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Abstract

Using the differential equations properties, we study the function v
which is a function defined by an integral. The particular case of this

function coincide with the function s — ((s)/s, where  is the Riemann
Zeta function. In the end of the paper, we find that @ #+ —% for
every R(s) € (0,%) and S(s) > 0. Thanks to the Riemann functional
equation, we deduce that any non-trivial zero of { is of real part equal

to %
Keywords: Linear differential equation, Zeta function, Riemann hypothe-
sis.
1 Main result

Let be n : Rt — R be a bounded function. We study the function
Y] : (0,1) x R% — C defined as

o ()
Ve e (0,1), VT >0: ¢nl(z,7):= ; t1+x+z’7dt’ (1)
We focus about the function n : Ry — R satisfying the following hypotheses
Hy: 3w>0 0<n(t) <wforallt>0,

Hy : there exists an at most countable set A C Ry such that 1 is C* on
Ry /A.

We prove in this paper the following Main result



2 W. OuKIL

Main Result. Consider the function ¢ defined by Equation ({l). Then, for
every function n: Ry — R that satisfies the hypotheses H1 and Hy we have

[z, 7) = 01—z, 7)[ #0, Vae (0, %), V7 > 0.

2 Main proposition

In this Section we study the function v, defined in Equation (), by trans-
forming the problem to some second order differential equation.

Notation 1. Let n : R+ — R be a function that satisfies H; and Hs. For
every r € R and 7 > 0 define the functions ¢ — h,(n,t) as

hy(n,t) := 2exp(—%t) [n(exp(t)) + 1] sinh(rt), V¥t > 0.

In order to simplify the notation we denote h,(t) := h,(n,t) for all ¢t > 0.

Use the change of variable, ¢t — exp(u), in Equation (), we remark that
1 +°O
[$lnl(5 =) = ]( + 1)l = H/ s) exp(iTs)ds||,
Vr € (0, 2) V1 > 0.
The aim is to study the behavior of the function
t
t— / h.(s)exp(iTs)ds, t >0,

0

and prove that its limit is not equal to zero. In the following Proposition we
study the differential equation of solution the function

t — 7sin(7t) /0 sin(7u)hy (u)du + T cos(t) /0 cos(Tu)h, (u)du.

In order to simplify the notation, denote

t

ay := lim hy(s)ds.



Proposition 2. Let n : Ry — R be a function that satisfies Hy and Hs.
Then for every r € (0, %) and every T > 0 the unique solution t — 6, ,(t) of
the following differential equation

%5737“(15) = _7—2/0 6T,T(u)du + Th’" (t)’
t € R/In(A), 6,,(0) =0, 2)

satisfies

ltlglﬁg d-r(t) <O.
Lemma 3. For every € > 0, r € (0,3) and every 7 € R* let t — A, (e, 1)
be the function defined as

Ar(e,t) = % [ozr (1 - COS(Tt)) - esin(Tt)], vVt > 0.

Then A, (e,t) is the unique C* solution of the following differential equa-
tion
2

_ 2
EAT,T(e,t) =—7"Ar,(e,t) + Ty, (3)
d
As,(6,0) =0, EAT’T(E’T) =—¢ t>0.
In addition,
Ve> 0, Vre(0.)), ¥r>0: Tminf LA (e.4) <0
€ , Vr v VT b lminf 25 Ar (e, )

Proof of the Proposition[d Let be r € (0, %) and 7 > 0 . The strategy to

prove the present Proposition is to shows, for some ¢ > 0, that
d2
@AT’T(E,t) > 57—77‘(t), Vit 2 0.

Using the hypothesis Hs, the fact d,, is the continuous solution and the fact
9-,(0) = 0, by Equation (2), we get

t s t
drp(t) = —7'2/ / O r(u)duds + 7'/ hy(u)du.
0o Jo 0

Then

t v s t s
i577r(t) = 7'4/ / / Or r(u)dudsdv — 7'3/ / hy(w)duds + Th,(t).
dt 0o Jo Jo 0 Jo
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In order to simplify the notation, denote

t s
t) :/ / Orr(u)duds, ¥t > 0.

Then for every t € In(A) we get

dt3 O ( —7'/6” du—T// u)duds + Thy(t).

Let be t — A, ,(€,t) as defined in Lemma [Bl We have

3 t
%Amﬂ(e, t) = 7'4/ A (e, t) — Tt + [T2e + Tay]
0
Implies
d3 A t
Aot~ 000)] = 7 /0 Ars(en) ~ ()] du (@)

—73 /Ot {ar — /Os hr(u)du] ds

+ 7[Te + o, — hy(t)]

Choose €, > 0 such that

€ > ma 7 / /h duds——[ —h()]]

Since %Anr(eﬂr, 0) = 7, > 0 and 4 9 +(0) = 0, then there exists n > 0

such that

dat?

d? d?
_AT r\Cr,r, JoYTr ) ’ .
Define

2 2

d d
T Br(erris) > Tlr,(s), Vs € [O,t]}.

Prove that T' = +o00. By contradiction, suppose that T' < +o00. Then

& &
5 Brilrp T) = <50, (T). (5)

dt2 T,T
By Equation (), we get

d3
Ao )~ 0(D)] > = / ar — / hy () d

+ 7[T€rr + r — hy(

T::sup{t>0:



There exists s < T close enough to 1" such that %AW(EW, s) < %HW(S).
Contradiction with Equation (B). Then T' = 400 and

d? d?
Bl il _ >0.
a2 AT,T(ET,’I‘v t) > a2 HT,T(t) 57’,7‘ (t)7 vVt >0

By Lemma Bl we deduce that

liminf 6, ,(t) < 0.

t——+o0

3 Proof of the Main results

Proof of the Main result. Let be r € (0, %) and 7 > 0. Consider the function
- solution of Equation (2]). We have,

t
drp(t) = Tsin(Tt)/ sin(Tu)h, (u)du
0
t
+ Tcos(Tt)/ cos(Tu)h, (u)du.
0
Use the change of variable, ¢ — exp(u), in Equation (I), we obtain

5 (1) = 75 (rt)S [l (g — 7 7) — Wlal(g +7,7)]

2 2
+reos(rOR [l — 1) — wlall + 7))

By the Main Proposition 2 we have |[¢[n](3 —r,7) — ¥[n](3 +7,7)| # 0 for
every r € (0,3) and 7 € R*. O
4 Discussion about the Riemann hypothesis

Consider the representation of the Riemann Zeta function ¢ defined by the
Abel summation formula [[I], page 14 Equation 2.1.5] as

+oo
C(s) = —s /O W ws)e0.1), Ss) R, (6)

tl-i—s

and where {t} is the fractional part of the real ¢. Define the non-trivial zeros
of the function ¢ in the following sense



6 W. OuKIL

Definition 4. Let be s € C. We say that s is a non-trivial zero of the
function C if
((s)=0 and R(s) e (0,1), (s)>0.

Denote 7, (t) := {t}. For every 7 € R* and every = € (0,1) we have

vl =< and gl - o) =~

, S:i=x 41T

Since
0<nm(t)<1, Vt>0,

Then 7, satisfies the hypotheses H;. The function 7, is C' on Ry /N. Then
7, satisfies the hypotheses Hy. By the Riemann functional equation [[I,
page 13 Theorem 2.1], the non-trivial zeros of the function ¢ are symmetric

about the line R(z) = 3. By the Main result, the non-trivial zeros s € C

2
symmetric about the line R(z) = £ satisfies R(s) = 3.
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