
HAL Id: hal-03581825
https://hal.science/hal-03581825

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Joint optimization of lot-sizing and pricing with
backlogging

Ming Liu, Hao Tang, Feng Chu, Feifeng Zheng, Chengbin Chu

To cite this version:
Ming Liu, Hao Tang, Feng Chu, Feifeng Zheng, Chengbin Chu. Joint optimization of lot-
sizing and pricing with backlogging. Computers & Industrial Engineering, 2022, 167, pp.107979.
�10.1016/j.cie.2022.107979�. �hal-03581825�

https://hal.science/hal-03581825
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Joint optimization of lot-sizing and pricing with
backlogging

Ming Liua, Hao Tanga, Feng Chub,∗, Feifeng Zhengc, Chengbin Chud

aSchool of Economics & Management, Tongji University, Shanghai, People’s Republic of
China

bIBISC, Univ Évry, University of Paris-Saclay, Évry, France
cGlorious Sun School of Business & Management, Donghua University, Shanghai, People’s

Republic of China
dUniv. Gustave Eiffel, ESIEE Paris and Laboratoire GRETTIA-COSYS, 93162

Noisy-le-Grand CEDEX, FRANCE

Abstract

Lot-sizing and pricing are two important manufacturing decisions that impact together
the profit of a company. Existing works address the joint lot-sizing and pricing problem
without backlogging, although it is a usual strategy that permits to satisfy customer
demand with delay. In this work, we study a new multi-product joint lot-sizing and
pricing problem with backlogging and limited production capacity. The objective is
to maximize the total company profit over a finite planning horizon. For the problem,
a mixed integer nonlinear programming (MINLP) formulation is given. Then, several
optimality properties are provided and a tighter MINLP model is established based
on these properties. According to the NP-hard nature and non-linearity of the model,
a model based heuristic that focuses on efficiently solving small-sized instances is pro-
posed and a genetic algorithm (GA) with new progressive repair strategy is developed
to address large-sized instances. Managerial insights are drawn based an illustrative
example. Numerical experiments are conducted on 64 benchmark based instances
and 105 randomly generated instances with up to 10 products and 12 periods, which
validates the MINLP formulation and shows the efficiency of the proposed solution
methods.

Keywords: Lot-sizing; Pricing; Backlogging; Optimality property; Mixed
integer nonlinear programming; Genetic algorithm

Acknowledgement

We sincerely thank the editor, area editor and anonymous reviewers for their efforts
and contributions on improving this paper.

This work was supported by the National Natural Science Foundation of China
(NSFC) under Grants 72021002, 71972146, 71771048, 71432007, 71832001 and 72071144.

∗Corresponding author.
Email address: feng.chu@univ-evry.fr (Feng Chu)

Preprint submitted to Computers & Industrial Engineering January 14, 2022

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0360835222000493
Manuscript_26c4ff5f441567188b4a3f2dc75142c4

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0360835222000493
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0360835222000493

Joint optimization of lot-sizing and pricing with backlogging

Abstract

Lot-sizing and pricing are two important manufacturing decisions that impact together the profit

of a company. Existing works address the joint lot-sizing and pricing problem without backlogging,

although it is a usual strategy that permits to satisfy customer demand with delay. In this work,

we study a new multi-product joint lot-sizing and pricing problem with backlogging and limited

production capacity. The objective is to maximize the total company profit over a finite planning

horizon. For the problem, a mixed integer nonlinear programming (MINLP) formulation is given.

Then, several optimality properties are provided and a tighter MINLP model is established based

on these properties. According to the NP-hard nature and non-linearity of the model, a model

based heuristic that focuses on efficiently solving small-sized instances is proposed and a genetic

algorithm (GA) with new progressive repair strategy is developed to address large-sized instances.

Managerial insights are drawn based an illustrative example. Numerical experiments are conducted

on 64 benchmark based instances and 105 randomly generated instances with up to 10 products

and 12 periods, which validates the MINLP formulation and shows the efficiency of the proposed

solution methods.

Keywords: Lot-sizing; Pricing; Backlogging; Optimality property; Mixed integer nonlinear

programming; Genetic algorithm

1. Introduction

In the manufacturing industry, lot-sizing is one of the most important issues in production

planning, which considers the best use of production resources in order to satisfy production re-

quirements and anticipating sales opportunities over the planning horizon (Karimi et al., 2003).

Traditionally, the lot-sizing planning is regarded as an operational problem with given tactical and

strategic marketing decisions (Dı́az-Madroñero et al., 2014). Whereas, the marketing strategy may

choose prices such that the induced demand patterns are not well aligned with available production

capacity, consequently leading to unsatisfied demand or unutilized capacity (Deng and Yano, 2006).

Preprint submitted to Computers & Industrial Engineering January 14, 2022

The lack of coordination and the inconsistent decision-making in manufacturing lead to inefficiency

of the overall business performance.

To overcome the above drawback, the joint lot-sizing and pricing problem (JLSP), in which

demand is assumed as price-sensitive in a monopolistic market environment, is becoming an in-

creasingly hot topic in recent years. The problem aims to help companies efficiently manage their

production considering price-sensitive demand, dynamic pricing strategy, and production capacity.

In studies on JLSP, the lot-sizes and prices over the planning horizon are optimized simultaneously,

with consideration of production setup costs and limited production capacity. The JLSPs can be

classified into single-product and multi-product ones. The single-product JLSP is addressed by

Thomas (1970), Gilbert (1999), Deng and Yano (2006) and Askarpoor and Davoudpour (2013).

These single-product works consider a linear demand function and develop exact algorithms. The

multi-product JLSP is introduced by Gilbert (2000). Since then, some researchers follow this re-

search direction (Haugen et al., 2007; Önal and Romeijn, 2010; González-Ramı́rez et al., 2011;

Lusa et al., 2012; Bajwa et al., 2016a,b; Couzon et al., 2020). In reality, linear demand functions,

however, are not applicable to portray the price-demand relationship for all types of products.

Therefore, some of the multi-product JLSP related works introduce nonlinear demand functions,

such as isoelastic ones. This type of demand function further complicates the problem, for which

existing research works (Bajwa et al., 2016a,b; Couzon et al., 2020) only solve instances with 3

products and 6 periods (i.e., 90 decision variables and 60 constraints). In addition, backlogging

is a usually used strategy in case where production capacity is insufficient during some periods.

This important strategy permits to smooth production and to satisfy customer demand with delay,

but results in an additional cost. Although backlogging is widely considered in both uncapacitated

and capacitated lot-sizing problems (Cheng et al., 2001; Küçükyavuz and Pochet, 2009; Chu et al.,

2013; Wu et al., 2013; Toledo et al., 2013; Wu et al., 2018), it has not been widely included in the

studies on JLSP, perhaps due to the complexity of the problem. However, such problem has been

a challenge for some real-world practitioners, such as Nvidia Corporation, the leader of Graphics

Processing Unit (GPU) industry, who needs to make lot-sizing, pricing and backlogging decisions

for a portfolio of GPU products to balance setup cost, inventory holding cost and backlogging cost

2

and gain more profits under the chip shortage since early 2021 1,2. Moreover, the existing works

on classic lot-sizing problems with backlogging assume dynamic demand that does not depend on

selling price and their developed solution approaches are not appropriate for solving the JLSP with

backlogging.

Motivated by the above facts, we investigate a new multi-product joint lot-sizing and pricing

problem with backlogging and limited production capacity (JLSPB for short hereinafter). The

objective is to maximize the total company profit over a finite planning horizon. In this work,

we assume an isoelastic demand function that is nonlinear, continuous, differentiable and strict

decreasing in price. For the problem, we give a basic mixed nonlinear programming (MINLP)

formulation, and then several optimality properties are provided and a tighter MINLP model is

constructed based on these properties. Due to the NP-hard nature and non-linearity of the model,

a quick model based heuristic is proposed for small-sized instances and a genetic algorithm (GA)

with new progressive repair strategy is developed for large-sized instances. Experiment results on

64 benchmark based instances and 105 randomly generated instances with up to 10 products and

12 periods demonstrate the efficiency of the proposed tighter MINLP model and solution methods.

In addition, managerial insights are drawn. The main contributions of this paper can be concluded

as follows:

(1) A new multi-product joint lot-sizing and pricing problem with backlogging and limited pro-

duction capacity is first studied;

(2) Several optimality properties of the considered problem are proved, and based on these prop-

erties, a tighter mixed integer nonlinear programming model is established;

(3) A model based heuristic that focuses on efficiently solving small-sized instances is proposed

and a genetic algorithm with new progressive repair strategy is developed to solve the instances

with up to 10 products 12 periods;

(4) Managerial insights are drawn based on an illustrative example.

The remainder of this paper is organized as follows. In Section 2, a brief literature review is

given. Section 3 states the studied problem, and a basic mathematical formulation is proposed. In

1Monica J. White, 2021. The GPU Shortage Turns A Year Old While Prices Continue to Rise.
https://www.digitaltrends.com/computing/gpu-shortage-turns-year-old-as-prices-continue-to-rise/

2Asa Fitch, 2021. Intel CEO Says Chip Shortage Could Stretch Into 2023. The Wall Street Journal.
https://www.wsj.com/articles/intel-intc-2q-earnings-report-2021-11626899296?mod=searchresults pos8&page=1

3

Section 4, we provide several optimality properties and a tighter formulation. In Section 5, a model

based heuristic and a GA are developed to solve the studied problem. Numerical experimentsare

conducted in Section 6. The work is concluded and further research directions are indicated in

Section 7.

2. Literature review

The earliest research works that address the joint lot-sizing and pricing decisions in the manu-

facturing industry can date back to 1970s. Among these, Thomas (1970) is one of the first to study

a single-product uncapacitated joint lot-sizing and pricing problem (JLSP) with production setup

costs, for which the objective is to maximize total profit over a finite planning horizon. The author

assumes that demand is a linear function of the decision variable price and proposes a forward plan-

ning algorithm to obtain optimal lot-sizing plan and pricing strategy. Since then, many researchers

have contribute to the literature by considering various factors in manufacturing process. Below we

briefly review these related works in recent decades, which can be classified mainly by the number

of product, types of demand function, and solution method.

For the literature considering single product, Gilbert (1999) studies a variant of the classic JLSP

with unlimited production capacity and linear demand function, where a constant price need to

be determined for all periods. The author proposes an exact algorithm with O(T3) computational

complexity for this problem, where T denotes the number of periods. Deng and Yano (2006)

investigate the JLSP with linear demand function and limited production capacity and develop

an exact solution approach based on shortest-path algorithm for instances with 6 periods, but the

detailed procedure of the approach is not presented in their paper. Askarpoor and Davoudpour

(2013) study the same JLSP proposed by Deng and Yano (2006). They propose a 2-index mixed

integer nonlinear programming model, which is reduced to a bilinear model using bilinear reduction

technique. They prove that solving the primal problem is equivalent to finding a global maximum

of the bilinear problem and then propose an efficient heuristic to solve instances with up to 48

periods. In the field of inventory management, Li and Teng (2018) and Chang et al. (2019) study

the lot-sizing and pricing decisions for single perishable good and established deterministic model

in which the retailer needs to determine the optimal selling prices and inventory levels to maximize

total profit. Li and Teng (2018) consider a multivariate demand function of selling price, reference

price, product freshness and displayed stocks. Li et al. (2019) extend JLSP study by considering

4

an advance-cash-credit payment scheme in a two-echelon supplier-retailer chain. In their problem,

the optimal selling price, replenishment cycle and shortage interval are simultaneously determined.

Feng et al. (2022) also study the JLSP for perishable product but further considered a multivariate

demand function of unit price, displayed stocks and product age under a generalized advance-cash-

credit payment scheme in a two-echelon supply chain.

For the multi-product JLSP, Gilbert (2000) is the first to investigate a multi-product JLSP

with limited production capacity and linear demand function. The author assumes that production

setup costs are negligible and a constant price for each product need to be determined for all

periods. An exact algorithm is proposed based on the special structure of their problem. Haugen

et al. (2007) address a multi-product JLSP with setup costs, limited production capacity and linear

demand function. They proposes a Lagrangean relaxation based method to solve the problem.

Önal and Romeijn (2010) investigate a multi-product JLSP with setup times, limited production

capacity (measured by time) and linear demand function. The authors develop a branch and price

algorithm to solve instances with up to 30 products and 20 periods within a time limit of 1200

seconds. González-Ramı́rez et al. (2011) address the same JLSP proposed by Önal and Romeijn

(2010). They propose a Dantzig-Wolfe decomposition based heuristic, which can be used to solve

instances with up to 500 products and 50 periods within 2000 seconds.

However, none of the above literature considers a nonlinear demand function and multiple

products simultaneously. In Bajwa et al. (2016b), the authors study a multi-product JLSP with

nonlinear demand function (i.e., the isoelastic function), setup costs and limited production ca-

pacity. Based on the outer approximation methodology, they develop an exact iterative algorithm

to solve the instances with 3 periods and 6 products within 135 seconds. Couzon et al. (2020)

investigate the same problem proposed by Bajwa et al. (2016b) and develop new lower bounds for

prices and upper bounds for sales quantities to cut off non-optimal values of the decision variables.

Based on the model reference algorithm (MRA) developed by Bajwa et al. (2016b) for solving their

proposed sub-problems, Couzon et al. (2020) devise two efficient model based heuristics to provide

near-optimal solutions for the instances proposed by Bajwa et al. (2016b) within less than 1 second.

Bajwa et al. (2016a) simplify their former work (Bajwa et al., 2016b) by neglecting the setup costs.

Then, a Lagrangian dual approach combined with one-dimensional search algorithm is developed

to solve the problem. Lusa et al. (2012) investigate a multi-product JLSP with dynamic production

capacity, limited warehouse capacity and convex demand function. In their paper, a mixed integer

5

nonlinear programming formulation is established to maximize the total profit, which is then lin-

earized to a linear model that can be solved by the commercial solver CPLEX. Most of the works

considering multiple products assume linear and isoelastic demand functions and develop heuris-

tics and metaheuristics for solving their problems. In our work, we first extend the multi-product

JLSP with isoelastic demand function, setup costs and limited production capacity by introducing

backlogging. Due to the complexity of the studied problem, we develop a model based heuristic

and a genetic algorithm to find near-optimal solutions.

Table 1: Comparison of researches on the JLSP in recent decades
The number of products

Literature Single Multiple Backlogging Demand function Solution method

Thomas (1970) X Linear Exact algorithm
Gilbert (1999) X Linear Exact algorithm
Deng and Yano (2006) X Linear Exact algorithm
Askarpoor and Davoudpour (2013) X Linear Model based heuristic
Gilbert (2000) X Linear Exact algorithm
Haugen et al. (2007) X Linear Lagrangian relaxation based heuristic

Önal and Romeijn (2010) X Linear Branch and price
González-Ramı́rez et al. (2011) X Linear Decomposition based heuristic
Lusa et al. (2012) X Convex CPLEX
Bajwa et al. (2016a) X Isoelastic Lagrangian dual approach
Bajwa et al. (2016b) X Linear and isoelastic Outer approximation
Couzon et al. (2020) X Isoelastic Model based heuristic
This paper X X Isoelastic Model based heuristic and meta-

heuristic

To better understand the current research status, the comparison between related works and

our work is reported in Table 1.

3. Problem statement and formulation

We consider a joint lot-sizing and pricing problem faced by a manufacturer in a monopolistic

market environment, who produces a portfolio of products with unique features and applications

using the same equipment under limited production capacity and sells them to price-sensitive cus-

tomers. The optimization goal is to determine the lot-sizing plan and pricing strategy to maximize

total profit over a finite planning horizon. It is assumed that the demand for each product j in

each period t is a function of its current price Pjt that can change from period to period, and the

considered demand function is a widely used isoelastic one in the literature (Huang et al., 2013;

Bajwa et al., 2016a,b; Couzon et al., 2020): D(Pjt) = γjtαjP
−βj
jt , where γjt is the seasonality

parameter, αj is the scaling parameter for price-sensitive demand, and βj is the price elasticity of

6

the demand. We adopt the multiplicative demand factors γjt such that
∑
t∈T γjt = 1 to portray

seasonality, which has been used by Gilbert (2000), Bajwa et al. (2016a), Bajwa et al. (2016b), and

Couzon et al. (2020).

Based on the assumption that a same set of equipment is used for production, setup operations

are necessary which incurs a setup cost when the equipments are adjusted to produce a new lot

of some product (Dı́az-Madroñero et al., 2014). We also assume that setup carryover between

consecutive periods is negligible and not considered as the same in Haugen et al. (2007), Bajwa et al.

(2016b), Bajwa et al. (2016a), Couzon et al. (2020), etc. For each product, a variable production

cost per unit and a holding cost per unit of ending inventory in each period are considered. Besides,

the cost for backlogging one unit of demand for product j in period t1 and deliverying it in period

t2 is calculated as
∑t2−1
t=t1

bjt, where bjt is the backlogged order maintenance cost per unit. This

means that the longer the backlogging time interval, the higher the backlogging cost (Cheng et al.,

2001; Karimi et al., 2003; Slama et al., 2020). Without loss of generality, we assume that at the

beginning and the ending of the planning horizon, the inventories and backlogs of all products are

zero respectively. Overall, the assumptions we made are summarized as follows:

(1) The demand quantity for each product is an isoelastic function with respect to its price only.

(2) The price of each product can be changed in each period and the cost for changing price is

negligible.

(3) Setup carryover between consecutive periods is negligible and not considered.

(4) Multiple products with different consumption rate share and compete for the production

capacity that represents the same resources or equipment required for producing them.

(5) The inventories and backlogs of each product are zero at the beginning and the ending of the

planning horizon.

A mixed integer nonlinear programming (MINLP) model is formulated for the problem. In the

following, we first introduce notations, then the basic MINLP model is given.

3.1. Notations

Indices:

j: index of products;

7

t: index of periods during the planning horizon.

Problem parameters:

J : set of products, J = {1, . . . , J}, where J is the number of products;

T : set of periods, T = {1, . . . , T}, where T is the number of periods;

cjt: production cost for per unit of product j ∈ J in period t ∈ T ;

hjt: inventory cost for per unit of product j ∈ J in period t ∈ T ;

bjt: backlogging cost for per unit of product j ∈ J in period t ∈ T ;

ajt: setup cost for producing j ∈ J in period t ∈ T ;

Ct: production capacity in period t ∈ T ;

vj : production capacity used for producing one unit j ∈ J ;

αj : scaling parameter for price-sensitive demand for product j ∈ J ;

βj : price elasticity of the demand function for product j ∈ J ;

γjt: demand seasonality of product j ∈ J in period t ∈ T ,
∑
t∈T γjt = 1.

Decision variables:

Pjt: price for product j ∈ J in period t ∈ T ;

Sjt: quantity of product j ∈ J sold in period t ∈ T , including backlogs that will be fulfilled in the

following periods;

Xjt: quantity of product j ∈ J produced in period t ∈ T ;

Ijt: inventory of product j ∈ J at the end of period t ∈ T ;

Gjt: backlog of product j ∈ J that has not been fulfilled at the end of period t ∈ T ;

Yjt: binary, equal to 1 if there is a setup to produce j ∈ J in period t ∈ T ; 0, otherwise;

uIjt: binary, equal to 1 if Ijt > 0; 0, if Ijt = 0, where j ∈ J and t ∈ T ;

uGjt: binary, equal to 1 if Gjt > 0; 0, if Gjt = 0, where j ∈ J and t ∈ T .

8

3.2. The basic mixed integer nonlinear programming model

The basic mixed integer nonlinear programming (MINLP) model P0 is detailed below:

[Model | P0] max
∑
j∈J

∑
t∈T

(PjtSjt − cjtXjt − hjtIjt − bjtGjt − ajtYjt) (1)

subject to:

Sjt ≤ γjtαjP
−βj
jt , ∀j ∈ J , t ∈ T (2)∑

j∈J
vjXjt ≤ Ct, ∀t ∈ T (3)

Xjt + Ijt−1 −Gjt−1 = Sjt + Ijt −Gjt, ∀j ∈ J , t ∈ T /{1} (4)

Xj1 = Sj1 + Ij1 −Gj1, ∀j ∈ J (5)

IjT = 0, ∀j ∈ J (6)

GjT = 0, ∀j ∈ J (7)

vjXjt ≤ CtYjt, ∀j ∈ J , t ∈ T (8)

vjIjt ≤ uIjt
t∑

t′=1

Ct′ , ∀j ∈ J , t ∈ T (9)

vjGjt ≤ uGjt
T∑

t′=t+1

Ct′ , ∀j ∈ J , t ∈ T (10)

uIjt + uGjt ≤ 1, ∀j ∈ J , t ∈ T (11)

Xjt, Sjt, Pjt, Ijt, Gjt ≥ 0, ∀j ∈ J , t ∈ T (12)

Yjt ∈ {0, 1}, ∀j ∈ J , t ∈ T (13)

The objective function (1) maximizes the profit which is the revenue of sales minus total costs

including variable production costs, setup costs, inventory holding costs and backlogging costs.

Constraints (2) imply that sales quantities for all products cannot exceed corresponding demand

during each period. Constraints (3) are production capacity limitation. Constraints (4) and (5)

represent the production, inventory, and backlog conservation constraints. The inventory and back-

log in the last period are limited to be zero by Constraints (6) and (7) respectively. Constraints (8)

imply that there will be a setup cost for each product once it is produced. Constraints (9)-(11) in-

9

dicate that inventory and backlog cannot exist simultaneously in the same period for each product.

Domains of decision variables are given in Constraints (12) and (13).

4. Problem analysis and a tighter formulation

In this section, we analyze the MINLP model P0 and give the lower bound for decision variable

price Pjt for all j ∈ J and t ∈ T and the upper bound for the price Pjt in setup periods for all

j ∈ J . Besides, the relationship between prices in two consecutive periods is investigated. Based

on these properties of optimal solution, a tighter formulation is established.

4.1. Problem analysis

Optimality property 1. A lower bound for the optimal price P ∗jt of product j in period t is given

as follows:

P ∗jt ≥
mint′∈T Ajt′t

1− 1
βj

, (14)

where

Ajt′t =



(
cjt′ +

t−1∑
l=t′

hjl

)βj
t′ ≤ t

cjt′ +

t′−1∑
l=t

bjl

βj

t′ > t

. (15)

Proof. We follow the idea of Couzon et al. (2020) to reformulate the model P0 with 3-index variables,

and the lower bound PLjt in our problem can be given in a similar way. To reformulate P0 with only

one variable type, some new notations are introduced:

K: set of all possible setup configurations, indexed by k;

Y k: a setup configuration Y k ∈ K, where

Y k =


Y k11 Y k12 · · · Y k1T

Y k21 Y k22 · · · Y k2T
...

...
. . .

...

Y kJ1 Y kJ2 · · · Y kJT

 ;

10

N k: set of indices associated with the setup configuration Y k,N k =
{

(j, t′, t) | j ∈ J , t′ ∈ T , t ∈ T and Y kjt′ = 1
}

,

where Y k ∈ K.

Bjt: substitution for γjt × αj , i.e. Bjt = γjt × αj , where j ∈ J and t ∈ T ;

Ajt′t: cost for per unit of product j that is produced in period t′ and sold in period t, where j ∈ J

and t′, t ∈ T ;

Xk
jt′t: new decision variable under a given setup configuration k, which denotes quantity of product

j produced in period t′ and sold in period t, where (j, t′, t) ∈ N k.

The new model (RP1) with 3-index variables is formulated as follows:

[Model | RP1] max
k∈K

zk =
∑

(j,t′,t)∈Nk

Xk
jt′t

(Bjn)
1
βj

(∑
l∈T

Xk
jlt

)− 1
βj

−Ajt′t


−
∑
j∈J

∑
t′∈T

ajt′Y
k
jt′

(16)

subject to: ∑
j∈J

∑
t∈T

vjX
k
jt′t ≤ Ct′ , ∀t′ ∈ T (17)

Xk
jt′t ≥ 0, ∀(j, t′, t) ∈ N k (18)

The objective function of model RP1 is transformed from the former one (1) based on the Theorem

1 in Bajwa et al. (2016b) indicating that demand under optimal price is equal to the quantity

sold for each product in each period, i.e., the inequality in constraints (2) can be replaced by

equality, by which we can derive that Pjt =
(
Sjt
Bjt

)− 1
βj

=
(∑

l∈T Xjlt
Bjt

)− 1
βj

. The objective function

(1) of model P0 can be reformulated as a new one (16) depending only on Xk
jt′t. For a given

setup configuration Y k ∈ K, the corresponding setup cost in the objective function is a constant∑
j∈J

∑
t′∈T ajt′Y

k
jt′ , and the profit for per unit of product j produced in t′ and sold in t is calculated

as Xk
jt′t(P

k
jt −Ajt′t) = Xk

jt′t

(
(Bjn)

1
βj

(∑
l∈T X

k
jlt

)− 1
βj −Ajt′t

)
.

We can obtain a restriction model RP k1 by fixing the setup variables using one Y k ∈ K as

follows: [
Model | RP k1

]
max zk (19)

11

subject to:

(17) and (18).

The restriction model RP k1 provides a lower bound for the RP1. When the capacity constraints

(17) is relaxed, the optimal value Xk∗
jt′t of Xk

jt′t in the model RKk
1 can be obtained via setting the

first derivative of zk (with respect to Xk
jt′t) to 0 and solving for Xk

jt′t as follows:

Xk∗
jt′t = Bjt

(
1− 1

βj

Ajt′t

)βj
−

∑
l∈T ,l 6=t′

Xk
jlt. (20)

Without loss of generality, still supposing the capacity constraints (17) is relaxed, we may suppose

that each product sold in a period t is manufactured during only one period t′ in the planning

horizon. Then, it follows that Skjt (t′) =
∑
l∈T Xjlt = Xk

jt′t = Bjt

(
1− 1

βj

Ajt′t

)βj
, where Skjt (t′) denotes

the sold quantity if it is satisfied by production in period t′. The maximum value Sk∗jt of Skjt (t′)

over all possible t′ can be given as follows:

Sk∗jt = max
t′∈T

Skjt (t′) =
Bjt

(
1− 1

βj

)βj
mint′∈T (Ajt′t)

βj
(21)

Then, we can substitute Bjt
(
P k∗jt

)−βj
for Sk∗jt into (21), where P k∗jt is the price corresponding to

Sk∗jt , then a lower bound for optimal price can be obtained as follows:

P ∗jt ≥ P k∗jt =
mint′∈T Ajt′t

1− 1
βj

. (22)

Optimality property 2. For optimal solution, (i) if the demand in period t is completely satisfied

by inventory from period t− 1 (i.e., Yj,t = 0, uIjt−1 = 1 and uGjt = 0), the price Pjt in period t must

be greater than price Pjt−1 and Pjt − Pjt−1 =
hjt−1βj
βj−1 ; (ii) if the demand in period t is completely

backlogged and satisfied in latter periods (i.e., Yj,t = 0, uIjt−1 = 0 and uGjt = 1), the price Pjt in

period t must be greater than price Pjt+1 and Pjt − Pjt+1 =
bjtβj
βj−1 .

Proof. Let us suppose that there is an optimal solution denoted by X1
JLSPB in which P ∗jt ≤ P ∗jt−1,

Y ∗jt = 0, uI∗jt−1 = 1 and uG∗jt = 0 for some product j and period t > 1. For simplicity, we omit index j

12

of parameters and variables in the following. We now consider the following nonlinear programming

optimization problem that optimizes prices for period t− 1 and t while decision variables for other

periods remain the same as those in X1
JLSPB :

max F (Pt−1, Pt) = γt−1αP
1−β
t−1 + γtαP

1−β
t − ht−1γtαP−βt (23)

subject to:

γt−1αP
−β
t−1 + γtαP

−β
t = K (24)

Pt−1, Pt ≥ 0 (25)

where K = γt−1αP
∗
t−1
−β+γtαP

∗
t
−β is a constant representing the overall quantity that can be sold

in these two periods. The objective function (23) represents the revenue in period t−1 and t minus

the inventory holding cost from period t−1 to t for satisfying demand in period t. Constraints (24)

implies that the total demand in periods t−1 and t equals to that of the optimal solution X1
JLSPB .

From the KKT condition, we know that there exists λ satisfying (26) for the optimal solution of

the nonlinear programming model: (1− β)γt−1αP
−β
t−1 + λβγt−1αP

−β−1
t−1 = 0

(1− β)γtαP
−β
t + βht−1γtαP

−β−1
t + λβγtαP

−β−1
t = 0

. (26)

It can be derived from (26) that Pt − Pt−1 = ht−1β
β−1 > 0, which implies that there exists another

better solution X2
JLSPB with higher profit, in which Pjt > Pjt−1 and Ijt−1 = γtαP

−β
jt while other

decision variables remain unchanged as those in X1
JLSPB . Now we have proved (i) of Optimality

property 2, and in the same way we can prove (ii) that Pt − Pt+1 = btβ
β−1 > 0.

Optimality property 3. For optimal solution, if product j is produced in period t, the following

inequality must be true: Pjt ≤ Pubjt , where Pubjt depends on problem parameters and can be obtained

by bisection method.

Proof. We use Xjtt′ to denote the quantity of product j produced in period t and sold in period t′

and the function F 1
t to denote the profit for producing product j in period t as follows:

F 1
t = γjtαP

−βj
jt (Pjt−cjt)−ajt+

∑
t′>t

Xjtt′(Pjt′−
t′−1∑
k=t

hjk−cjt)+
∑
t′<t

Xjtt′(Pjt′−
t−1∑
k=t′

bjk−cjt), (27)

13

where F 2
t (Pjt) = γjtαjP

−βj
jt (Pjt−cjt)−ajt is the revenue for selling product j in period t minus the

corresponding variable and setup costs, while other terms represent the profit for satisfying demand

for product j in other periods by the production in period t, which must be non-negative for the

optimal solution. This is because that if there exist Xjtt′ > 0 and (Pjt′ −
∑t′−1
k=t hjk − cjt) < 0 for

some t′ > t, we can increase the price Pjt′ and set Xjtt′ = 0 such that demand Djt′ = γjt′αjP
−βj
jt′ =∑

t′′ 6=tXjt′′t′ , which leads to a higher profit for selling product j in period t′. And it is the same

for any t′ < t with Xjtt′ > 0 and (Pjt′ −
∑t−1
k=t′ bjk − cjt) < 0. Therefore, F 1

t ≥ F 2
t (Pjt) holds true

for the optimal solution. Besides, F 1
t ≥ F 2

t (Pjt) > 0 must be true for the optimal solution, because

a setup for producing product j in period t should be profitable.

Because Pjt > 0, F 2
t (Pjt) = γjtαjP

−βj
jt (Pjt−cjt)−ajt > 0 is equivalent to −ajtP

βj
jt +γjtαjPjt−

γjtαjcjt > 0 . Let F 3
t (Pjt) = −ajtP

βj
jt + γjtαjPjt− γjtαjcjt and differentiate it with respect to Pjt,

we obtain

F 3′

t (Pjt) = −ajtβjP
βj−1
jt + γjtαj . (28)

Setting this function to zero and solving for Pjt, we obtain P ∗jt =
(
γjtαj
ajtβj

) 1
βj−1

and know that

F 3
t (Pjt) increases strictly in the interval (0, P ∗jt) and decreases strictly in the interval (P ∗jt,+∞).

Obviously,
(
γjtαj
ajt

) 1
βj−1

> P ∗jt and F 3
t

((
γjtαj
ajt

) 1
βj−1

)
< 0. Without loss of generality, we may

suppose F 3
t (P ∗jt) > 0, and thus Pubjt can be obtained in the interval (P ∗jt,

(
γjtαj
ajt

) 1
βj−1

) using bisection

method. Because F 1
t ≥ F 2

t (Pjt) > 0 holds true for the optimal solution, Pjt ≤ Pubjt is true when

product j is produced in period t.

4.2. A tighter formulation

Based on the above optimality properties, we construct a tighter MINLP model for the studied

problem as follows:

[Model | P1] max
∑
j∈J

∑
t∈T

(PjtSjt − cjtXjt − hjtIjt − bjtGjt − ajtYjt) (1)

subject to:

(2)− (13)

14

Pjt ≥
mint′∈T Ajt′t

1− 1
βj

, ∀j ∈ J , t ∈ T (14)

Pjt ≥ Pjt−1 +
hjt−1βj
βj − 1

−M(1 + Yjt + uGjt − uIjt−1), ∀j ∈ J , t ∈ T /{1} (29)

Pjt ≤ Pjt−1 +
hjt−1βj
βj − 1

+M(1 + Yjt + uGjt − uIjt−1), ∀j ∈ J , t ∈ T /{1} (30)

Pjt ≥ Pjt+1 +
bjtβj
βj − 1

−M(1 + Yjt + uIjt−1 − uGjt), ∀j ∈ J , t ∈ T /{1, T} (31)

Pjt ≤ Pjt+1 +
bjtβj
βj − 1

+M(1 + Yjt + uIjt−1 − uGjt), ∀j ∈ J , t ∈ T /{1, T} (32)

Pjt ≤ Pubjt +M(1− Yjt), ∀j ∈ J , t ∈ T (33)

Constraints (14) mean the price of each product in each period is larger than its lower bound

according to Optimality property 1. Constraints (29)-(30) signify that the price of product j in

period t is equal to the sum of the price of it in the previous period and
hjt−1βj
βj−1 , if its demand

in period t is satisfied by inventory according to Optimality property 2(i). Constraints (31)-(32)

signify that the price of product j in period t is equal to the sum of the price of it in the next

period and
bjtβj
βj−1 , if its demand in period t is backlogged according to Optimality property 2(ii).

Constraints (33) mean that the price of product j in setup period t should be less than or equal

to Pubjt , according to Optimality property 3. The comparison for the two models P0 and P1 is

conducted in numerical experiment in Section 6.

5. Solution methods

In this section, we propose a model based heuristic and a genetic algorithm (GA) to solve the

studied problem efficiently. The model based heuristic is a kind of fix-and-optimize optimization

method, in which the 0-1 variables are fixed using heuristic and the MINLP model with fixed 0-1

variables is solved employing exact algorithm. However, such solution approach cannot deal with

large-sized instances efficiently, thus we also develop a GA for the problem.

5.1. Model based heuristic

The model based heuristic is developed to find near-optimal setup configurations for the re-

striction model RP k1 , in which the model reference algorithm (MRA) proposed by Bajwa et al.

(2016b) is repeatedly called for obtaining the objective values of the RP1k. Our idea is inspired

15

by Couzon et al. (2020) who first propose two model based heuristics to find near-optimal setup

configurations and then feed these fixed setup configurations as the input into MRA to solve the

JLSP problem efficiently. However, their proposed heuristic cannot deal with our problem with

backlogging decisions. In the following, we first introduce the MRA for solving our RP k1 , then the

model based heuristic capable of handling backlogging decisions is presented.

5.1.1. MRA

In this section, we present main steps of the MRA. Readers may refer to Bajwa et al. (2016b)

for detailed illustration and theoretical proof. The MRA can be used to exactly solve resource

allocation problems formulated in the form of 3-index model similar to the restriction model RP k1 .

In Bajwa et al. (2016b) and Couzon et al. (2020), the authors use the MRA to allocate resources

in each period t ∈ T to some periods t′ ≥ t. For our problem considering backlogging, we adapt

the MRA to allocate resources in each period t ∈ T to some periods t′ ∈ T .

The pseudocode of the MRA is presented in Algorithm 1, in which the notations are the same

as those used in the above section. The MRA begins with an initial feasible solution (line 1), iter-

atively updating the solution if it improves the objective value (line 4 to line 28), and finally stops

at the optimal solution for the restriction model. In each iteration of MRA (line 5 to line 27), the

algorithm solves T single period resource allocation problems (line 6 to line 26). For each period

t ∈ T , the MRA first checks whether the unconstrained solution violates the capacity constraint

(17) or not, then, the single period resource allocation problem is solved based on two different

cases that may occur in this period:

Case-1 : The capacity constraint (17) is not binding at optimal solution, i.e., the constraint is a

strict inequality in period t. The optimal capacity allocation can be found by setting the first

derivatives zk′
Xk
jtt′

to 0 and solving for Xk∗
jtt′ as follows:

Xk∗
jtt′ =

Bjt′
(

1− 1
βj

)βj
A
βj
jtt′

−
∑

l∈T ,l 6=t

Xk
jlt′ . (34)

Case-2 : The capacity constraint (17) is binding for the optimal solution. In this case, the La-

grangian operator for RP k1 is L = −zk +
∑
t∈T λ

k
t

(∑
j∈J

∑
t′∈T vjX

k
jtt′ − Ct

)
. Then, the optimal

16

Algorithm 1: Pseudocode of the MRA.

Input: A setup configuration Y k ∈ K.
1 Xk

jtt′ = ε, ∀j ∈ J , t ∈ T , t′ ∈ T (% ε is a sufficient small positive number, 1e− 8 in this paper);

2 s = 0 (% Iteration counter);

3 zk0 = 0, ∆z = 1 (% zks is the objective value in iteration s and ∆z is the difference between the
objective values at iteration s and s− 1);

4 while ∆z > 0 do
5 s = s+ 1, t = 1 (% t is the counter for periods);
6 while t ≤ T do
7 if Case-1 is true then

8 Xk
jtt′ = max

Bjt′

(
1− 1

βj

)βj
A
βj

jtt′
−

∑
l∈T ,l 6=tX

k
jlt′ , 0

, ∀j ∈ J , t′ ∈ T ;

9 else

10 Sort 1
vj

∂zk

∂Xk
jtt′

(0) in non-increasing order, ∀j ∈ J , t′ ∈ T ;

11 Denote Xq as the variable associated with the q-th position in the non-increasing order

of 1
vj

∂zk

∂Xk
jtt′

(0);

12 qt = 0, q∗t = J × T (% qt and q∗t are the indices of the non-increasing order of
1
vj

∂zk

∂Xk
jtt′

(0));

13 while q∗t 6= qt do
14 qt = qt + 1;

15 Determine λt (qt) via the bisection method with 1
vqt

∂zk

∂Xkqt
(0) as the input;

16 if q∗t == qt then
17 break (% break and turn to line 22);

18 else if 1
vqt+1

∂zk

∂Xkqt+1

(0) ≤ λt (qt) then

19 q∗t = qt;
20 end

21 end
22 λ∗t = λt (q∗t);

23 Compute Xk
jtt′ from equation (24);

24 end
25 t = t+ 1;

26 end

27 ∆z = zks − zks−1;

28 end
Output: Solution of the JLSPB with fixed setup decisions.

17

capacity allocation in period t can be obtained as a function of the optimal λ∗t as follows:

Xk∗
jtt′ =

 Bjt′

(
1− 1

βj

)βj
(Ajtt′+λ∗t vj)

βj
−
∑
l∈T ,l 6=tX

k
jlt′ if Xk∗

jtt′ ∈ N
k+
t

0 if Xk∗
jtt′ ∈ N k0

t

, (35)

where Nk+
t denotes the set of production variables that take strictly positive values for the optimal

capacity allocation in period t, and Nk0
t represents the set of production variables equal to 0 for the

optimal capacity allocation in period t. The MRA finds the optimal λ∗t and set Nk+
t by employing

a problem-specific bisection method in Bajwa et al. (2016b) based on sorting 1
vj

∂zk

∂Xk
jtt′

(0) for all

(j, t′) in non-increasing order (line 10 to line 23). The optimal λ∗t is determined by λ∗t = λt (q∗t),

where λt (q∗t) is obtained by the problem-specific bisection method with the q∗t -th 1
vj

∂zk

∂Xk
jtt′

(0) in

the non-increasing order as the input, and variable Xq associated with the q-th position in the

non-increasing order of 1
vj

∂zk

∂Xk
jtt′

(0) belongs to N k+
t , if q ≤ q∗t ; N k0

t , otherwise. Then production

variables are updated according to equation (24) (line 23).

The quality of setup configuration directly affects the resulting solution quality for the JLSPB.

In the following, a heuristic capable of handling backlogs is developed to obtain near-optimal setup

configuration for our JLSPB problem. To improve the configuration obtained by the heuristic, the

local search procedure proposed by Couzon et al. (2020) is also adopted.

5.1.2. Heuristic for finding setup configurations

The heuristic consists of (i) a constructive part and (ii) an improving part, whose pseudocodes

are presented in Algorithm 2 and Algorithm 3 respectively. In the constructive part, the heuristic

first sorts all products in decreasing order using the rule in Couzon et al. (2020) (line 1) according to

the values of
∑
t∈T S

k∗
jt = αj

(
1− 1

βj

cjt

)βj
, which represents the maximum total production quantity

for product j in the entire planning horizon assuming the product is manufactured and sold in the

same period and there is sufficient production capacity. For each product j ∈ J , we use T 1
j to

denote the set of periods during which sales of product j have not been covered and T 2
j to denote

the set of periods with nonzero remaining capacity during which sales of product j have not been

covered. The setup is assigned to the period t ∈ T 2
j with a maximum value of

Sk∗jt
vj

(line 8 to line 11).

Then, setup variables for several periods adjacent to period t in T 1
j are set to be 0 by prioritizing

period t′ with a smaller value of Ajtt′S
k∗
jt′ , if the remaining capacity in period t is nonzero (line 12 to

18

Algorithm 2: Constructive part of the model based heuristic.
Input: Problem parameters, including αj , βj , vj , cjt, Ct, and Ajtt′ .

1 Sort the products in decreasing order according the value of αj

(
1− 1

βj

cjt

)βj
;

2 Y kjt = 0, ∀j ∈ J , t ∈ T (% Initialization for setup variables);

3 Cremainingt = Ct, ∀t ∈ T (% Remaining capacity in period t);

4 T 1
j = T ,∀j ∈ J (% T 1

j is the set of periods during which the sales of product j have not been covered);

5 T 2
j = T ,∀j ∈ J (% T 2

j is the set of periods with nonzero capacity during which the sales of product j have

not been covered);

6 while
∑
j∈J |T 2

j | > 0 do

7 for j ∈ J do
8 if |T 2

j | > 0 then

9 t = arg maxt∈T 2
j

Sk∗jt
vj

(% Sk∗jt is the maximum sales quantity calculated by euqation (21));

10 Y kjt = 1;

11 Cremainingt = max{Cremainingt − Sk∗jt vj , 0};
12 T +

j = {t′ | t′ > t and t′ ∈ T 1
j } (% T +

j is arranged in increasing order);

13 T −j = {t′ | t′ < t and t′ ∈ T 1
j } (% T −j is arranged in decreasing order);

14 i+ = 1, i− = 1 (% Indices for sets T +
j and T −j);

15 while Cremainingt > 0 and
(
i+ ≤ len(T +

j) or i− ≤ len(T −j)
)
do

16 t+ = T +
j (i+), t− = T −j (i−);

17 if Ajtt+S
k∗
jt+
≤ Ajtt−Sk∗jt− or i− > len(T −j) then

18 Y k
jt+

= 0;

19 Cremainingt = max{Cremainingt − Sk∗
jt+

vj , 0};
20 i+ = i+ + 1;

21 else
22 Y k

jt−
= 0;

23 Cremainingt = max{Cremainingt − Sk∗
jt−

vj , 0};
24 i− = i− + 1;

25 end

26 end

27 Update T 1
j and T 2

j ;

28 end

29 end

30 end

Output: Initial setup configuration Y k.

19

line 27). For example in Figure 1, suppose T 1
j and T 2

j for a product j with vj = 1 are {2, 3, 4, 5, 6}

Figure 1: An illustrative example for the constructive part of the model based heuristic

and {3, 4} respectively, and the capacity Ct is 50, where t ∈ T 2
j . Suppose

S∗jt
vj

for period t ∈ T 2
j is

{12, 15}, then setup is assigned to period 4 with a larger value of
S∗jt
vj

. Suppose S∗jt′ and Ajtt′S
∗
jt′ for

period t′ ∈ T 1
j /{4} are {10, 12, 13, 14} and {12, 13.2, 13.65, 15.4} respectively, then setup variables

for periods 3, 2 and 5 are set to be 0 sequentially according line 15 to line 26. The process is

repeated until capacities in all periods have been fully utilized or sales of all products in all periods

have been covered (line 6 and line 32).

In the improving part of the heuristic, the initial setup configuration obtained by the Algorithm

2 for each product is repeatedly evaluated and improved if it is more profitable to combine two

setups into one with a larger value of
Sk∗jt
cjt

(line 4 to line 23). For example in Figure 2, suppose

the initial setup configuration for product 1 in 6 periods is {1, 1, 0, 0, 1, 0}, and
S∗1t
c1t

for periods

{1, 2, 5} are {10, 12, 13}. According line 6 to line 16 in the Algorithm 3, there are two temporary

configurations: (i) the first one is obtained by combining setups in periods 1 and 2 into one setup

in period 2 which has a larger value of
S∗jt
cjt

; (ii) Similarly, the second one is obtained by combining

setups in periods 2 and 5. Then, the temporary configurations are evaluated by the MRA and thus

the configuration for product 1 is updated to be the first temporary configuration as it leads to a

larger objective value. Next, the algorithm attempts to combine setups for product 1 in periods 2

20

Algorithm 3: Improving part of the model based heuristic.

Input: Initial setup configuration Y k obtained by Algorithm 2;
Problem parameters including cjt.

1 best obj = MRA(Y k);

2 Y k′ = Y k;

3 T Yj = {t | Y k′jt = 1},∀j ∈ J ;

4 for j ∈ J do
5 while |T Yj | ≥ 2 do
6 temp best obj = best obj;

7 for i = 1 : |T Yj | − 1 do
8 t1 = T Yj (i), t2 = T Yj (i+ 1) (%T Yj (i) denotes the i-th element in Tj);
9 Y temp = Y k′;

10 Combine Y tempjt1
and Y tempjt2

into one with a larger value of
S∗jt
cjt

;

11 temp obj = MRA(Y temp);
12 if temp obj > temp best obj then

13 Y temp
best = Y temp;

14 temp best obj = temp obj;

15 end

16 end
17 if temp best obj > best obj then

18 Y k′ = Y temp
best ;

19 best obj = temp best obj;

20 Update T Yj ;

21 else
22 break (% break and turn to line 4);
23 end

24 end

25 end

Output: The final setup configuration Y k′.

21

and 5 into one setup in period 5, however, such combination leads to a lower objective value and the

configuration is not updated. The algorithm continues to try combinations of setups for products

2 and 3 till the stop criterion is met.

Figure 2: An illustrative example for the improving part of the model based heuristic

5.1.3. Local search procedure for the model based heuristic

Three local search moves proposed in Couzon et al. (2020) are applied to find better solutions by

exploring the immediate neighborhood of the incumbent solution. The neighborhood of incumbent

solution is represented by the moves used to revise setup configuration obtained by the Algorithm

3. All the three local search moves are used with a “first-improvement” policy to limit the compu-

tational load of the local search, which is consistent with Couzon et al. (2020). Note that feasibility

of the solution is guaranteed in this local search procedure, as the MRA can always find a set of

3-index variables satisfying the capacity constraints either in Case-1 or in Case-2 for any given

22

setup configuration. Three moves are executed in sequence after the improving part as follows:

• Move 1:

– Find two periods during which two products have a setup assigned to both periods;

– Unassign a setup randomly for each product.

• Move 2:

– Find two periods during which two products have a setup assigned to one of the two

periods respectively;

– Swap the two setups, i.e. reassign the setup to the other one period for each product.

• Move 3: Shift one setup of one product to another period.

5.2. Genetic algorithm

Since the problem formulated above is NP-hard and nonlinear which cannot be solved by the

state-of-art commercial solvers efficiently, we also propose a GA to solve it. Two crossover operators

and four mutation operators are proposed based on the features of the problem. The probabilities

of them are adaptively adjusted according to the fitness values of individuals generated by them.

As the crossover and mutation operators can generate an awful of infeasible individuals for the

studied problem, we propose three repair operators to progressively deal with infeasibilities caused

by unmet backlogs, violations of the capacity constraints and excess inventories. In addition, a

local search procedure is also incorporated at the end of each iteration to exploit more solution

space and avoid premature. The general scheme of the proposed GA is displayed in Algorithm 4 as

follows:

In Algorithm 4, the procedure Initialization() is used to generate initial populations. In each

iteration, child individuals are generated by Crossover() from a set of parent individuals selected by

function Parent Selection(). Then the population is perturbed by Mutation(). In addition, function

Repair() is called after Crossover() and Mutation(). After these procedures, Loca Search() function

is called. The details of these procedures are presented in the following subsections.

5.2.1. Solution representation

Based on the mathematical model P0 and Theorem 1 in Bajwa et al. (2016a) mentioned before,

we know that if production quantities and prices of all products are determined, the other decision

23

Algorithm 4: Framework of the proposed GA.
Input: Problem parametersincluding αj , βj , vj , γjt, cjt, hjt, bjt, and Ct;

MaxIt (% Maximum iteration number);
MaxItno (%Maximum number of iterations without improving the best solution).

1 POP = Initialization() (% POP denotes the population);
2 It = 0 (% Iteration counter);
3 Itno = 0 (% Iteration counter for counting the number of iterations without improvement);
4 best obj It = 0 (% Objective value of the best individual in this iteration);
5 best obj = 0 (% Objective value of the best individual found so far);
6 while It < MaxIt and Itno < MaxItno do
7 It = It + 1;
8 Evaluation(POP);
9 if best fitness It− best obj ≤ 1e− 4 then

10 Itno = Itno + 1;
11 else
12 best obj = best obj It;
13 Itno = 0;

14 end
15 Parent POP = Parent Selection(POP);
16 POP = Parent POP ∪ Crossover(Parent POP);
17 Repair(POP);
18 Mutation(POP);
19 Repair(POP);
20 Local Search(POP);

21 end
Output: Solution of the JLSPB.

variables can be calculated uniquely. Therefore, a real number encoding scheme is employed to

represent the solution with two gene chains, where the decision variables Xjt and Pjt are encoded

as chromosomes respectively. Thus, each gene chain contain J × T genes. Figure 3 illustrates this

representation scheme for a problem with two products and four periods, thus the individual has

2J × T = 16 genes in all.

Figure 3: Representation for a problem with two products and four periods.

5.2.2. Population initialization

The initial population is generated randomly. For each individual, the production quantities of

all products in period t are initialized as follows:

24

step 1 generate an increasing sequence with J + 1 numbers K0,K1, . . . ,KJ , where K0 =

0,KJ = Ct and Kj , j ∈ {1, 2, . . . , J − 1}, is a real number randomly generated in the

interval [0, Ct];

step 2 calculate the initial production quantity of product j in period t by the equation

Xjt = Kj −Kj−1.

Note that the capacity constraints (3) are guaranteed in the above production quantities initializing

process. After generating initial Xjt, next the initial price of each product is randomly generated

from a feasible price interval. The lower bound for optimal price given by Optimality property 1

1 is adopted as the lower bound for the feasible price interval for initialization. It is much easier

to get an upper bound for linear demand functions, but not vice versa for an isoelastic one. The

reason is that the price of product j during period t can be arbitrary large when there has been a

setup for this product in another period t0, i.e., the profit of selling product j in period t is always

nonzero as long as the price Pjt is larger than the unit inventory or backlogging cost from period

t0 to t. To tackle this problem, the upper bound for the feasible price interval is set to be 2PLBjt ,

i.e., the initial price of product j during period t will be randomly generated from [PLBjt , 2PLBjt].

Note that this interval only represents the range of prices in initial solutions. Considering that the

optimal prices may be larger than 2PLBjt , so in the following iterative search procedure of proposed

GA, the prices may be adjusted to be larger than 2PLjt in crossover and repair procedures.

5.2.3. Fitness evaluation

In the evaluation process, the fitness value of an individual i is calculated as follows:

fitnessi =
1

ranki∑POPsize
k=1

1
rankk

, (36)

where ranki is the rank of this individual in the decreasing order of objective values for the popula-

tion. Note that each individual may be infeasible due to violation of the capacity constraints (3) or

having excess inventories or unmet backlogs in the end period. Therefore, penalty costs are adopted

for capacity violation and unmet backlogs, while excess inventories are not penalized because we

have paid for them when calculating the objective function. The penalty cost for per unit of unmet

backlog of a product is set to be its maximum price of all periods, and penalty cost for per unit

25

of production quantity exceeding capacity during one period is set to be the maximum price of all

products in that period.

5.2.4. Parent selection

Individuals are selected from the current population to generate offsprings for the new generation

by some methods, such as roulette wheel selection, tournament selection, rank selection, elitism,

etc (Michalewicz, 2013). Here, roulette wheel selection and elitism method are adopted, because

the elitism method ensures the best individual to remain in the new population (Davis, 1991), and

roulette wheel selection tends to promote the diversity of the population and thus avoids premature

(Liu et al., 2008). Specifically, the best individual is first copied to the new population, while

the rest are selected by roulette wheel selection. The selection of the first parent is performed by

using the probability distribution 2(POPsize+1−i)
POPsize(POPsize+1) , where POPsize is the population size and i

represents the i-th chromosome in the increasing order of the fitness values. A random number

between 0 and 1 is generated and the first individual with a cumulative probability that is greater

than the random number is chosen as the first parent. The second parent is randomly selected with

equal probability among others.

5.2.5. Crossover

Two different crossover operators are designed to combine information from both parents. One

is single-point linear crossover that combines genes from two parent individuals on the basis of one

cross point cp , which is faster for the real-coded representation compared to the binary crossover

(Rezaei and Davoodi, 2012). Superscripts pa and ch of decision variables are used to denote parent

individuals and child individuals respectively. With the two selected individuals pa1 and pa2, the

child individual ch1 and ch2 are generated as follows: Xch1
jt = rXpa1

jt + (1− r)Xpa2
jt j × t ≤ cp

Xch2
jt = (1− r)Xpa1

jt + rXpa2
jt j × t > cp

 P ch1
jt = rP pa1jt + (1− r)P pa2jt j × t ≤ cp

P ch2
jt = (1− r)P pa1jt + rP pa2jt j × t > cp

, (37)

where r is a random real number, and cp is an integer randomly generated between 0 and J × T .

The range for random number r is determined empirically depending on a particular problem,

for instance [−0.5, 1.5] in Michalewicz (2013) and [1, 1.25] in Liu et al. (2008). In our case, r is

randomly generated in [0, 1.5], which allows the variables, especially the prices, to vary in relatively

large ranges. Note that decision variables of child individuals generated by this crossover operator

26

may be negative, thus we update these negative variables to be a sufficient small positive number.

For the example, two child individuals are generated from parent solutions by crossover operator

(a) Crossover operator 1 (b) Crossover operator 2

Figure 4: The illustrative examples for the crossover operators.

1 in Figure 4(a), with a random selected crossover point cp = 3. Then for two child individuals,

the genes (variables) with index combinations (1, 1), (1, 2), (2, 1) and (1, 3) are generated by the

equation (26), while the rest genes are copied from the parents individuals. The other crossover

operator is a problem-specific one that swaps production quantities and prices of the selected parents

respectively. The production quantities in a randomly selected period t are swapped between the

parents, while the prices of a randomly selected product j are swapped between them. For example,

two child individuals are generated by swapping production quantities in period 2 and swapping

prices of product 1 as depicted in Figure 4(b).

In the crossover procedure, two parent individuals are selected to generate child individuals with

a specified crossover probability Pc, during which one of the two crossover operators will be applied

according their weights by roulette wheel selection. The initial weight ωci of crossover operator i

is set to be 0.5. To choose a better crossover operator as the GA goes on, the weights of them

are adjusted dynamically, every time point when 100 child individuals have been generated, based

27

on the objective values of these 100 child individuals. We use ni to indicate the number of child

individuals generated by operator i among the 100 child individuals and πi to indicate the number

of child individuals generated by operator i which are better than their parents in terms of objective

value. The score sci of operator i can be calculated as πi
ni

. Then, the new weight ω̄i of operator i

will be updated as follows:

ω̄ci =
sci∑2
k=1 sck

. (38)

5.2.6. Mutation

To avoid premature and allow for a wide exploration of the solution space, four mutation oper-

ators are designed based on the features of the problem. The first two mutation operators modify

production quantities while the latter two change prices of individuals.

The first mutation operator randomly selects a period t and reallocates production capacity for

all products as the gene initialization procedure. Production quantities of two randomly selected

products j1 and j2 are swapped during two randomly selected periods t1 and t2 by the second

mutation operator as follows: X ′j1t1 =
vj2Xj2t2
vj1

X ′j1t2 =
vj2Xj2t1
vj1

 X ′j2t1 =
vj1Xj1t2
vj2

X ′j2t2 =
vj1Xj1t1
vj2

. (39)

For each product, the price of it during a randomly selected period is regenerated between

its initial price interval in the same way as the initialization procedure when the third mutation

operator is performed. The last mutation operator is dedicated to swap the prices of each product

during two randomly selected periods. The illustrative examples for these four mutation operators

on an instances with two products and four periods are illustrated in Figure 6. Specifically, in Figure

5(a), production quantities in period 2 are re-initialized to be 13 and 7 by mutation operator 1.

As depicted in 5(b), production quantities for both products in periods 3 and 4 are swapped in by

mutation operator 2. Prices for both products in period 1 are re-initialized by mutation operator 3

in 5(c), and prices for each product in periods 3 and 4 are swapped by mutation operator 4 in 5(d).

Each individual in the population, except the best one, will mutate with mutation probability

Pm in the mutation procedure. Similar to crossover procedure, one of these four mutation operators

is applied according their weights by roulette wheel selection. The initial weight ωmi of mutation

28

(a) Mutation operator 1 (b) Mutation operator 2

(c) Mutation operator 3 (d) Mutation operator 4

Figure 5: The illustrative examples of the mutation operators.

operator i is set to be 0.25. During the iterative procedure, the weights are adjusted dynamically,

every time point when 100 new individuals have been generated, based on the objective values

of the 100 new individuals. The weights are adjusted in the same way as mentioned in crossover

section, thus we do not repeat describing the process again here.

5.2.7. Repair

New individuals generated by crossover and mutation operators may be infeasible for capacity

violations and excess inventories or unmet backlogs at the end of the last period in the planning

horizon. Therefore, repair operators are designed to reallocate production capacity and adjust

prices so as to reduce infeasibilities. After a new individual is generated by crossover and mutation

operators, a checking procedure first examines the used production capacity in each period and

excess inventories or unmet backlogs of each product at the end of the last period (excess inventories

or unmet backlogs for short in the following statement). If infeasibilities exist, three repair operators

are performed in sequence.

• Repair operator 1: Repair operator 1 is called if and only if the infeasibilities are caused only by

29

excess inventories. In other words, if there exist excess inventories but no unmet backlogs, and

production capacity constraints are satisfied, then for each product j with excess inventories,

the repair operator will lower prices or reduce production quantities during some randomly

selected periods, until there are no excess inventories.

• Repair operator 2: Repair operator 2 is designed for eliminating infeasibilities caused by un-

met backlogs. If there exist unmet backlogs, the following steps are conducted: (i) The repair

operator will first examine whether there also exist excess inventories and then reallocate pro-

duction capacity consumed by excess inventories of some products to produce more products

with unmet backlogs; (ii) When excess inventories do not exist, idle production capacity will

be assigned to fulfill unmet backlogs; (iii) In case that production capacity of all periods has

been fully utilized, prices of some randomly selected products will be increased to balance

demand and supply such that unmet backlogs can be reduced to be zero.

• Repair operator 3: Repair operator 3 is designed for eliminating infeasibilities caused by

violations of the capacity constraints. If the production capacity constraints are violated, the

following steps are conducted: (i) The repair operator first examines whether there also exist

excess inventories. Then production quantities that lead to excess inventories are reduced

in the periods with violation of the capacity constraints. (ii) If there do not exist excess

inventories, the repair operator searches the periods with idle production capacity, and then

the production quantities exceeding the capacity will be shifted to these periods with idle

capacity. (iii) In case that there exist neither excess inventories nor idle capacity, the prices of

products with nonzero production quantities in the periods with capacity violations, will be

increased to suppress the corresponding demand. Then, the production quantities exceeding

the capacity will be reduced to eliminate infeasibilities.

An illustrative examples for the repair operators are presented in Figure 6. In Figure 6(a), there

are 16 units of excess inventories for product 1. Repair operator 1 first reduces production quantity

X13 to zero, and then decreases price P14 to improve the corresponding demand such that the excess

inventories for product 1 are reduced to be zero. As depicted in Figure 6(b), there are 13 unit of

unmet backlogs for product 1 in the beginning. Repair operator 2 first shifts 10 units of capacity

consumed by excess inventories of product 2 in period 2 to satisfy unmet backlogs of product 1.

Then, 2 units of idle capacity in period 1 are used to satisfy unmet backlogs of product 1 and the

30

(a) Repair operator 1

(b) Repair operator 2

(c) Repair operator 3

Figure 6: The illustrative examples for the repair operators.

31

price P13 is increased to suppress demand such that the unmet backlogs are finally eliminated. The

example for eliminating infeasibilities caused by violations of capacity constraints is presented in

Figure 6(c), in which negative idle capacity in period 2 denotes that the capacity constraints is

violated. Repair operator 3 first reduces 5 units of production quantities for product 2 in period 2

that leads to excess inventories. Then, 2 units of production for product 1 in period 2 are shifted

to be produced in period 1 using the idle capacity. Finally, the violation is eliminated by increasing

price P13 and reducing production quantity X12.

Note that individuals adjusted by repair operators 2 and 3 may still have excess inventories,

as the repair operator 1 is called only if the infeasibilities are caused by excess inventories. The

algorithm does not need to repair these individuals immediately, because they will either be weeded

out due to low fitness or be repaired in the next iteration.

5.2.8. Local search procedure in the GA

Local search has been widely used in the literature to enhance the performance of meta-heuristic

algorithms. Thus, to help the proposed GA escape from local optima and revive the search further,

a problem-specific local search is designed to exploit more information from incumbent solutions.

The local search procedure will be performed on each individual with a specified probability Pl,

except the best one. Pseudocode of the proposed local search is presented in Algorithm 5. The main

idea of this local search is to combine production quantities in different periods, which is beneficial

for improving objective value of the solution when production capacity is relatively sufficient.

6. Numerical experiments

In this section, we first present an illustrative example to help readers understand better the

MINLP model and discuss managerial insights. Then, the efficiency of LINGO solver on MINLP

models P0 and P1 is compared, and finally the performance of the model based heuristic and the

GA is evaluated based on a series of instances. Both the solution methods are coded in Python

and computational results have been conducted on a personal computer with 2.4 GHz Intel Core i5

and 16 GB RAM, except that parameter tuning procedure is conducted on a cloud server with 3.8

GHz Intel Xeon Platinum (Cooper Lake) and 24 GB RAM. In addition, the nonlinear commercial

solver LINGO 18.0 is called to solve the MINLP models P0 and P1 with a CPU time limit of 3600s.

32

Algorithm 5: Pseudocode of the local search procedure in the GA.

Input: A selected individual in the population;
Cidlet (% Idle capacity in period t);
Tj = {t | Xjt > 0 and t ∈ T }, ∀j ∈ J (% A set of periods during which Xjt > 0).

1 Shuffle J randomly (% Improve randomness of the procedure);
2 for j ∈ J do
3 Shuffle Tj randomly (% Improve randomness of the procedure);
4 while |Tj | ≥ 2 do
5 t = Tj(1) (% Tj(1) denotes the first element in Tj);
6 for t′ ∈ Tj/{t} do
7 if Cidlet ≥ vjXjt′ then
8 Shift Xjt′ to period t ;

9 Cidlet = Cidlet − vjXjt′ ;
10 Tj = Tj/{t′};
11 break (% break and turn to line 4);

12 else if Cidlet′ ≥ vjXjt then
13 Shift Xjt to period t′ ;

14 Cidlet′ = Cidlet′ − vjXjt ;
15 Tj = Tj/{t};
16 break (% break and turn to line 4);

17 else

18 t′′ = arg maxt∈Tj C
idle
t ;

19 if Cidlet′′ ≥ vj (Xjt +Xjt′) then
20 Shift Xjt and Xjt′ to period t′′ ;

21 Cidlet′′ = Cidlet′′ − vj (Xjt +Xjt′) ;
22 Tj = Tj/{t, t′};
23 if t′′ /∈ Tj then
24 Tj = Tj ∪ {t′′}
25 end
26 break (% break and turn to line 4);

27 end

28 end

29 end

30 end

31 end
Output: A new individual.

33

Table 2: Numerical parameters list

Name Type Range Description
POPsize Integer [20, 100] Population size
Pc Real [0.5, 1] Crossover probability for the parent individuals
Pm Real [0.01, 0.4] Mutation probability for each individual
Pl Real [0.01, 1] Local search probability for each individual
MaxItno Integer [20, 100] Maximum iterations without improving the best solution

The objective values of each instance obtained by both solution methods and the corresponding

solution times are reported with an average of ten runs.

6.1. Parameter tuning

The parameters to be tuned of the proposed GA are listed in Table 2. These parameters has been

tuned by employing an automatic algorithm configuration tool, the IRACE package (López-Ibánez

et al., 2016). This automatic approach has been widely used for tuning configurable algorithms with

a number of parameters that can be preset and affect the computational efficiency (Dell et al., 2016;

Pinto et al., 2018; Franzin and Stützle, 2019). The IRACE package tunes parameters in parallel

mode based on a method named iterated racing that consists of three main steps: (1) sampling

parameter combinations according to a particular distribution; (2) selecting the best combinations

from newly sampled ones via racing method; (3) updating the sampling distribution to bias the

procedure towards better combinations. The IRACE package needs the target algorithm, the ranges

of the parameters to be tuned, a set of training instances and a set of initial parameters combinations

(optional) as the input. A training budget is preset by users to control the maximum number of

experiments to be executed, after which a set of elite parameters combinations will be returned.

Table 3: Initial and elite parameter combination

Initial combination Elite combination
Parameter 1 2 3 4 1 2 3 4
POPsize 30 60 70 80 68 84 74 84
Pc 0.90 0.65 0.80 0.80 0.89 0.88 0.85 0.82
Pm 0.05 0.10 0.15 0.30 0.12 0.08 0.06 0.07
Pl 0.50 0.75 0.95 1.00 0.95 0.98 0.90 0.95
MaxItno 50 70 50 100 100 92 91 94

The training instances are generated based on benchmark instances with production capacity

40 and 80 from Bajwa et al. (2016b) and Couzon et al. (2020). As backlogging is not allowed in

Bajwa et al. (2016b) and Couzon et al. (2020), in our training instances, backlogging cost bjt is

34

set to be 2hjt in line with Cheng et al. (2001), Toledo et al. (2013), and Goren and Tunali (2016).

The training budget of IRACE is set to be 3000 in our experiments, and a set of initial parameters

combinations, obtained by preliminary experiments, is fed to enhance the tuning procedure (see

Table 3). Finally, 4 elite combinations returned by the IRACE package are also presented in Table

3. In the following experiments, we adopt the first elite combination 1 (i.e., POPsize = 68, Pc =

0.89, Pm = 0.12, Pl = 0.95, and MaxItno = 100) as the actual parameter values.

6.2. An illustrative example

Table 4: Parameters of the illustrative example
Product αj βj vj cjt hjt bjt ajt

1 500 1.9 1 1.6 0.02 0.04 8.5
2 400 1.6 1 1.3 0.05 0.1 4.5
3 600 2.5 1 1.5 0.04 0.08 7.5

Figure 7: The comparison of total profits for the illustrative example.

In this section, an illustrative example with 3 products and 6 time periods is provided to help

readers understand better the MINLP model P1 and Optimality property 2 and discuss managerial

insights. The example is generated based on an industrial glove manufacturer in Bajwa et al.

(2016b) in which backlogging is not permitted. The product parameters in Table 4 and production

capacity of 80 are identical to those in Bajwa et al. (2016b). In line with Cheng et al. (2001),

backlogging cost is set as 2hjt. Demand scenarios are set as the same in Bajwa et al. (2016b),

which is presented in Table 6 in Section 6.3. The example is formulated by the model P1 and

exactly solved by calling the well-known LINGO solver. The comparison of total profits with or

35

without backlogging for the example is shown in Figure 7. It can be observed from Figure 7

that the total profit with backlogging under all scenarios is higher than that without backlogging.

Furthermore, the optimal prices of scenarios 1-4 with backlogging are illustrated in Figure 8(a)-

(d) respectively, in which dotted circles represent the setup periods (as illustrated in Figure 8(e)).

The details of the optimal solution including production quantity, inventory quantity, backlogging

Figure 8: The optimal prices for the illustrative example.

quantity and price are provided in the supplementary material. We can observe from Figure 8(a)

that products 1-3 are produced in periods 4, 3 and 2, respectively. For each product, the demands

before and after setup period are satisfied by backlogging and inventory, respectively. And the

optimal prices of a product decrease before setup period and increase after setup period. The trend

of prices in Figure 8(a) is in line with that described in Optimality property 2, i.e., (i) if the demand

in period t is completely satisfied by inventory, its optimal price is greater than that in the next

period; (ii) if the demand in period t is completely satisfied by backlogging, its optimal price is

36

greater than that in the previous period. And the price difference can be calculated by the formulas

provided in Optimality property 2. For example, P11−P12 = 3.4622−3.3778 = b11β1

β1−1 = 0.0844, and

P16 − P15 = 3.5466− 3.5044 = h15β1

β1−1 = 0.0422. The prices in other demand scenarios (Figure 8(b)-

(d)) show the same trend. For the example and Optimality property 2, we can give the following

managerial insights:

(1) The formulated MINLP model can help manufacturers make the decision on whether applying

backlogging strategy or not and when to backlog the demand;

(2) If demand in a period is satisfied by backlogging strategy, it is more profitable to set its price

higher than that in the next period, and the larger the backlogging cost, the higher its price

should be;

(3) If demand in a period is satisfied by inventory, it is more profitable to set its price higher than

that in the previous period, and the larger the inventory holding cost, the higher its price

should be.

6.3. Numerical experiment on small-sized instance

The small-sized instances are generated based on 2 benchmark instance sets proposed by Bajwa

et al. (2016a,b) with additional backlogging information. These instance sets, which are combined

with 4 demand scenarios, are collected from a real-world company manufacturing selling industrial

gloves to institutional buyers. The detailed data of the instance sets and demand scenarios are

given in Table 5 and Table 6. The demand scenarios mainly differ in demand seasonality γjt for

each product. The first scenario indicates the case without seasonality. The second scenario has

an increasing demand for each product in the planning horizon, while the demand for each product

decreases over the horizon under the third scenario. Finally, the last scenario is a combination of

the second and third scenarios. Production capacity is the same and constant in each period over

the planning horizon. In addition, 7 different production capacities varying from 40 to 110 are

tested for the instance sets. In total, there are 64 small-sized instances that are solved by calling

LINGO solver. Computation time limit of LINGO is set as 3600s. LINGO can propose a feasible

solution or an optimal solution with the time limit.

The comparison of the efficiency of MINLP models P0 and P1 is reported in Table 7. The column

“Average obj” represents average objective value obtained by LINGO solver, and the column “Best”

reports the number of best solutions obtained for the models P0 and P1. From Table 7, we can

37

Table 5: Data for small-sized instances
αj βj vj cjt hjt bjt ajt
500 1.9 1.0 1.6 0.02 0.04 8.5

Instance set 1 400 1.6 1.0 1.3 0.05 0.10 4.5
600 2.5 1.0 1.5 0.04 0.08 7.5
20000 3.5 1.0 3.0 0.035 0.07 10.5

Instance set 2 18000 4.0 1.0 3.0 0.035 0.07 4.5
800 5.5 1.0 3.0 0.013 0.026 3.5

1 Backlogging cost bjt is set to be 2hjt in the same way as in Cheng
et al. (2001), Toledo et al. (2013) and Goren and Tunali (2016).

Table 6: Demand scenarios
Period

Scenario 1 2 3 4 5 6
0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

Scenario 1 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.1 0.1 0.1 0.2 0.2 0.3

Scenario 2 0.1 0.1 0.1 0.2 0.2 0.3
0.1 0.1 0.1 0.2 0.2 0.3
0.3 0.2 0.2 0.1 0.1 0.1

Scenario 3 0.3 0.2 0.2 0.1 0.1 0.1
0.3 0.2 0.2 0.1 0.1 0.1
0.3 0.2 0.2 0.1 0.1 0.1

Scenario 4 0.3 0.2 0.2 0.1 0.1 0.1
0.1 0.1 0.1 0.2 0.2 0.3

observe for the Instance set 1 that the average profits of models P0 and P1 are comparable, and the

number of best solutions obtained for P0 and P1 are 29 and 32 respectively. For the Instance set 2,

the average profit of P0 and P1 are 185,77 and 221,59, respectively. And 13 and 32 best solutions

are obtained on P0 and P1. The experiment results show that the tighter model P1 is more efficient

than model P0.

Table 7: Comparison of the efficiency of LINGO solver on the two MINLP models

Model P0 Model P1

Average obj Best Average obj Best
32 instances of set 1 235.39 29 235.43 32
32 instances of set 2 185.77 13 221.59 32

The numerical results of model based heuristic and the GA on small-sized instances are pre-

sented in Table 8. As a comparison, we also report the best objective value out of two MINLP

models obtained by LINGO solver for each instance in this table. The objective values obtained

by LINGO, the model based heuristic and the proposed GA are presented in the “Objective”

columns in the table. The corresponding computational times are presented in the “Time” columns

38

T
a
b

le
8
:

N
u

m
er

ic
a
l

re
su

lt
s

o
n

sm
a
ll
-s

iz
ed

in
st

a
n

ce
s

In
st

a
n

ce
1

In
st

a
n

ce
2

L
IN

G
O

M
o
d

el
b

as
ed

h
eu

ri
st

ic
T

h
e

p
ro

p
o
se

d
G

A
L

IN
G

O
M

o
d

el
b

a
se

d
h

eu
ri

st
ic

T
h

e
p

ro
p

o
se

d
G

A
S

ce
n

ar
io

C
ap

ac
it

y
O

b
je

ct
iv

e
T

im
e

(s
)

O
b

je
ct

iv
e

T
im

e
(s

)
G

ap
(%

)
O

b
je

ct
iv

e
T

im
e

(s
)

G
ap

(%
)

O
b

je
ct

iv
e

T
im

e
(s

)
O

b
je

ct
iv

e
T

im
e

(s
)

G
a
p

(%
)

O
b

je
ct

iv
e

T
im

e
(s

)
G

a
p

(%
)

S
ce

n
ar

io
1

40
23

2.
48

36
00

2
3
2
.4
7

3
.0

8
0
.0

0
23

2
.1

3
1
0.

2
6

0
.1

5
2
0
7
.2

9
3
6
0
0

2
0
7
.1
2

1
0
.2

6
0
.0

8
2
0
6
.2

2
1
3
.6

1
0
.5

2
50

23
4.

86
36

00
2
3
4
.8
6

0
.4

1
0
.0

0
23

4
.8

4
1
2.

2
3

0
.0

1
2
1
7
.4

8
3
6
0
0

2
1
7
.4
7

1
0
.0

2
0
.0

0
2
1
7
.4

3
1
3
.3

1
0
.0

2
60

23
4.

94
36

00
2
3
4
.9
4

0
.1

2
0
.0

0
23

4
.9

1
1
3.

5
8

0
.0

1
2
2
2
.4

4
3
6
0
0

2
2
2
.4
4

9
.3

9
0
.0

0
21

8
.7

1
11

.9
9

1
.6

8
70

23
4.

94
36

00
2
3
4
.9
4

0
.1

3
0
.0

0
23

4.
92

1
2.

8
5

0
.0

1
2
2
2
.4

3
3
6
0
0

2
2
3
.2
3

9
.6

1
-0

.3
6

2
2
1
.4

9
1
2
.2

3
0
.4

3
80

23
4.

94
36

00
2
33

.6
7

2.
1
4

0.
5
4

2
3
4
.9
2

1
3.

7
2

0
.0

1
2
2
3
.2

7
3
6
00

2
2
3
.2
6

7
.2

7
0
.0

0
22

2
.1

4
10

.3
8

0
.5

1
90

23
5.

22
36

00
2
33

.9
3

1.
7
5

0.
5
5

2
3
4
.9
2

1
3.

8
6

0.
13

22
5
.4

1
3
6
0
0

2
2
4
.9
9

3
.3

2
0
.1

9
22

4
.2

4
12

.9
2

0
.5

2
10

0
23

5.
39

36
00

2
33

.9
9

0.
1
7

0
.5

9
2
3
5
.3
5

1
3.

0
9

0.
02

22
7
.5

6
3
6
0
0

2
2
7
.2
5

1
.9

5
0
.1

4
22

7
.1

1
11

.2
4

0
.2

0
11

0
23

5.
39

36
00

2
34

.5
3

0.
0
2

0
.3

6
2
3
5
.3
4

1
2.

9
9

0.
02

22
9
.4

1
3
6
0
0

2
2
9
.2

9
1
.8

7
0
.0

5
2
2
9
.3
3

13
.1

2
0
.0

4
S

ce
n

ar
io

2
40

23
2.

38
36

00
2
3
1
.0
8

8
.5

4
0
.5

6
23

0
.9

8
1
1.

5
4

0
.6

0
2
0
7
.2

1
3
6
0
0

2
0
6
.9
3

3
.6

3
0
.1

4
20

6
.9

1
13

.2
4

0
.1

5
50

23
4.

69
36

00
2
33

.9
1

0.
8
7

0.
3
3

2
3
4
.7
0

1
1.

0
8

0.
00

21
7
.2

8
3
6
0
0

2
1
5
.9

6
5
.9

2
0
.6

1
2
1
6
.7
7

14
.0

2
0
.2

3
60

23
4.

81
36

00
2
3
3.

7
9

0
.0

8
0
.4

3
2
3
4
.7
6

1
3.

2
0

0.
02

22
0
.6

5
3
6
0
0

2
2
0
.5

1
6
.2

0
0
.0

7
2
2
2
.1
7

15
.8

9
-0

.6
9

70
23

4.
81

36
00

2
3
3.

9
4

0
.0

3
0
.3

7
2
3
4
.7
6

1
2.

6
4

0.
02

22
1
.9

2
3
6
0
0

2
2
2
.2

8
3
.3

7
-0

.1
6

2
2
2
.9
6

14
.4

7
-0

.4
7

80
23

4.
81

36
00

2
3
2.

7
0

5
.8

5
0
.9

0
2
3
4
.7
8

1
3.

5
8

0.
01

22
2
.9

9
3
6
0
0

2
2
0
.6

0
3
.7

8
1
.0

7
2
2
2
.2
3

12
.0

9
0
.3

4
90

23
5.

06
36

00
2
3
2.

5
3

1
.3

2
1
.0

8
2
3
4
.7
5

1
2.

7
1

0.
13

22
5
.1

3
3
6
0
0

2
2
1
.8

1
3
.4

7
1
.4

8
2
2
4
.2
6

14
.6

7
0
.3

9
10

0
23

5.
43

36
00

2
32

.6
0

0.
5
5

1
.2

0
2
3
5
.2
0

1
2.

5
5

0.
10

22
7
.3

5
3
6
0
0

2
2
5
.4

9
1
.8

1
0
.8

2
2
2
6
.9
6

12
.3

3
0
.1

7
11

0
23

5.
45

36
00

2
33

.4
0

0.
0
6

0
.8

7
2
3
5
.4
2

1
4.

9
1

0.
01

22
9
.1

6
3
6
0
0

2
2
4
.8

6
2
.1

1
1
.8

7
2
2
9
.1
2

11
.5

7
0
.0

1
S

ce
n

ar
io

3
40

23
3.

66
36

00
2
3
3
.3
2

2
.7

2
0
.1

4
23

2
.0

1
1
4.

4
5

0
.7

0
2
0
5
.6

8
3
6
0
0

2
0
5
.5
7

1
0
.7

0
0
.0

5
2
0
5
.2

2
1
4
.5

3
0
.2

2
50

23
6.

31
36

00
2
3
6
.1
9

1
.9

8
0
.0

5
23

6
.0

8
1
4.

5
5

0
.1

0
2
1
6
.6

5
3
6
0
0

2
1
6
.6
5

8
.7

8
0
.0

0
21

6
.5

7
13

.5
1

0
.0

4
60

23
6.

43
36

00
2
36

.2
1

1.
3
4

0.
0
9

2
3
6
.4
0

1
5.

4
9

0.
01

22
1
.4

6
3
6
0
0

2
2
1
.4
6

9
.5

6
0
.0

0
21

9
.1

2
12

.4
8

1
.0

5
70

23
6.

43
36

00
2
36

.1
1

1.
1
4

0.
1
3

2
3
6
.4
0

1
3.

9
2

0.
01

22
2
.2

0
3
6
0
0

2
2
2
.2
0

8
.3

8
0
.0

0
22

1
.2

0
13

.9
4

0
.4

5
80

23
6.

43
36

00
2
35

.4
1

4.
8
6

0.
4
3

2
3
6
.4
0

1
4.

4
4

0.
01

22
0
.3

3
3
6
0
0

2
2
2
.5
9

6
.1

9
-1

.0
3

2
2
2
.3

0
1
2
.2

4
-0

.9
0

90
23

6.
65

36
00

2
3
6
.5
7

3
.2

8
0
.0

3
23

6.
40

1
6.

0
3

0
.1

0
2
2
3
.5

6
3
6
0
0

2
2
6
.0
6

2
.0

9
-1

.1
2

2
2
5
.8

8
1
1
.7

1
-1

.0
4

10
0

23
6.

89
36

00
2
3
6
.8
8

0
.9

7
0
.0

0
23

6.
81

1
3.

5
7

0
.0

3
2
2
7
.3

0
3
6
0
0

2
2
9
.2
0

2
.0

5
-0

.8
3

2
2
9
.1

6
1
1
.9

6
-0

.8
2

11
0

23
6.

94
36

00
2
3
6
.9
1

0
.0

7
0
.0

1
23

6.
89

1
2.

2
3

0
.0

2
2
2
8
.6

3
3
6
0
0

2
3
1.

2
0

6
.8

5
-1

.1
2

2
3
1
.2
5

13
.1

9
-1

.1
5

S
ce

n
ar

io
4

40
23

3.
67

36
00

2
3
1.

4
5

2
.2

4
0
.9

5
2
3
2
.2
0

1
1
.9

0
0.

6
3

2
06

.4
0

3
6
0
0

2
0
7
.6
7

1
5
.4

0
-0

.6
2

2
0
6
.6

7
1
2
.6

9
-0

.1
3

50
23

6.
30

36
00

2
3
5.

9
8

0
.4

8
0
.1

4
2
3
6
.2
4

1
1
.6

6
0.

0
3

2
18

.2
1

3
6
0
0

2
1
8
.0
9

7
.4

7
0
.0

5
21

7
.7

9
11

.7
9

0
.1

9
60

23
6.

39
36

00
2
36

.0
5

0.
1
4

0.
1
4

2
3
6
.3
5

1
3.

3
4

0
.0

1
2
2
3
.3

2
3
6
00

22
3
.1

8
9
.9

9
0
.0

7
2
2
3
.2
7

13
.0

9
0
.0

2
70

23
6.

39
36

00
2
3
5.

8
8

2
.3

9
0
.2

2
2
3
6
.3
5

1
3
.8

7
0.

0
2

2
24

.1
8

3
6
0
0

2
2
4
.1
4

9
.0

4
0
.0

1
22

0
.1

7
13

.4
0

1
.7

9
80

23
6.

39
36

00
2
33

.7
9

1.
9
5

1.
1
0

2
3
6
.3
5

1
3.

2
3

0.
02

22
4
.2

2
3
6
0
0

2
2
4
.0
7

1
0
.3

7
0
.0

7
2
2
3
.3

6
1
3
.2

3
0
.3

8
90

23
6.

39
36

00
2
3
4.

0
1

0
.6

4
1
.0

1
2
3
6
.3
6

1
2.

9
4

0.
01

22
6
.3

7
3
6
0
0

2
2
6
.2

0
8
.3

1
0
.0

7
2
2
6
.3
7

11
.4

5
0
.0

0
10

0
23

6.
47

36
00

2
33

.5
3

0.
0
2

1
.2

4
2
3
6
.4
3

1
2.

5
3

0.
02

22
6
.9

8
3
6
0
0

2
2
8
.6

8
4
.6

6
-0

.7
5

2
2
9
.3
0

13
.3

5
-1

.0
2

11
0

23
6.

47
36

00
2
33

.8
5

0.
0
1

1
.1

1
2
3
6
.4
4

1
2.

9
2

0.
01

22
8
.3

0
3
6
0
0

2
3
0
.2

8
4
.5

4
-0

.8
7

2
3
1
.4
2

12
.4

2
-1

.3
7

A
ve

ra
ge

23
5.

43
36

00
23

4.
3
6

1
.5

4
0
.4

6
2
35

.2
1

13
.1

8
0.

0
9

2
2
1
.5

9
3
6
00

2
2
1
.5

9
6
.5

1
0
.0

0
2
2
1
.4

7
1
2
.8

8
0
.0

6

39

in the table. The “gap” columns in Table 7 are calculated as: gap = Obj L−Obj M
Obj L × 100% and

gap = Obj L−Obj G
Obj L × 100% respectively, where Obj L, Obj M and Obj G represent the objective

values obtained by LINGO, the model based heuristic and the GA respecitvely. From Table 7,

we can observe that the average gaps between the GA and LINGO are 0.09% on Instance set 1

and 0.06% on Instance set 2 respectively, which are very close to those between the model based

heuristic and LINGO, with an average of 0.46% on Instance set 1 and 0.00% on Instance set 2

respectively. Specifically, the proposed GA outperforms the model based heuristic on 22 out of

32 scenario-capacity combinations for Instance set 1, while the model based heuristic yields better

objective values on 19 out of 32 scenario-capacity combinations for Instance set 2, compared to the

objective values obtained by the GA. Besides, the computational time of the model based heuristic

ranges from 0.01s to 8.54s on Instance set 1 and from 1.81s to 15.40s on Instance set 2, with an

average of 1.54s and 6.51s respectively. Whereas, the proposed GA spends more computational

time to obtain near-optimal solutions on small-sized instances, which varies from 10.26s to 16.03s

on Instance set 1 and from 10.38s to 15.89s on Instance set 2. Therefore, the model based heuristic

are more time-efficient on relative small-sized instances.

6.4. Numerical experiment on large-sized instance

With the growth of instance sizes, the formulated MINLP models cannot be solved by LINGO

efficiently, due to its NP-hard nature. Therefore, in this part, only the model based heuristic and

the GA are evaluated by large-sized instances that are randomly generated based on the small-sized

instance sets used above. We generate large-sized instances with three combinations of products

and periods, i.e. (5 products, 12 periods), (10 products, 6 periods), and (10 products, 12 time

periods). And (5P, 6T), (10P, 6T), (10P,12T) are used to denote these combinations for simplicity

hereinafter. For each combination, 5 instance sets are randomly generated. Problem parameters

for large-sized instance sets are randomly generated in the ranges listed in Table 9. In addition,

each large-sized instance set is solved under demand scenario without seasonality and 7 different

production capacities varying from to 50 to 200. In total, there are 105 large-sized instances. The

data of all these large-sized instances is included in the supplementary material and available on

the internet 1.

1https://drive.google.com/drive/folders/1QgERGcZLf0Q28PT4msCZiv9OvL6PctEm?usp=sharing

40

Table 9: Parameter range for large-sized instances

Parameter Range Parameter Range
αj [400,20000] cjt [1,3]
βj [1.5,5.5] hjt [0.01,0.05]
vj [0.75,1.25] ajt [3.5,10.5]

Table 10: Numerical results on (10 products, 6 time periods) instances

Capacity model based heuristic The proposed GA
Instance set Objective Time (s) Objective Time (s) Imp (%)
(10P, 6T) 1 50 2720.49 4.32 3039.59 102.69 11.73

75 3235.34 8.86 3632.74 135.00 12.28
100 3626.84 3.83 4097.40 111.81 12.97
125 3964.63 12.81 4506.36 118.58 13.66
150 4240.12 11.40 4855.18 117.24 14.51
175 4450.17 3.84 5148.52 125.72 15.69
200 4845.32 11.16 5421.93 116.59 11.90

(10P, 6T) 2 50 2324.84 7.81 2594.99 110.49 11.62
75 2753.60 7.69 3095.23 122.13 12.41
100 3077.65 5.52 3445.86 123.01 11.96
125 3333.74 8.00 3697.82 140.17 10.92
150 3540.96 8.05 3916.46 135.35 10.60
175 3710.76 9.28 4115.21 106.18 10.90
200 3850.67 13.48 4267.76 108.22 10.83

(10P, 6T) 3 50 1760.59 8.43 1826.12 143.55 3.72
75 2159.70 8.43 2216.02 144.49 2.61
100 2481.52 5.43 2588.98 176.08 4.33
125 2752.27 5.19 2871.71 157.06 4.34
150 2986.05 7.30 3132.87 163.01 4.92
175 3190.96 6.66 3398.39 264.50 6.50
200 3385.06 9.03 3596.90 156.48 6.26

(10P, 6T) 4 50 2701.08 2.99 3114.50 123.05 15.31
75 3166.19 2.78 3658.95 103.56 15.56
100 3520.32 2.34 4059.37 125.94 15.31
125 3807.49 2.77 4400.58 100.95 15.58
150 4076.64 5.97 4685.10 137.48 14.93
175 4344.73 9.12 4920.88 122.57 13.26
200 4460.23 5.18 5105.53 89.63 14.47

(10P, 6T) 5 50 1694.03 6.63 1926.74 114.22 13.74
75 2059.68 3.24 2390.28 129.40 16.05
100 2358.57 6.76 2723.40 124.54 15.47
125 2623.56 17.27 2975.63 147.49 13.42
150 2886.86 16.59 3201.43 136.64 10.90
175 3024.40 10.69 3468.38 127.31 14.68
200 3208.23 14.18 3660.32 110.83 14.09

Average 3209.24 7.80 3593.06 130.63 11.64

41

Numerical results on instances with 10 products and 6 time periods are reported in Table

10. The first two columns represent instance set index and capacity, and the objective values

and the corresponding computational times are reported from columns 3 to 6. The last column

represents the improvement of the objective value obtained by the GA compared to that of the

model based heuristic, which is calculated as Imp = Obj G - Obj M
Obj M ×100%, where Obj G and Obj M

are the objective values obtained by the proposed GA and the model based heuristic respectively.

Comparison of the third and fifth columns demonstrates that the GA provides better solutions than

those of model based heuristic on all instances, with an average improvement of 11.64%. Comparing

solution times recorded in Table 7 and Table 9, it is seen that the average computational time of

the GA increases from less than 14s to 130.63s, with the growth of the number of products. On

the contrary, the model based heuristic can solve these instances with 6 periods much faster with

an average computational time of 7.80s, which is not impacted by the increase of the number of

products greatly.

Table 11 reports numerical results on instances with 5 products and 12 periods. In comparison

with the third and fifth columns, the objective values obtained by the GA are larger than those

of the model based heuristic on most instances, with the exception of instances (5P, 12T) 4 under

capacity 175 and 200. The average improvement 9.58% on the objective values also shows the

superiority of the proposed GA in terms of solution quality. Comparing the fourth and sixth

columns, the computation times of GA vary from 93.93s to 171.23s, with an average of 125.21s,

which is less than that of the model based heuristic ranging from 121.58s to 652.07s, with an average

of 276.26s. The prosed GA is more time-efficient on 34 out of 35 instances. Therefore, the proposed

GA outperforms the model based heuristic in terms of both solution quality and time efficiency on

these instances with 5 products and 12 periods.

Table 12 reports numerical results on instances with 10 products and 12 periods. In comparison

of the objective values in the third and fifth columns, it demonstrates that the GA yields better

solutions compared with those obtained by the model based heuristic, with an average improvement

of 11.45%. It is observed from the fourth and sixth that the proposed GA is also more time-efficient

on 30 out of 35 instances, with an average computational time of 392.04s, compared to the model

based heuristic with an average computational time of 633.29s. It is obvious that the proposed GA

outperforms the model based heuristic on instances with 10 products and 12 periods in terms of

both solution quality and time efficiency.

42

Table 11: Numerical results on (5 products, 12 time periods) instances

model based heuristic The proposed GA
Instance set Capacity Objective Time (s) Objective Time (s) Imp (%)
(5P, 12T) 1 50 1880.67 471.51 2345.28 137.33 24.70

75 2073.99 269.27 2789.25 144.04 34.49
100 2326.58 230.75 3115.00 129.11 33.89
125 2538.97 216.33 3366.11 137.59 32.58
150 2790.08 173.65 3577.02 122.57 28.20
175 2905.22 186.67 3754.01 112.43 29.22
200 3290.04 208.43 3902.29 126.52 18.61

(5P, 12T) 2 50 1926.83 283.14 2081.86 148.82 8.05
75 2261.09 226.71 2389.68 125.86 5.69
100 2460.49 246.28 2611.56 146.98 6.14
125 2678.97 214.74 2765.87 122.23 3.24
150 2779.31 175.41 2878.77 113.78 3.58
175 2898.14 160.39 2957.71 114.47 2.06
200 2946.93 155.90 3016.57 97.00 2.36

(5P, 12T) 3 50 2028.98 221.70 2317.98 163.98 14.24
75 2441.66 271.80 2644.78 143.38 8.32
100 2636.86 217.76 2864.17 121.49 8.62
125 2831.37 190.22 3029.73 114.69 7.01
150 3001.18 190.40 3161.34 120.34 5.34
175 3109.61 160.69 3259.33 105.30 4.81
200 3191.56 160.44 3334.50 129.98 4.48

(5P, 12T) 4 50 499.07 121.58 524.97 107.26 5.19
75 579.47 158.64 608.12 127.02 4.94
100 640.55 175.47 655.04 149.27 2.26
125 675.52 166.77 683.65 171.23 1.20
150 697.84 225.68 698.39 142.23 0.08
175 712.61 314.00 711.35 125.56 -0.18
200 720.36 338.20 714.49 102.86 -0.82

(5P, 12T) 5 50 3157.96 652.07 3462.14 134.53 9.63
75 3513.83 542.82 3805.65 96.84 8.30
100 3702.71 621.28 3989.42 94.47 7.74
125 3862.24 323.44 4075.98 126.69 5.53
150 3984.29 439.76 4094.86 126.79 2.78
175 4033.12 468.07 4104.69 105.78 1.77
200 4056.56 489.11 4100.91 93.93 1.09

Average 2452.42 276.26 2696.93 125.21 9.58

43

Table 12: Numerical results on (10 products, 12 time periods) instances

Capacity The model based heuristic The proposed GA
Instance set Objective Time (s) Objective Time (s) Imp (%)
(10P, 12T) 1 50 1913.22 622.26 2247.57 350.66 17.48

75 2253.15 590.56 2665.57 375.90 18.30
100 2510.54 586.74 2932.72 253.22 16.82
125 2712.21 621.30 3152.96 215.73 16.25
150 2875.29 819.36 3301.74 228.44 14.83
175 3146.28 780.20 3437.43 229.50 9.25
200 3258.73 552.69 3527.24 317.93 8.24

(10P, 12T) 2 50 2778.14 675.70 2956.04 551.71 6.40
75 3227.34 564.64 3420.21 538.82 5.98
100 3546.92 492.67 3795.92 519.09 7.02
125 3785.34 418.60 4037.02 354.99 6.65
150 3971.07 473.15 4233.36 340.06 6.61
175 4109.12 428.98 4387.67 314.59 6.78
200 4214.47 672.32 4505.49 377.44 6.91

(10P, 12T) 3 50 2394.04 786.97 2614.52 571.96 9.21
75 2857.99 858.98 3224.33 481.97 12.82
100 3209.13 620.56 3644.42 331.29 13.56
125 3482.73 497.07 3983.43 284.80 14.38
150 3705.84 562.86 4260.19 297.94 14.96
175 3899.77 476.18 4451.17 206.06 14.14
200 4051.26 559.62 4629.25 284.98 14.27

(10P, 12T) 4 50 3541.54 507.00 4021.52 485.73 13.55
75 4138.89 566.45 4773.22 508.67 15.33
100 4585.12 450.42 5270.32 392.31 14.94
125 4941.61 243.07 5621.60 553.67 13.76
150 5230.15 256.23 5923.35 479.74 13.25
175 5474.69 306.72 6155.94 455.22 12.44
200 5675.30 242.73 6342.69 396.72 11.76

(10P, 12T) 5 50 3571.46 1404.41 4075.14 411.06 14.10
75 4136.11 1305.64 4602.33 538.74 11.27
100 4566.63 1171.21 5017.99 520.42 9.88
125 4863.58 786.09 5294.08 437.34 8.85
150 5113.55 826.63 5513.15 393.01 7.81
175 5339.29 720.36 5694.74 375.12 6.66
200 5500.45 716.64 5839.58 346.46 6.17

Average 3845.17 633.29 4272.97 392.04 11.45

44

(a) Model based heuristic (b) The GA

Figure 9: Average computational time under different capacity.

Figure 9 depicts the average computational time of the model based heuristic and the GA

under different capacity for large-sized instances. As can be seen from Figure 9(a), the impact of

the capacity on the model based heuristic can be neglected for instances with 10 products and 6

periods, whereas it takes more time for the model based heuristic to solve instances with 12 periods

under smaller production capacity. We observe in Figure 9(b) that the GA spends more time on

solving instances with 10 products and 12 periods under smaller capacity, while the capacity cannot

greatly impact the computational efficiency of the GA on instances (5P, 12T) and (10P, 6T).

We can conclude from the numerical results that: (i) for small-sized instances, both the model

based heuristic and the GA can provide high-quality solutions, while the model based heuristic is

more time-efficient; (ii) as problem-size increases, we recommend the proposed GA as the solution

method because of its efficiency.

7. Conclusion and future research

In this paper, we consider the joint optimization of the lot-sizing and pricing decisions in a

manufacturing company selling multiple products over a finite planning horizon while considering

isoelastic demand function, backlogging and limited production capacity. For the problem, a mixed

integer nonlinear programming (MINLP) model is firstly formulated. Then, several optimality

properties are provided and a tighter MINLP model is constructed. Due to the NP-hardness

and non-linearity of the problem, a model based heuristic for small-sized instances and a genetic

algorithm with new progressive repair strategy for large-sized instances are proposed. Numerical

results on a variety of instances demonstrate efficiency of the tighter MINLP formulation and the

45

solution methods. Besides, the following managerial insights are drawn: (i) the formulated MINLP

model can help manufacturer make the decision on whether applying backlogging strategy or not

and when to backlog the demand; (ii) if demand in a period is satisfied by backlogging strategy, it

is more profitable to set its price higher than that in the next period, and the larger the backlogging

cost, the higher its price should be; (iii) if demand in a period is satisfied by inventory, it is more

profitable to set its price higher than that in the previous period, and the larger the inventory

holding cost, the higher its price should be.

Future research directions may include: (i) Some other factors that affect demand can be inte-

grated into the demand function. For example, cross-price elasticity can be included for manufac-

turers selling substitute or complement products. Besides, the customer behaviors are also impacted

by reference price, product age (freshness) and displayed stock volume, as given in Li and Teng

(2018) and Feng et al. (2022), which can be incorporated in the multi-product JLSPB for certain

categories; (ii) Stochastic factors can be considered in our future work by taking uncertainty of the

demand and yield into account; (iii) Other real-world objectives can be investigated to optimize

the studied JLSPB from different aspects, such as environmental goals and service levels, thus our

research can be extended to a multi-objective problem.

References

Askarpoor, H.R., Davoudpour, H., 2013. An effective approximation algorithm for joint lot-sizing

and pricing problem. The International Journal of Advanced Manufacturing Technology 65,

1429–1437.

Bajwa, N., Fontem, B., Sox, C.R., 2016a. Optimal product pricing and lot sizing decisions for

multiple products with nonlinear demands. Journal of Management Analytics 3, 43–58.

Bajwa, N., Sox, C.R., Ishfaq, R., 2016b. Coordinating pricing and production decisions for multiple

products. Omega 64, 86–101.

Chang, C.T., Ouyang, L.Y., Teng, J.T., Lai, K.K., Cárdenas-Barrón, L.E., 2019. Manufacturer’s

pricing and lot-sizing decisions for perishable goods under various payment terms by a discounted

cash flow analysis. International Journal of Production Economics 218, 83–95.

46

Cheng, C.H., Madan, M.S., Gupta, Y., So, S., 2001. Solving the capacitated lot-sizing problem

with backorder consideration. Journal of the Operational Research Society 52, 952–959.

Chu, C., Chu, F., Zhong, J., Yang, S., 2013. A polynomial algorithm for a lot-sizing problem

with backlogging, outsourcing and limited inventory. Computers & Industrial Engineering 64,

200–210.

Couzon, P., Ouazene, Y., Yalaoui, F., 2020. Joint optimization of dynamic pricing and lot-sizing

decisions with nonlinear demands: Theoretical and computational analysis. Computers & Oper-

ations Research 115, 104862.

Davis, L., 1991. Handbook of genetic algorithms. Van Nostrand Reinhold.

Dell, M., Iori, M., Novellani, S., Stützle, T., et al., 2016. A destroy and repair algorithm for the

bike sharing rebalancing problem. Computers & Operations Research 71, 149–162.

Deng, S., Yano, C.A., 2006. Joint production and pricing decisions with setup costs and capacity

constraints. Management Science 52, 741–756.

Dı́az-Madroñero, M., Mula, J., Peidro, D., 2014. A review of discrete-time optimization models for

tactical production planning. International Journal of Production Research 52, 5171–5205.

Feng, L., Wang, W.C., Teng, J.T., Cárdenas-Barrón, L.E., 2022. Pricing and lot-sizing decision

for fresh goods when demand depends on unit price, displaying stocks and product age under

generalized payments. European Journal of Operational Research 296, 940–952.

Franzin, A., Stützle, T., 2019. Revisiting simulated annealing: A component-based analysis. Com-

puters & 0perations Research 104, 191–206.

Gilbert, S.M., 1999. Coordination of pricing and multi-period production for constant priced goods.

European Journal of Operational Research 114, 330–337.

Gilbert, S.M., 2000. Coordination of pricing and multiple-period production across multiple con-

stant priced goods. Management Science 46, 1602–1616.

González-Ramı́rez, R.G., Smith, N.R., Askin, R.G., 2011. A heuristic approach for a multi-product

capacitated lot-sizing problem with pricing. International Journal of Production Research 49,

1173–1196.

47

Goren, H.G., Tunali, S., 2016. A comparative study of hybrid approaches for solving capacitated

lot sizing problem with setup carryover and backordering. European Journal of Industrial Engi-

neering 10, 683–702.

Haugen, K.K., Olstad, A., Pettersen, B.I., 2007. The profit maximizing capacitated lot-size (pclsp)

problem. European Journal of Operational Research 176, 165–176.

Huang, J., Leng, M., Parlar, M., 2013. Demand functions in decision modeling: A comprehensive

survey and research directions. Decision Sciences 44, 557–609.

Karimi, B., Ghomi, S.F., Wilson, J., 2003. The capacitated lot sizing problem: a review of models

and algorithms. Omega 31, 365–378.

Küçükyavuz, S., Pochet, Y., 2009. Uncapacitated lot sizing with backlogging: the convex hull.

Mathematical Programming 118, 151–175.

Li, R., Liu, Y., Teng, J.T., Tsao, Y.C., 2019. Optimal pricing, lot-sizing and backordering decisions

when a seller demands an advance-cash-credit payment scheme. European Journal of Operational

Research 278, 283–295.

Li, R., Teng, J.T., 2018. Pricing and lot-sizing decisions for perishable goods when demand depends

on selling price, reference price, product freshness, and displayed stocks. European Journal of

Operational Research 270, 1099–1108.

Liu, X., Tu, Y., Zhang, J., Watson, L., 2008. A genetic algorithm heuristic approach to gen-

eral outsourcing capacitated production planning problems. International Journal of Production

Research 46, 5059–5074.

López-Ibánez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T., 2016. The irace

package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives

3, 43–58.

Lusa, A., Martinez-Costa, C., Mas-Machuca, M., 2012. An integral planning model that includes

production, selling price, cash flow management and flexible capacity. International Journal of

Production Research 50, 1568–1581.

48

Michalewicz, Z., 2013. Genetic algorithms+ data structures= evolution programs. Springer Science

& Business Media.

Önal, M., Romeijn, H.E., 2010. Multi-item capacitated lot-sizing problems with setup times and

pricing decisions. Naval Research Logistics 57, 172–187.

Pinto, B.Q., Ribeiro, C.C., Rosseti, I., Plastino, A., 2018. A biased random-key genetic algorithm

for the maximum quasi-clique problem. European Journal of Operational Research 271, 849–865.

Rezaei, J., Davoodi, M., 2012. A joint pricing, lot-sizing, and supplier selection model. International

Journal of Production Research 50, 4524–4542.

Slama, I., Ben-Ammar, O., Dolgui, A., Masmoudi, F., 2020. New mixed integer approach to solve

a multi-level capacitated disassembly lot-sizing problem with defective items and backlogging.

Journal of Manufacturing Systems 56, 50–57.

Thomas, J., 1970. Price-production decisions with deterministic demand. Management Science 16,

747–750.

Toledo, C.F.M., De Oliveira, R.R.R., França, P.M., 2013. A hybrid multi-population genetic algo-

rithm applied to solve the multi-level capacitated lot sizing problem with backlogging. Computers

& Operations Research 40, 910–919.

Wu, J., Teng, J.T., Chan, Y.L., 2018. Inventory policies for perishable products with expira-

tion dates and advance-cash-credit payment schemes. International Journal of Systems Science:

Operations & Logistics 5, 310–326.

Wu, T., Zhang, C., Liang, Z., Leung, S.C., 2013. A lagrangian relaxation-based method and models

evaluation for multi-level lot sizing problems with backorders. Computers & Operations Research

40, 1852–1863.

49

