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Abstract

Using the differential equations properties, we study the function v
which is a function defined by an integral. The particular case of this

function coincide with the function s — ((s)/s, where ( is the Riemann
Zeta function. In the end of the paper, we find that @ #+ —% for
every R(s) € (0, %) and S(s) € R*. Thanks to the Riemann functional
equlation, we deduce that any non-trivial zero of { is of real part equal
to 5.

Keywords: Linear differential equation, Zeta function, Riemann hypothe-
sis.
1 Main result

Let be n : R — R be a bounded function. We study the function
YPn] : (0,1) x R* — C defined as

+o0o
Yz e (0,1), Vr e R :  nl(z,7) ;:/0 tlz(%dt, (1)

We focus about the function 7 : Ry — R satisfying the following hypotheses
Hy: Jw>0 0<n(t) <wforallt>0,

Hy : there exists an at most countable set A C R, such that 1 is C* on
Ry /A.

We prove in this paper the following Main result
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Main Result. Consider the function ¢ defined by Equation ({l). Then, for
every function n: Ry — R that satisfies the hypotheses H1 and Hy we have

Yre R, Ve e (0,5):  lil(e,m) — ¢l — 7)) £0.

2 Main proposition

In this Section we study the function v, defined in Equation (), by trans-
forming the problem to some non-homogeneous linear differential equation.

Proposition 1. Let n: Ry — R be a function that satisfies Hy and Hy. For
every r € (0, %) and 7 > 0 define the h, : Ry — Ry as

oo (£) = Texp(—%t) by(exp(t)) + 1]sinh(rt), ¥t > 0.

Then for every r € (0, %) and every T > 0, the unique continuous solution
t+— 0r,(t) of the following linear differential equation

d
—0r(t) = (_22 é) 37 (t) + <h7,(3( t)> , t € R/In(A), 4-,(0) = (8) :
(2)
satisfies
i[5 (0)] # 0.

Lemma 2. For every t > 0 we have

e (0 D)) - (Lom) tmr),

Proof. We have

Then




Implies

cos(tt)  Lsin(rt)

- <—Tsin(7't) cos(7’t§ ) '

Proof of the Proposition[d. By contradiction, suppose that there exist
r € (0, %) and 7 > 0 such that

lim |6, (5] = 0. (3)

t——+o0

By the hypotheses Hj, integrate Equation (2)) using the fact 6, is the con-
tinuous solution and the fact 6, ,(0) = 0, we get

Srp(t) = (_072 é) /0 téT,r(u)du+< I hTf(u) du), V0. (4)
(e ) =G %)
then

/0 t Orp(u)du = ;—21 <_OT2 é) [&,r(t) - ( " hﬂ?(u) du) ] ¥t >0, (5)

By hypothesis Hy the function 7 is bounded and positive. Since r € (0, %)
then there exists o, > 0 such that

Since

t

lim hep(w)du = Tou.
t—=+oo Jj

By Equation (@) and the hypothesis ([B]), we get

. ¢ 1/0 1 0 o
tlgi—noo ) 5T,T(u)du - ﬁ (—T2 0> <TC¥7~> B ( 0 > (6)

Equation (4), can be written as

brn(t) = <_22 é) [ /0 t 5T,T<u>du—<%§’“> ]+<_ [ ,?T’T(u) du>, Vi > 0.
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Integrate,
t 1 1
(1 —cos(tt) — —sin(rt)\ (zay
/0 Or p (u)du = < Tsin(rt) 1 — cos(rt) 0 (™)
n cos(tt)  Lsin(rt) fot 1 sin(7u) fu+°O hrr(v)dvdu
—7sin(rt)  cos(Tt) —fg cos(Tu) fu+°° hrp(v)dvodu |
(8)
By definition of the function h,, and by the hypothesis H;, the function

U > fu+°O hrr(v)dv is positive and increasing. Using the symmetry of the
function sin(ru) on [0, ZX] about the point J= we get,

t +o0
/ sin(Tu)/ hey(v)dvdu >0, Vt > 0.
0 u

In particular,

t +oo t +oo ot
/ sin(Tu)/ hey(v)dvdu >/ sin(Tu)/ hry(v)dvdu, YVt > —.
0 u 0 U T
(9)
Then the function
_ fot cos(Tu) fu+°O hrr(v)dvdu
fg sin(7u) f;roo hr o (v)dvdu

t—

is continuous and uniformly bounded on (27”, +00). In addition, the limit

i fot cos(tu) [ hr.p(v)dvdu
im

t—+00 fot sin(ru) [ hy(v)dvdu
exists. Then there exists sequence t,, — 400 such that

cos(Tty) fg” cos(Tu) fu+°O hr o (v)dvdu

sin(7t,) g" sin(7u) fu+oo Doy (v)dvdu’
and such that nr
lim [t, — (22 4+ , 10
Jim [t =+ 301 20 (10

Implies that, there exists a sub-sequence (tn,)r C (tn)n such that
limy_y 4 o0 cos(Tty, ) == a # 0. By Equation (), we get

im [ e (w)du = Tim La, (1 ¢ !

Jm [ e(a)du = JimZar(1—cos(rtn,)) # o,

where (1,7, 02,7r) = 0r,. Contradiction with Equation (G).



3 Proof of the Main results

Proof of the Main result. Integrate Equation (2) using the fact d,, is the
continuous solution and the fact d,,(0) =0, we get

Sra(t) = /0 t exp ( (_22 (1)> (t —u)) (hTf(u)> du.

By Lemma 2] we obtain,

Lgin(r — (" Lgin(ru U
5o (t) = < cos(tt)  ~sin( t)) < Jo 7 sin(ru)hr . (t)d >

—7sin(7t) cos(tt) fg cos(Tu)hr, (u)du.
Use the change of variable, ¢ — exp(u), in Equation ({I), we obtain

%S[zﬁ(l —r7) = Y5+ m cos(Tt) %Sin(Tt) !
< %[w(;— rT) — 1/1(%2—# r, 7)) ) N tlH-oo <—T sin(rt)  cos(tt) > Orr(8)-

By the Main Proposition [l we have ||¢(5 —r,7) — (3 +7,7)|| # 0 for every
re(0,1) and 7 € R™. O
4 Discussion about the Riemann hypothesis

Consider the representation of the Riemann Zeta function ¢ defined by the
Abel summation formula [[I], page 14 Equation 2.1.5] as

“+oo
¢(s) ::—3/0 W ws)e0,1), S(s) e R, (1)

t1+8

and where {t} is the fractional part of the real ¢. Define the non-trivial zeros
of the function ¢ in the following sense

Definition 3. Let be s € C. We say that s is a non-trivial zero of the
Sfunction C if

((s)=0 and R(s)e (0,1), (s)eR"

Denote 7, (t) := {t}. For every 7 € R* and every x € (0,1) we have

il = < and winld - 2,7y = ~ S0

s 1—s

, S:=x 41T

Since
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Then 7, satisfies the hypotheses Hy. The function 7, is C' on Ry /N. Then
7, satisfies the hypotheses Hy. By the Riemann functional equation [[I],
page 13 Theorem 2.1|, the non-trivial zeros of the function ¢ are symmetric
about the line R(z) = % By the Main result, the non-trivial zeros s € C
symmetric about the line R(z) = 1 satisfies R(s) = 1.

References

[1] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function (revised
by D.R. Heath-Brown), Clarendon Press, Oxford. (1986).



	Main result
	Main proposition
	Proof of the Main results
	Discussion about the Riemann hypothesis

