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Abstract
(B _ -s) 1
We prove that | —| # 0 for every R(s) € (0,3) and

S(s) € R*, where ¢ is the Riemann Zeta function. At the end of
the paper, we give a discussion about the Riemann hypothesis.
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1 Main result

Consider the representation of the Riemann Zeta function ¢ defined by the
Abel summation formula [[I], page 14 Equation 2.1.5] as

“+oo
C(s) ;:—3/0 W ws)e0,1), 3(s) e R, (1)

t1+8

where {t} is the fractional part of the real t. We prove in this paper the
following Main result

Main Result. Consider the function ¢ defined by Equation (). Then

CE+r+ir) (3 —r+ir)
%—l—r—kzﬁ- %—T-i-iT

#0, Vre(0, %), V1 e R*.
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2 Main Proposition

Notation 1. In order to simplify the notation, for every r € (0, %) and
7 € R* denote

o(rr) = ((g+r+in) C(1% —rti)

%4—7"—1—2'7' 5 — T+t

For every r € (0, 3) denote
fr(u) == {u}u_%(ur —u "), u>0. (2)

By Equation ([Il) we have

+oo .
o(r,r) = /0 u” T fr(u)du,

The aims is to studies the differential equation of solution the function
. t .
t— 7 [z —I—/ u_”fr(u)du}, t>0, zeC.
0

We focus only on the solutions that converge to zero. More precisely, the
strategy to prove the Main result, is to prove that the above function converge
to zero when ¢t — +oo implies that |z| # 0 (the initial condition). We deduce
that ¢(7,7r) # 0.
For every 7 € R* and r € (0, %) we consider the following differential
equation
d iT
= e ), te R./N, 2(0)=0, z:(0,+00)—=C. (3)

Lemma 2. For every 7 € R* and r € (0, %) there exists a unique continuous
solution . ,(t) : [0,+00) — C of the differential equation (3)). Further,

t
Yrp(t) = t”/ u_”fr(u)du, vt >0,
0

1 1
EEJ’_T E,_/r

—iT—i—%—H‘ —iT—i—%—T

Yep(t) = , Vte(0,1).



Proof. Since 0 < fo(u) < L(u" — u") for every u > 1 and
t3

fr(u) = ui%(u" —t7") for every u € (0,1) then the function

t
t t”/ T fo(u)du,
0

is continuous and C! on Ry/N. The Equation (@) is a non-
homogeneous linear differential equation, then unique continuous solution

Y, (t) : (0,400) — C such that [¢-,(0)] =0, is given by
. t .
Yrp(t) = t”/ u™ " fr(uw)du, YVt > 0.
0

Since fr(u) = t_%(tr —t7") for every t € (0,1), then

1 1
tatr ta—"

wr,r(t) = vt € (0,1).

—Z'T—I—%—I—r —’L'T—F%—T,

O

Proposition 3. For every 7 € R* and r € (O,%) the unique continuous
solution 1, (t) : [0, +00) — C of of the differential equation (3) satisfies

i [i6r,()] £ 0.

t—+o00

Notation 4. Denote
t
1
= — = >
p(t) /0 <{u} 2)du, vVt >0,

where we recall that {u} is the fractional part of the real u. Denote

=2 t)|.
w Jnax Ip(t)]

Lemma 5. The function p is a continuous 1-periodic function.

Proof. The function u — {u} is 1-periodic, then there exists a continuous
1-periodic function p : R — R such that

t 1
/ (uydu =1 / (uhdu+ p(t), V> 0.
0 0
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Since
we get

O

Lemma 6. Let 7 € R* and r € (0,3). Let 1r,(t) : [0,400) — C be the
unique continuous solution of the differential equation [Bl). Suppose that

Jim foor . (£)] = 0.

Then

) 1
lim ¢27"pr, () = —5 2 ’
t—il-gloo 1/}7'77“( ) 2(%—7”)2—1-7-2 +12(%—T)2—|—7’2

Proof. By Lemma,
t
P (t) = t”/ u”" fr(u)du, Yt > 0.
0

Suppose that
lim |¢,(t)] = 0.

t—4o00
Then
00 )
/ u™ fr(w)du = 0,
0
implies
t ) +00 )
/ u™ " fr(u)du = —/ w7 fr(w)du, Yt > 0.
0 t
We get

o (£) = —47 / W f(w)du, VS 0. ()
¢
Consider the function p given in the Notation @l Use the integration part
formula in Equation (),

1. oo g
) = 37 [
t

0 [ ) (o) = 900



where

hep(u) : d [u_”_%(ur — u_T)]

Since
Ip(u) —p(t)] <w, Vu>0,

where w is given by the Notation dl we obtain

1. +o0 3 3
eyt [ T
t

2
3 oo g 2w(lT|+2+7r)
<2l + S [ u b= 2R g
2 t 5—7"
We have
+o00
tiT/ [u—iT—%—‘r’r‘_u—iT—%—r]dU: : 1 t_%_
t —5 =T —IiT
_ 1 t—%-ﬂ“
—%+T—iT 7
Then,
1 1 1
lim ¢2 ", (t) = =——
R Vrr (1) 2—1+4r—ir
in other words
T AN PN S S AT S
1111 2 T - —= — .
e T G R (G

Lemma 7. For every r € (0, %) there exists t, > 0 such that
d {1 oo

—|= fr(w)du| <0, Vte (0,t).
dt Lt 1 ]

Proof. We have

O[T hwa] =3[ hwa 1)
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As in the Proof of the Lemma[6l using the integration part formula, we have

“+00 1 tl—fr tl+7«
/1 fr(u)du = — |:2— . 2
t

where p given in the Notation ] and where

hy(u) := % [u_%(u’" — u_’")]

= (—§ + T)u_g” -

3 5
2 (=g —ru2
Since 1
ple) P <w, Vu>0,
Then
lim ¢t~2+" +Oof( )d Sty
lim . r(w)du = 5 % — .
Since

. .3 1
A <L
Then there exists ¢, > 0 such that

]
Proof of the Proposition[3. Let be r € (0, %) and 7 € R* fixed. By contra-
diction, suppose that

t—lg-ri-noo |[thrr ()] = 0.

(5)
In order to simplify the notation, denote
1
t
U, (t) := E¢T7T(u)du, vt € (0, +00).
0
Equation (3), implies
d

1 1
T (1) = e (5
dt 7() t¢’(t)du

“Tv - [ wa.©



In order to simplify the notation, denote
w(t) == %(wmﬂ(t)) and  v(t) = %(\IIT,T(t)), Wt > 0.

By Hypothesis (@) and by Equation (B3], we have

+oo
w(0) =0 and v(0) = l/0 fr(u)du.

T

Equation () can be written as

d T 1 i 1 [t

Loty = Tolt) - 7 /0 frlwdu, () = 1 /0 £ (u)du,
d T

Ev(t) = —;w(t), w(0) =0, t>0.

By Lemma [7] there exists . > 0
drl [+
= [Zﬁ fr(u)du} <0, Vte (0,t,).
T

Then there exists €, > 0 such that

d
1. t t )
dtw()<0, Vt € (0,€er,)

in other words )
R(Vrr(5)) >0, VEe (06ry).
But by the hypothesis (G) an Lemma [6] we have

1
lim 274, () = — +is

t—+00 2(%_7,)2_,_7.2 2(%—74)24-7-2'

We obtain a contradiction.

3 Discussion about the Riemann hypothesis

Consider the representation of the Riemann Zeta function ¢ defined by Equa-
tion (). Define the non trivial zeros of the function ¢ in the following sense

Definition 8. Let be s € C. We say that s is a non trivial zero of the

Sfunction C if

((s)=0 and R(s) € (0,1), (s)eR".
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By the Riemann functional equation [[I], page 13 Theorem 2.1|, the non
trivial zeros of the function ¢ are symmetric about the line R(z) = % By the
Main result, the non trivial zeros s € C symmetric about the line R(z) = %
satisties R(s) = 3.

Theorem 9 (Riemann hypothesis). Let s € C be a non-trivial zero of the
function (. Then R(s) = 1.

Proof. By contradiction, suppose that there exists a non-trivial zero s, € C
of the function ¢ such that R(s,) # 3. Then

Sx
The Main result implies
¢ —s4)
- . 8
1— s, 70 (8)

But the Riemann functional equation implies that the non-trivial zero of the
function ¢ are symmetric about the line (2) = % In other words,

C(1—s4)=0.
We obtain a contradiction with the Equation (8). We deduce that R(s.) = %
O
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