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Abstract

We prove that @ # % for every R(s) € (0,1) and S(s) > 0,

where ( is the Riemann Zeta function. In the end of the paper, we
give a discussion about the Riemann hypothesis.

Keywords: Riemann functional equation, Zeta function.

1 Main result

Let be n : Ry — R be a bounded function. We study the function
¥ln] : (0,1) x RY — R defined as

400 t
Ve e (0,1), V7 >0: ¢nl(z,7) = / ;71(—4_9)0 sin(7 In(t))dt, (1)
0
We focus about the function n : Ry — R satisfying the following hypotheses
Hy : 0<n(t)<1lforallt>0,
Hy : the function 7 is a C'' piecewise function.

We prove in this paper the following Main result

Main Result. Consider the function v defined by Equation (). Then, for
every function n: Ry — R that satisfies the hypotheses Hy and Hs we have

Yl ™) £ 9l - w7), V>0, ¥ € (0,5)



2 W. OuKIL

2 Main Proposition

Notation 1. Let n : Ry — R be a function that satisfies H; and Hy. For
every r € (0, %) and 7 > 0 denote

1 1

¢r(r) = Yl(5 + 1) = Pl(5 —r,7).

1

Proposition 2. There exists a continuous function 6 : R x (0, 5

such that

) ? ﬂz_i_
d ]
dT (7") >6( ’ )¢7(7‘), VT € (07 2)7 V17 >“

Proof. For every r € (0, %) , define the functions ¢ — h,.(n,t) as
1
hy(n,t) = 2exp(—§t) [n(exp(t)) + 1] sinh(rt), V¥t > 0.

In order to simplify the notation we denote h,(t) := h,(n,t) for all ¢ > 0.
Use the change of variable, ¢ — exp(u), in Equation ({I), we obtain

+00 1
o (r) = —/0 hy(s)sin(Ts)ds, Vr € (0, 5), V1 > 0.

Let be 8 > 0 that we fix later. We have

+o0o
i<;ST(7‘) — Bor(r) = —/0 sin(Ts)[dihr(s) — Bhy(s)]ds.

dr T

By Rolle Theorem and the hypothesis Hy, there exists 3;, > 0 such that

/ . Sin(Ts)[diThr(s) — By h(s)]ds = 0. @)
0
Then

d too d
5@(7‘) — By (1) = _/; sm(Ts)[%hr(s) — Brrhy(s)]ds.

Use the hypothesis Hy and the integration part formula, we get

2nm

4 b () = Brrrs(r) = 7 lim / " cos(ru) / 1L ) — B pho(0)]duda

dr n—+oo Jx x dr
T T



Since r € (0, %

2) and by the hypothesis Hy, then there exists a,, > 0 such
that

+o0o
/E [%hr(’u) — BT,Thr(’U)]d’U

= a’T,T'
T

In order to simplify the notation, denote

t
h'r,r(t) = Qryp — / d

e (V) = Brrhe(v)]dv, Wt > 0.

T

Since the convergence to «., is exponential, we get
b

d . ¢ -
2:0r(r) = Brrér(r) = =7 lim i cos(Tu)hr,(u)du.

Use the integration part formula, we obtain

d
%ng(T) - 5T,T¢T(T)
2n+1)mw 2n+1)w u
= Tnli)g:oo[ . hey(v)dv — T . Sin(7'u)/E hT,r(v)dvdu]. (3)
The function "
U B (v)dv,

m
T

™

is positive, increasing, concave on |

,+00) and converge. Then there exists
érr € (0, %) and a sequence (t,)nen C Ry such that

Tty € [2nm + g +€rp, (2n 4 1)),

tn u
/ sin(Tu)/ hry(v)dvdu = 0,

and

(4)

s

Vn > 0.

T

Use the Cauchy mean value Theorem on Equation (B]), for all n > 0 there
exists 1y € (tn, w) such that

d
%ng(T) - 5T,T¢T(T)
(27%7{:1)7\' ~ T (27%7{:1)7\'
= TnEToo [ - hrp(v)dv — ﬂ hry(v)dv

7sin(Tu)du|,
tn
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which can be written as

(2n+1)mw

d - . T .
g(ﬁr(r) - /8T7T¢T(T) - 7'047',7“ ngg-loo[l - . TSln(Tu)du]7

where
t

Oy, = lim by (v)dv.
’ t—+oo |x ’
u

Thanks to Equation (@) we deduce that

d
%qu(r) - /BT,T‘QST(T) > 0.

By definition of 3, on Equation [@) the function 6 : R* x (0,1) — R%
defined as (7, r) := 5, is continuous and we have

d 1
5@(7‘) > 0(1,r)p- (1), Vr € (0, 5), V7 > 0.

3 Proof of the Main result

Proof of the Main result. Let be 7 > 0 fixed. By the Proposition 2 we have

d 1
%(ﬁq—(’r’) > 9(’7’,7")(}57—(7'), Vr e (07 5) (5)

Then there exists r € (0, 3) such that ¢,(r) # 0. Suppose that there exists
a point r, € (0, 3) such that ¢.(r.) = 0, then £, (r,) > 0. There exists
z € (0, 3) such that ¢,(z) > 0. Integrate Equation (&) we get

" 1
o7 (1) > exp </ H(T,v)dv) - (2), Vre (0, 5)
Contradiction with the fact ¢,(r.) = 0. By the Notation [Il we deduce that

—rr) il ) A0, Vre (0,7).



4 Discussion about the Riemann hypothesis

Consider the representation of the Riemann Zeta function ¢ defined by the
Abel summation formula [[I], page 14 Equation 2.1.5] as

+oo
C(s) = —s /O W s e0.1), S6s)er, (6)

tl-i—s

and where {t} is the fractional part of the real ¢. Define the non-trivial zeros
of the function ¢ in the following sense

Definition 3. Let be s € C. We say that s is a non-trivial zero of the
Sfunction ¢ if

((s)=0 and R(s)e (0,1), I(s)eR"
Denote 7, (t) := {t}. For every 7 > 0 and every = € (0,1) we have

vl =9[4Y] and il —a.r) = o[

}, §:=x+1T.

Since
0< 77*(25) <1, Vt>0,

Then 7, satisfies the hypotheses H;. The function 7, is C* on R, /N. Then
7. satisfies the hypotheses Hy. By the Riemann functional equation [[I,
page 13 Theorem 2.1], the non-trivial zeros of the function ¢ are symmetric
about the line ®(z) = 3. By the Main result, the non-trivial zeros s € C

symmetric about the line R(2) = £ satisfies R(s) = 1.
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