
HAL Id: hal-03581862
https://hal.science/hal-03581862v1

Preprint submitted on 20 Feb 2022 (v1), last revised 12 May 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Flat Motion Planning to Non-flat Systems.
Experiments on Aircraft Models Using Maple

François Ollivier

To cite this version:
François Ollivier. Extending Flat Motion Planning to Non-flat Systems. Experiments on Aircraft
Models Using Maple. 2022. �hal-03581862v1�

https://hal.science/hal-03581862v1
https://hal.archives-ouvertes.fr


Extending Flat Motion Planning to
Non-flat Systems.

Experiments on Aircraft Models Using
Maple

François Ollivier

LIX, UMR CNRS 7161

École polytechnique
91128 Palaiseau cedex

France
francois.ollivier@lix.polytechnique.fr

8 janvier 2022

Abstract. Aircraft models may be considered as flat if one neglects some terms
associated to aerodynamics. However some maneuvers may be hard or even
impossible to achieve with this flat approximation. Computational experiments
in Maple show that in some cases a suitably designed feed-back allows to follow
such trajectories, when applied to the non-flat model. In this paper, we propose
an iterated process to compute a more achievable trajectory, starting from the
flat reference trajectory. More precisely, the unknown neglected terms in the flat
model are iteratively re-evaluated using the values obtained at the previous step.
This process may be interpreted as a new trajectory parametrization using an
infinite number of derivatives, a property that may be called generalized flatness.
We illustrate the pertinence of this approach in flight conditions of increasing
difficulties, from power-off gliding flight to aerobatics.
Keywords : flat systems, motion planning, aircraft control, Newton operator,
symbolic-numeric computation, generalized flatness.

1



Introduction

The solutions of flat systems [2, 3, 10] can be parametrized by a set of
functions, called flat outputs, and a finite number of their derivatives. This
property is particularly useful for motion planning of non linear systems,
i.e. the design of a control law able to generate a trajectory joining a gi-
ven starting point to a given end point. Though flatness is not a generic
property, flat systems are ubiquitous in practice. There is no known com-
plete algorithm to decide flatness (see e.g. Lévine [11] for necessary and
sufficient conditions), but the flat outputs have often simple expressions
that may be guessed by physical considerations.

This work takes place in a systematic study of apparent singularities of
flat systems, i.e. points where the parametrization provided by given flat
outputs cease to be defined [6, 7]. In practice such situations are more
likely to appear when a failure modifies the symmetries of the system
or involves the loss of some controls, thus requiring an alternative flat
output.

Among the classical examples of flat systems are cars, trucks with
trailers, cranes, aircrafts, etc. Note that aircraft models have been studied
since long in [13, 14]. Although aerodynamics models are complex and
may involve many parameters, they turn out to be flat if one neglects
the thrust created by control surfaces (rudder, elevator and ailerons) or
associated to angular speeds, a legitimate approximation in many cases.

In practice, we aim at designing a suitable feed-back able to compen-
sate both perturbations and modelling errors. In order to investigate its
robustness in the context of maneuvers and failures of increasing dif-
ficulties, we have designed a package in Maple. Its implementation is
presented and we illustrate its use by a few numerical simulations of tra-
jectory tracking. More details will be given in forthcoming papers with
Y.J. Kaminski and J. Lévine.

We focus here on an notion of generalized flatness, suggested by compu-
tational experiments, trying to improve trajectory tracking when the de-
sign of a suitable feed-back becomes hard. We first noticed that, conside-
ring trajectories with constant controls and attitude angles, these controls
and angles may be computed by solving an algebraic system, i.e. a non
differential one. The real model is in this case more complicated, but of
the same nature as the simplified one. We sometimes needed to use an
alternative simplified model, where control values are not set to 0 but to

2



constant values provided by ad hoc calibration functions.
We tried then to go further and to improve the parametrization pro-

vided by the simplified model. We have needed to neglect some terms,
depending on the controls U. As the flat parametrization provides an
first evaluation U[0] for the controls, we can use this value in the pertur-
bation terms of the full model, instead of setting them to 0. We get so a
second evaluation U[1] for the controls that may be used to improve the
evaluation of the perturbation terms, providing a third evaluation U[2]. . .
This process can be iterated ad libitum. In our experiments, this simple
change provides, using only 4 iterations, a precise motion planning for
the full aerodynamic model, which suggests the introduction of a notion
of generalized flatness for such systems. As each iteration implies more
derivatives of the flat outputs, such a generalized flat parametrization
potentially involves an infinite number of derivatives of the flat outputs
of the unperturbed flat system.

Flat systems and their singularities are introduced in sec. 1. Detai-
led aircraft models, for which this motion planning algorithm has been
taylored, are presented in sec. 2 and their approximate flatness and sin-
gularities are studied in sec. 3. Then, their motion planning and tracking
feed-back and the associated Maple package are presented in sec. 4, the
implementation of generalized flatness in section 5, followed by examples
of flight maneuvers with increasing difficulties in section 6. A last sec-
tion 7, provides preliminary elements for a theoretical interpretation.

1 Flat systems and their singularities

The first definition of flatness was given in the framework of differen-
tial algebra [17]. We prefer here to use a more flexible definition, relying
on Vinogradov’s notion of diffieties [8, 20], that do not restrict to algebraic
systems and algebraic flat outputs. The main difference in our approach,
is that diffieties are defined by fixing a derivation, and not just the vector
space generated by a derivation.

1.1 Definition

Définition 1. — A diffiety V is an open subset of RI , where I is a denumerable
set,—using the coarsest topology that makes all projections RI 7→ Ri, i ∈ I

3



continuous—, equipped with a derivation δ. All functions on a diffiety are C∞

and only depend on a finite number of coordinates. We denote their set by O(V).
In the sequel, we will be concerned with diffieties associated to a finite

ordinary system
x′i = fi(x, u, t), (1)

where x = (x1, . . . , xn) is the state vector, u = (u1, . . . , um) the controls and
t is the time, implicitly satisfying t′ = 1. To such a system, we associate
R × Rn ×

(
RN)m, the first copy of R is for t, then Rn for x and the last

term corresponds to the controls and their derivatives. So the derivation
δ, that we denote by dt is

dt := ∂t +
n

∑
i=1

fi(x, u, t)∂xi +
m

∑
j=1

∑
k∈N

u(k+1)
j ∂

u(k)
j

, (2)

denoting ∂/∂xi by ∂xi for simplicity. We may obviously restrict to a open
subset, according to physical limitations.

Among such diffieties, is the trivial diffiety, which is R× (RN)m, equip-
ped with

dt := ∂t +
m

∑
j=1

∑
k∈N

z(k+1)
j ∂

z(k)j
,

which is in fact the jet space J∞(R, Rm). We are now able to define flatness.

Définition 2. — A diffiety morphism ϕ : Uδ1 7→ Vδ2 is such that ϕ∗O(V) ⊂
O(U) and, for any function g on V, δ2g = δ1ϕ∗g, meaning that the mapping g
is compatible with the derivations.

The flatness domain, VF, is the set all flat points, i.e. points admitting a
neighborhood that is isomorphic to an open subset of the trivial diffiety.

Let ϕ be such an isomorphism defined by zj := Z(x, u, t), the functions Zj
are called flat outputs.

Thus, ϕ−1 is locally defined and provides a flat parametrization, defined by
xi = Xi(z, . . . , z(r)) and u(k)

j = Uj,k(z, . . . , z(r+k+1).
In fact, in many cases, the state space is not affine and can be a sphere,

a circle. . . as we will see soon. In such cases, different charts needs to be
used to cover it. And flatness can impose to use more charts, each asso-
ciated to a suitable flat output, in order to cover all the flatness domain.

4



1.2 Singularities of flat systems

In the above definition, flat outputs are only defined on open spaces.
Points where flat outputs are not defined, or the inverse mapping, are ap-
parent singularities for these outputs. Flat singularities are the points where
no flat parametrization can be defined.

The lack of a general algorithmic criterion to decide flatness makes
difficult to characterize flat singularities. In a first stage of our a collabo-
ration in progress with Y.J. Kaminski and J. Lévine, we have focused on
driftless systems [6] and affine systems [7] with n − 1 controls, for which
the following necessary condition, which amounts to the controllability
of the linearized system, turns out to cover all the cases when the action
of the control functions remain independent.

The most precise expression of this criterion requires using power se-
ries. At a given point η of a diffiety, we associate to any function F the
power series : jη F := ∑k∈N dkF(η)tk/k! and consider at each point η the
differential operator

dη F :=
n

∑
k=1

jη(∂xk fi)dxk +
m

∑
j=1

∑
k∈N

jη(∂u(k)
j fi)du(k)

j . (3)

Theorem 3. — If a diffiety defined by a differential system (1) is flat at point η,
then the R[[t]][dt]-module defined the linearized system at η dη(x′i − fi(x, u, t),
that is the quotient R[[t]][dt]-module (dηx, dηu)/(dη(x′i − fi(x, u, t)) is a free
module.
Proof. — If Z is a flat output, then dηZ is a basis of this module. Indeed,
xi = Xi(Z), for 1 ≤ i ≤ n and uj = Uj(Z), for 1 ≤ j ≤ n, so that
dηxi = dηXi(Z) and dηxi = dηXi(Z).

It seems that we are lacking a good reference for testing freeness over
a D-module ring with coefficient in a power series ring. But things are
easy when coefficients are constants.

2 Aerodynamic models of aircrafts

We have used the model described by Martin [13, 14] that basically
follows most textbooks. We avoid reproducing all lengthy equations to
focus on their structure.

5



It is classical to model aircrafts using the following 12 state variables :
(x, y, z, V, γ, χ, α, β, µ, p, q, r). We try to describe briefly their rough mea-
ning. A precise understanding is not mandatory for what follows. First,
(x, y, z) correspond to the coordinates of the gravity center of the aircraft,
V to its speed, the flight path angle γ and the azimuth angle χ are Euler
angles describing the speed vector, µ is the bank angle, corresponding to
roll. Those 3 Euler angle define the wind frame, and the sideslip angle β
together with the angle of attack α describe respectively the rotations with
respect to the z-axis (yaw) and then y-axis (pitch) in order to go from the
wind referential to the aircraft frame, according to the following figure.

Thanks to Wikipedia

Angle µ corresponds to roll, β to yaw and α to pitch.

Figure 1 – Aircraft rotation axes

Then, (p, q, r) is the expression of the rotation vector in the Galilean
referential tangent to the aircraft referential at each time.

The controls are the following, the thrust of both engines (F1, F2),
that we prefer to model using their sum F = F1 + F2 and a parameter
η := (F1 − F2)/(F1 + F2), and then the virtual angles δℓ, δm and δn, that
respectively express the positions of the ailerons, elevators and rudder.
When the rudder is damaged, it is possible to some extent to use diffe-
rential thrust η as a control instead of δn (see, e.g. [12]).

2.1 The shape of the equations

We can now describe the shape of the equations, dividing the state
variables in 4 subsets : Ξ1 := {x, y, z}, Ξ2 := {V, γ, χ}, Ξ3 := {α, β, µ} and

6



X4{p, q, r}. We have :

(x′, y′, z′) = F1(V, γ, χ); (4a)

(V′, γ′, χ′) = F2(V, γ, α, β, µ, F, [p, q, r, δℓ, δl, δn]); (4b)

(α′, β′, µ′) = F3(V, γ, α, β, µ, p, q, r); (4c)

(p′, q′, r′) = F4(V, γ, α, β, µ, p, q, r, δℓ, δl, δn). (4d)

The equation (4b) actually depends on p, q, r, δℓ, δl, δn, but this dependence
is often neglected. With this simplification, setting Ξ5 := {δℓ, δl, δn}, we
can generically express the value of Ξi+1, using the derivatives Ξ′

i. When
i = 2, we need to choose one variable ξ3,i in the set Ξ3 = {α, β, µ, F} to
form a flat output. Then, generically, x, y, z, ξ3,i and their derivatives allow
to compute the values of the state space and controls. The classical choice
is ξ3,i = β. We now briefly investigate apparent singularities that may
appear at each level of derivation, the second one being left for further
investigations.

2.1.1 First level

d
dt

x(t) = V(t) cos (χ(t)) cos (γ(t)); (5a)

d
dt

y(t) = V(t) sin (χ(t)) cos (γ(t)); (5b)

d
dt

z(t) = −V(t) sin (γ(t)). (5c)

It is easily seen that the values of V, χ and γ, modulo π, can be compu-
ted, provided that V cos(γ) ̸= 0, which seems granted in most situations.
The vanishing of V may occur with aircrafts equipped with vectorial
thrust, which means a larger set of controls, that we won’t consider here.
This means that we assume V > 0, and a single value for (cos(χ), sin(χ))
can be determined on the unit circle. The vanishing of cos(γ) can occur
with loopings etc. and would require the choice of a second chart with
another set of Euler angles. This issue was not investigated here.

2.1.2 Third level

We postpone the study of the second level, that contains the main
difficulties, to the next section. The shape of the third level equations

7



imposes cos(β) ̸= 0. They are linear in (p, q, r), with a non vanishing
determinant and so easily solved.

2.1.3 Fourth level

The case of variables (p, q, r) is easy two.
The dynamics of the angular speed vector (p, q, r) is given by : d

dt p(t)
d
dt q(t)
d
dt r(t)

 = I−1

 (Iyy − Izz)qr + Ixz pq + L
(Izz − Ixx)pr + Ixz(r2 − p2) + M
(Ixx − Iyy)pq − Ixzrq + N

 , (6)

where I is the inertia vector of the aircraft, assumed to be symmetric
with respect to the xz-axis and (L, M, N) the torque, that can obviously
be computed using these equations. In general, one expects L to depend
mostly of δℓ, M on δm, etc. and to be monotonous in the range of admis-
sible values. Using the GNA model, they are linear in those controls, with
inversible matrices.

2.2 The GNA model

The aircraft model equations involve the forces (X, Y, Z) and the torques
(L, M, N) acting on the aircraft, that are given by these formulas :

X = F(t) cos(α + ϵ) cos(β(t))− ρ

2
SV(t)2Cx − gm sin (γ(t)); (7a)

Y = −F(t) cos(α + ϵ) sin(β(t)) + ρ
2 SV(t)2Cy

+gm cos(γ(t)) sin(µ(t));
(7b)

Z = −F sin(α + ϵ)− ρ

2
SV(t)2Cz − gm cos(γ(t)) cos(µ(t)); (7c)

L = −yp sin(ϵ)(F1(t)− F2(t)) +
ρ

2
SV(t)2aCl ; (7d)

M =
ρ

2
SV(t)2bCm; (7e)

N = yp cos(ϵ)(F1(t)− F2(t)) +
ρ

2
SV(t)2aCn. (7f)

The angle ϵ is a small angle related to the lack of parallelism of the
reactors with respect to the xy-plane of the aircraft and ρ is the air density,
a and b lengths related to the aircraft characteristics.

8



The aerodynamic coefficients Cx, Cy, Cz, Cl, Cm, Cn depend on α and β
and also on the angular speeds p, q, r as well as the controls δl, δm and
δn. To make the system flat, we need to consider that Cx, Cy and Cz only
depend on α and β. In the literature, the available expressions are often
partial or limited to linear approximations, as in McLean [15]. We used
here the Generic Nonlinear Aerodynamic (GNA) subsonic models, given
by Grauer and Morelli [4], that cover a wider range of values.

We will provide simulations with 2 aircrafts among the 8 in their data-
base : STOL utility aircraft DHC-6 Twin Otter and the sub-scale model of a
transport aircraft GTM (see [5]). Data for the F4 and F16C fighters are also
available in our implementation. The GNA model for the aerodynamics
functions C appearing in formulas (7a–7f) depends on 45 aerodynamic
coefficients, in formulas such as :

CD = θ1 + θ2α + θ3αq̃ + θ4αδm + θ5α2 + θ6α2q̃ + θ7δm + θ8α3

+θ9α3q̃ + θ10α4,
Cy = θ11β + θ12 p̃ + θ13r̃ + θ14δl + θ15δn,
CL = θ16 + θ17α + θ18q̃ + θ19δn + θ20αq̃ + θ21α2 + θ22α3 + θ23α4,

(8)

where p̃ = ap, r̃ = ar, q̃ = bq, CD and CL correspond to the lift and drag
coefficients in the aircraft frame. The coefficients Cx and Cz in the wind
frame are then given by the formulas :

Cx = cos(α)CD + sin(α)CL,
Cz = cos(α)CL − sin(α)CD. (9)

Grauer and Morelli also provide all the needed physical constants,
but no precise data for landing conditions, flaps. . . To simulate landing,
empirical changes were made. The starting point of this work was to be
able to handle the full model, considering changes of flat outputs when
singularities are met, and to question the validity of the motion planning
provided by a flat simplified model, when trying to control the full model.

3 Flat outputs and their singularities

3.1 Classical flat outputs
Martin [13] has used the set of flat outputs : x, y, z, β. We need to

explicit under which condition such a flat output is non singular. The

9



differential equations involved at this stage are the following.

d
dt

V(t) =
X
m

; (10a)

d
dt

γ(t) = −Y sin(µ(t)) + Z cos(µ(t))
mV(t)

; (10b)

d
dt

χ(t) =
Y cos(µ(t))− Z sin(µ(t))

cos(γ(t))mV(t)
. (10c)

The first one (10a) provides the value of X. From its expression, we
can express the value of F by (7a), as α + ϵ is assumed to be small. We see
that the two last equations depend on cos(µ)Y − sin(µ)Z and sin(µ)Y +
cos(µ)Z. We get new expressions Ŷ and Ẑ by substituting in them the
value of F provided by (7a). We can compute locally α and µ, provided
that ∣∣∣∣∣ ∂X̂

∂α
∂X̂
∂µ

∂Ŷ
∂α

∂Ŷ
∂µ

∣∣∣∣∣ ̸= 0. (11)

This condition implies that Y and Z do not both vanish, which excludes
0-g flight for space training or some aerobatics maneuvers, but which
stands in most usual flight conditions. The main interest of this choice is
to be able to impose β = 0, which is almost always required.

3.2 The bank angle choice

Considering the flat output {x, y, z, µ}, we see that that we can com-
pute the values of X, Y and Z. Again, X provides an expression of F, that
may be susbsituted in Y and Z to get new expressions Ỹ and Z̃. The flat
output is regular when ∣∣∣∣∣ ∂Z̃

∂α
∂Z̃
∂β

∂Ỹ
∂α

∂Ỹ
∂β

∣∣∣∣∣ ̸= 0. (12)

The vanishing of this determinant may be interpreted as some kind of
stalling condition. Indeed, when β = 0, it is equal by symmetry to

∂Z̃/∂α∂Ỹ/∂β.

For most aircrafts, ∂Ỹ/∂β ̸= 0 seems reasonable, although it may be very
small or even negative for some fighter like the F16XL with a delta wing,

10



according to data in [4]. Then, ∂Z̃/∂α means that the lift is extremal,
which may be taken as a rough mathematical definition of stalling. Of
course, we are here working with a simplified model that cannot reflect
the irreversible changes in air flow that occurs in real stalling, but mimic
it as a maximum of the lift. In such a situation, the control δm that acts on
α, and so on the lift, may be considered as lost. And indeed, for a straight
line trajectory with constant speed equal to the stalling speed, i.e. with α
maximal, the aircraft model is not flat according to th. 3. This means that
such a flight output always works for most aircrafts, except for situations
that obviously need to be avoided for safety reasons.

3.3 The thrust choice

The choice of thrust F has one main interest : to set F = 0 and consider
the case of an aircraft having lost all its engines. See subsection 6.2 In the
case of the GNA model, Cy is linear in β. If cos(µ)θ11 ̸= 0 (see (8)), we
may express β depending on α, µ, X1, X2 and the aircraft parameters,
using equation (10c), and then replace it by this evaluation in X and Z
to get new expressions X̄ and Ȳ. With these notations, the flat outputs
including F are non singular iff∣∣∣∣∣ ∂X̄

∂α
∂X̄
∂µ

∂Z̄
∂α

∂Z̄
∂µ

∣∣∣∣∣ ̸= 0. (13)

By symmetry, both ∂X̄/∂µ and ∂Z̄/∂µ vanish when β = 0, so that this
choice of linearizing outputs requires non zero side-slip angle.

3.4 Other sets of flat outputs

Among the other possible choices for completing the set Ξ1 in order
to get flat outputs, α could work in theory but does not seem to have
much specific interest. One may also consider time varying expressions,
e.g. linear combinations of β and µ, to smoothly go from one choice to
another, which has been implemented but did not lead to a convincing
use in simulations.

11



4 Maple package

We describe here an experimental implementation, only designed at
this stage for our own use and lacking of documentation and comments.
However, the source code is made available for curious readers :
http ://www.lix.polytechnique.fr/~ollivier/GFLAT/. The goal was to get
reliable results by minimizing the needed total amount of time, that is the
time requested by numerous simulations and the time of implementation.

Four Maple packages were written. The package GNA implements data
from Grauer and Morelli, the package Flat_Plane_G2 implements the
flat motion planning and its generalization. A package Newton contains a
multivariable Newton method and a package Display_plane deals with
numerical simulations and drawing the curves that illustrate this papers.

An other important point is to be able to control long computations in
order to stop them if something goes wrong. The functions were mostly
used in verbose mode, displaying the index i of each new time step or
intermediate numerical results during motion planning or numerical in-
tegration.

This proved important for debugging but also during the repeated
trial and error sequences required to guess working parameters for the
feed-back.

The general spirit was to limit ourselves to basic Maple functions :
manipulation of lists, substitutions, computation with polynomials and
classical functions, power series, the solve function for linear systems,
and the dsolve numerical integrator.

4.1 Physical models. GNA

There is not much to say about this package. Our choice was to use
global variables to store all the requested parameters. It has many draw-
backs, including some possible protest from Maple numerical integrator,
that we were able to overcome. The main advantage is to alleviate the
number of arguments in functions that already require a great number
of them and to make all the requested intermediate results available for
the function used at next step without mistakes and omissions. There is a
function for each model of aircraft that store the physical constants, with
names such as TO, GTM or F16C. Its arguments are of the form x = fct(t),

12



y = fct(t). . .a sequence that is stored in a global list to provide the time
functions associated to the flat outputs.

We have already said that any combination ζ of β and µ can be used
as a flat output. For this, the syntax

zeta=(f1(t)*betta+f2(t)*mu=fct(t))

is recognized. On may notice that beta and gamma are already used by
Maple. An ugly but fast solution was to write bbeta and gama to avoid
conflicts. In case of rudder failure, one can use relative thrust as control.
A generic name for this control is u_4 and one may write e.g. deltan=u4,
eta=0 or deltan=10*deg, eta=u4. If a non zero value is given to δn, it
will be used at the second stage, for better precision, instead of setting
it to 0 in order to define the simplified model. Options provide models
for ground effect or an expression of air density, depending on altitude.
For this, the notation _z is used instead of z to avoid too early evaluation.
One may also assign to eta a function of the time, e.g. to model an engine
failure. We need then to denote the time by _t, again to prevent too early
evaluation.

4.2 Newton operator with series

The main task of the Flat-plane model is to achieve motion planning.
Following the ideas developed in section 3, this is in principle easy. We
encounter two difficulties. First, computing successive derivatives of the
flat outputs may lead to formulas of great size and slow computations,
mostly when trying to model complicated maneuvers and long flight se-
quences. Second, we cannot rely at stage 2 on closed form formulas for
solving the equations, so that numerical approximation needs to be com-
puted.

Our choice was to compute at a given time a power series expansion
of the flat outputs with all terms up to t5. At stage 2, a classical Newton
method is used to compute constant terms of the series corresponding to
α, β, µ or F. Then, we use a Newton method for series (see e.g. [1, th. 3.12

p. 70]) to compute their power series expansion modulo t2 and then t4,
which is enough to get δℓ, δm and δn as affine functions of t. Higher orders
may also be computed and will be needed in sec. 5.

Unless physical considerations makes it difficult or impossible (e.g.
near stalling conditions), the use of Newton method is in general easy,

13



when initiated with 0 values, as most angles are small. This is no longer
the case with flat outputs x, y, z and F, that require higher values of
β. Then, some calibration functions are used to provide suitable values
to initiate the computation. Our Newton function is a memory one, so
that it starts at step i + 1 with the values of step i for better efficiency.
During experiments, warning messages from the Newton function that
fails to provide solution up to 10−3 after 20 iteration are the symptoms of
a choice of trajectory that is too close to a singularity of the flat output.

4.3 Motion planning

The function Motion_Planning takes among its arguments a beginning
time, an ending time and the number of time intervals. At each step time
ti, the power series expansions si of the controls and state variables are
stored, using global variables, so that they could be used by functions
with names such a fx, . . ., falpha, . . . that will compute the value at
t1 ≤ t ≤ ti+1 using the formula : [(ti+1 − t)si(t − ti) + (t − ti)si+1(t −
ti+1)]/(ti+1 − ti) for better precision.

An option calls Maple numerical solver to build numerical integrators
for the the full model, using just the control functions computed with the
simplified model, or completing them with feed-back functions, that are
described in the next subsection.

An extensive use of the subs Maple function allows to perform rewri-
ting tasks, replacing in the equations parameters by their values, as well
as already computed state variables. A basic function serpol (and avatars
that apply to both terms of an equality, list of equalities etc.) computes
power a series expansion and convert it to a polynomial, that is easier to
handle for further computations.

4.4 Design of the feed-back

To design the feed-back, we consider the linearized system around the
trajectory planned using dx, dy, dz as flat outputs of this linear system,
completed with dβ or dµ, according to the case, or nothing with the F
output. The feedback function takes one of β, µ or F as an argument. The
state functions are replaced at each step i by its power series expansion
at ti. The main idea is to achieve an exponential decrease of δx, δy, . . .

14



that is the difference between values x, y, . . . computed by numerical
integration using the full model and the planned values x̃, ỹ, . . . using
the flat parametrization. For this, integrals such as îx :=

∫ t
t0
δxdt, îy :=∫ t

t0
δydt,. . . are also considered in the numerical integration of the model

with feed-back. Actual expression are a more complicated, but we only
sketch here the basic idea.

The algebraic design of the feed-back relies on computation in the
differential module, using the analogy between the assumed “small va-
riations” δxi = xi − x̃i and dxi. Each equation P of the system is replaced
by its differential ∑ ∂P/∂xidxi and one substitutes to the xi their power
series estimation x̃i.

Lists of positive real values λi,j having been given, the feed-backs δF,
δδℓ, δδm and δu4 are computed, depending on îx, δx, . . ., î, δy, . . . so that,
e.g., ∏5

i=j(d/dt − λ2,j)îy = 0, etc. Results are stored in global variables to
be used by numerical functions during integration.

Under good hypotheses, îx, . . . tend to a constant value, or slowly va-
rying value, so that its derivative δx is 0, or small. Troubles appear with
fast maneuvers and also with aircrafts like the twin otter with controls, ge-
nerating greater thrusts. Too big values for the λi,j can create instabilities,
two small values do not manage to keep close to the planned trajectory.
Choices where made with trial and errors, that sometimes required many
interrupted simulations.

5 Generalized flatness

5.1 Calibration functions

When the torsion and the curvature of the trajectory are constants, the
values of the controls F, δl, δm and δm are constant too. It is then possible
to compute them, just knowing V, γ and χ′, even for the full model. They
are solutions of a non linear system, that may be solved using Newton
method. Indeed, looking at the set of equations (4c), (4d) and the equa-
tions (10a) and (10b), we see that for such trajectories, the derivatives in
the left members are 0. On may add equation (10c), for which the left
member χ′ is a constant. We have then 9 equations between the 12 unk-
nowns in {V, γ, χ′} ∪ Ξ3 ∪ Ξ4 ∪ Ξ5. Generically, we need to fix 3 values

15



to have local expressions of the 12 others. We have implemented such
functions to compute the angle of attack α, depending of V, or to com-
pute stalling speed. They most of the time only depend of 2 arguments,
instead of 3 assuming χ′ = 0, or just one, when assuming also β = 0.

5.2 From calibration to time varying controls

When the control functions are not constant, it remains possible to
evaluate their values with the full system. The basic idea is to recompute
the trajectory, using the values obtained for p, q, r, δℓ, δm, δn, instead of 0.
The process can then be iterated.

We can describe the process in the general setting of an almost chained
system, such as

(Z′
h, X′

h) = Fh(Z1, . . . Zh+1, X1, . . . , Xh+1)
+Gh(Xh+2, . . . , Xh+ℓh

), 1 ≤ h ≤ r, (14)

with the ℓh ≥ 0, 1 ≤ h ≤ r. The Xh form a partition of X, the Zh a
partition of Z and X ∪ Z is the set of both state variables and controls,
the distinction being more physical than mathematical. We assume that
♯Xh + ♯Zh = ♯Xh+1.

If one neglects G, or replace in G its arguments by any known value X̂
the variables in Z are assumed to be flat outputs for the system. Indeed, if
one sets Zh,i = ζh,i(t), one can at time t0 replace Zh,i in those equations by
a power series development of ζh,i at order κ − h. Our assumption means
that we are then able to compute power series solutions X̃h at order κ + r.

This computation is assumed to be implemented in a function
FlatParametrization(t0, κ, ζ, X̂). Using any guessed constant values X̂[−1],
(or just setting it to 0), we can compute an approximation of the state and
control

X̂[0] := FlatParametrization(t0, ζ, κ0X̂[−1]),

where each set X̂h is computed at order κ0 − h. This process may be ite-
rated and we get

X̂[1] := FlatParametrization(t0, ζ, κ1X̂[0]),

where each set Xh is given at order κ1 := κ0 − h − L, with L := maxr
h̄=1 ℓh̄.

This may be iterated J times and described by the following process.

16



X̂[−1] := Guessed values ;
L := maxr

h̄=1 ℓh̄ ;
κ0 := “the wanted order for Xr at the end” + r + 2L ;
for j from 0 to J do

X̂[j] := FlatParametrization(t0, ζ, κiX̂[j−1], Û[j−1]),
κi+1 := κi − 2L ;

od ;
return X̂[J] ;

Returning to the plane model, we have ♯X2 = 3 and ♯Xi = 4 for
3 ≤ i ≤ 5, adding F(i−2) to Ξi for consistency with (14). Furthermore, we
have Z1 = {x, y, z} and Z3 = {ξ} ∈ {α, β, µ, F}, with X3 = {α, β, µ} \ {ξ}.

The only term G is G2, that depends of the state variables p, q, r in X4
and the controls δl, δm and δn in X5. So, L = 2 in our case. This means
that with J iterations, we need to start computations with series of order
5 + 2J in oder to get the controls δ in U5 at order 1.

All the unavoidable accessory tinkerings in the real implementation
would be tedious to detail, but basically, implementing generalized flat
parametrization is an easy task, as we just have to increase the orders
of a known integer and to implement a loop that iterates the core of the
Motion_Planning function.

We do not investigate more deeply here the question of the conver-
gence of this process, beyond the fact that the Gh are assumed to be
“small” and that a limited number of iterations provide good results in
the following examples, all computed with J = 4.

6 Examples

Designing a trajectory that matches actual practice and aircrafts pos-
sibilities by looking at flight instructions books and pilots forums sure
helps. We did not try to use tricks to reduce computation time in order to
get better precision.

6.1 Single engine

We model here a Twin Otter that loses an engine, which power gra-
dually vanishes. We go from equal thrust to total extinction of starboard

17



engine, setting the value of η = (F1 − F2)/(F1 + F2), as in the equation be-
low. The distance of the engines to the plane of symmetry of the aircraft
has been evaluated to 9.2ft.

The rudder must compensate the torque created by a dissymmetric
thrust. With the full model, the rudder also creates a thrust, that must be
compensated by a variation of β, µ or both. With β = 0 or µ = 0, the
trajectory planned by the simplified model is the same. Using here the
feed-back for β, µ will change.

x = 140ktst; y = 0; z = 0; µ = 0;

η = .5 + arctan t−30.
5.

π

(15)

The Twin-Otter has generous control surfaces, making it highly manoeu-
vrable, but meaning a higher contribution of the δl, δm, δn to Cx, Cy and
Cz. We borrow with some adaptations the values of the λi,j suggested by
Martin [13] : λ1,1 = 1., λ1,2 = 2., λ1,3 = 3., λ2,1 = 1., λ2,2 = 1., λ2,3 = 1.,
λ2,4 = 2., λ2,5 = 3., λ3,1 = 1.5, λ3,2 = 1.5, λ3,3 = 1.5, λ3,4 = 3., λ4,5 = 4.,
λ4,1 = 1., λ4,2 = 2., λ4,3 = 3.

The variations of µ remains little, in accordance with the reported
ability of the T-O to fly with a single engine (Lecarme [9]).

Figure 2 – Twin Otter loosing one engine, with β = 0.

The flatness planned curve is in red, the integration with feed-back in
darkblue and the generalized flatness curve in green.

We see that the integrated curves converge to the curves planned by
generalized flatness, after initial oscillations, which already shows that
this prediction is meaningful. The total computation time for the flat and

18



generalized parametrization is 1279sec. The numerical simulation takes
76sec.

6.2 Forward slip

This maneuver may be used for emergency landing, when an aircraft
that has lost all engines comes near the landing strip too high or too fast.
A way to decrease speed and altitude is to increase β and µ in opposite
ways, creating deceleration when aerobrakes are unusable. It is in general
used for small aircrafts, but there is a successful example of an emergency
landing with an airliner, at the former air force basis of Gimli, Manitoba,
in 1983. Here we used a calibration function to guess initial values and
non zero values for the controls, close to the mean speed and flight path
angle or our trajectory.

The following table shows constant values for straight line trajectories,
depending on α and β, for both the real and the simplified models with
(p, q, r, δl, δm, δn) = (0, 0, 0, 0, 0, 0).

Model α β γ µ V δl δm δn
Simple 0.15 0. −0.1187 0. 29.8996 0. 0. 0.
Real 0.15 0. −0.1190 0. 30.3053 0. −0.0490 0.
Simple 0.15 0.2 −0.1650 0.2409 29.3672 0. 0. 0.
Real 0.15 0.2 −0.1470 0.1345 30.1114 −0.1880 −0.0490 0.3305
Simple 0.15 0.35 −0.2508 0.3899 28.4019 0. 0. 0.
Real 0.15 0.35 −0.2027 .2250 29.7171 −0.3316 −0.0490 0.5690

For our simulation, we have chosen α = 0.15 and β = 0.35 as reference
values to set the controls. To fix ideas, the speed values for such a 0.055
scale model must be divided by 0.0550.5 to get full scale values, which
means 456.1709km/h for the total speed. Here are the flat output trajec-
tories and feed-back parameters.

x = 29.10852587t + 50 sin(t/60.);
y = 60 cos(t/100. + 2.);
z = −1000 + 5.983293200t + 70 sin(t/70.));
λi,j = 0.5

(16)

Again, the feed-back allows the integrated value to convergence to the
curve planned by generalized flatness with good precision, after initial
oscillations. The curves δl and δm actually show δm + δδm and δn + δδn,
including feed-back. We have included here the integration of the gene-
ral system, with we initial values and control coming from generalized

19



Figure 3 – Forward slip with the GTM

The flatness planned curve is in red, the integration with feed-back in
dark blue and the generalized flatness curves in green.

flatness. The coincidence is so good that the generalized flatness plan-
ned curves in green are covered by the curve in cyan provided by the
integration.

6.3 Aileron roll and parabolic flight

Here, we investigate a limit case with rapid changes. The trajectory is
parabolic with acceleration g, so the flat outputs with β is unusable. We
use µ instead and play with µ′ = π/2. A fighter would have been more
credible, but we could only make the feed-back work with the GTM.

We see that the feed-back permits to follow the generalized flatness
planned curve, but things are moving too fast to keep always the two
curves close. The integration in cyan with the generalized flatness plan-
ned control, without feed-back, remains very close to the prediction, which
confirms that the generalized flatness parametrization is a good approxi-

20



Figure 4 – Aileron roll and parabolic flight with the GTM.

The flatness planned curve is in red, the integration with feed-back in
dark blue and the generalized flatness curve in green. The curve in cyan
is the integration with the generalized flatness planned controls and wi-
thout feed-back.

mation of a solution of the real system. E.g., a small discrepancy of about
0.5cm, is observed for y at t = 5., one of the only state function for which
the curve in green appears bellow the cyan one. The computation time is
647sec for the motion planning and 402sec for the simulation.

To better appreaciate the convergence of the generalized flatness loop,
we have computed the values for the controls F, δl, δm and δn at t = −1.9
a time for which the differences with the plain flatness values are much
appreciable. They are given in the table bellow.

J = 0 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7
F −2.36 8.40 8.56 8.610 8.624 8.628 8.6304 8.6309
δl −0.44 −0.45 −0.462 −0.4642 −0.4647 −0.4648 −0.46493 −0.464918
δm 0.04 0.04 0.039 0.0389 0.0387 0.03872 0.038730 0.038731
δn 0.05 0.07 0.085 0.0871 0.087 0.08800 0.087997 0.0880978

21



7 Generalized flatness from the theoretical stand-
point

The flat parametrization only involves a finite number of derivatives,
which is the basis of all known necessary conditions of flatness (see [19,
18, 16]). We have seen that our motion planning is a limit that poten-
tially involves an infinite number of derivatives, as the evaluation for the
controls δ at step j + 1 depends on the second derivative of their evalua-
tion at step j. This gives some credibility to a folkloric conjecture, claiming
that all controllable systems are flat if functions of an infinite number of deriva-
tives are allowed. We propose some elements of interpretation in the linear
case.

We may indeed consider the simple system x′ = y + ϵy′. When ϵ is
0, x is a flat output. For ϵ > 0, we may choose ζϵ := x − ϵy. Howe-
ver, we can keep x as a generalized flat output. Indeed, one may write
y = ∑i∈N(−1)iϵi(d/dt)ix. This series will converge if x is analytic with a
convergence radius greater that 1/ϵ. Moreover, if there exists a linear ope-
rator L in R[d/dt] such that Lx = 0 and 1+ ϵd/dt, as well as d/dt, are not
a factors of L, then there exists M and N such that ML + N(1+ ϵd/dt) =
1, so that y = Nx′. Taking for L the sequence (d/dt)i, the sum that gives
the value of y becomes finite. This situation is close to our considerations
about calibration in subsec. 5.1. But this can work also with any opera-
tor (d/dt − λi)

i, such as those that we met for designing feed-backs in
subsec. 4.4.

Conclusion

We have seen how computer algebra may help to investigate the vali-
dity of some simplifications required to reduce to a flat model. Although
we could rely on very classical algorithmic tools, some investment have
been required to work out for our experiments an implementation with
acceptable computation times.

A slight modification of the code used with the simplified flat mo-
del have made possible the direct computation of an accurate motion
planning for the original non flat system, an observation that requires
theoretical interpretations, leading to new perspectives.

22



Those investigations include an algorithmic aspect. E.g., one may ask
whether is it possible to compute the generalized parametrization in a
better way, using some kind of Newton method.

Thanks To Yirmeyahu J. Kaminski and Jean Lévine for their patience,
rereading and suggestions.

Références

[1] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Gré-
goire Lecerf, Bruno Salvy, and Éric Schost, Algorithmes efficaces en cal-
cul formel, Frédéric Chyzak (auto-édit.), Palaiseau, September 2017

(french), 686 pages. Imprimé par CreateSpace. Aussi disponible en
version électronique.

[2] M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon, Flatness and defect
of non-linear systems : introduction theory and examples, Int. Journal of
Control 61 (1995), no. 6, 1327–1361.

[3] , A Lie-Bäcklund approach to equivalence and flatness of nonlinear
systems, IEEE Trans. Automatic Control 44 (1999), no. 5, 922–937.

[4] Jared A. Grauer and Eugene A. Morelli, A generic nonlinear aerody-
namic model for aircraft, AIAA Atmospheric Flight Mechanics Confe-
rence, AIAA, 2014.

[5] Richard M. Hueschen, Development of the transport class model (tcm)
aircraft simulation from a sub-scale generic transport model (gtm) simula-
tion, Tech. Report NASA/TM–2011-217169, NASA, 2011.

[6] Y. Kaminski, J. Lévine, and F. Ollivier, Intrinsic and apparent singulari-
ties in differentially flat systems, and application to global motion planning,
Systems & Control Letters 113 (2018), 117–124.

[7] , On singularities of flat affine systems with n states and n − 1
controls, International Journal of Robust and Nonlinear Control 30
(2020), no. 9, 3547–3565.

[8] V.V. Krasil’shchik, V.V. Lychagin, and A.M. Vinogradov, Geometry
of jet spaces and nonlinear partial differential equations, Gordon and
Breach, New York, 1986.

23



[9] J. Lecarme, Lignes de vol, le de havilland dhc-6 twin otter, Aviation Ma-
gazine (1966), no. 449.

[10] J. Lévine, Analysis and control of nonlinear systems : A flatness-based ap-
proach, Mathematical Engineering, Springer, Dordrecht, Heidelberg,
London, New-York, 2009.

[11] , On necessary and sufficient conditions for differential flatness,
Applicable Algebra in Engineering, Communication and Computing
22 (2011), no. 1, 47–90.

[12] Long K. Lu and Kamran Turkoglu, Adaptive differential thrust methodo-
logy for lateral/directional stability of an aircraft with a completely damaged
vertical stabilizer, International Journal of Aerospace Engineering 218
(2018).

[13] P. Martin, Contribution à l’étude des systèmes différentiellement plats,
Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, Paris,
France, 1992.

[14] Philippe Martin, Aircraft control using flatness, CESA’96 - Sympo-
sium on Control, Optimization and Supervision (Lille, France),
IMACS/IEEE-SMC Multiconference, 1996, pp. 194–1999.

[15] Donald McLean, Automated flight control systems, Prentice Hall, New
York, 1990.

[16] François Ollivier, Une réponse négative au problème de lüroth différentiel
en dimension 2, C. R. Acad. Sci. Paris (1998), no. 327, 881–886.

[17] J.F. Ritt, Differential algebra, American Mathematical Society, Provi-
dence, Rhodes Island, 1950.

[18] Pierre Rouchon, Necessary condition and genericity of dynamic feed-
back linearization, Journal of Mathematical Systems Estimation and
Control 4 (1994), no. 2, 1–14.

[19] Willem M. Sluis, A necessary condition for dynamic feedback linearization,
Systems & Control Letters 21 (1993), 277–283.

[20] Victor V. Zharinov, Geometrical aspects of partial differential equations,
Series on Soviet and East European Mathematics, World Scientific,
Singapore, 1992.

24


	Flat systems and their singularities
	Definition
	Singularities of flat systems

	Aerodynamic models of aircrafts
	The shape of the equations
	First level
	Third level
	Fourth level

	The GNA model

	Flat outputs and their singularities
	Classical flat outputs
	The bank angle choice
	The thrust choice
	Other sets of flat outputs

	Maple package
	Physical models. GNA
	Newton operator with series
	Motion planning
	Design of the feed-back

	Generalized flatness
	Calibration functions
	From calibration to time varying controls

	Examples
	Single engine
	Forward slip
	Aileron roll and parabolic flight

	Generalized flatness from the theoretical standpoint

