) := ζi ≤ζ M k ωi ω ei + ω ei + -θ i ( ζi + ζ i ) -θ i ζi , (40) 
where xci := [

ζ i θ i ] with ζi := ζi -ζ i = η i -b oi J i ω ei -ζ i (41) θi := θi -θ i . ( 42 
)
The set-valued maps in (40 Proof. Given the decoupled nature of the controller selection (37), we note that assuming a diagonal inertia matrix J = diag(J 1 , J 2 , J 3 ) allows us to study independently each axis. Let us recall the estimate ζi of the regressor ζ i in (39) defined after (37) as

)
ζi := η i -b oi J i ω ei , (43) 
and then consider the change of variable ζi in (41) to express the i-th component of the disturbance torque given in (39) in terms of the regressor estimate ζi as follows:

τ i = θ i ζ i = θ i ( ζi -ζi ).
(44) To the end of proving Property 1, consider the following identities

γ ci (x ci + ψ i (w i ), ω ei , ω v ) = A oi ( ζ + ζ i ) -b oi γ ωi -k ci ( ζi + ζ i )ω ei D wi ψ i = D wi ζ i + b oo J i ω ei θ i = I 2 0 , D ωe i ψ i = D ωe i ζ i + b oo J i ω ei θ i = b oi J i 0 ,
in which we substituted, in the first line, the definition of ζi := η i -b oi J i ω ei = ζi + ζ i from (43), (41) and of γ ωi := k ωi ω ei -θ i ζi + ω ei from (37). Then by direct substitution of x ci = xci + ψ i (w i , ω ei ) into (37), and using (44), one obtains

γ ci (x ci + ψ i (w i , ω ei ), ω ei , ω v ) -D wi ψ i (A oi ζ i + b oi θ i ζ i ) -D ωe i ψ i J -1 i (-γ ωi (ω ei ) -τ ei ) = A oi ζi -k ci ( ζi + ζ i )ω ei (45) γ ωi (x ci + ψ i (w i , ω ei ), ω ei , ω v ) + τ i (w i ) = k ωi ω ei + ω ei -θ i ( ζi + ζ i ) -θ i ζi , (46) 
from which a generalized version of the relationships ( 12) and ( 13) (accounting for the dependence of ψ i on ω ei ) are immediately proven with the selections Γ ci and Γ ωi in (40) and thus also Property 1 is proven. Based on (45), we immediately note that the dynamics of ζi in (41) evolves according to the exponentially stable dynamics:

ζi = ζi -ζi = A oi ζi . (47) 
To prove Property 2, we now refer to the following dynamics, issued from (11a) with ( 45), ( 46) and (47), and augmented with the exosystem dynamics (38):

       ωei ζi θi ζi        =        -J -1 i (k ωi ω ei + ω ei -θ i ( ζi + ζ i ) -θ i ζi ) A oi ζi -k ci ( ζi + ζ i )ω ei A oi ζ i + b oi θ i ζ i        . (48)
We note that the selection (37) makes the right-hand side of (11a) independent of ω v and therefore there is no need here to embed the solutions to [START_REF] Maithripala | An intrinsic PID controller for mechanical systems on Lie groups[END_REF] in the funnel of solutions of the hybrid differential inclusion [START_REF] Nikiforov | Adaptive non-linear tracking with complete compensation of unknown disturbances[END_REF]. Moreover, the inclusion in (48) of the exosystem dynamics makes the closed-loop system autonomous and allows us to apply invariant set arguments to prove the last part of Property 2. Based on the above premises, to verify ( 18)-( 19), we introduce

V ωi (ω ei , xci ) := 1 2 J i ω 2 ei + 1 2k ci θi 2 + κ ζi ζ i P i ζi , (49) 
and then leverage the quadratic function

V ωi (ω e , xc ) := 3 i=1 V ωi (ω ei , xci ), (50) 
where P i = P i ∈ R 2×2 >0 satisfies P i A oi + A oi P i = -I 2 and κ ζi > 0 are sufficiently large scalars specified below.

Using δ ω in (37), equation ( 18) is straightforwardly verified with an equality sign. Finally, to prove inequality (19), we compute the time derivative of V ωi in (49) along the flow dynamics (48), as follows:

Vωi = -ω ei k ωi ω ei + ω ei -θ i ( ζi + ζ i ) -θ i ζi + -θ i ( ζi + ζ i )ω ei -κ ζi ζ i ζi ≤ -k ωi ω 2 ei -ω 2 ei + ω ei θ i ζi -κ ζi ζ i ζi . (51) Choosing now κ ζi = k ζi + 1
4 θ i θ i for some k ζi > 0, and observing that

θ i θ i ζ i ζi ≥ (θ i ζi ) 2 , one has Vωi ≤ -k ωi ω 2 ei -k ζi ζi 2 - 1 4 (θ i ζi ) 2 + ω ei θ i ζi -ω 2 ei ≤ -k ωi ω 2 ei -k ζi ζi 2 ,
(52) where we exploited 1 4

(θ i ζi ) 2 -ω ei ζ i ζi +ω 2 ei = ( 1 2 θ i ζi - ω ei ) 2 ≥ 0.
Based on this last inequality, one immediately has Vωi ≤ -k ωi ω 2 ei , and considering (50), inequality (19) follows. Since (48) also included the bounded but nonzero state of the exosystem, the last part of Property 2 should be generalized to requiring that no complete solution t → x ω (t) := (ω e (t), ζ(t), θ(t), ζ(t)) to (48) exists that starts and only evolves in the set

G i := {(ω e , ζ, θ, ζ) : ω ei = 0, ζi = 0},
for some i ∈ {1, 2, 3}, unless it satisfies ζi (•) ≡ 0 and θi (•) ≡ 0. To prove this fact, the expression of dynamics (48) restricted to G i , corresponds to

       ωei ζi θ ζi        =        J -1 i ( θ i ζ i ) 0 0 A oi ζ i + b oi θ i ζ i        , (53) 
where one sees that any solution to ζi =

A oi ζ i + b oi θ i ζ i = A oi ζ i + b oi τ i spans R 2
by virtue of the frequency response theorem (τ i is a sinusoidal signal, A oi is Hurwitz and the pair (A oi , b oi ) is controllable) and therefore, for any constant θi ∈ R 2 , J -1 i ( θ i ζ i ) cannot be zero unless the disturbance torque is identically zero, which is not possible because we assumed after (36) that w i , i ∈ {1, 2, 3}, all have norms bounded away from zero. Hence, we would have ωei = 0 and therefore ω e cannot remain identically zero, thus establishing a contradiction and completing the proof of Property 2 and the proof of the lemma.

Conditional integrators for constant disturbances

We address here a nonlinear construction with the disturbance torque τ e in (2) being constant and unknown. The corresponding parameters of the exosystem (3) are

s(w) = 0, τ (w) = w, (54) 
with w ∈ R 3 . For this special case, we designed in our preliminary work [START_REF] Invernizzi | Hierarchical dynamic control design for robust attitude tracking[END_REF] a PI-type controller. Here we enhance that design by embedding in it a structural antiwindup action, stemming from the so-called conditional integrator paradigm (see, e.g., [START_REF] Burger | Disturbance Rejection using Conditional Integrators: Applications to path manoeuvring under environmental disturbances for single vessels and vessel formations[END_REF]), which effectively removes the integral windup issues, as illustrated in Section 5. Inspired by [START_REF] Burger | Disturbance Rejection using Conditional Integrators: Applications to path manoeuvring under environmental disturbances for single vessels and vessel formations[END_REF], we select the controller

γ c (x c , ω e , ω v ) := -Gx c + Hσ γ ω (x c , ω e , ω v ) := K ω ω e + F σ + S(ω e )J(ω v -ω e ) σ = sat(H -1 (Gx c + ω e )) δ ω (ω 1 , ω 2 ) := 1 2 ω 2 J(ω 2 + 2ω 1 ), (55) 
where

G = diag(g 1 , g 2 , g 3 ) ∈ R 3×3 >0 , H = diag(h 1 , h 2 , h 3 ) ∈ R 3×3 , F = diag(f 1 , f 2 , f 3 ) ∈ R 3×3 >0 , K ω ∈ R 3×3
and sat(•) denotes the decentralized unit saturation function (defined in the notation section). Due to the presence of saturation in γ ω in (55), the components of the disturbance torque which can be compensated by the controller cannot be larger than the diagonal elements of F > 0. Therefore, we define the compact set characterizing the exosystem (3), (54) as

W := {w ∈ R 3 : |w i | ≤ (1 -)f i , i = 1, 2, 3}, ( 56 
)
where 0 < < 1 is a scalar providing some margin to the stabilizer. Notice that this scalar is associated with the robustness/performance trade-off because, for a given selection of F , it sets the maximum size of the allowable disturbance (the robustness side), versus the input margin available for stabilization (the performance side). The effectiveness of the controller selection (55) can be proven by more sophisticated choices of set-valued maps Γ c and Γ ω in [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF] and [START_REF] Mayhew | On path-lifting mechanisms and unwinding in quaternion-based attitude control[END_REF]. In particular, we propose to use, for each x c , ω e , ω v ,

Γ c (x c , ω e , ω v ) := -Gx c + HΣ(x c , ω e ), Γ ω (x c , ω e , ω v ) := K ω ω e + F Σ(x c , ω e ) + S(ω e )J(ω v -ω e ), Σ(x c , ω e ) := M ≥ε sat M (H -1 (Gx c + ω e )),
(57) which is outer semicontinuous because its graph is a union of closed graphs (continuous functions) and locally bounded because of local boundedness of the argument of the saturation. With this selection, we prove below that controller (55) satisfies Properties 1 and 2, thereby solving Problem 1, thanks to Corollary 4.

Proposition 9 Given the exosystem (54),(56), selections (55), satisfy Property 1 and Property 2 with ψ(w) = -G -1 HF -1 w and Γ c , Γ ω in (57). Then, from Corollary 4, controller [START_REF] Goebel | Hybrid Dynamical Systems[END_REF],( 21) with (55) solves Problem 1 for any disturbance torque τ e generated by (3) with (54),(56).

Proof. Using the error coordinates xc := x c -ψ(w), where ψ(w) = -G -1 HF -1 w, we obtain the following expression for the functions at the left-hand side of ( 12) and ( 13):

γ c (x c + ψ(w), ω e , ω v ) -Dψs(w) = -Gx c + H σ γ ω (x c + ψ(w), ω e , ω v ) + τ (w) = K ω ω e + F σ + S(ω e )J(ω v -ω e ) (58) σ := sat(H -1 (Gx c + ω e ) -F -1 w) + F -1 w, (59)
and due to the property of w in (56), we have that σ ∈ Σ(x c , ω e ) in (57), because the term F -1 w, which satisfies |F -1 w| ≤ 1 -ε, leaves enough margin for the saturation function sat(•). This proves ( 12) and ( 13) with selections (57) and thus Property 1. Let us now focus on Property 2. Using (57), we study the following differential inclusion, issued from ( 16 

where P c ∈ R nc×nc >0 is selected below. First note that (18) holds straightforwardly, with an equality sign, when using δ ω in (55). Let us now prove (19) by computing Vω (ω e , xc ) = ∇V ω (ω e , x c ), f for any f ∈ F ω (ω e , x c ). Using (60), we obtain:

Vω (ω e , xc ) = -ω e K ω ω e -ω e F σ (62) - 1 2 x c P c G + G P c xc + x c P c H σ, σ ∈ Σ(x c , ω e ),
where we exploited the property ω e S(ω e ) J(ω v -ω e ) = (J(ω v -ω e )) S(ω e )ω e = 0 (because S(ω e )ω e = 0). To manipulate (62), recalling that σ ∈ Σ(x c , ω e ), from the expression of Σ(x c , ω e ) in (57) and the sector properties of the saturation, it holds that, for any W > 0 diagonal,

σ W (H -1 (Gx c + ω e ) -σ) ≥ 0. ( 63 
)
With the goal in mind of canceling out the last term in the first row of (62), select W = F H in (63) to obtain

Vω (ω e , xc ) ≤ Vω (ω e , xc ) + σ W (H -1 (Gx c + ω e ) -σ) = -ω e K ω ω e + Ψ(x c , σ). (64) 
Since F , G and H are diagonal and positive definite, by selecting P c = GH -1 F , it can be shown that function Ψ satisfies:

Ψ(x c , σ) = -x c P c Gx c + x c P c H σ + σ F Gx c -σ F H σ = - xc σ G -H H -1 F G -H xc σ ≤ 0.
Combining this last inequality with (64), we obtain (19).

To prove the last part of Property 2, we proceed in a similar way to the end of the proof of Proposition 7.

Consider any solution t → x ω (t) := (ω e (t), xc (t)) to (60) and assume, by contradiction, that it starts and only evolves in the set G := (ω e , xc ) ∈ R 3 × R nc : ω e = 0 \ {(0, 0)}. Then, the expression of dynamics (60) restricted to G, corresponds to

ωe ẋc ∈ F ω (G) = σ∈Σ(xc,0) -J -1 F σ -Gx c + H σ , (65) 
where σ can never be zero because the set-valued map Σ(x c , 0) = M ≥ε sat M (H -1 Gx c ) does not contain the zero element, due to the fact that xc = 0 and H -1 G is diagonal positive definite. Finally, since J -1 F is nonsingular, we have ωe = 0 and ω e cannot remain identically zero, completing the proof of Property 2 and the proof of the lemma.

Numerical results

In this section a simulation example is presented to show that the control law [START_REF] Goebel | Hybrid Dynamical Systems[END_REF] with the selections proposed in Section 4 solves the robust tracking problem in the presence of constant and harmonic disturbances τ e in (2). The desired attitude trajectory is characterized by a periodic motion described, in terms of Euler angles, by (φ d (t), θ d (t), ψ d (t)) = (sin(ω d1 t), sin(ω d2 t), sin(ω d3 t)), where ω d = [ 0 1 0.5 ] rad/s . The inertia matrix of the rigid body is J = diag(1, 2, 3) kgm 2 and we assume a piece-wise smooth disturbance torque τ e defined as τ e (t) = [ and to a significant angular velocity error e ω (0) := ω(0) -R e (0)ω d (0) = [ 3 3 0.5 ] rad/s with respect to the target velocity.

The gains of the conditional integrator-based controller (in short, CI) are tuned to have a predefined behavior of the closed-loop system in the proximity of the desired attitude motion. Specifically, the gains of the inner loop stabilizers are chosen such that the linearized inner loop error dynamics for ω d = 0, J i ωei = kωi ω ei +k Ii x ci , ẋci = ω ei , corresponds to a second order system with bandwidth 3rad/s and critical damping. To this end, we set kωi = 2 • 3J i and k Ii = 3 2 J i , which are obtained by choosing F = diag(4, 4, 4), G = diag(10, 10/J 2 , 10/J 3 ), H = diag [START_REF] Burger | Disturbance Rejection using Conditional Integrators: Applications to path manoeuvring under environmental disturbances for single vessels and vessel formations[END_REF][START_REF] Burger | Disturbance Rejection using Conditional Integrators: Applications to path manoeuvring under environmental disturbances for single vessels and vessel formations[END_REF][START_REF] Burger | Disturbance Rejection using Conditional Integrators: Applications to path manoeuvring under environmental disturbances for single vessels and vessel formations[END_REF] and

K ω = G -F H -1 in (55). Since f i = 4 ∀i ∈ {1, 2 
, 3}, from (56), the magnitude of the disturbance torque that can be rejected should be less than 4N m along each axis. As for the harmonic compensator (in short, HC), we set the tunable matrices in (29) as A w = blkdiag diag(0, 0, 0), 0 -2 2 0

, C w = 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 and, in order to have the same behavior as the CI controller in unsaturated conditions (for constant disturbances), we set the gains as The attitude tracking performance of the proposed controllers is illustrated in Figure 3 in terms of the normalized Euclidean distance in SO(3), i.e., R e SO(3) = 1 4 (I 3 -R e ). It is worth mentioning that for both controllers the logic variable h jumps at t = 0 since the initial conditions are both in the jump set. Due to the large initial error, the controllers require a large torque in the initial transient phase and both reach saturation. During the first transient, windup effects are clearly visible in the response of the HC controller while the CI controller achieves a faster transient without overshoot (Figure 3). Figure 4 shows that in the initial seconds of the simulation the control torque components are kept in saturated conditions for a longer time when using the HC controller. When the disturbance torque changes at t = 15s, the controllers respond similarly along the pitch and yaw axes, since they both operate in unsaturated conditions and their behavior is expected to be the same by design. A different response is observed as far as the roll axis is concerned, since the HC controller includes additional dynamics to reject harmonic disturbances acting along this axis. This point is clearly shown in the last part of the simulation (t ≥ 25s), when the rigid body is affected by the harmonic component of τ e . In this case, the HC controller achieves asymptotic rejection while the CI controller cannot reject the disturbance and bounded oscillations are present along all the axes due to the couplings. As a final comment, note that increasing the gains of the outer loop controller to have a faster transient can have disastrous consequences for the HC controller due to saturation, as shown in Figure 5, where the outer loop gains are increased by a factor two by choosing K R = 2I 3 in (10). This is not the case for the CI controller which mitigates by design windup issues, in particular, the controller states are kept within the predefined bounds even for a large initial tracking error (Figure 6) and the nominal (unsaturated) behavior is recovered quickly when the error decreases. Finally, Figure 7 shows the improvement, in terms of tracking performance, achieved by implementing the Adaptive Observer (AO) design given in (37) over the standard HC given in (29) when considering an imperfect knowledge of the disturbance frequencies. Specifically, we consider τ e = [ cos(2t) 2 cos(3t) 3 cos(t) ] Nm but assume Ω i = 2rad/s, i ∈ {1, 2, 3}, in A w for (29). The parameters of the AO controller e are chosen as Γ i = 10, A oi = 0 1 -6 -1 , b oi = [ 0 1 ] , i ∈ {1, 2, 3}. The other parameters are the same as the previous simulation.

k ωi = 2 • 3J i , k Ii = 3 2 J i ∀i ∈ {1, 2 

Conclusions

In this paper we considered the attitude tracking problem and proposed a control design with disturbance rejection capabilities. Our solution, based on an innerouter loop paradigm, guarantees global tracking results which are achieved by including a hybrid logic to overcome the well-known topological issues of SO(3). Relying on an internal model description of the disturbances, we show that the proposed approach can be used to reject certain classes of torque disturbances of engineering interest. Leveraging the proposed approach, one can exploit dynamic controllers for the inner loop, such as PID loops, conditional integrators or harmonic compensators, to achieve desirable performance and disturbance rejection capabilities.

Corollary 4

 4 For any γ ω and γ c satisfying Property 2 and any k V and δ satisfying (20), controller (7), (21) solves the robust attitude tracking Problem 1.

Proposition 7

 7 Given the exosystem (27)-(28), selections (29) satisfy Property 1 and Property 2 with ψ(w) := -w and Γ c , Γ ω in (30). Then, from Corollary 4, controller (7), (21) with (29) solves Problem 1 for any disturbance torque τ e generated by (3) with (27).

  (19), let us compute Vω (ω e , xc ) = ∇V ω (ω e , xc ), ( ωe , ẋc ) along dynamics (31), to get, for all (ω e , xc ) ∈ R 3 × R nc , Vω (ω e , xc ) = -ω e K ω ω e -ω e C w xc

  ), ωe ẋc ∈ F ω (ω e , xc ) := ωv ≤ω M σ∈Σ(ωe,xc) J -1 (S(ω e ) J(ω v -ω e ) -K ω ω e -F σ -Gx c + H σ , (60)where the right-hand side is already convex, due to the convexity of Σ and because ω v enters linearly the dynamics. To verify (18)-(19), we use the quadratic function V ω (ω e , xc ) :

  , 3}, and k c4 = 9. The gains of the outer loop controller are tuned to have a 0.5rad/s bandwidth for the linearized outer loop error, which is achieved by setting K R = I 3 in[START_REF] Lee | Global exponential attitude tracking controls on SO(3)[END_REF]. Finally, for the hybrid logic in (21), we select δ = 0.25 and k V = 0.75 > max i=1,2,3 (4k ωi k Ri ) -1 = 2/3. Assuming that the actuators can provide a maximum control torque of M = 5N m, the control output τ c is saturated as τ sat c = sat M (τ c ), where function sat M (•) is defined in the notation section.
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 3 Fig. 3. Attitude tracking error: modified trace function ( Re SO(3) ).
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 4 Fig. 4. Control torque: components of τc.
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 5 Fig. 5. Attitude tracking error: modified trace function when choosing KR = 2I3 ( Re SO(3) ).

Fig. 6 .

 6 Fig. 6. Infinity norm of the controller states ( xc ∞ = maxi(|xc i (t)|)).

Fig. 7 .

 7 Fig. 7. Attitude tracking error (( Re SO(3) )). Adaptive Observer (AO) vs standard Harmonic Controller (HC).

  are outer semicontinuous because their graphs are the union of closed graphs (continuous functions over compact sets) and they are clearly locally bounded. Exploiting selection (40) and a suitable change of coordinates, whose dependence is here extended to being not only on w but also on ω e , we prove below that controller (37) satisfies Properties 1 and 2, thereby solving Problem 1, thanks to Corollary 4.

Proposition 8 Given the exosystem (27), (36), selections (37) satisfy Property 1 and Property 2 with

ψ i (w i , ω ei ) := [ (ζi+b o i Jiωe i ) θ i ] and Γ ci , Γ ωi in (40), i ∈ {1, 2, 3}.

Then, from Corollary 4, controller

[START_REF] Goebel | Hybrid Dynamical Systems[END_REF]

, (

21

) with (37) solves Problem 1 for any disturbance torque τ e generated by (3) with (27), (36).

Outer semicontinuity corresponds to the map having a closed graph[START_REF] Goebel | Hybrid Dynamical Systems[END_REF] Lemma 5.10].