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We present possibly for the first time Lattice-Boltzmann numerical simulations of thermo-acoustic instabilities of premixed flames. We study flames interacting with an imposed acoustic field where flames submitted to a parametric instability can be observed, as well as plane flames re-stabilized by the acoustic forcing. Self-induced thermo-acoustic oscillations of flames propagating in narrow channels are also studied, indicating an unexpected dependency with the channel width. For both excited and self-excited flames, results confirm that Lattice-Boltzmann method can capture the complex coupling between flame dynamics and acoustics.

Introduction

Lattice-Boltzmann (LB) methods [START_REF] Chen | Lattice Boltzmann method for fluid flows[END_REF] have become a mature technology in the field of isothermal external aerodynamics and aeroacoustics [START_REF] Sengissen | Simulations of lagoon landing-gear noise using Lattice Boltzmann solver[END_REF]. Their base algorithm is the so-called Stream & collide procedure [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF], in which all convective terms are accounted for by the Stream step, consisting of effortlessly moving data around on a Cartesian mesh (e.g. without the need of any interpolation). After the Stream step, the time is frozen via a splitting technique and a Collision step ensues, accounting for the non-linearity of the stress tensor only as a relaxation. The particular structure of the Stream & collide algorithm, which can be seen as a Cartesian based solver in which only nearest-neighbors are required, forms the base of the success of LB methods [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF], granting excellent dissipation properties [START_REF] Marié | Comparison between Lattice Boltzmann method and navier-stokes high order schemes for computational aeroacoustics[END_REF] at an affordable cost [START_REF] Löhner | Towards overcoming the LES crisis[END_REF].

Lifting the isothermal hypothesis and extending LB methods to compressible and reactive flows is non-trivial and a long-standing issue. One of the first models for reactive flows was presented by Succi et al [START_REF] Succi | Lattice kinetic theory for numerical combustion[END_REF] almost 25 years ago. Several contributions by Yamamoto and coworkers [START_REF] Filippova | A Novel Lattice BGK Approach for Low Mach Number Combustion[END_REF][START_REF] Yamamoto | Simulation of combustion field with lattice Boltzmann method[END_REF][START_REF] Yamamoto | Combustion Simulation using the Lattice Boltzmann Method[END_REF][START_REF] Yamamoto | LB simulation on soot combustion in porous media[END_REF] ensued.

Yet, no clear consensus has emerged as to the best way to simulate singlecomponent compressible flows using LBM, still an active topic of investigation among the community (see, e.g. [START_REF] Guo | Improved standard thermal Lattice Boltzmann model with hybrid recursive regularization for compressible laminar and turbulent flows[END_REF][START_REF] Saadat | Extended Lattice Boltzmann model for gas dynamics[END_REF][START_REF] Hanada | Lattice Boltzmann method for compressible euler equations based on exact kinetic system[END_REF][START_REF] Latt | Efficient supersonic flow simulations using Lattice Boltzmann methods based on numerical equilibria[END_REF] for selected studies published in the past year alone). In parallel of recent studies carried out in our group for compressible flows [START_REF] Feng | Hybrid recursive regularized thermal Lattice Boltzmann model for high subsonic compressible flows[END_REF][START_REF] Farag | A pressure-based regularized Lattice-Boltzmann method for the simulation of compressible flows[END_REF][START_REF] Guo | An efficient Lattice Boltzmann method for compressible aerodynamics on d3q19 lattice[END_REF], we have developed a model to tackle reactive flows, and subsequently validated it on canonical combustion applications [START_REF] Feng | A Lattice-Boltzmann model for lowmach reactive flows[END_REF][START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF] and a turbulent bluff-body flame [START_REF] Tayyab | Lattice-Boltzmann modelling of a turbulent bluff-body stabilized flame[END_REF]. The method was further validated following a combustion DNS benchmark [START_REF] Abdelsamie | The Taylor-Green vortex as a benchmark for high-fidelity combustion simulations using low-mach solvers[END_REF], indicating that the CPU cost of a compressible reactive flow simulation is comparable or less than that of classical Navier-Stokes solvers in the low-Mach number approximation [START_REF] Boivin | Benchmarking a Lattice-Boltzmann solver for reactive flows: Is the method worth the effort for combustion?[END_REF]. Note that another class LB methods is available for compressible flows -usually referred to as Discrete Boltzmann Methods -with increased focus on the thermodynamic non-equilibrium behaviors [START_REF] Xu | Lattice boltzmann modeling and simulation of compressible flows[END_REF][START_REF] Yan | Lattice boltzmann model for combustion and detonation[END_REF]. They have been applied successfully to multiphase [START_REF] Zhang | Kinetic modeling of multiphase flow based on simplified enskog equation[END_REF], multicomponent flows [START_REF] Lin | Multiple-relaxation-time discrete boltzmann modeling of multicomponent mixture with nonequilibrium effects[END_REF], as well as detonations [START_REF] Lin | Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method[END_REF][START_REF] Lin | Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects[END_REF].

Given (i) the success of LB methods in the field of aeroacoustics [START_REF] Casalino | Lattice-Boltzmann aeroacoustic analysis of the lagoon landing-gear configuration[END_REF][START_REF] Khorrami | Simulation-based airframe noise prediction of a full-scale, full aircraft[END_REF] and (ii) its competitiveness for combustion [START_REF] Boivin | Benchmarking a Lattice-Boltzmann solver for reactive flows: Is the method worth the effort for combustion?[END_REF], the question of its applicability to thermo-acoustic instabilities (see a recent review for laminar premixed flames [START_REF] Schuller | Dynamics and control of premixed combustion systems based on flame transfer and describing functions[END_REF]) naturally arises and shall be the center of this contribution.

In the present paper, we will apply the LB method to the problem of interaction with acoustics of premixed flames propagating in tubes (or in our case in 2D channels), which has been a classical problem since the work of Markstein [START_REF] Markstein | Interaction of Flow Pulsations and Flame Propagation[END_REF] (see also [START_REF] Searby | Acoustic instability in premixed flames[END_REF][START_REF] Dubey | Experimental and theoretical study of secondary acoustic instability of downward propagating flames: Higher modes and growth rates[END_REF]). Without acoustics, a flame propagating in a tube is submitted to the hydrodynamic Darrieus-Landau (DL) instability, leading to a cellular front for flames propagating downward. We have recently studied this instability with an LB method, and we were able to recover both linear and non-linear premixed flame propagation regimes, by comparing with experiments in Hele-Shaw cells [START_REF] Tayyab | Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[END_REF]. With acoustics the problem is even more challenging for the hybrid LB solver: there is a two-way coupling between acoustics and the shape of the flame, and as the flame propagates, acoustics develops, typically in the middle of the tube. A simpler configuration is to study the forcing of the flame by an imposed acoustic field, usually obtained with a loudspeaker [START_REF] Searby | A parametric acoustic instability in premixed flames[END_REF], but recently a vibroacoustic coupling has also been used [START_REF] Radisson | Coupling of vibro-acoustic waves with premixed flame[END_REF][START_REF] Radisson | Forcing of a flame by a periodic flow in a Hele-Shaw burner[END_REF]. In this paper, we will study both problems: a flame forced by a given acoustic field and the amplification of acoustics during the flame propagation in a 2D narrow channel [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF][START_REF] Petchenko | Flame-sound interaction in tubes with nonslip walls[END_REF]. This paper consists of three main Sections. After a brief reminder of the LB hybrid model proposed [START_REF] Farag | A pressure-based regularized Lattice-Boltzmann method for the simulation of compressible flows[END_REF][START_REF] Tayyab | Lattice-Boltzmann modelling of a turbulent bluff-body stabilized flame[END_REF][START_REF] Boivin | Benchmarking a Lattice-Boltzmann solver for reactive flows: Is the method worth the effort for combustion?[END_REF][START_REF] Tayyab | Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[END_REF] and of the behavior of freely propagating unstable flames in slip and non-slip channels, we will study how acoustic forcing influences premixed flame propagation, and in particular its intrinsic DL instability. A large section is then dedicated to study selfinduced thermo-acoustic instabilities in narrow channels, providing new insights on the instability growth rate dependence on channel width.

Lattice-Boltzmann model

Numerical simulations are carried out with the ProLB software, which was recently adapted to tackle combustion problems [18-20, 22, 35]. The compressible core corresponds to the pressure-based LB model presented by Farag et al. for compressible flows [START_REF] Farag | A pressure-based regularized Lattice-Boltzmann method for the simulation of compressible flows[END_REF]. It consists of an LB solver, accounting for mass and momentum conservation, coupled with a Finite Difference (FD) solver for energy and species equations.

In the LB solver, the probability density function f i of finding gas with velocity c i at position x is solved via a classical stream and collide algorithm, [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF] following

f i (t + ∆t, x) = f col i (t, x -c i ∆t), (1) 
for the streaming step, accounting for the convective part of Euler equations.

In the streaming equation, c i corresponds to the i th discrete velocity of the D3Q19 lattice [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF], and (∆x, ∆t) are the space and time discretisation. The collision then reads

f col i (t, x) = f eq i (t, x) + 1 - ∆t τ f neq i (t, x) + ∆t 2 F E i (t, x), (2) 
corresponding to the hybrid regularized collision model presented by Jacob et al. [START_REF] Jacob | A new hybrid recursive regularised bhatnagar-gross-krook collision model for Lattice Boltzmann methodbased large eddy simulation[END_REF] relaxing f i towards the equilibrium population f eq i at a relaxation time τ . τ is a function of the viscosity (µ), defined as τ = µ ρc 2 s + ∆t 2 ; here c s is the constant characteristic lattice velocity [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF]. Full expressions for the equilibrium and non-equilibrium functions (f eq i , f neq i

) and forcing term F E i are provided in Appendix A for completeness, but the interested reader is referred to [START_REF] Farag | A pressure-based regularized Lattice-Boltzmann method for the simulation of compressible flows[END_REF][START_REF] Tayyab | Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[END_REF] for their derivation.

Farag et al. [START_REF] Farag | Consistency study of Lattice-Boltzmann schemes macroscopic limit[END_REF] showed via Taylor expansion the equivalence of the above system with mass and momentum equations

∂ρ ∂t + ∂ ∂x α (ρu α ) = 0, ∂ρu β ∂t + ∂ ∂x α (ρu α u β ) = - ∂p ∂x β + ∂T αβ ∂x α , (3) 
at second-order in time and space, where notations follow Poinsot & Veynante combustion textbook [START_REF] Poinsot | Theoretical and numerical combustion[END_REF]: p is the thermodynamic pressure following a perfect multi-constituent gas law, and T αβ is the viscous tensor.

Following our previous studies, energy and species equations are solved in a coupled way, under non-conservative form [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF][START_REF] Tayyab | Lattice-Boltzmann modelling of a turbulent bluff-body stabilized flame[END_REF][START_REF] Boivin | Benchmarking a Lattice-Boltzmann solver for reactive flows: Is the method worth the effort for combustion?[END_REF][START_REF] Tayyab | Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[END_REF]. The species equations read

ρ ∂Y k ∂t + ρu α ∂Y k ∂x α = ∂ ∂x α (-ρV k,α Y k ) + ωk , (4) 
where Y k is the mass fraction of the k th species, V k,α is the α -component of its diffusion velocity, and ωk its reaction rate. Energy equation is solved in its sensible form as

ρ ∂e ∂t + (ρu α ) ∂e ∂x α = - ∂q α ∂x α + (T αβ -pδ αβ ) ∂u α ∂x β , (5) 
where

e = k Y k e k , e k = T T 0 C v,k (T )dT - RT 0 W k + ∆h 0 f,k , (6) 
obtained with NASA polynomials. R = 8.314 J mol -1 K -1 is the perfect gas constant, T 0 is the standard reference temperature and W k is the atomic weight of species k. Lastly, the heat flux q α in Eq. ( 5) reads

q α = -λ ∂T ∂x α + ρ N k=1 h k Y k V k,α , (7) 
with λ the thermal conductivity, obtained from the temperature-dependent viscosity µ assuming constant Prandtl number P r:

λ = µc p P r . (8) 
Diffusion velocities are defined as in [START_REF] Tayyab | Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[END_REF], with constant Schmidt numbers for each species and a correction velocity to enforce numerical mass conservation [START_REF] Poinsot | Theoretical and numerical combustion[END_REF].

Note that the choice of treating the additional quantities (energy and species) as single scalars rather than additional distributions was investigated at length in previous studies (see, e.g. [START_REF] Farag | A pressure-based regularized Lattice-Boltzmann method for the simulation of compressible flows[END_REF][START_REF] Zhao | Toward fully conservative hybrid lattice boltzmann methods for compressible flows[END_REF][START_REF] Farag | A unified hybrid lattice-boltzmann method for compressible flows: bridging between pressure-based and density-based methods[END_REF]) and was shown to preserve excellent dissipation properties, as well as the 2 nd order accuracy, for a very competitive cost [START_REF] Tayyab | Lattice-Boltzmann modelling of a turbulent bluff-body stabilized flame[END_REF][START_REF] Boivin | Benchmarking a Lattice-Boltzmann solver for reactive flows: Is the method worth the effort for combustion?[END_REF]. For instance, in [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF], the cost per time step of including 9 species (transport properties and source terms included via a 12step hydrogen mechanism) and energy is less than four times that of classical athermal LBM.

Numerical parameters. All simulations hereafter are performed using a spatial discretization ∆x = δ L /13, where δ L is the thermal flame thickness, based on maximum temperature gradient [START_REF] Poinsot | Theoretical and numerical combustion[END_REF]. This was shown to be sufficient for an accurate resolution of the flame when single-step chemistry is used [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF][START_REF] Tayyab | Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[END_REF]. The discretization is also very close to the value ∆x ≈ δ L /15 used by Jiménez et al [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF]. The time-step is chosen setting 0.6 as maximum Courant-Friedrichs-Lewy number, defined as

CFL = |u ∞ | + c ∆x/∆t , (9) 
where c = √ γ.r.T is the sound speed, γ is the heat capacity ratio and r = R/W , where W is the mean molecular weight.

Thermo-chemical parameters. Throughout the paper, the gas consists of a multi-constituent mixture (

C 3 H 8 , O 2 , CO 2 , H 2 O, N 2 )
, in which a one-step propane chemistry is considered:

C 3 H 8 + 5 O 2 --→ 3 CO 2 + 4 H 2 O (10) 
The net progress rate of the reaction is expressed as

Q = A.e -Ea/RT .C C 3 H 8 .C O 2 , (11) 
where C k is the molar concentration of species k , A is the pre-exponential

factor and E a is the activation energy. A temperature power-law is assumed for the viscosity µ (see, e.g. p. 231 in [START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF])

µ = µ 0 T T 0 0.7 , (12) 
µ 0 = 1.782 × 10 -5 kg m -1 s -1 and T 0 = 300 K.

The composition of fresh gases is then set as to obtain a target expansion ratio. Finally, the Arrhenius parameters, Schmidt and Prandtl numbers chosen as to obtain targeted values for flame speed and flame thickness.

Freely propagating flames

Preliminary definitions

Let us introduce the following quantities used throughout this study. As in [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF], the consumption speed is defined as

S c = - 1 ρ 0 Y 0 F D W 0 L 0 ωF dxdy, (13) 
where F denotes the fuel (propane) component. It is often normalized with S l , the laminar flame speed. Subscripts 0 (e.g. ρ 0 ) denote the fresh gases properties, whereas b denotes burnt gases properties.

Channel dimensions are normalized by the flame diffusive thickness δ T , defined as the ratio of thermal diffusivity in fresh gases to the laminar flame speed (see Tab. B.1 for the numerical values). With the parameters used here, δ L ≈ 6δ T .

For the two-dimensional flames studied here, the flame position is computed as an integral over the channel volume V

x f = 1 V T -T 0 T b -T 0 dV. (14) 
It is oriented such as x f = 0 when the tube is filled with fresh gases and

x f = 1 when filled with burnt gases.

Darrieus-Landau instability

Our starting point is our recent experimental/numerical investigation of the DL instability in the context of Hele-Shaw cell [START_REF] Tayyab | Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[END_REF]. In this article, we successfully validated the growth rate and linear behavior of the DL instability, and in particular its gain dependence on wavelength, illustrated in 

Cut-off width in presence of walls

To study the growth of a single wave perturbation in Fig. 1, a twodimensional periodic domain of width λ was considered, with two open ends.

In transitioning to channel flames, let us first study the impact of using the following boundary conditions on the cut-off wave length:

• periodic conditions, as in Fig. 1 and [START_REF] Tayyab | Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[END_REF],

• slip adiabatic walls (or symmetry boundary condition),

• non-slip adiabatic walls.

With the parameters detailed in Tab. B.1, simulations were carried out with the three aforementioned boundary conditions as to assess their impact on the DL cutoff wave length. In the last plot of Fig. 2e, the corresponding normalized consumption speeds are reported. Because of the change in flame surface, the front is significantly accelerated in all configurations W > λ c , whereas it stays to values close to its laminar value S l when the instability damps (W < λ c ).

By comparing the periodic and slip conditions results of Figs. 1 and2, we can deduce that the cut-off wave length is approximately halved using slip conditions (22.5 < λ c /δ T < 25, vs 40 < λ c /δ T < 45). This result is rather intuitive: an adiabatic slip wall is equivalent to a symmetry condition, so the pattern observed with periodic conditions can be reproduced with half the width (and then mirrored to obtain the periodic case).

Imposing u = 0 at the wall significantly modifies the flow-field by establishing a Poiseuille velocity profile. For this reason, the flame front does not remain exactly planar even for W < λ c , and progresses slightly faster close to the wall (see Fig. 2c). The cut-off wavelength is also significantly decreased

(17.5 < λ c /δ T < 19, vs 22.5 < λ c /δ T < 25).
Imposing non-slip conditions also leads to a more slanted flame above Slip the cut-off width, leading to a significant increase in consumption speed.

Narrow channel: symmetric vs asymmetric flames

We have seen above that a perturbed flame turns to non-symmetric flame above a certain cut-off width, but if the initial flame profile is planar, the flame shape undergoes a change and becomes perfectly symmetric with the hump always pointing towards the burnt gases exit. It was found that the flame shape has two viable solutions [START_REF] Dejoan | Critical conditions for nonsymmetric flame propagation in narrow channels: Influence of the flow rate, the thermal expansion, the lewis number and heat-losses[END_REF] and it always chooses the nonsymmetric solution after some propagation time.

These two solutions are shown in Fig. 3. Non-slip, adiabatic walls on the top and bottom with acoustically non-reflecting boundaries on the left and right are considered. Though it can be clearly seen that the consumption speed and the flame curvature of non-symmetric flame in both cases is the same, this phenomenon is important because the acoustics response of symmetric and non-symmetric flame were found to be very different [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF].

Acoustically forced flames

Before carrying on to study the self-excited thermo-acoustic instabilities in narrow channels, it is important to check that the flame responds properly to imposed acoustic perturbations.

Let us consider a single wave perturbed flame inside a 2D periodic domain, with a non-reflecting outlet. An acoustic forcing where only the (u + c) mode is triggered is used to inject acoustic waves at the inlet. The imposed acoustic field is such that, the wavelength of these acoustic waves is much larger than the thermal flame thickness (δ L ) and due to the non-reflecting conditions on the outlet they are not reflected back. The implementation details of the injection of the acoustic waves at the inlet are provided below:

u = u 0 + u ′ = u 0 + γrT 0 ǫ (15) 
p = p 0 + p ′ = p 0 (1 + γǫ) (16) 
ρ = ρ 0 + ρ ′ = ρ 0 (1 + ǫ) (17) 
T = T 0 + T ′ = T 0 (1 + [γ -1]ǫ) (18) 
Here x 0 and x ′ represent the mean and fluctuating quantities respectively and ǫ << 1 is the fluctuation applied in the sinusoidal form as ǫ = A 0 sin 2πf t, where A 0 is the fluctuation amplitude and f the frequency of the sinusoidal fluctuation. This formulation allows to selectively trigger the acoustic mode associated to the (u + c) wave [START_REF] Chu | Non-linear interactions in a viscous heatconducting compressible gas[END_REF] on top of the mean flow u 0 .

Markstein [START_REF] Markstein | Interaction of Flow Pulsations and Flame Propagation[END_REF], depending on the amplitude of the reduced acoustic velocity ( ũa ), noticed two distinct unstable regions: a region corresponding to a low acoustic excitation where the growth of the intrinsic instability (DL) is reduced and a higher acoustic excitation region also called a parametric instability region where the structures on the flame oscillate at half the acoustic frequency (twice the acoustic period). And in between these regions he observed a stable region where the flame becomes stable (planar) (see also [START_REF] Baillot | Parametric Response of a Conical Flame to Acoustic Waves[END_REF] for the case of a conical flame).

We give here a short summary of the theory of parametric forcing of the flame by the acoustic field presented in [START_REF] Searby | A parametric acoustic instability in premixed flames[END_REF] (see also [START_REF] Bychkov | Analytical scalings for flame interaction with sound waves[END_REF][START_REF] Yáñez | The acoustic-parametric instability for hydrogen-air mixtures[END_REF]).

The effect of the acoustic forcing is, in this geometry, directly related to the characteristics of the hydrodynamic instability of the flame. It is well known that the equation for the growth rate of this instability is given by a quadratic equation [START_REF] Tayyab | Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability[END_REF][START_REF] Clavin | The influence of the temperature dependence of diffusivities on the dynamics[END_REF]:

A(k)σ 2 + B(k)σ + C(k) = 0, ( 19 
)
where σ is the growth rate of the perturbation with wavenumber k. A(k), B(k), C(k) are coefficients depending on gas expansion E ρ = ρ u /ρ b , Markstein number M, laminar flame speed S l , flame thickness δ T = D th /S l , Prandtl number P r and Froude number F r = S 2 l /gδ T (g is the acceleration due to gravity) as

A(k) = E ρ + 1 E ρ + E ρ -1 E ρ kδ T M -J E ρ E ρ -1 , B(k) = S l k 2 + 2E ρ kδ T (M -J) , C(k) = E ρ -1 E ρ kδ T F r + S 2 l k 2 (E ρ -1) k k c -(E ρ -1)(1 + 1 E ρ F r (M -J E ρ E ρ -1 )) , (20) 
where the cutoff wavenumber k c is given by k

-1 c = δ T (E β ρ + 3Eρ-1 Eρ-1 M-2Eρ
Eρ-1 J + (2P r -1)H) and the integrals J and H can be found in [START_REF] Clavin | The influence of the temperature dependence of diffusivities on the dynamics[END_REF]. If we use the amplitude α of the Fourier mode with wavenumber k we simply obtain an oscillator with damping:

A(k)α tt + B(k)α t + C(k) = 0, (21) 
where only the coefficient C(k) depends on the Froude number. Now with an acoustic forcing, the mean position of the flame is periodically displaced by a planar sound wave. This leads to the front experiencing an effective dimensionless acceleration given by:

gδ T S 2 l -ωa ũa cos ωa t, (22) 
replacing the Froude number in C(k) with this dimensionless acceleration,

we have now a parametric oscillator with damping. Here ωa and ũa are the reduced, acoustic frequency and acoustic amplitude respectively. A simple change of variable [START_REF] Searby | A parametric acoustic instability in premixed flames[END_REF] leads to a Mathieu equation [START_REF] Mclachlan | Theory and application of Mathieu functions[END_REF], so that the different zones, DL zone for low forcing (lower zone in red in Fig. 4), parametric instability zone (upper zone in red in Fig. 4) and parametrically re-stabilized flat flame in between can be computed. We use here an implementation using Mathematica for the Mathieu functions, described in [START_REF] Radisson | Dynamique non linéaire de fronts de flammes: expériences et modélisation[END_REF]. In the literature simulations [START_REF] Denet | Numerical Study of Premixed Flames Parametric Acoustic Instability[END_REF] can be found where the gravity term is varied sinusoidally in time as in Eq. ( 22) to which our results can be compared, the boundary conditions that we use to have a constant acoustic amplitude were described previously.

In a case with a zero gravity term we can observe these regions in Fig. 4.

The zero acoustic amplitude line bordering on the lower red region is the well known DL instability which at larger wavenumbers is stabilized by thermodiffusivity. The lower red region above it with small reduced acoustic amplitude is the region of primary instability and the top red region is the region of for the forcing that re-stabilizes the flame and A 0 = 5.5 × 10 -3 for the high amplitude acoustic forcing, and the reduced acoustic frequency is ωa = 3.40.

For a given acoustic amplitude, the flame is unstable relative to one possible wavenumber if the black dot is inside one of the two red zones, DL zone at low amplitude or parametric zone at large acoustic amplitude. For a low acoustic amplitude we observe that only the wavenumber corresponding to the width of the domain k is unstable: we have only one cell in the domain. For an intermediate amplitude no wavenumber is unstable: this is a parametrically flat flame. For a large acoustic amplitude, several wavenumbers are unstable (generally one is more unstable than the others), but not the lowest one, so we have a flame with several small cells, this is a parametrically unstable flame. All these behaviors are observed below in Fig. 5. As mentioned earlier, for a chosen wavenumber k < kc (here k = 0.08),

(a) (b) (c) (d)
the amplitude of the perturbation on the flame front grows in the absence of acoustics (see Fig. 5a); while the exact same initially perturbed flame front in the presence of imposed acoustics behaves differently. In practice, it was observed that the flame always chooses the most unstable wavenumber of the stability diagram.

On imposition of a low amplitude acoustics ( ũa = 1.36) the amplitude of DL growth is reduced compared to the case without acoustics Fig. 5b.

Similarly when a moderate acoustic amplitude is imposed ( ũa = 5.15), the flame becomes and remains planar after sometime, as depicted by Fig. 5c, because all corresponding wavenumbers are in the stable region.

And if the reduced amplitude is increased further ( ũa = 10.23), the wavenumber of the flame front switches to the most unstable harmonic (in this case, the third one) as evidenced by Fig. 5d. There, iso-contours of temperature were plotted at each acoustic period to illustrate a fundamental characteristic of parametric instabilities: the flame front changes sign at every acoustic period.

Self-excited flames in narrow channels

Having validated the canonical answer of the flame front to acoustic perturbation, we may now study the thermo-acoustic instabilities, in which the acoustics are now directly triggered by the flame, sometimes leading to disastrous instabilities in the combustion chambers [START_REF] Schuller | Dynamics and control of premixed combustion systems based on flame transfer and describing functions[END_REF].

Hereafter, we consider thermo-acoustic instabilities in the narrow channel, depicted in Fig. 6. The flame is initialized with a 1D laminar flame profile centered on at x f = 0.1, the rest of the domain is filled with fresh gases. The flame front is initialized with a sine perturbation only when non-symmetric flames are considered. Atmospheric pressure is imposed at the outlet, mak-

ing the boundary open to the exit of burnt gases but fully reflecting for the acoustics.

Fresh gases Burnt

Adiabatic wall (length L) normalized flame position x f Laminar flame speed S l , flame diffusive thickness δ T and the thermal gas expansion parameter E T , have been chosen to obtain a growth rate σ comparable with [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF]. To obtain δ T = 10 -4 m, whilst preserving the flame speed S l = 1 m s -1 , a flame thickening model as proposed in [START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF] is used.

Wall (width W ) Outlet

Here a thickening factor of 4.7 is multiplied and divided to the diffusion terms and the source term respectively. Note that the acoustic Reynolds number defined as Re a = δ T c 0 /ν 0 is now 2225 (almost 4.7 times larger than in [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF]) and Lewis number is Le = 1. And lastly the mixture composition is provided in Tab. B.3. Rest of the parameters used in the study of flame propagation in the narrow channels are provided in Tab. B.1.

For reference, a strict comparison between ProLB results and those from the study [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF] using the same set of equations and parameters (single progress variable equation and constant molecular weight) is given in Appendix C, providing an additional validation for the present model. Through a number of numerical simulations, we shall successively (i) check that the generated instabilities correspond to the channel's natural eigen frequency, (ii) provide new insight on the growth rate dependence on width, and (iii) illustrate self-induced DL stabilization in the channel.

Eigenmode analysis

The first acoustic mode of a semi-open tube/channel of length L is the quarter-wave frequency

f 0 = c 0 4L , ( 23 
)
where c 0 is the gas sound speed. If a thin flame (δ T ≪ L) is present in the tube, one can approximate the first mode frequency f [START_REF] Poinsot | Theoretical and numerical combustion[END_REF] as the solution of

tan 2πf L c 0 (1 -x f ) tan 2πf L c b x f = Γ, (24) 
where

Γ = ρ 0 c 0 /ρ b c b ( 25 
)
is the acoustic impedance ratio, and x f is the normalized flame position defined in Eq. ( 14). Note that to derive Eq. ( 24), an 1D problem is assumed, the flame is considered as a thin discontinuity separating fresh and burnt conditions at position x f . Indeed, for x f = 0, corresponding to a tube filled of fresh gases, Eq. ( 24) leads to the simple quarter-wave expression corresponding to the fresh gases sound speed Eq. ( 23).

Let us now repeat the configuration presented in Fig. 3 using non-slip adiabatic walls (L = 1200δ T and W = 40δ T , above the DL cut-off width), and an asymmetric initial perturbation (case B). As stated earlier, a fixed pressure outlet (p = 1atm) is used to let the acoustic mode develop in the channel.

Evolution for consumption speed and pressure at the closed end is reported in Fig. 7.a. The mean consumption speed history indicates that the flame directly becomes asymmetric (as in case B of Fig. 3), but both the consumption speed and pressure at the wall now start oscillating, with maximum oscillations in the second half of the channel. Upon measuring the period of the oscillation as a function of flame position x f , one can compare the period of the instability with the period corresponding to the main tube frequency Eq. ( 24). Fig. 7 compares the numerical period (black dots) with the analytical formula (solid line). Expectingly, the period decreases from its quarter-wave value obtained with the fresh gases sound speed c 0 to the value obtained using burnt gases sound speed c b , when the channel gases are fully burnt. Fresh and burnt gases quarter-wave values Eq. ( 23) are denoted in the plot by the horizontal dashed lines. 

A study of the instability gain

Having validated that the instability obtained in the previous Section corresponds indeed to the expected instability, related to the quarter-wave mode of the tube, let us now study the influence of the following parameters:

• flame shape (symmetric or asymmetric) and tube length,

• channel width.

Flame shape and tube length. The amplification of instabilities is a function of both the flame shape and the eigen frequency. By studying the amplitude gain of consumption speed oscillations in a similar configuration, Jiménez et al. [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF] recently showed that symmetric flames are more unstable at higher frequencies, whereas non-symmetric flames respond more to lower frequencies.

Since the excitation frequency corresponds to the quarter-wave mode, this effect can readily be studied by varying the channel length. In the following, we consider channel length L = 800δ T and L = 2400δ T , while keeping constant the width W = 40δ T . In both tubes, we run two computations, one initialized with a planar front (as in case A of Fig. 3) to let the symmetric flame develop, and a second one with an asymmetric initial front (case B of Fig. 3) to force early transition to asymmetric flame.

Figure 8 reports consumption speed histories in the four configurations.

In the short tube (Fig. 8a), it is clear that the symmetric flame (curve A) is more prone to thermo-acoustic instability: the asymmetric flame does not show any instability in such a short tube.

When the eigen frequency is divided by 3 for a channel 3 times longer (Fig. 8b), the opposite behavior is obtained: the asymmetric flame (B) is strongly unstable, whereas the symmetric flame (A) only shows damped oscillations. Note that once case A transitions to asymmetric flame, the instability grows again.

Influence of channel width. To the authors' knowledge, the question of the instability gain dependence on channel width is not yet reported in the literature: parametric studies on such configurations are oftentimes expensive. This is made easier with the present LB framework because of a significantly reduced cost: we reported in [START_REF] Boivin | Benchmarking a Lattice-Boltzmann solver for reactive flows: Is the method worth the effort for combustion?[END_REF] that simulation costs of the compressible LB solver are comparable or lower than classical low-Mach reactive flows solvers (in which acoustic waves are not resolved).

In the following, a channel of length L = 1200δ T is considered, and only asymmetric flames are considered (as in the case B of Fig. 3). Upon varying the channel width from W = 17.5δ T (just below cutoff, see Fig. 2)

up to W = 40δ T , we observed a non-monotonous dependence of the flame instability. Consumption speed histories for W = (17.5, 20, 30, 40)δ T (resp.

cases A to D) are reported in Fig. 9.

For W below the cutoff value (case A), no DL instability occurs, and the flame remains almost planar (as in Fig. 2c), with a normalized consumption speed close to unity.

As expected, the mean values for consumption speed increases with the channel width (case A to D) because the flame has more space to wrinkle and develop a large area compared to the channel cross-section. It can be observed that the gain increases with the increase of width at low frequency (250Hz) -long channels (as seen in Fig. 10), whereas it decreases with the increase of width at high frequency (1500Hz) or shorter channels. This clearly indicates that the channel width has a non-monotonous influence on the instability gain, for varying channel length (or frequency).

In addition, we can infer from Fig. 10b that the gain is lower for high frequencies, a finding in line with the recent study of Jiménez et al. [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF].

Note that, for very low frequencies (corresponding to length from 5000δ T ), it is reported that this tendency is inverted [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF]. flame contours are reported in Fig. 12. We will try, for each zone of Fig. 11, to interpret the evolution of the flame shape coupled to the acoustic forcing.

Flames in a long channel

Let us start with zone Z1. As seen in the first plot of Fig. 12, the amplification of the acoustic pressure seen in this zone corresponds to a nonsymmetric shape for the flame, this shape oscillates at the acoustic period (DL zone of a typical stability diagram such as Fig. 4) leading to acoustics amplification according to the Rayleigh criterion.

We now turn to zone Z2 (second plot of Fig. 12). it can be seen on this plot that after one acoustic period, the flame shape is inverted so that the period of the flame shape is now twice the acoustic period, a typical signature of the parametric instability zone of Fig. 4.

In zone Z3, the acoustic pressure as well as the consumption velocity are now smaller. Figure 12.c where two periods of the acoustic forcing are plotted show that we have now a symmetric shape for the flame (so that the consumption velocity is smaller). The acoustic amplitude has been reduced and the symmetric shape oscillates again at the acoustic period (we are back in a DL zone of a typical stability diagram).

Then the evolution seen in zone Z4 corresponds to a transition of the flame shape to a non-symmetric solution but the flame still oscillates at the acoustic period. Flame profiles are shown in Fig. 12.d, for approximately three acoustic periods.

Having failed to observe a parametrically re-stabilized flat flame in Fig. 11, we reproduced the above simulation considering slip wall and reported the results in Figs. 13 and14 (with now only two zones identified: Z1, Z2).

There are some differences between Fig. 11 (non slip walls) and Fig. 13 (slip walls). First of all, as shown in section 3, the DL instability is more important with non slip walls, leading to a higher consumption velocity even without acoustics. The slip wall case is actually more similar to what was obtained in section 4 with periodic boundary conditions, where we observed a perfectly flat parametrically restabilized flame.

The zone Z1 of Fig. 13 is very similar to the case of non-slip boundary conditions, a non-symmetric shape oscillating at the acoustic period, but the situation for zone Z2 is very different, the shape corresponds now to a parametrically flat flame. A fast evolution towards a larger flame surface is seen for a time close to 0.15 s.

Comparing Z3 in Fig. 11 and Z2 in Fig. 13, in which only the boundary condition is modified, the authors are left to wonder if parametrically flat flames may exist in such narrow channels with non-slip boundary conditions.

Conclusions and Perspectives

In this paper we applied, possibly for the first time, Lattice-Boltzmann numerical methods to the problem of thermo-acoustic instability of premixed flames. The classical configuration of flames propagating in tubes was selected, where acoustics is directly coupled to the flame shape. It was possible to show, both for flames submitted to an imposed acoustic field, and for self-induced thermo-acoustic instability, that the numerical method is able to describe correctly the evolution of the flame. will also be investigated. Activation energy E a 30 kcal mol -1

Pre-exponential factor A 4.45 × 10 13 cm 3 mol -1 s -1

Thermal diffusivity in unburnt state D th 2.17 

Fig. 1 .Figure 1 :

 11 Fig. 1. For wavelengths λ greater than a cut-off value λ c , positive growth rates are obtained, and the instability grows, whereas the instability damps when λ < λ c . The non-linear regime was also investigated in a large Hele-Shaw cell, showing excellent agreement between experimental results, analytical results from the Michelson-Sivashinsky equation, and numerical results obtained with ProLB.

Figure 2

 2 Figure 2 reports flame profiles propagation (from left to right), for each boundary condition, and for width chosen closely above and below the cutoff value. For width W values below the cut-off wave length λ c , the initial perturbation damps, and the flame becomes planar again.

Figure 2 :

 2 Figure 2: Growth/Decay of DL instability in presence of walls. Flame shapes are depicted by the iso-contours of temperature (1500K) (propagating left to right): (a) DL instability decay between slip walls below cut-off wavelength (W = 22.5 δ T ); (b) DL instability growth between slip walls above cut-off wavelength (W = 25 δ T ); (c) DL instability decay between non-slip walls below cut-off wavelength (W = 17.5 δ T ); (d) DL instability growth between non-slip walls above cut-off wavelength(W = 19 δ T ); (e) The flame consumption speed in between slip and non-slip walls, depicted by solid and dash lines respectively. A marker on the line denotes W > λ c .

Figure 3 :

 3 Figure 3: Illustration of flame shape transition in a channel of length (L = 1200 δ T ) and width (W = 40 δ T ) from initially planar (A) and initially perturbed (B) configurations: (a) Flame consumption speed for (A) in red and (B) in black; (b) Flame shape transition from planar to symmetric and then non-symmetric; (c) Flame shape transition from perturbed to non-symmetric directly.

Figure 4 :

 4 figure represents the parameters at which the flame is planar. The wavenumber corresponding to the width of the domain k and the multiples of k are indicated with black dots in Fig. 4. The reduced acoustic amplitude is given

Figure 5 :

 5 Figure 5: Illustration of flame behavior in different regions of Fig. 4. (iso-contours of temperature 1500 K are plotted from left to right at every forcing acoustic period 10 -3 s.): (a) Growth of DL instability without any acoustics; (b) Reduction DL instability amplitude by low amplitude acoustic forcing ( ũa = 1.36); (c) A stable planar flame obtained by moderate amplitude acoustic forcing ( ũa = 5.15); (d) Parametric instability due to high amplitude acoustic forcing ( ũa = 10.23).

Figure 6 :

 6 Figure 6: A sketch of the narrow channel under consideration.

Figure 7 :

 7 Figure 7: Thermo-acoustics inside a channel of length L = 1200 δ T and width W = 40 δ T . (a) Flame consumption speed, S c /S l (Black) and Pressure at the closed end, P w /P a (Red). (b) Period of oscillations (T ) for a flame propagating from x f = 0 to x f = 1 (Black); Acoustic eigen modes of the channel (red) from Eq. (24); top and bottom dashed blue lines represent the fresh f 0 and burnt f b quarter-wave values.

Figure 8 :Figure 9 :

 89 Figure 8: Flame consumption speed depicting the instabilities in case of initially planar (A) and initially perturbed (B) [Fig. 3] flames, in a channel of width W = 40 δ T : (a) Greater amplitude instabilities seen on symmetric flame (A) for shorter length channel (L = 800 δ T ); (b) Greater amplitude instabilities seen on non-symmetric flame (B) for longer length channel. (L = 2400 δ T )

Figure 10a presents the

  Figure10apresents the consumption speed histories for two forcing frequencies: f =1500Hz and f =250Hz. These eigen frequencies correspond to channel lengths ranging between (550 -1540)δ T for f =1500Hz and (3300 -9300)δ T for f =250Hz. The flame transfer functions for these two frequencies are reported in Fig.10b, for above cut-off width W = (20, 30, 40, 50)δ T .

  As a closing section, we shall illustrate the variety of flame propagation behaviors in a longer channel. As most examples above, the width is W = 40δ T , but the length is now 2400δ T , as in Fig.8.b.

Figure 11 .Figure 10 :

 1110 Figure 11.a presents the consumption speed evolution over time in the channel (non-slip boundary conditions), the initially perturbed flame (B) in Fig. 8.b, being a zoom of the same case in the early stages. The second plot of Fig. 11 reports the normalized pressure at the closed end.Four regions (Z1 to Z4) are identified in the plot, for which successive

Future works include studying

  thermo-acoustic instabilities in more realistic configurations. Application to deflagration to detonation transition

Figure 11 :

 11 Figure 11: Thermo-acoustics inside a channel of length L = 2400 δ T and width W = 40 δ T : (a) The Flame consumption speed and the different flame regimes observed; (b) Pressure at the closed end wall.

Figure 12 :Figure 13 :

 1213 Figure 12: Iso-contours of temperature representing different regions of instabilities observed in Fig. 11. The graph illustrates the evolution of consumption speed S c with time (in seconds). Red dots represent the time at which the contours are plotted.

Figure 14 :

 14 Figure 14: Iso-contours of temperature representing different regions of instabilities observed in Fig. 13. The graph illustrates the evolution of consumption speed S c with time (in seconds). Red dots represent the time at which the contours are plotted.

5 × 10 - 4 , 2 . 5 × 10 - 3 , 5 . 5 × 10 - 3

 51042510355103 × 10 -5 m 2 s -1 Flame diffusive thickness δ T = D thWave number of structures on the flame k = 2πδ T λ

Table B .

 B 2: Parameters used in Sec. 4 Table B.3: Mass fraction composition of fresh and burnt gases composition used in Sec. 3, 4 and 5, and the corresponding Schmidt numbers Sc k (used only in Sec. 4: unity Lewis number is used elsewhere).

	Name Unburnt	Burnt	Sc k
	C 3 H 8 0.0569794	0	1.241
	O 2	0.260046 0.0533094 0.728
	CO 2	0	0.170602 0.941
	H 2 O	0	0.0931139 0.537
	N 2	0.682975	0.682975 0.690
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Appendix A. LB method related expressions

Equilibrium and non-equilibrium functions can be truncated at secondorder as

i,αβ a

(2),eq αβ 2c 4

s ,

i,αβ a neq αβ ,

where, H

,eq αβ

θ is the normalized temperature linked with pressure as p = ρc 2 s θ, using ideal gas law, w i is the weight coefficient related to the discrete velocity c i and c s is the lattice sound speed. We use the regular D3Q19 lattice, the c i and w i of which can be easily found in the LBM literature e.g. [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF].

The reconstruction of macroscopic variables reads

Finally, the required forcing term is obtained as

with η B is the bulk viscosity, and

(A.5)

Appendix B. Simulation parameters

Name Symbol Value

Mach number M a 0.0028

Activation energy E a 30 kcal mol -1

Pre-exponential factor A 14.85 × 10 14 cm 3 mol -1 s -1

Thermal diffusivity in unburnt state

Thermal expansion parameter Appendix C. Code comparison with the reference paper [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF] To further validate the LB approach, the model from Jiménez et al. [START_REF] Jiménez | Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end[END_REF],

with a single mass fraction equation, was also implemented. Comparison for the pressure evolution at the end wall is provided in stages (up to tS L /L ≈ 0.2) differ, most likely due to a different initialization despite our best efforts. Nonetheless, once the flame is well into the tube, an excellent agreement is obtained, both in terms of frequency and amplitude.