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Abstract

We present possibly for the first time Lattice-Boltzmann numerical simula-

tions of thermo-acoustic instabilities of premixed flames. We study flames

interacting with an imposed acoustic field where flames submitted to a para-

metric instability can be observed, as well as plane flames re-stabilized by the

acoustic forcing. Self-induced thermo-acoustic oscillations of flames propa-

gating in narrow channels are also studied, indicating an unexpected de-

pendency with the channel width. For both excited and self-excited flames,

results confirm that Lattice-Boltzmann method can capture the complex cou-

pling between flame dynamics and acoustics.

Keywords: Lattice-Boltzmann methods; thermo-acoustic flame

instabilities; premixed flames

1. Introduction

Lattice-Boltzmann (LB) methods [1] have become a mature technology

in the field of isothermal external aerodynamics and aeroacoustics [2]. Their
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base algorithm is the so-called Stream & collide procedure [3], in which all

convective terms are accounted for by the Stream step, consisting of effort-

lessly moving data around on a Cartesian mesh (e.g. without the need of

any interpolation). After the Stream step, the time is frozen via a splitting

technique and a Collision step ensues, accounting for the non-linearity of the

stress tensor only as a relaxation. The particular structure of the Stream &

collide algorithm, which can be seen as a Cartesian based solver in which only

nearest-neighbors are required, forms the base of the success of LB methods

[3], granting excellent dissipation properties [4] at an affordable cost [5].

Lifting the isothermal hypothesis and extending LB methods to com-

pressible and reactive flows is non-trivial and a long-standing issue. One of

the first models for reactive flows was presented by Succi et al [6] almost 25

years ago. Several contributions by Yamamoto and coworkers [7–10] ensued.

Yet, no clear consensus has emerged as to the best way to simulate single-

component compressible flows using LBM, still an active topic of investiga-

tion among the community (see, e.g. [11–14] for selected studies published

in the past year alone). In parallel of recent studies carried out in our group

for compressible flows [15–17], we have developed a model to tackle reactive

flows, and subsequently validated it on canonical combustion applications

[18, 19] and a turbulent bluff-body flame [20]. The method was further vali-

dated following a combustion DNS benchmark [21], indicating that the CPU

cost of a compressible reactive flow simulation is comparable or less than

that of classical Navier-Stokes solvers in the low-Mach number approxima-

tion [22]. Note that another class LB methods is available for compressible

flows – usually referred to as Discrete Boltzmann Methods – with increased

2



focus on the thermodynamic non-equilibrium behaviors [23, 24]. They have

been applied successfully to multiphase [25], multicomponent flows [26], as

well as detonations [27, 28].

Given (i) the success of LB methods in the field of aeroacoustics [29, 30]

and (ii) its competitiveness for combustion [22], the question of its applicabil-

ity to thermo-acoustic instabilities (see a recent review for laminar premixed

flames [31]) naturally arises and shall be the center of this contribution.

In the present paper, we will apply the LB method to the problem of

interaction with acoustics of premixed flames propagating in tubes (or in our

case in 2D channels), which has been a classical problem since the work of

Markstein [32] (see also [33, 34]). Without acoustics, a flame propagating in

a tube is submitted to the hydrodynamic Darrieus-Landau (DL) instability,

leading to a cellular front for flames propagating downward. We have recently

studied this instability with an LB method, and we were able to recover both

linear and non-linear premixed flame propagation regimes, by comparing with

experiments in Hele-Shaw cells [35]. With acoustics the problem is even more

challenging for the hybrid LB solver: there is a two-way coupling between

acoustics and the shape of the flame, and as the flame propagates, acoustics

develops, typically in the middle of the tube. A simpler configuration is to

study the forcing of the flame by an imposed acoustic field, usually obtained

with a loudspeaker [36], but recently a vibroacoustic coupling has also been

used [37, 38]. In this paper, we will study both problems: a flame forced

by a given acoustic field and the amplification of acoustics during the flame

propagation in a 2D narrow channel [39, 40].

This paper consists of three main Sections. After a brief reminder of
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the LB hybrid model proposed [16, 20, 22, 35] and of the behavior of freely

propagating unstable flames in slip and non-slip channels, we will study how

acoustic forcing influences premixed flame propagation, and in particular

its intrinsic DL instability. A large section is then dedicated to study self-

induced thermo-acoustic instabilities in narrow channels, providing new in-

sights on the instability growth rate dependence on channel width.

2. Lattice-Boltzmann model

Numerical simulations are carried out with the ProLB software, which

was recently adapted to tackle combustion problems [18–20, 22, 35]. The

compressible core corresponds to the pressure-based LB model presented by

Farag et al. for compressible flows [16]. It consists of an LB solver, accounting

for mass and momentum conservation, coupled with a Finite Difference (FD)

solver for energy and species equations.

In the LB solver, the probability density function fi of finding gas with

velocity ci at position x is solved via a classical stream and collide algorithm,

[3] following

fi(t+∆t,x) = f col
i (t,x− ci∆t), (1)

for the streaming step, accounting for the convective part of Euler equations.

In the streaming equation, ci corresponds to the ith discrete velocity of the

D3Q19 lattice [3], and (∆x,∆t) are the space and time discretisation. The

collision then reads

f col
i (t,x) = f eq

i (t,x) +

(

1− ∆t

τ̄

)

fneq
i (t,x) +

∆t

2
FE
i (t,x), (2)

corresponding to the hybrid regularized collision model presented by Jacob

et al. [41] relaxing fi towards the equilibrium population f eq
i at a relaxation
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time τ̄ . τ̄ is a function of the viscosity (µ), defined as τ̄ = µ
ρc2s

+ ∆t
2

; here

cs is the constant characteristic lattice velocity [3]. Full expressions for the

equilibrium and non-equilibrium functions (f eq
i , fneq

i ) and forcing term FE
i

are provided in Appendix A for completeness, but the interested reader is

referred to [16, 35] for their derivation.

Farag et al. [42] showed via Taylor expansion the equivalence of the

above system with mass and momentum equations

∂ρ

∂t
+

∂

∂xα

(ρuα) = 0,

∂ρuβ

∂t
+

∂

∂xα

(ρuαuβ) = − ∂p

∂xβ

+
∂Tαβ

∂xα

,
(3)

at second-order in time and space, where notations follow Poinsot & Vey-

nante combustion textbook [43]: p is the thermodynamic pressure following

a perfect multi-constituent gas law, and Tαβ is the viscous tensor.

Following our previous studies, energy and species equations are solved

in a coupled way, under non-conservative form [19, 20, 22, 35]. The species

equations read

ρ
∂Yk

∂t
+ ρuα

∂Yk

∂xα

=
∂

∂xα

(−ρVk,αYk) + ω̇k, (4)

where Yk is the mass fraction of the kth species, Vk,α is the α - component of

its diffusion velocity, and ω̇k its reaction rate. Energy equation is solved in

its sensible form as

ρ
∂e

∂t
+ (ρuα)

∂e

∂xα

= − ∂qα
∂xα

+ (Tαβ − pδαβ)
∂uα

∂xβ

, (5)

where

e =
∑

k

Ykek, ek =

∫ T

T0

Cv,k(T )dT − RT0

Wk

+∆h0
f,k, (6)
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obtained with NASA polynomials. R = 8.314 Jmol−1 K−1 is the perfect gas

constant, T0 is the standard reference temperature and Wk is the atomic

weight of species k. Lastly, the heat flux qα in Eq. (5) reads

qα = −λ
∂T

∂xα

+ ρ

N
∑

k=1

hkYkVk,α, (7)

with λ the thermal conductivity, obtained from the temperature-dependent

viscosity µ assuming constant Prandtl number Pr:

λ =
µcp
Pr

. (8)

Diffusion velocities are defined as in [35], with constant Schmidt numbers for

each species and a correction velocity to enforce numerical mass conservation

[43].

Note that the choice of treating the additional quantities (energy and

species) as single scalars rather than additional distributions was investigated

at length in previous studies (see, e.g. [16, 44, 45]) and was shown to preserve

excellent dissipation properties, as well as the 2nd order accuracy, for a very

competitive cost [20, 22]. For instance, in [19], the cost per time step of

including 9 species (transport properties and source terms included via a 12-

step hydrogen mechanism) and energy is less than four times that of classical

athermal LBM.

Numerical parameters. All simulations hereafter are performed using a spa-

tial discretization ∆x = δL/13, where δL is the thermal flame thickness,

based on maximum temperature gradient [43]. This was shown to be suf-

ficient for an accurate resolution of the flame when single-step chemistry is

used [19, 35]. The discretization is also very close to the value ∆x ≈ δL/15
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used by Jiménez et al [39]. The time-step is chosen setting 0.6 as maximum

Courant–Friedrichs–Lewy number, defined as

CFL =
|u∞|+ c

∆x/∆t
, (9)

where c =
√
γ.r.T is the sound speed, γ is the heat capacity ratio and

r = R/W , where W is the mean molecular weight.

Thermo-chemical parameters. Throughout the paper, the gas consists of a

multi-constituent mixture (C3H8, O2, CO2, H2O, N2), in which a one-step

propane chemistry is considered:

C3H8 + 5O2 −−→ 3CO2 + 4H2O (10)

The net progress rate of the reaction is expressed as

Q̇ = A.e−Ea/RT .CC
3
H

8
.CO

2
, (11)

where Ck is the molar concentration of species k , A is the pre-exponential

factor and Ea is the activation energy. A temperature power-law is assumed

for the viscosity µ (see, e.g. p. 231 in [46])

µ = µ0

(

T

T0

)0.7

, (12)

µ0 = 1.782× 10−5 kgm−1 s−1 and T0 = 300K.

The composition of fresh gases is then set as to obtain a target expan-

sion ratio. Finally, the Arrhenius parameters, Schmidt and Prandtl numbers

chosen as to obtain targeted values for flame speed and flame thickness.
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3. Freely propagating flames

3.1. Preliminary definitions

Let us introduce the following quantities used throughout this study. As

in [39], the consumption speed is defined as

Sc = − 1

ρ0Y 0
FD

∫ W

0

∫ L

0

ω̇F dxdy, (13)

where F denotes the fuel (propane) component. It is often normalized with

Sl, the laminar flame speed. Subscripts 0 (e.g. ρ0) denote the fresh gases

properties, whereas b denotes burnt gases properties.

Channel dimensions are normalized by the flame diffusive thickness δT ,

defined as the ratio of thermal diffusivity in fresh gases to the laminar flame

speed (see Tab. B.1 for the numerical values). With the parameters used

here, δL ≈ 6δT .

For the two-dimensional flames studied here, the flame position is com-

puted as an integral over the channel volume V

xf =
1

V

∫

T − T0

Tb − T0

dV. (14)

It is oriented such as xf = 0 when the tube is filled with fresh gases and

xf = 1 when filled with burnt gases.

3.2. Darrieus-Landau instability

Our starting point is our recent experimental/numerical investigation

of the DL instability in the context of Hele-Shaw cell [35]. In this article,

we successfully validated the growth rate and linear behavior of the DL in-

stability, and in particular its gain dependence on wavelength, illustrated in
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Fig. 1. For wavelengths λ greater than a cut-off value λc, positive growth

rates are obtained, and the instability grows, whereas the instability damps

when λ < λc. The non-linear regime was also investigated in a large Hele-

Shaw cell, showing excellent agreement between experimental results, analyt-

ical results from the Michelson-Sivashinsky equation, and numerical results

obtained with ProLB.

λ < λc
(a)

λ > λc
(b)

Figure 1: Observation of growth/decay of DL instability. (Flame profiles propagation
is from left to right): (a) Instability decay at wavelength (λ = 40 δT ), below λc. (b)
Instability growth at wavelength (λ = 43 δT ), above λc.

3.3. Cut-off width in presence of walls

To study the growth of a single wave perturbation in Fig. 1, a two-

dimensional periodic domain of width λ was considered, with two open ends.

In transitioning to channel flames, let us first study the impact of using the

following boundary conditions on the cut-off wave length:

• periodic conditions, as in Fig. 1 and [35],

• slip adiabatic walls (or symmetry boundary condition),
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• non-slip adiabatic walls.

With the parameters detailed in Tab. B.1, simulations were carried out

with the three aforementioned boundary conditions as to assess their impact

on the DL cutoff wave length.

Figure 2 reports flame profiles propagation (from left to right), for each

boundary condition, and for width chosen closely above and below the cut-

off value. For width W values below the cut-off wave length λc, the initial

perturbation damps, and the flame becomes planar again.

In the last plot of Fig. 2e, the corresponding normalized consumption

speeds are reported. Because of the change in flame surface, the front is

significantly accelerated in all configurations W > λc, whereas it stays to

values close to its laminar value Sl when the instability damps (W < λc).

By comparing the periodic and slip conditions results of Figs. 1 and 2,

we can deduce that the cut-off wave length is approximately halved using slip

conditions (22.5 < λc/δT < 25, vs 40 < λc/δT < 45). This result is rather

intuitive: an adiabatic slip wall is equivalent to a symmetry condition, so the

pattern observed with periodic conditions can be reproduced with half the

width (and then mirrored to obtain the periodic case).

Imposing u = 0 at the wall significantly modifies the flow-field by estab-

lishing a Poiseuille velocity profile. For this reason, the flame front does not

remain exactly planar even for W < λc, and progresses slightly faster close to

the wall (see Fig. 2c). The cut-off wavelength is also significantly decreased

(17.5 < λc/δT < 19, vs 22.5 < λc/δT < 25).

Imposing non-slip conditions also leads to a more slanted flame above
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Slip

(a) W = 22.5 δT

Slip

(b) W = 25 δT

Non-slip

(c) W = 17.5 δT

Non-slip

(d) W = 19 δT

0 0.005 0.01 0.015 0.02 0.025
1

1.05

1.1

1.15

1.2

1.25

Time (s)

Sc

Sl

(e) The Flame consumption speed

Figure 2: Growth/Decay of DL instability in presence of walls. Flame shapes are depicted
by the iso-contours of temperature (1500K) (propagating left to right):
(a) DL instability decay between slip walls below cut-off wavelength (W = 22.5 δT );
(b) DL instability growth between slip walls above cut-off wavelength (W = 25 δT );
(c) DL instability decay between non-slip walls below cut-off wavelength (W = 17.5 δT );
(d) DL instability growth between non-slip walls above cut-off wavelength(W = 19 δT );
(e) The flame consumption speed in between slip and non-slip walls, depicted by solid
and dash lines respectively. A marker on the line denotes W > λc.
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the cut-off width, leading to a significant increase in consumption speed.

3.4. Narrow channel: symmetric vs asymmetric flames

We have seen above that a perturbed flame turns to non-symmetric

flame above a certain cut-off width, but if the initial flame profile is planar,

the flame shape undergoes a change and becomes perfectly symmetric with

the hump always pointing towards the burnt gases exit. It was found that

the flame shape has two viable solutions [47] and it always chooses the non-

symmetric solution after some propagation time.

These two solutions are shown in Fig. 3. Non-slip, adiabatic walls on

the top and bottom with acoustically non-reflecting boundaries on the left

and right are considered. Though it can be clearly seen that the consump-

tion speed and the flame curvature of non-symmetric flame in both cases is

the same, this phenomenon is important because the acoustics response of

symmetric and non-symmetric flame were found to be very different [39].

4. Acoustically forced flames

Before carrying on to study the self-excited thermo-acoustic instabilities

in narrow channels, it is important to check that the flame responds properly

to imposed acoustic perturbations.

Let us consider a single wave perturbed flame inside a 2D periodic do-

main, with a non-reflecting outlet. An acoustic forcing where only the (u+c)

mode is triggered is used to inject acoustic waves at the inlet. The imposed

acoustic field is such that, the wavelength of these acoustic waves is much

larger than the thermal flame thickness (δL) and due to the non-reflecting

12



0 0.01 0.02 0.03 0.04 0.05 0.06
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Time (s)

Sc

Sl

A

B

(a)

A

(b)

B

(c)

Figure 3: Illustration of flame shape transition in a channel of length (L = 1200 δT ) and
width (W = 40 δT ) from initially planar (A) and initially perturbed (B) configurations:
(a) Flame consumption speed for (A) in red and (B) in black; (b) Flame shape transi-
tion from planar to symmetric and then non-symmetric; (c) Flame shape transition from
perturbed to non-symmetric directly.
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conditions on the outlet they are not reflected back. The implementation

details of the injection of the acoustic waves at the inlet are provided below:

u = u0 + u′ = u0 +
√

γrT0ǫ (15)

p = p0 + p′ = p0(1 + γǫ) (16)

ρ = ρ0 + ρ′ = ρ0(1 + ǫ) (17)

T = T0 + T ′ = T0(1 + [γ − 1]ǫ) (18)

Here x0 and x
′ represent the mean and fluctuating quantities respectively

and ǫ << 1 is the fluctuation applied in the sinusoidal form as ǫ = A0 sin 2πft,

where A0 is the fluctuation amplitude and f the frequency of the sinusoidal

fluctuation. This formulation allows to selectively trigger the acoustic mode

associated to the (u+ c) wave [48] on top of the mean flow u0.

Markstein [32], depending on the amplitude of the reduced acoustic ve-

locity (ũa), noticed two distinct unstable regions: a region corresponding to

a low acoustic excitation where the growth of the intrinsic instability (DL)

is reduced and a higher acoustic excitation region also called a parametric

instability region where the structures on the flame oscillate at half the acous-

tic frequency (twice the acoustic period). And in between these regions he

observed a stable region where the flame becomes stable (planar) (see also

[49] for the case of a conical flame).

We give here a short summary of the theory of parametric forcing of the

flame by the acoustic field presented in [36] (see also [50, 51]).
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The effect of the acoustic forcing is, in this geometry, directly related

to the characteristics of the hydrodynamic instability of the flame. It is well

known that the equation for the growth rate of this instability is given by a

quadratic equation [35, 52]:

A(k)σ2 + B(k)σ + C(k) = 0, (19)

where σ is the growth rate of the perturbation with wavenumber k. A(k),

B(k), C(k) are coefficients depending on gas expansion Eρ = ρu/ρb, Mark-

stein number M, laminar flame speed Sl, flame thickness δT = Dth/Sl ,

Prandtl number Pr and Froude number Fr = S2
l /gδT (g is the acceleration

due to gravity) as

A(k) =
Eρ + 1

Eρ

+
Eρ − 1

Eρ

kδT

(

M− J
Eρ

Eρ − 1

)

,

B(k) = Slk
(

2 + 2EρkδT (M− J)
)

,

C(k) =
Eρ − 1

Eρ

kδT
Fr

+ S2
l k

2
(

(Eρ − 1)
k

kc
− (Eρ − 1)(1 +

1

EρFr
(M− J

Eρ

Eρ − 1
))
)

,

(20)

where the cutoff wavenumber kc is given by k−1
c = δT (E

β
ρ +

3Eρ−1

Eρ−1
M− 2Eρ

Eρ−1
J+

(2Pr − 1)H) and the integrals J and H can be found in [52]. If we use the

amplitude α of the Fourier mode with wavenumber k we simply obtain an

oscillator with damping:

A(k)αtt + B(k)αt + C(k) = 0, (21)

where only the coefficient C(k) depends on the Froude number. Now with
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an acoustic forcing, the mean position of the flame is periodically displaced

by a planar sound wave. This leads to the front experiencing an effective

dimensionless acceleration given by:

gδT
S2
l

− ω̃aũa cos ω̃at, (22)

replacing the Froude number in C(k) with this dimensionless acceleration,

we have now a parametric oscillator with damping. Here ω̃a and ũa are the

reduced, acoustic frequency and acoustic amplitude respectively. A simple

change of variable [36] leads to a Mathieu equation [53], so that the different

zones, DL zone for low forcing (lower zone in red in Fig. 4), parametric

instability zone (upper zone in red in Fig. 4) and parametrically re-stabilized

flat flame in between can be computed. We use here an implementation using

Mathematica for the Mathieu functions, described in [54]. In the literature

simulations [55] can be found where the gravity term is varied sinusoidally

in time as in Eq. (22) to which our results can be compared, the boundary

conditions that we use to have a constant acoustic amplitude were described

previously.

In a case with a zero gravity term we can observe these regions in Fig. 4.

The zero acoustic amplitude line bordering on the lower red region is the well

known DL instability which at larger wavenumbers is stabilized by thermo-

diffusivity. The lower red region above it with small reduced acoustic ampli-

tude is the region of primary instability and the top red region is the region of

secondary/ parametric instability. And the light-colored region in the same

figure represents the parameters at which the flame is planar. The wavenum-

ber corresponding to the width of the domain k̃ and the multiples of k̃ are

indicated with black dots in Fig. 4. The reduced acoustic amplitude is given
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0 2 4 6

k̃ ×10
−1

0

5

10

15

ũ
a

Figure 4: Stability diagram for parametrically excited flames with different regions based
on the reduced acoustic amplitude and reduced wavenumber. The parameters are given
in Tab. B.2

by (ũa = urms/Sl), where urms is the root mean square (rms) of the acoustic

axial velocity measured at the flame position. The amplitude (A0) of the fluc-

tuations ǫ in Eq.(15) - (18), corresponding to the three cases illustrated in the

Fig. 4 are, A0 = 7.5× 10−4 for the lowest forcing applied, A0 = 2.5× 10−3

for the forcing that re-stabilizes the flame and A0 = 5.5× 10−3 for the high

amplitude acoustic forcing, and the reduced acoustic frequency is ω̃a = 3.40.

For a given acoustic amplitude, the flame is unstable relative to one possible

wavenumber if the black dot is inside one of the two red zones, DL zone at low

amplitude or parametric zone at large acoustic amplitude. For a low acoustic

amplitude we observe that only the wavenumber corresponding to the width

of the domain k̃ is unstable: we have only one cell in the domain. For an

intermediate amplitude no wavenumber is unstable: this is a parametrically

flat flame. For a large acoustic amplitude, several wavenumbers are unstable

(generally one is more unstable than the others), but not the lowest one, so

we have a flame with several small cells, this is a parametrically unstable
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flame. All these behaviors are observed below in Fig. 5.

(a) (b)

(c) (d)

Figure 5: Illustration of flame behavior in different regions of Fig. 4. (iso-contours of tem-
perature 1500K are plotted from left to right at every forcing acoustic period 10

−3
s.): (a)

Growth of DL instability without any acoustics; (b) Reduction DL instability amplitude
by low amplitude acoustic forcing (ũa = 1.36); (c) A stable planar flame obtained by
moderate amplitude acoustic forcing (ũa = 5.15); (d) Parametric instability due to high
amplitude acoustic forcing (ũa = 10.23).

The parameters necessary to obtain the stability diagram are given in

Tab. B.2. The chemistry along with the Schmidt numbers are also given.

(refer Tab. B.3)

As mentioned earlier, for a chosen wavenumber k̃ < k̃c (here k̃ = 0.08),

18



the amplitude of the perturbation on the flame front grows in the absence of

acoustics (see Fig. 5a); while the exact same initially perturbed flame front

in the presence of imposed acoustics behaves differently. In practice, it was

observed that the flame always chooses the most unstable wavenumber of the

stability diagram.

On imposition of a low amplitude acoustics (ũa = 1.36) the amplitude

of DL growth is reduced compared to the case without acoustics Fig. 5b.

Similarly when a moderate acoustic amplitude is imposed (ũa = 5.15),

the flame becomes and remains planar after sometime, as depicted by Fig. 5c,

because all corresponding wavenumbers are in the stable region.

And if the reduced amplitude is increased further (ũa = 10.23), the

wavenumber of the flame front switches to the most unstable harmonic (in

this case, the third one) as evidenced by Fig. 5d. There, iso-contours of

temperature were plotted at each acoustic period to illustrate a fundamental

characteristic of parametric instabilities: the flame front changes sign at every

acoustic period.

5. Self-excited flames in narrow channels

Having validated the canonical answer of the flame front to acoustic

perturbation, we may now study the thermo-acoustic instabilities, in which

the acoustics are now directly triggered by the flame, sometimes leading to

disastrous instabilities in the combustion chambers [31].

Hereafter, we consider thermo-acoustic instabilities in the narrow chan-

nel, depicted in Fig. 6. The flame is initialized with a 1D laminar flame profile

centered on at xf = 0.1, the rest of the domain is filled with fresh gases. The

19



flame front is initialized with a sine perturbation only when non-symmetric

flames are considered. Atmospheric pressure is imposed at the outlet, mak-

ing the boundary open to the exit of burnt gases but fully reflecting for the

acoustics.

Fresh gasesBurnt

Adiabatic wall (length L)

normalized flame position xf

Wall (width W )Outlet

Figure 6: A sketch of the narrow channel under consideration.

Laminar flame speed Sl, flame diffusive thickness δT and the thermal

gas expansion parameter ET , have been chosen to obtain a growth rate σ

comparable with [39]. To obtain δT = 10−4 m, whilst preserving the flame

speed Sl = 1m s−1, a flame thickening model as proposed in [56] is used.

Here a thickening factor of 4.7 is multiplied and divided to the diffusion

terms and the source term respectively. Note that the acoustic Reynolds

number defined as Rea = δT c0/ν0 is now 2225 (almost 4.7 times larger than

in [39]) and Lewis number is Le = 1. And lastly the mixture composition

is provided in Tab. B.3. Rest of the parameters used in the study of flame

propagation in the narrow channels are provided in Tab. B.1.

For reference, a strict comparison between ProLB results and those from

the study [39] using the same set of equations and parameters (single progress

variable equation and constant molecular weight) is given in Appendix C,

providing an additional validation for the present model.
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Through a number of numerical simulations, we shall successively (i)

check that the generated instabilities correspond to the channel’s natural

eigen frequency, (ii) provide new insight on the growth rate dependence on

width, and (iii) illustrate self-induced DL stabilization in the channel.

5.1. Eigenmode analysis

The first acoustic mode of a semi-open tube/channel of length L is the

quarter-wave frequency

f0 =
c0
4L

, (23)

where c0 is the gas sound speed. If a thin flame (δT ≪ L) is present in the

tube, one can approximate the first mode frequency f [43] as the solution of

tan

(

2πfL

c0
(1− xf )

)

tan

(

2πfL

cb
xf

)

= Γ, (24)

where

Γ = ρ0c0/ρbcb (25)

is the acoustic impedance ratio, and xf is the normalized flame position

defined in Eq. (14). Note that to derive Eq. (24), an 1D problem is assumed,

the flame is considered as a thin discontinuity separating fresh and burnt

conditions at position xf . Indeed, for xf = 0, corresponding to a tube

filled of fresh gases, Eq. (24) leads to the simple quarter-wave expression

corresponding to the fresh gases sound speed Eq. (23).

Let us now repeat the configuration presented in Fig. 3 using non-slip

adiabatic walls (L = 1200δT and W = 40δT , above the DL cut-off width),

and an asymmetric initial perturbation (case B). As stated earlier, a fixed
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pressure outlet (p = 1atm) is used to let the acoustic mode develop in the

channel.

Evolution for consumption speed and pressure at the closed end is re-

ported in Fig. 7.a. The mean consumption speed history indicates that the

flame directly becomes asymmetric (as in case B of Fig. 3), but both the

consumption speed and pressure at the wall now start oscillating, with max-

imum oscillations in the second half of the channel. Upon measuring the

period of the oscillation as a function of flame position xf , one can compare

the period of the instability with the period corresponding to the main tube

frequency Eq. (24). Fig. 7 compares the numerical period (black dots) with

the analytical formula (solid line). Expectingly, the period decreases from

its quarter-wave value obtained with the fresh gases sound speed c0 to the

value obtained using burnt gases sound speed cb, when the channel gases are

fully burnt. Fresh and burnt gases quarter-wave values Eq. (23) are denoted

in the plot by the horizontal dashed lines.
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Figure 7: Thermo-acoustics inside a channel of length L = 1200 δT and width W = 40
δT . (a) Flame consumption speed, Sc/Sl (Black) and Pressure at the closed end, Pw/Pa

(Red). (b) Period of oscillations (T ) for a flame propagating from xf = 0 to xf = 1

(Black); Acoustic eigen modes of the channel (red) from Eq. (24); top and bottom dashed
blue lines represent the fresh f0 and burnt fb quarter-wave values.
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5.2. A study of the instability gain

Having validated that the instability obtained in the previous Section

corresponds indeed to the expected instability, related to the quarter-wave

mode of the tube, let us now study the influence of the following parameters:

• flame shape (symmetric or asymmetric) and tube length,

• channel width.

Flame shape and tube length. The amplification of instabilities is a function

of both the flame shape and the eigen frequency. By studying the amplitude

gain of consumption speed oscillations in a similar configuration, Jiménez et

al. [39] recently showed that symmetric flames are more unstable at higher

frequencies, whereas non-symmetric flames respond more to lower frequen-

cies.

Since the excitation frequency corresponds to the quarter-wave mode,

this effect can readily be studied by varying the channel length. In the fol-

lowing, we consider channel length L = 800δT and L = 2400δT , while keeping

constant the width W = 40δT . In both tubes, we run two computations, one

initialized with a planar front (as in case A of Fig. 3) to let the symmetric

flame develop, and a second one with an asymmetric initial front (case B of

Fig. 3) to force early transition to asymmetric flame.

Figure 8 reports consumption speed histories in the four configurations.

In the short tube (Fig. 8a), it is clear that the symmetric flame (curve A)

is more prone to thermo-acoustic instability: the asymmetric flame does not

show any instability in such a short tube.
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When the eigen frequency is divided by 3 for a channel 3 times longer

(Fig. 8b), the opposite behavior is obtained: the asymmetric flame (B) is

strongly unstable, whereas the symmetric flame (A) only shows damped os-

cillations. Note that once case A transitions to asymmetric flame, the insta-

bility grows again.

Influence of channel width. To the authors’ knowledge, the question of the

instability gain dependence on channel width is not yet reported in the lit-

erature: parametric studies on such configurations are oftentimes expensive.

This is made easier with the present LB framework because of a significantly

reduced cost: we reported in [22] that simulation costs of the compressible

LB solver are comparable or lower than classical low-Mach reactive flows

solvers (in which acoustic waves are not resolved).

In the following, a channel of length L = 1200δT is considered, and

only asymmetric flames are considered (as in the case B of Fig. 3). Upon

varying the channel width from W = 17.5δT (just below cutoff, see Fig. 2)

up to W = 40δT , we observed a non-monotonous dependence of the flame

instability. Consumption speed histories for W = (17.5, 20, 30, 40)δT (resp.

cases A to D) are reported in Fig. 9.

For W below the cutoff value (case A), no DL instability occurs, and the

flame remains almost planar (as in Fig. 2c), with a normalized consumption

speed close to unity.

As expected, the mean values for consumption speed increases with the

channel width (case A to D) because the flame has more space to wrinkle

and develop a large area compared to the channel cross-section.
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Figure 8: Flame consumption speed depicting the instabilities in case of initially planar
(A) and initially perturbed (B) [Fig. 3] flames, in a channel of width W = 40 δT : (a)
Greater amplitude instabilities seen on symmetric flame (A) for shorter length channel
(L = 800 δT ); (b) Greater amplitude instabilities seen on non-symmetric flame (B) for
longer length channel. (L = 2400 δT )
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Figure 9: Flame consumption speed in a channel of length L = 1200 δT and different
widths: (A): W = 17.5 δT ; (B): W = 20 δT ; (C) W = 30 δT ; (D) W = 40 δT

However, for a channel width over twice the cut-off value (case D), a

very small gain was observed compared to intermediate width values (cases

B and C). Interestingly, for these intermediate widths values, one can also

observe a significant drop in mean consumption speed, before going back to

its steady laminar value. We believe it to be an attempt at flame stabilization

by intense thermo-acoustic excitation, a phenomenon to be discussed in the

next sub-section.

For further analysis, let us study the flame transfer function, linking

the gain of the thermo-acoustic instability with the frequency. The above

simulations are repeated in the channel, using non-reflecting conditions, and

imposing acoustic fluctuations as in Sec. 4. Asymmetric flames are left to

establish for 15ms (see Fig. 10a), time at which the forcing is started. Next,

we measure the ratio between the consumption speed amplitude and the
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velocity fluctuation imposed at the inlet (15).

Figure 10a presents the consumption speed histories for two forcing fre-

quencies: f =1500Hz and f =250Hz. These eigen frequencies correspond to

channel lengths ranging between (550 - 1540)δT for f =1500Hz and (3300 -

9300)δT for f =250Hz. The flame transfer functions for these two frequencies

are reported in Fig. 10b, for above cut-off width W = (20, 30, 40, 50)δT .

It can be observed that the gain increases with the increase of width at

low frequency (250Hz) - long channels (as seen in Fig. 10), whereas it de-

creases with the increase of width at high frequency (1500Hz) or shorter chan-

nels. This clearly indicates that the channel width has a non-monotonous

influence on the instability gain, for varying channel length (or frequency).

In addition, we can infer from Fig. 10b that the gain is lower for high

frequencies, a finding in line with the recent study of Jiménez et al. [39].

Note that, for very low frequencies (corresponding to length from 5000δT ),

it is reported that this tendency is inverted [39].

5.3. Flames in a long channel

As a closing section, we shall illustrate the variety of flame propagation

behaviors in a longer channel. As most examples above, the width is W =

40δT , but the length is now 2400δT , as in Fig. 8.b.

Figure 11.a presents the consumption speed evolution over time in the

channel (non-slip boundary conditions), the initially perturbed flame (B) in

Fig. 8.b, being a zoom of the same case in the early stages. The second plot

of Fig. 11 reports the normalized pressure at the closed end.

Four regions (Z1 to Z4) are identified in the plot, for which successive

28



0 0.005 0.01 0.015 0.02 0.025 0.03
1

1.2

1.4

1.6

1.8

2

Time (s)

Sc

Sl

A

B

C

D

(a)

20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

Width (δT )

A

A0

(b)

Figure 10: (a) Acoustic forcing on a flame in different width channels with frequency
f = 1500Hz in solid and f = 250Hz in dash. ((A): W = 20 δT ; (B): W = 30 δT ; (C):
W = 40 δT ; (D): W = 50 δT ); (b) Flame Transfer Function (A/A0) for different widths
with frequencies f = 1500Hz in solid and f = 250Hz in dash.
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flame contours are reported in Fig. 12. We will try, for each zone of Fig. 11,

to interpret the evolution of the flame shape coupled to the acoustic forcing.

Let us start with zone Z1. As seen in the first plot of Fig. 12, the

amplification of the acoustic pressure seen in this zone corresponds to a non-

symmetric shape for the flame, this shape oscillates at the acoustic period

(DL zone of a typical stability diagram such as Fig. 4) leading to acoustics

amplification according to the Rayleigh criterion.

We now turn to zone Z2 (second plot of Fig. 12). it can be seen on this

plot that after one acoustic period, the flame shape is inverted so that the

period of the flame shape is now twice the acoustic period, a typical signature

of the parametric instability zone of Fig. 4.

In zone Z3, the acoustic pressure as well as the consumption velocity

are now smaller. Figure 12.c where two periods of the acoustic forcing are

plotted show that we have now a symmetric shape for the flame (so that the

consumption velocity is smaller). The acoustic amplitude has been reduced

and the symmetric shape oscillates again at the acoustic period (we are back

in a DL zone of a typical stability diagram).

Then the evolution seen in zone Z4 corresponds to a transition of the

flame shape to a non-symmetric solution but the flame still oscillates at the

acoustic period. Flame profiles are shown in Fig. 12.d, for approximately

three acoustic periods.

Having failed to observe a parametrically re-stabilized flat flame in Fig. 11,

we reproduced the above simulation considering slip wall and reported the

results in Figs. 13 and 14 (with now only two zones identified: Z1, Z2).
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There are some differences between Fig. 11 (non slip walls) and Fig. 13

(slip walls). First of all, as shown in section 3, the DL instability is more

important with non slip walls, leading to a higher consumption velocity even

without acoustics. The slip wall case is actually more similar to what was

obtained in section 4 with periodic boundary conditions, where we observed

a perfectly flat parametrically restabilized flame.

The zone Z1 of Fig. 13 is very similar to the case of non-slip boundary

conditions, a non-symmetric shape oscillating at the acoustic period, but

the situation for zone Z2 is very different, the shape corresponds now to a

parametrically flat flame. A fast evolution towards a larger flame surface is

seen for a time close to 0.15 s.

Comparing Z3 in Fig. 11 and Z2 in Fig. 13, in which only the boundary

condition is modified, the authors are left to wonder if parametrically flat

flames may exist in such narrow channels with non-slip boundary conditions.

6. Conclusions and Perspectives

In this paper we applied, possibly for the first time, Lattice-Boltzmann

numerical methods to the problem of thermo-acoustic instability of premixed

flames. The classical configuration of flames propagating in tubes was se-

lected, where acoustics is directly coupled to the flame shape. It was possi-

ble to show, both for flames submitted to an imposed acoustic field, and for

self-induced thermo-acoustic instability, that the numerical method is able

to describe correctly the evolution of the flame.

Future works include studying thermo-acoustic instabilities in more re-

alistic configurations. Application to deflagration to detonation transition
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Figure 11: Thermo-acoustics inside a channel of length L = 2400 δT and width W = 40 δT :
(a) The Flame consumption speed and the different flame regimes observed; (b) Pressure
at the closed end wall.
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Figure 12: Iso-contours of temperature representing different regions of instabilities ob-
served in Fig. 11. The graph illustrates the evolution of consumption speed Sc with time
(in seconds). Red dots represent the time at which the contours are plotted.
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will also be investigated.

Acknowledgements

Carmen Jiménez is gratefully acknowledged for many fruitful discus-

sions, and for providing the results plotted in Fig. C.15. This research was

supported by ANR through the MALBEC project (ANR-20-CE05-0009).

Centre de Calcul Intensif d’Aix-Marseille and GENCI-TGCC/CINES (Grant

2021-A0092B11951) are acknowledged for granting access to their high per-

formance computing resources.

34



0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

1.21

1.31

(a)

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145

0.94

1.04

(b)

Figure 14: Iso-contours of temperature representing different regions of instabilities ob-
served in Fig. 13. The graph illustrates the evolution of consumption speed Sc with time
(in seconds). Red dots represent the time at which the contours are plotted.

35



Appendix A. LB method related expressions

Equilibrium and non-equilibrium functions can be truncated at second-

order as

f eq
i = wi

[

ρθ +
ρciαuα

c2s
+

H(2)
i,αβa

(2),eq
αβ

2c4s

]

,

fneq
i =

ωi

2c4s
H(2)

i,αβa
neq
αβ ,

(A.1)

where,

H(2)
i,αβ = ciαciβ − c2sδαβ, a

(2),eq
αβ = ρuαuβ,

aneqαβ = H(2)
i,αβ (fi − f eq

i ) ,
(A.2)

θ is the normalized temperature linked with pressure as p = ρc2sθ, using ideal

gas law, wi is the weight coefficient related to the discrete velocity ci and cs

is the lattice sound speed. We use the regular D3Q19 lattice, the ci and wi

of which can be easily found in the LBM literature e.g. [3].

The reconstruction of macroscopic variables reads

ρ(t+∆t,x) =
∑

f col
i + ρ(t,x)(1− θ(t,x))

(ρuα)(t+∆t,x) =
∑

ciαf
col
i .

(A.3)

Finally, the required forcing term is obtained as

FE
i =

ωi

2c4s
H(2)

i,αβ

[

c2suαρ,β + c2suβρ,α + δαβρc
2
s

(

2

3
− ηB

µ

)

uγ,γ

+∆(ρuαuβ)− δαβc
2
s∆[ρ(1− θ)]

]

,

(A.4)

with ηB is the bulk viscosity, and

∆(ρuαuβ) = (ρuαuβ)(t+∆t,x)− (ρuαuβ)(t,x),

∆[ρ(1− θ)] = ρ(t+∆t,x)(1− θ(t+∆t,x))− ρ(t,x)(1− θ(t,x)).
(A.5)
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Appendix B. Simulation parameters

Name Symbol Value

Mach number Ma 0.0028

Flame speed Sl 1m s−1

Activation energy Ea 30 kcalmol−1

Pre-exponential factor A 14.85× 1014 cm3 mol−1 s−1

Thermal diffusivity in unburnt state Dth 1× 10−4 m2 s−1

Flame diffusive thickness δT = Dth

Sl
1× 10−4 m

Constant pressure specific heat Cp 1250 J kg−1 K−1

Thermal expansion parameter ET = Tb

Tu
8

Zeldovich number β = Ea(Tb−Tu)

RT 2

b

5.5

Lewis number Le 1

Prandtl number Pr = ν
Dth

0.15

Acoustic Reynolds number Rea =
δT .c0
ν0

2225

Space discretization step ∆x 5× 10−5 m

Time discretization step ∆t 2.624× 10−8 s

Table B.1: Parameters used in Sec. 3 and Sec. 5
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Name Symbol Value

Flame speed Sl 0.20m s−1

Activation energy Ea 30 kcalmol−1

Pre-exponential factor A 4.45× 1013 cm3mol−1 s−1

Thermal diffusivity in unburnt state Dth 2.17× 10−5 m2 s−1

Flame diffusive thickness δT = Dth

Sl
1.085× 10−4 m

Flame transit time τ = Dth

S2

l

5.425× 10−4 s

Expansion parameter Eρ =
ρu
ρb

7.7

Reduced acoustic frequency ω̃a = 2πfτ 3.40

Inlet perturbation amplitude A0 7.5× 10−4, 2.5× 10−3, 5.5× 10−3

Wave number of structures on the flame k = 2πδT
λ

0.08

Prandtl Number Pr 0.68

Markstein Number M 4.5

Space discretization step ∆x 5× 10−5 m

Time discretization step ∆t 2.624× 10−8 s

Table B.2: Parameters used in Sec. 4
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Name Unburnt Burnt Sck

C3H8 0.0569794 0 1.241

O2 0.260046 0.0533094 0.728

CO2 0 0.170602 0.941

H2O 0 0.0931139 0.537

N2 0.682975 0.682975 0.690

Table B.3: Mass fraction composition of fresh and burnt gases composition used in Sec. 3,
4 and 5, and the corresponding Schmidt numbers Sck (used only in Sec. 4: unity Lewis
number is used elsewhere).
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Appendix C. Code comparison with the reference paper [39]

To further validate the LB approach, the model from Jiménez et al. [39],

with a single mass fraction equation, was also implemented. Comparison for

the pressure evolution at the end wall is provided in Fig. C.15, as obtained

with both flow solvers. The tested configuration corresponds exactly to the

top plot of Fig. 10.b in [39]. From the results, we can see that the initial

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.95

1

1.05

tSL/L

Pw

Pa

Figure C.15: Pressure at the closed end wall of a channel of L = 2400 δT and width W =
40 δT : Blue - ProLB ; Red (dashed) - [39]

stages (up to tSL/L ≈ 0.2) differ, most likely due to a different initialization

despite our best efforts. Nonetheless, once the flame is well into the tube, an

excellent agreement is obtained, both in terms of frequency and amplitude.
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