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Abstract
• Key message  Sampling needs differ by forest type for timber inventory and structural complexity metrics. We 
demonstrate in a typical mixed Eastern Hardwoods forest that optimal sampling of timber inventory metrics and 
spatially explicit structure indices may be achieved in one large plot plus a cruise for large diameter trees, but 
accurately capturing inventory metrics may not be possible with sparse large-scale sampling.
• Context  Managing forest stand structures for multiple objectives require accurate and precise estimates of structural 
features that may be best estimated at different scales.
• Aims  We document minimum necessary plot sizes for structural metrics and spatially explicit indices to characterize 
structure in a mature North American Eastern hardwoods forest.
• Methods  Metrics and indices (Index of Aggregation, Diameter Differentiation Index, Dissimilarity Coefficient, Structural 
Complexity Index) were calculated within 0.05–1.75-ha plots for 1000 iterations of random placement in two 2.0-ha 
macroplots. Estimation adequacy required (1) precision (varied < 10% among plots) and (2) accuracy (within 10% of the 
2.0-ha value at 5th and 95th percentiles).
• Results  Minimum single plot sizes to achieve estimation adequacy were 0.25–0.75 ha for spatially explicit indices and 
0.5–2 ha for stand metrics. A minimum of five 0.10-ha subplots would be needed for most indices and 6–25 for most metrics, 
but an untenable 375+ for the density of large diameter trees.
• Conclusion  Estimation adequacy for structural complexity requires no greater sampling intensity than for timber metrics, 
except for density of large trees. A single large plot may be most cost-effective. National inventories in Eastern hardwoods 
may not estimate structural complexity well due to inadequate sampling intensity.

Keywords  Sampling · Rarity · Estimation error · Oak · Quercus · Structural complexity

1  Introduction

The objective of forest inventory is optimized parameter 
estimation: accurately characterizing the population of 
interest while minimizing the resources required to do so. 
Consequently, there is a long history of optimizing plot sizes, 
shapes, and layouts to ensure a swift and adequately realistic 
assessment of the timber parameters (e.g., density, basal area) 
that inform stocking charts (Bormann 1953; Freese 1967; 
Zeide 1980; Kenkel and Podani 1991; Avery and Burkhart 
2001). Recognizing the importance of incorporating local 
variability into the optimal design of a sampling scheme 
(Bormann 1953; Reich and Arvanitis 1992; Avery and 
Burkhart 2001), most inventory protocols for timber resources 
employ relatively large numbers of small, widely distributed 
sampling plots (e.g., Forest Inventory and Analysis (FIA), 
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Gormanson et  al. 2018). The efficiency of small, often 
variable radius, plots for characterizing traditional timber 
metrics persists across forest types and management histories 
(Berrill and O’Hara 2012; Du et al. 2018).

Management objectives, however, have evolved, and with 
them the parameters of interest to inventory on both managed 
lands and strict reserves. As interest in the complex stand 
structures integral to biodiversity has grown (Crow et al. 2002; 
Larson 2007), existing inventory protocols have struggled 
to keep pace. Although the data from inventories based on 
many small plots can be used to plot diameter distributions 
and summarize tree species richness and the density of large 
diameter trees (e.g., Brown et al. 1997; Crow et al. 2002), both 
theory and practice indicate that special features often have 
population characteristics that differ from those of density 
and tree diameter (Kenkel and Podini 1991). The inherent 
variability of some features (Franklin and Van Pelt 2004; 
Spies 2004) often dictates more intensive sampling effort 
to achieve robust estimates (Nagel et al. 2007; Zenner and 
Peck 2009; Král et al. 2010). Further, while many traditional 
metrics correlate well between field measurements and 
remotely sensed (e.g., LiDAR-derived) estimates, predictive 
models based on remotely obtained textural data are still 
often inadequate for structural features such as the density of 
large diameter trees (Kane et al. 2010) or variation in tree size 
(Mura et al. 2015; Meng et al. 2016), and poorer than expected 
(Kekunda et al. 2019) or even demonstrably poor for metrics 
incorporating spatial arrangement (unless additionally drawing 
on more costly spectral data; Meng et al. 2016; Kandare 2017).

Because the spatial distribution of features within a stand 
determines their probability of inclusion in a sampling frame, 
influencing statistic power, field inventory protocols using many 
small plots are challenged by the incorporation of structural 
features typical of older, unmanaged forests, which are highly 
variable in frequency, abundance, and spatial arrangement 
(Spies and Franklin 1991; Reich and Aravanitis 1992; Gray 
2003). Features that are rare and/or unevenly distributed on 
the landscape (e.g., large trees) are analogous to rare species, 
which are better captured in fewer large plots than in more small 
plots (McCune and Lesica 1992). Traditional protocols can be 
expanded by tacking on larger supplementary plots (e.g., lichen 
survey plots, FIA, Gormanson et al. 2018), but the root causes 
of this bias—the influence of spatial pattern on variability—is 
largely unaddressed when field protocols prioritize the number 
of parameters over spatial extent and resolution (Proulx 2007).

Choosing an optimal spatial extent (i.e., plot size), 
however, is itself challenged by the continuous—and nearly 
functional (cf. Král et al. 2010)—decrease in variation of 
most metrics with increasing plot size (Busing and White 
1993; Zenner 2005; Zenner and Peck 2009; Berrill and 
O’Hara 2012; Guillemette et al. 2012; Zenner et al. 2015, 
2019; Lombardi et al. 2015; Du et al. 2018; Kekunda et al. 
2019). In an effect very like the flattening of the species 

area curve with sampling effort, which can be captured by 
plotting “structure area curves” of variation against spatial 
scale (Zenner 2005), parameter estimation for spatially non-
random features often requires larger plot sizes (Kenkel and 
Podini 1991), especially as forest heterogeneity increases 
(Kekunda et al. 2019). As spatial extent increases and plots 
increasingly incorporate diverse features by absorbing 
multiple patches (Zenner et al. 2019), within-plot variance 
increases at the expense of between-plot variance (Scott 
1998). The heterogeneity evident at small scales is averaged 
across at larger scales; the resulting homogenization at large 
scales, known as spatial smoothing (e.g., Zenner and Peck 
2018), renders only small gains in estimation efficiency with 
the addition of more large plots (Kenkel and Podani 1991).

Thus, the need to efficiently incorporate structural features 
with variable spatial patterns apparently dictates sampling 
protocols using fewer, larger plot sizes. Further, because 
plot size influences the assessment of spatial pattern (Zenner 
and Peck 2009; Fonton et al. 2011; Carrer et al. 2018), the 
recognition of spatial pattern as a parameter in and of itself 
(e.g., Aldrich et al. 2003) has different sampling requirements 
from traditional inventory parameters (Kenkel and Podani 
1991). Yet there remains no consensus on a minimum standard 
plot size for inventorying spatially dependent structural features, 
even within forest type, because virtually no information is 
available on the structure area curves of most spatially explicit 
indices of structural complexity (but see Maleki and Kiviste 
2015; Kekunda et al. 2019). Although 1.0-ha sample plots are 
no longer uncommon when structural features are of interest 
(e.g., Guillemette et al. 2012; Lombardi et al. 2015; Grotti 
et al. 2019; Kekunda et al. 2019; Zenner et al. 2019), most 
inventory protocols continue to use relatively small fixed or 
variable radius plots (e.g., McGee et al. 1999; Crow et al. 
2002; Gormanson et al. 2018), and only a minority of national 
inventory programs quantify spatially explicit structural features 
(Winter et al. 2008). As land managers look toward revising 
these protocols to incorporate structural features, the question 
remains as to how large a plot is necessary.

The objectives of the current study, therefore, were to (i) 
derive a structure area curve for a mature Eastern hardwoods 
forest and (ii) determine the minimum acceptable single large 
plot size and/or small (0.1 ha) plot sample sizes necessary 
to estimate structural parameters, including spatially explicit 
indices, with adequate precision and accuracy.

2 � Material and methods

2.1 � Sampling

Two adjacent stands (RS1, SV3) were sampled within a 
typical Eastern hardwoods forest (Fig. 1) on Penn State 
Stone Valley Forest in central Pennsylvania, USA (40° 
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37′ 37–54″ N, 77° 54′ 5–9″ W). The stands are on well-
drained channery loam soils, classified as medium sites 
with even-aged stratified mixed hardwoods dominated 
by oak (Quercus) and maple (Acer) with a component 
of white pine (Pinus strobus L.). Both stands originated 
naturally following clearcutting ca. 1920, received minor 
improvement cuts mid-century, and had been unmanaged 
since at least 1985.

Each stand was sampled using a ca. 2.25-ha macroplot 
(82 × 276 m and 108 × 208 m, respectively) in the summer 
of 2007, each shaped to best capture the individual stand. 
In each macroplot, the position of all live trees ≥ 5 cm in 
diameter at breast height (DBH) was stem-mapped and 

slope-corrected distances and azimuths were converted to 
Cartesian coordinates. For each tree, species and DBH were 
recorded (Peck and Zenner 2021). Both macroplots exhibited 
a reverse-J diameter distribution.

2.2 � Parameters

Structure area curves for each macroplot were derived by 
calculating each parameter at several different scales within 
each macroplot by overlaying plots of 500, 1000, 2500, 
5000, 7500, 10,000, 12,500, 15,000, and 17,500 m2 onto 
each stem map. Plot shapes were kept identical to the 2-ha 
macroplot core (i.e., rectangular), but rescaled to 0.05 to 

Fig. 1   A typical mature even-
aged stratified mixed eastern 
hardwood forest at the Stone 
Valley Forest in central Pennsyl-
vania in North America (40° 37′ 
37–54″ N, 77° 54′ 5–9″ W) was 
sampled using two differently 
shaped 2.25-ha macroplots. 
All trees over 5-cm diameter 
at breast height (circles) were 
stem-mapped in each macroplot
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1.75 ha in size. We simulated “sampling” by randomly 
placing 1000 of these variously sized plots within each 
macroplot. To ensure consistency across plot size/scale, 
1000 [X,Y] coordinate positions were randomly selected in 
each 2-ha macroplot core and then used as the plot centre for 
sampling at each spatial scale. Torroidal edge correction was 
used to ensure equal sample probability of all trees while 
correcting for edge effects (Griffith 1983; Boots and Getis 
1988; Gray 2003). This adjustment joins the opposite ends 
of a mapped area, creating a continuous surface for random 
plot placement throughout the mapped area (Gray 2003).

The structure parameters assessed in each plot at 
each scale included five simple metrics (the mean and 
standard deviation (STD) of DBH (cm), basal area 
(m2/ha), tree density (trees/ha), and density of large 
trees (DBH ≥ 50 cm) (large trees/ha)) and six spatially 
explicit structure indices (see Zenner et al. 2015 for 
formulas). The index of aggregation (R, Clark and 
Evans 1954) was used to capture horizontal structure, 
ranging from 0 (maximum aggregation/clustering of 
trees) to 2.1491 (a regular hexagonal arrangement) with 
a value of 1 when the spatial distribution is random. 
The dissimilarity coefficient (DC) of Hagner and 
Nyquist (1998) was used to quantify vertical structure 
as size differences among pairs of neighboring trees, 
ranging from 0 to 1 with a value of 0.5 when tree 
sizes are drawn independently from an exponential 
distribution. Vertical structure was also measured as 
the difference in tree size among four nearest neighbors 
(T, the diameter differentiation index of Füldner 1995, 
ranging from 0 to 1). Indices were also calculated based 
on neighborhoods identified after connecting trees to 
form a triangular surface that, when extended across 
the entire sampling area, forms a triangulated irregular 
network (TIN) of non-overlapping triangles (Fraser and 
van den Driessche 1972). The average difference in 
tree sizes within these three-tree triangles (DBHdiff3), 
which was also reported scaled from 0 to 1 (Dd3), was 
also used to quantify vertical structure. Finally, both 
vertical and horizontal structures were assessed using 
the structural complexity index (SCI; Zenner and Hibbs 
2000), in which trees are represented as irregularly 
spaced three-dimensional data points (x, y =  spatial 
coordinates, z =  tree DBH). The SCI was calculated 
as the sum of the surface areas of the TINs for a plot 
divided by the projected ground area of all triangles in 
the plot.

2.3 � Estimation

The mean across the 1000 simulated samples was used as 
an unbiased measure of central tendency for each parameter 

(except R; see below) at each scale. The estimation error 
(i.e., bias) for each parameter at each scale was presented 
as the relative deviation of the simulated sample estimate 
(i.e., the mean across the 1000 iterations at each scale) from 
the “true” value, defined as the known value for the 2-ha 
reference macroplot core (Table 1):

where xij is the value of the parameter from a plot of size 
i in macroplot j and μj is the 2-ha value in macroplot j (after 
Gray 2003).

The mean and the 5th and 95th percentiles of the 
distribution of the estimation error were calculated for the 
1000 simulated plots of each parameter in each macroplot. 
Variation among scales, and therefore adequacy of sampling, 
was evaluated using two standards. First, precision was 
determined by identifying the minimum scale at which the 
parameter estimates varied 10% or less among the iterations 
for a given scale (i.e., coefficient of variation ≤ 10%). 
Second, accuracy was determined by identifying the 
minimum scale at which the parameter estimates at both 
the 5th and 95th percentiles of the iteration distribution 
for a given scale were within 10% of the 2.0-ha value (i.e., 
comparable to an effect size of 10% at a two-sided alpha of 
0.05).

To evaluate the trade-off between using a single large 
plot and a larger number of smaller plots, we used estimates 
of variance from the simulated plots to calculate the 
necessary sample size if multiple “subplots” were sampled 
at different spatial scales to obtain satisfactory estimates 

(1)rel_devj =
abs

(

xij − �j

)

�j

,

Table 1   Parameters of structural condition for both stands based on 
the full (2 ha) extent (i.e., “true”)

DBH diameter at breast height, STD standard deviation, Large 50 
density of trees over 50 cm DBH, R Clark Evans index of Aggrega-
tion, DC dissimilarity coefficient, T diameter differentiation index, 
DBHdiff3 average size difference within TINs, Dd3 DBHdiff3 scaled 
0 to 1, SCI structural complexity index

Stand RS1 SV3

Mean DBH (cm) 21.9 20.4
STD of DBH 15.6 13.2
Maximum DBH (cm) 80 72.4
Basal Area (m2/ha) 32.8 29.7
Density (trees/ha) 577 643
Large 50 (trees/ha) 31 14
R 1.00 1.02
DC 0.367 0.336
T 0.48 0.47
DBHdiff3 16.5 14.4
Dd3 0.48 0.46
SCI 6.74 6.04
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for each parameter. Using the average variance across both 
macroplots (s2), an effect size (E) of 10% of the average 2-ha 
value, and a desired alpha of 0.05, the sample size needed to 
estimate the mean was calculated as,

(Freese 1967).
Although frequently reported as a measure of horizontal 

structural complexity, the index of aggregation (R) 
presents a unique statistical and interpretive challenge. 
While the index provides output in the form of a 
continuous dataset, the interpretation is nearer to that 
of a class variable: values near 0 indicate aggregation/
clustering, near 1 a random spatial distribution, and 
those significantly > 1 a regular/dispersed arrangement. 
Consequently, averaging across these values can smooth 
a combination of aggregated and dispersed plots to give 
the impression of spatial randomness. Thus, rather than 
using the mean across the 1000 iterations to calculate 
sample size, we report instead the proportion of plots that 
would be considered aggregated/clustered or dispersed as 
opposed to random.

All calculations and simulations were performed in Mat-
lab V. 8.2.0 (Mathworks Inc.).

3 � Results

Due to relatively low variation within simulated plots of a 
given scale, precision was obtained at smaller single plot 
extents than accuracy (Table 2). The minimum scale at which 
estimates were both precise and accurate varied among 
parameters from 0.25 ha for some structure indices to the 
full 2.0 ha for the density of large trees. While a single large 
plot of 0.5 ha would be adequate to sample most spatially 
explicit structure indices, most simple metrics required at 
least a 1-ha plot. Despite the proximity and similarity of 
history for the two stands, larger plot sizes were necessary 
for RS1 than for SV3 to achieve precision and accuracy for 
several parameters.

Deviation decreased with increasing scale for all 
parameters (Fig.  2). Although this overall pattern of 
typical spatial smoothing was observed in both stands, 
RS1 had greater overall tree density and mean tree 
diameters while SV3 had notably more large trees 
(and somewhat higher basal area). While all metrics 
and indices, except the density of large trees, deviated 
on average ≤  10% from true by 0.75  ha, the rate of 
spatial smoothing varied among metrics and indices. 
Very few iterations of most spatially explicit structure 
indices deviated ≥ 10% by 0.5 ha (Appendix Table 5), 

(2)# subplots =

(

4 × s2
)

E2
,

such that their means reached ≤ 5% by that same spatial 
scale (Fig. 2). In contrast, a comparably low number of 
iterations deviating ≤ 10% was not observed for most 
simple metrics until 1 ha in size (Appendix Table 5), 
with means stabilizing at ≤ 5% deviation at 0.75 ha for 
basal area and the standard deviation of tree diameters, 
1.25 ha for mean tree diameter, and 1.5 ha for tree density 
(Fig. 2).

Consequently, the minimum sampling extent required 
for adequate precision and accuracy also varied by 
metric and index (Table  3). Although a single 0.25-
ha plot would be sufficient to estimate Dd3 and T, the 
remaining spatially explicit structure indices and simple 
metrics required larger extents to achieved desired levels 
of precision and accuracy: one 0.50 ha plot for DC; one 
0.75 ha plot for the standard deviation of tree diameters, 
basal area, and the SCI; 1.0 ha for DBHdiff3; 1.25 ha 
for mean tree diameter; and 1.5 ha for the density of all 
trees. The density of large trees could not be robustly 
estimated in less than the full 2.0 ha plot. Conversely, if 
multiple smaller sampling extents were an option, then 
fifteen 0.25-ha subplots would suffice for all metrics and 
indices except the density of large trees.

Spatial arrangement varied slightly with scale (Table 4). 
The proportion of plot iterations with a non-random spatial 
arrangement declined from 15% at 0.05 ha to 0.05% by 1 ha, 
with both stands exhibiting a random tree arrangement at 
2  ha. However, these non-random arrangements were 
predominantly aggregated/clustered at the smaller scales in 
both stands, although by 0.75 ha they were predominantly 

Table 2   Minimum scale of a single plot (in hectare) at which (1) the 
coefficient of variation for a given parameter was less than 10% or (2) 
at which both the 5th and 95th percentiles are within 10% of the 2-ha 
value for a given parameter

STD standard deviation, Large 50 density of trees over 50 cm DBH, 
DC dissimilarity coefficient, T diameter differentiation index, DBH-
diff3 average size difference within TINs, Dd3 DBHdiff3 scaled 0 to 
1, SCI  structural complexity index

Stand RS1 SV3

Standard 1 2 1 2
Mean DBH (cm) 0.75 1.25 0.25 0.75
STD of DBH 0.5 1 0.25 0.5
Basal Area (m2/ha) 0.5 1 0.25 1
Density (trees/ha) 1 2 0.25 1.5
Large 50 (trees/ha) 1.75 1.75 1.75 2
DC 0.1 0.25 0.25 0.5
T 0.1 0.25 0.05 0.25
DBHdiff3 0.5 1.0 0.25 1.25
Dd3 0.05 0.25 0.05 0.25
SCI 0.25 0.75 0.05 0.5
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dispersed in the SV3 stand (at which scale all iterations were 
already random in the RS1 stand).

4 � Discussion

Sampling design is invariably faced with a dilemma: the 
required sampling effort depends upon the variability 
and spatial distribution of structural attributes within a 
stand, which are rarely known before an inventory is con-
ducted. Previous research can provide some guidance, 
given observations that simple metrics such as mean 
tree diameter and density can require single plot extents 
on the order of 0.35 ha in beech (Král et al. 2010) and 
0.50 in red pine (Zenner and Peck 2009) and old-growth 
Tsuga-mixed hardwoods (Busing and White 1993). 
Stands of similar management history and forest type 
provide the best analogues, hinting that, as in North-
ern hardwoods (Guillemette et al. 2012), a single plot of 
0.5 ha in extent may be required to estimate basal area or 
of 1.0 ha to assess growth parameters. Likewise, metrics 
such as basal area may be most efficiently captured in 

mixed hardwoods using numerous small (often < 0.1 ha) 
dispersed subplots (e.g., Becker and Nichols 2011).

In fact, adequate estimation of simple timber metrics 
in the mature Eastern hardwoods forest considered here 
would indeed require a large single sample plot (upwards 
of 1.0 ha) or numerous smaller fixed area subplots (> 10 
0.1 ha). Deviation of the traditional inventory metrics was 
still high at even large plot sizes, stabilized only at the largest 
extents, and most metrics could not be adequately estimated 
from a single plot covering less than at least 50% of the 
macroplot area. These results confirm the need for a high 
sampling intensity in even-aged stratified mixed stands, 
which are typically characterized by a reverse-J diameter 
distribution (Ashton and Kelty 2018) due to the high 

Fig. 2   Structure area curves for the two macroplots (RS1 dark grey, 
SV3 light grey): change with increasing scale in the mean percent 
deviation from the 2-ha value for the mean (mean DBH) and the 
standard deviation (STD of DBH) of tree diameter, basal area, the 
density of all trees, the density of trees over 50 cm DBH (Large 50), 
the Clark Evans index of Aggregation (R), the dissimilarity coef-
ficient (DC), the diameter differentiation Index (T), the average size 
difference among trees within TINs (DBHdiff3), and the structural 
complexity index (SCI), based on resampling each macroplot 1000 
times at different spatial scales. Note the substantially greater range 
of deviation for the Large 50 metric

◂

Table 3   Minimum sample sizes 
(i.e., # of subplots) required 
(RS1/SV3) to obtain a robust 
estimate for each parameter at a 
given spatial scale (ha)

STD standard deviation, Large 50 density of trees over 50 cm DBH, DC dissimilarity coefficient, T diam-
eter differentiation Index, DBHdiff3 average size difference within TINs, Dd3 DBHdiff3 scaled 0 to 1, SCI 
structural complexity index

Scale (ha) 0.05 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75

Percent of full extent 2.5% 5.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5%
Mean DBH 17/9 12/6 9/3 6/2 4/1 2/1 1/1 1/1 1/1
STD of DBH 11/9 6/5 4/2 2/1 1/1 1/1 1/1 1/1 1/1
Basal area 19/22 9/11 4/5 2/3 1/1 1/1 1/1 1/1 1/1
Density 33/19 25/11 15/5 9/3 5/2 3/1 2/1 1/1 1/1
Large 50 320/702 194/378 111/156 63/79 36/43 20/24 11/14 5/7 2/3
DC 9/10 4/6 1/3 1/1 1/1 1/1 1/1 1/1 1/1
T 4/3 2/2 1/1 1/1 1/1 1/1 1/1 1/1 1/1
DBHdiff3 20/14 10/8 5/5 3/3 2/2 1/1 1/1 1/1 1/1
Dd3 4/4 2/2 1/1 1/1 1/1 1/1 1/1 1/1 1/1
SCI 13/13 5/5 3/2 1/1 1/1 1/1 1/1 1/1 1/1

Table 4   Percent (%) of iterations (out of 1000) in which the Clark 
Evans index of aggregation (R) indicated aggregation/clustering (a) 
or dispersion (d) (as opposed to a random spatial arrangement) at 
each spatial scale, by stand

Scale (ha) RS1 SV3

a d a d

0.05 11.6 0.7 15.2 0.3
0.10 8.1 0.5 13.3 0.4
0.25 3.9 0.7 9.0 1.2
0.50 1.3 0 4.0 3.6
0.75 0.1 0 2.0 5.0
1.00 0 0 0 2.5
1.25 0.1 0 0 1.3
1.50 0 0 0 9
1.75 0 0 0 0.3
2.00 Random Random
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density of small-diameter trees, and are consistent with the 
large sampling extents needed to reliably capture diameter 
distributions (Rubin et al. 2006) and improve the precision 
of tree density estimates in similarly structured selection 
forests (Jazbec et al. 2011).

However, structural features subject to strong species 
area curve-like trends, such as tree species composition 
(Busing and White 1993) or the density of large trees 
(Lombardi et  al. 2015), often require even greater 
sampling effort. As is often the case (Gray 2003; Zenner 
and Peck 2009), large diameter trees were relatively 
scarce in these stands, yet are an important parameter 
for the restoration of Eastern forests (McGee et al. 1999; 
Crow et al. 2002) because they are thought to have once 
contributed considerably more biomass in old-growth 
forests than currently in young managed forests (Brown 
et al. 1997). Due to the high variability in capturing large 
trees in individual sample plots, more than ten times as 
many 0.1-ha subplots would be required to adequately 
estimate the density of large diameter trees than would 
have even fit within the macroplots being assessed. 
Alternatively, adequately estimating this parameter 
with a single large plot would have required the full 
extent of the area to be sampled (as was also seen in red 
pine, Zenner and Peck 2009). In the current study, even 
supplementary sampling through a nested plot design 
(e.g., a larger plot around each subplot just for large 
diameter trees, such as the FIA macroplot; Gormanson 
et al. 2018) would not have achieved sufficient accuracy 
and precision if it were less than the full macroplot 
area. Rather than untenably increasing the number of 
subplots or plot extent, however, such rare large trees 
may instead require a separate/additional sampling 
protocol (Thompson and Burnham 2004). Features 
that are known to be relatively rare within a stand may 
be best estimated using an entirely different sampling 
frame, such as the combination of fixed and variable 
radius plots that improves sampling precision for tree 
density (Packard and Radtke 2007), or point (Ritter and 
Saborowski 2014) or line transects (Bate et al. 1999) that 
can be most efficiency sampled while traveling between 
plots (Johnson et al. 2008; Bäuerle et al. 2009).

In contrast to the simple metrics, most of the spatially 
explicit structural indices could be adequately estimated 
in a single plot of less than one hectare in extent or in 
fewer than ten 0.1-ha subplots. Spatial arrangement 
(R) stabilized by 0.5 ha and spatially explicit vertical 
structure was adequately captured in single plots of 
0.25  ha (T) or 0.5  ha (DC) in size, in keeping with 
previous observations in old silver birch (Maleki and 
Kiviste 2015) and mature red pine (Zenner and Peck 
2009). However, although not as extensive as that 
required in savanna woodland, montane conifers or 

northern hardwoods (up to 1  ha, Fonton et  al. 2011; 
Guillemette et al. 2012; Carrer et al. 2018), a single plot 
of 0.75 ha would be required to capture both horizontal 
and vertical structure (SCI) in these mature Eastern 
hardwoods stands. The predominance of a random 
spatial distribution of trees (almost 90% at 0.1 ha) in 
these stands contributed to the more rapid stabilization 
of the structure area curves for most spatially explicit 
measures of structural complexity than for the simple 
metrics. Rapid spatial smoothing has also been observed 
for size class abundances and thus diameter distribution 
forms, which stabilized by ~  0.15  ha in old-growth 
Douglas-fir (Zenner and Peck 2018) and beech (Zenner 
et  al. 2018). Likewise, the pattern of dominance by 
all-sized tree neighborhoods became clear by 0.1 ha in 
old-growth beech (Zenner et al. 2019; 2020) and that of 
subsequently assigned development phases by 0.125 ha 
(Zenner et al. 2020). In fact, neighborhood-level tree 
size differences may be most clearly expressed at the 
fine scales (e.g., < 0.1 ha; Zenner et al. 2019) capturing 
individual tree processes, which coalesce at larger scales 
into patterns of tree size distribution (Zenner et al. 2015) 
(a transition in perspective across scale that is only 
observable using structure area curves, Zenner 2005).

As a consequence of the fine-scale structural 
complexity in these mature Eastern hardwoods stands, 
spatially explicit structural complexity indices did not 
necessarily require an increase in either sampling extent 
(for single plots) or intensity (for subplots) over what 
would already be required to achieve adequate estimates 
of the simple metrics: i.e., by the time a sufficient 
number of subplots was sampled for traditional timber 
metrics, the minimum number required for spatially 
explicit indices would already be met. On the one hand, 
this indicates that structural complexity could be tacked 
on to sampling protocols intended for estimating simple 
metrics, such as basal area, without requiring additional 
subplots or even a change in sampling frame from many 
small subplots to one large plot. On the other hand, 
however, greater sampling effort is nonetheless required, 
due to both the necessity of stem-mapping and of 
sampling smaller trees than is often typical (e.g., smaller 
than the 12.7 cm cutoff for FIA subplots, Gormanson 
et  al. 2018). Given that the intensive sampling of 
neighboring trees is more suited to fixed area plots 
(Berrill and O’Hara 2012) and the greater efficiency 
of sampling one large plot over many smaller subplots 
(Jazbec et  al. 2011), inventories assessing structural 
complexity in Eastern hardwoods may be optimally 
achieved using a single large plot (e.g., 1  ha; Grotti 
et al. 2019)—although an additional transect or other 
supplemental approach may be needed for the density of 
large trees when present.

16   Page 8 of 11 Annals of Forest Science (2021) 78: 16



1 3

The implication of these results for large national 
inventories relying on a small number of sparsely 
distributed, relatively small subplots (e.g., FIA with 
four spatially linked 0.07 ha plots) is that they are best 
suited to what they were designed for: broad trends 
in the “extent, condition, volume, growth, and use of 
trees” (Gormanson et al. 2018). Regardless of whether 
simple metrics or spatially explicit structural indices 
are involved, the high size variability in the Eastern 
hardwoods forest type necessitates a high degree of 
sampling effort when precision and accuracy are desired. 
Further, meaningful efforts to estimate structural 
complexity from data collected using inventory protocols 
like FIA would be futile in Eastern hardwoods, not 
only because complete stem-mapped data are generally 
lacking, but because sampling intensities are simply 
inadequate. This may explain why the recommended 
applications of FIA data only include assessments of 
forest structure when additional (e.g., remote sensing) 
data are available (Tinkham et  al. 2018). Thus, the 
cost-effective estimation of spatially dependent forest 
structures in Eastern hardwoods is likely still some years 
away, as currently inadequate remote sensing technologies 
(Kekunda et al. 2019) continue to evolve (e.g., Meng et al. 
2016; Kandare 2017).

5 � Conclusion

It is often assumed that assessment of spatially explicit 
measures of structural complexity requires larger plot 
extents than traditional timber metrics. The results 
of the current study indicate that adequate estimation 
of simple timber metrics in spatially random mature 
Eastern hardwoods would actually require an even 

larger single plot extent than the spatially explicit 
indices—particularly to estimate the density of large 
diameter trees. Although it could be concluded that a 
trade-off is inevitable and sampling designs must focus 
on optimizing some metrics over others, a more flexible 
approach may allow efficient characterization of all 
parameters of interest through the employment of a 
mixed inventory sampling scheme. Some combination 
approaches are already employed, such as a mixture of 
fixed and variable-radius plots (Packard and Radtke 
2007; Gormanson et  al. 2018). The current study 
demonstrates that basal area could be adequately 
estimated from ~ 10 0.1-ha subplots and that the spatially 
explicit indices could also be estimated if half of them 
were also stem-mapped. If the same level of accuracy and 
precision was desired for the estimation of the density 
of large trees, they might be most efficiently estimated 
through line transects connecting these subplots. 
Alternatively, capturing an array of forest metrics may 
be most cost-effectively achieved through a combination 
of sampling a single plot spanning 50% of the stand with 
an additional cruise of the remaining area for large-
diameter trees. Finally, the high variability observed in 
these even-aged stratified mixed stands indicates that 
structural complexity may not be well estimated from 
the few subplots of small extent typically employed by 
national inventory programs designed to capture broad 
trends in forest extent and condition.

Table 5   Percent (%) of 
iterations (out of 1000) 
with ≥ 10% deviance from the 
2-ha value for each metric or 
index, by stand (RS1/SV3)

STD standard deviation, Large 50 density of trees over 50 cm DBH, DC dissimilarity coefficient, T diam-
eter differentiation Index, DBHdiff3 average size difference within TINs, Dd3 DBHdiff3 scaled 0 to 1, SCI 
structural complexity index

Scale (ha) 0.05 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75

Mean DBH 74/58 72/45 61/31 50/16 35/2 17/0 3/0 0/0 0/0
STD of DBH 54/47 43/31 36/15 16/7 4/< 0.1 0/0 0/0 0/0 0/0
Basal area 59/64 50/53 31/38 16/23 3/10 0/3 0/0 0/0 0/0
Density 100/100 87/100 89/100 85/89 78/84 76/70 68/62 42/42 12/36
Large 50
DC 48/54 31/42 6/24 0.1/6 0/< 0.1 0/0 0/0 0/0 0/0
T 31/30 12/17 0.1/5 0/0 0/0 0/0 0/0 0/0 0/0
DBHdiff3 63/60 53/53 42/39 21/26 10/14 3/3 0/0 0/0 0/0
Dd3 31/36 13/18 0/5 0/0 0/0 0/0 0/0 0/0 0/0
SCI 60/54 42/42 21/24 7/6 < 0.1/< 0.1 0/0 0/0 0/0 0/0
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