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ABSTRACT   

Artificial neural networks (ANNs) can extract the hierarchical features of raw data and are of significant interest for 

machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis [1-7]. 

Optical neural networks in turn have the capability to dramatically accelerate the computing speed of ANNs to overcome 

the intrinsic bottleneck in bandwidth that electronics is subject to. Convolutional neural networks (CNNs), are inspired 

by biological systems such as the visual cortex, and are a powerful approach to greatly reduce the parametric network 

complexity in order to enhance the accuracy of the predictions of the system. In this paper, we demonstrate a universal 

optical convolutional accelerator that can be used in conjunction with both electronic and optical neural networks. It 

operates beyond 10 Tera-OPS (TOPS - operations per second) and produces convolutions of extremely large scale 

images of 250,000 pixels in size with a resolution of 8-bits. It generates 10 convolutions simultaneously in parallel, with 

10 different kernels. This processing simultaneously — enough for facial image recognition. After demonstrating this, 

we then use the exact hardware to form a convolutional neural network consisting of a convolutional front-end followed 

by a deep optical neural network fully connected layer, together forming a CNN with ten neurons at the output. We 

successfully perform the recognition of all 10 hand written digits, each consisting of 900 pixel handwritten digit images. 

We achieve an accuracy of 88% which is very close to the theoretical accuracy of 90%. Our results are based on 

simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. 

We present a performance comparison of the different optical neural networks that have been published. Finally, we 

explicitly demonstrate that our method is intrinsically scalable in both size and speed, up to the PetaOPs per second 

(POPs) regime in speed and to well over 24,000 synapses in size. We perform theoretical evaluation of the scaled system 

performance and show that it is trainable to much more complex networks for real-world demanding applications 

including real-time video recognition and autonomous unmanned vehicle control.   

Keywords: Optical neural networks, neuromorphic processor, microcomb, convolutional accelerator 

 

1. INTRODUCTION  

Artificial neural networks (ANNs) can perform highly complex operations for decision making in applications such as 

medical diagnosis, playing board games, speech translation, face recognition, and much more [1- 4]. They consist of 

collections of nodes that have connections that are weighted according to proper feedback in order to adjust the network 

parameters, so the system can “learn” while it performs. Classical fully connected networks face significant processing 

challenges, particularly for advanced applications such as extremely high-dimensional data. In order to dramatically 

simplify the tasks, convolutional neural networks (CNNs) can distill the input data representations from their raw form, 

in order to predict their properties with greatly simplified parametric complexity as well as highly improved  accuracy 

[5]. CNNs are inspired by the behavior of biological systems such as the visual cortex, and have been widely successful 

for many applications such as pattern recognition, natural language processing, computer vision, and many other areas 

[6, 7]. 

The power of ANNs is determined by the computing capability of the neuromorphic component hardware. In this regard, 

optical neural networks (ONNs) [8-19] in particular are highly promising approaches towards next-generation 

neuromorphic systems for computation, since they can overcome the intrinsic speed bottleneck of electronic ANNs [6, 

20-23] and so can realize ultra-high speed computing, because of the extremely wide optical bandwidths available, 

particularly the >10 THz wide optical telecommunications C and L bands [8]. ONNs have attracted huge interest and 

have formed the basis of major breakthroughs that have been recently reviewed [13-19]. Operating in analog mode, they 

largely circumvent the limitations inherent in the time and energy taken up during storing and reading data to memory – 

a well known drawback of classic computer architectures which is known as the von Neumann bottleneck [20]. 

Significant progress has been achieved in addressing this through the use of high speed, trainable, and highly parallel 

ONNs [8-19, 24-28]. These are further enhanced by the potential for full integration on a single photonic integrated 

circuit [8,12,14,15] which would yield computational densities that are extremely high. Nonetheless, despite these 

breakthroughs there is still significant room for advancement for ONNs. Practical real-world computer vision functions 



 

 
 

 

 

 

require the ability to process data at extremely large scales, and this is still extremely difficult because these systems 

largely contain fully connected networks where the input scale is governed primarily by hardware parallelism. This 

yields fundamental tradeoffs between the network footprint and its scale. Furthermore, ONNs so far have largely failed 

to demonstrate the extreme computing speeds that analog photonics can achieve.  

Here, we report an optical convolution accelerator that has the ability to process and compress extremely large-scale data 

and at ultra-high speeds. By interleaving time, wavelength, and spatial dimensions through the novel application of 

integrated Kerr frequency soliton crystal micro-combs [29 – 143], we realize a vector computing speed of 11.322 Tera-

Ops per second (TOPS) and then demonstrate the processing of images that are 250,000 pixels in size, achieving the 

simultaneous generation of 10 convolution kernels. The convolution accelerator is completely reconfigurable in a fully 

dynamic sense – without requiring any change in hardware. It is also intrinsically highly scalable. We show that the 

exact same hardware can operate simultaneously as both a front-end convolutional accelerator generating many parallel 

kernels simultaneously, as well as performing as a deep optical fully connected convolutional neural network. The CNN 

is then used for recognition of the full handwritten image set consisting of all ten digits (0-9). We achieve 88% accuracy 

which is very close to the theoretical accuracy of 90%. Finally, we present detailed architectures that will enable scaling 

the network both in speed to the Peta-OP per second (POP) regime as well as in size and scale to > 24,000 synapses, 

which is enough for almost all conceivable applications. We achieve this design through the use of existing 

commercially available components and equipment based on the S,C,L telecommunications wavelength bands. We 

theoretically evaluate the scaled systems achieving highly promising results. 

Our approach towards optical neural networks is a major breakthrough towards achieving fully monolithically integrated 

ONNs, and is fundamentally enabled by the integrated Kerr soliton crystal microcomb. Futher, our approach is universal 

and stand-alone — it is fully compatible with both optical and electrical systems and hence it is able to function as a 

universal front end for ultrahigh bandwidth data compressing for any type of neuromorphic hardware — either optical or 

electronic. Our approach will make massive-scale data machine learning for ultrahigh speed data processing in real-time 

a reality. 

2. PRINCIPLE OF OPERATION  

Figure 1 illustrates the principle of operation of our optical convolutional accelerator (CA). It contains high-speed 

electrical input signals and data port outputs. Figure 2 illustrates the experimental configuration. First, the input data 

vector (X) is encoded serially where the temporal symbol intensity is represented by an electric waveform having a 

symbol rate of 1/τ (baud), with τ being the symbol period. The convolution kernel is similarly represented by a weight 

vector W having a length of R, that encodes the optical microcomb power of the lines through the use of spectral shaping 

with a commercially available system (Waveshaper). Next, the replicas weighted by W are generated by multicasting the 

time dependent waveform X onto the kernel wavelengths with an electro-optic modulator. Following this, the optical 

signal is then propagated through a delay, achieved with standard single mode fiber with a dispersion such that the delay 

step between the adjacent channels wavelength equals the duration of the symbols of X, thus interleaving the wavelength 

and time dimensions. Finally, the weighted and delayed copies of the signal are detected via high speed photodetection, 

effectively summing all of the signals in a particular time-slot, with each slot containing the convolution between W and 

X for each convolution window. Hence, the convolution window then essentially slides along at the baud rate of X, or 

the modulation speed. Each output symbol is the result of R multiply-and-accumulate (MAC) operations, and the 

computing speed is  then 2R/τ OPS. Since the process speed here scales with the number of wavelengths as well as the 

baud rate, it can be significantly enhanced to achieve the TOP regime through the use of massively parallel channels of 

wavelengths generated by a microcomb chip. Importantly, the length of X, the input data, is unlimited.  Hence, the 

convolution accelerator can operate on data at arbitrarily large scales, only limited by the accompanying electronics. 

Likewise, the number of kernels and their length are also essentially unlimited, subject only to the number of channels or 

wavelengths. We perform a parallel convolution of many kernels by adding extra sub-bands with each kernel having R 

wavelengths. After multicasting followed by the dispersive delay, the kernels (sub-bands) are then demultiplexed and 

separately detected using very high speed photodetectors. This generates a unique and separate electronic waveform, one 

for every kernel.  

Fundamentally, convolutional accelerators process vector data. However, they can in fact perform matrix operations that 

are needed for processing images, for example, by first effectively flattening the matrix into a 1 dimensional vector. The 

exact method that this is performed governs the “stride” of the sliding convolutional window as well as the effective 

computing speed of the matrix operations. The method used to flatten the matrix determines the receptive field 

(convolution slot) to slide with a horizontal stride of unity, so that every input element of the matrix has a corresponding 

convolutional output, together with a vertical stride that scales with the convolutional kernel size. A large vertical stride 

essentially produces sub-sampling of the raw input matrix vertically, which is effectively a partial pooling function [144] 

on top of the convolution itself. This effectively reduces the matrix computing speed, which is equal to an equivalent 

overhead cost, that inversely scales with the kernel size. Hence, a 3x3 kernel, for example, yields a reduction in speed by 

a factor of 3, equivalent to an overhead of 1/3. While this reduction can be avoided with a number of approaches in order 



 

 
 

 

 

 

 

Figure 1 | Operation principle of the Tera-FLOPS photonic convolution accelerator. 

EOM: electro-optical Mach-Zehnder modulator. SMF: standard single mode fibre for 

telecommunications. PD: photodetector.  

 

 

Figure 1 | Principle of operation of the photonic convolution accelerator. EOM: electro-optical Mach-Zehnder modulator. 

SMF: standard single mode fibre for telecommunications. PD: photodetector.  

 

to perform convolutions with a symmetric stride, thus avoiding any reduction in speed, this in fact is actually not 

necessary for most applications. Finally, our method is extremely flexible as well as highly reconfigurable without the 

need to change any hardware. We show that the same hardware that is used for image processing with the convolutional 

accelerator can also be used as an deep learning optical CNN. We demonstrate the performance of this CNN system in 

separate experiments. The hardware for the convolutional accelerator thus forms the basis of both the input convolutional 

accelerator processor as well as the subsequent fully connected CNN neuron layer (see below). The network achieves 

matrix multiplications by sampling each slot of the output waveform, because the vector dot product is equal to the 

special convolution of two input vectors W and X having the same lengths. 

A detailed photonic convolution accelerator that operates in two distinct modes is shown in Figure 3. The left panel 

illustrates the system when it is operating in convolutional accelerator mode, suitable for both stand-alone large scale 

convolutional image processing as well as serving as the front end convolutional input of the CNN. The right side of 

Figure 3 depicts the architecture of the network when it is performing matrix operations for the fully connected optical 

CNN layer. Since the experimentally demonstrated networks that we use are too complex to be clearly presented, in 

Figure 3 we show simplified versions of the weights and input data in order to illustrate the system operation principle. 

The lengths of X and W that we use in Figure 3 are L = 13 and R = 4 for convolutions, and R = L= 4 for matrix 

operations of the fully connected layer, respectively. 

The photonic convolution accelerator schematic is shown on the left side of Figure 3. First, the input vector data of 

length L and the weight vector of length R are multiplexed in the time and wavelength dimensions, respectively. The 

input data vector is contained in the temporal symbol intensities of a consecutive electrical waveform X[n] (n represents 

the temporal positions of the discrete symbols, n ∈ [1, L+R−1]), where X[n] is the accelerator electrical input. The 

weight vector of the kernel is then imposed on the optical power of the shaped microcomb lines, represented by 

W[R−i+1], for the ith wavelength channel (i ∈ [1, R], with i increasing with wavelength). The input electrical waveform 

X[n] is first multicast across all of the the shaped microcomb lines using an electro-optic modulator. Hence, the weighted 

replica of the ith wavelength channel is given by W[R−i+1]· X[n]. Next, the optical signals of all channels, or 

wavelengths, are sequentially shifted in time by using an optical time-of-flight buffer. This produces a wavelength-

dependent delay which effectively introduces a dispersion or time-step delay between adjacent wavelengths of τ (the 

difference in delay between wavelengths), which is designed to be equal to the duration of each symbol (the reciprocal of 

the Baud rate) of X[n]. Hence, the shifted replica is given by W[R−i+1]· X[n-i]. Finally, the replicas for all of the 

wavelengths are summed together by the photo-detector, and the result is given by  

1

[ ] [ ] [ ] ( )[ ]1
R

i

n n iR i n


     Y W X W X

        (1) 

where each calculated symbol Y[n] within the range of [R+1, L+1] represents the dot product between the kernel W and 

a region of X given by the sliding receptive field, [n−R : n−1] or [n−R, n−R+1, n−R+2, …, n−1]). By reading the 

different time slots of the output waveform, a convolution is obtained between the input data and the weight vector. This 

generates the feature maps, or output matrix convolutions, of the input image. Note that any high order dispersion of the 

dispersive delay will tend to degrade performance. In our experiments we paid particular attention to this to ensure that it 

was not an issue. 



 

 
 

 

 

 

 
 

 

Figure 2 | Image processing, including the experimental setup of the convolutional accelerator (right panel), the signal flow and 

the optical and electronic control (middle panel), and the processing flow of the raw input image (left panel). PC: polarization 

controller. MRR: micro-ring resonator. EOM: electro-optical Mach-Zehnder modulator. SMF: standard single mode fibre. 

 



 

 
 

 

 

 

The convolutional accelerator can also perform matrix multiplications, as shown on the right side of Figure 3. These 

operations can be viewed as a special case for convolutional operations where the two input vectors, given by the 

flattened and pooled feature maps, together with the flattened synaptic weights of the fully connected layer, are equal in 

length (R=L). Figure 3 depicts a case where R=L=4. For this case, we assume that the input data vector, given by 

XFC[n], and the weight vector given by WFC[R−i+1], both have the same length given by R (i ∈ [1, R], n ∈ [1, R]). 

Therefore, from Eq. 1, the output waveform following photodetection is given by 

1
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By sampling at the time slot denoted by n=R+1, the matrix multiplication of the two input vectors is then given by  
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Given that convolutional accelerators basically operate on vectors, for image processing applications the data input is in 

the form of a matrix and therefore it  must be flattened into a vector. Here, we use a common technique to do this where 

the input matrix is first horizontally sliced into sub-matrices, each having a height equal to the convolutional kernel. The 

sub-matrices are then flattened into vectors and concatenated head-to-tail in order to produce the resulting vector. This 

image processing flattening process acting with the CNN [14] results in the receptive field sliding with a horizontal stride 

of 1 and vertical stride of the height of the convolutional kernel. We note that a small stride (such as a horizontal stride of 

1) guarantees that all raw data features are extracted, whereas a large vertical stride of 3 or 5 will reduce the overlap 

between the sliding convolution windows and so will subsample the convolved feature maps. Hence this process will 

also partly serve as a pooling function. The AlexNet [144 – 146] used a stride of 4. 

Further, we mention that while homogeneous strides are often used for digital CNNs, inhomogeneous convolutional 

strides having unequal vertical and horizontal strides, as we use here, are very commonly used and do not limit the 

convolution accelerator performance. For our work, this was verified by the high recognition accuracy we with the CNN 

for the full 10 digit set. Furthermore, if the homogeneous convolutions can be accomplished by replicating the weight-

and-delay paths, with each one containing the modulator, fibre spool, de-multiplexer and photo-detector, this can be 

completely avoided.  

 

Figure 3 | Photonic convolution accelerator operating in two different modes. Left: convolution accelerator front end, shown 

for R = 4 and L = 13; Right: matrix operation mode with R = L = 4. Electro-optical modulator (EOM), optical buffer that has 

progressive wavelength-sensitive delay, and an optical-to-electrical conversion module (O/E).  

 

 



 

 
 

 

 

 

3. EXPERIMENT  

3.1 Soliton crystal optical frequency micro-combs 

Optical frequency combs, with arrays of equally spaced discrete frequencies lines, are extraordinarily useful for many 

applications - particularly optical frequency metrology [29]. Micro-combs provide the full capability of mainframe 

optical frequency combs, but in a compact and integrated form having an extremely small  footprint [29-35]. Micro-

combs have underpinned a great number of ground-breaking achievements in many areas, including optical frequency 

high-resolution synthesizers [33], ultrahigh bit rate telecommunications [34, 35], high dimensional and complex quantum 

state generation [36 - 44], high performance microwave and RF signal generation, detection, and processing [68 - 88], 

and much more. Figure 4 shows an illustration of the micro-comb chip together with output spectra with the 

accompanying optical pumping curves. Our work is based on a type of micro-comb that has been called “soliton 

crystals” because they exhibit a profile that resembles a  crystal structure with tightly packed self-localized pulses in the 

angular dimension in the ring [35, 48, 49]. They naturally form in micro-cavities that have particular dual mode 

crossings, and most importantly do not require any complicated pumping dynamics, nor do they require any external  

stabilization methods. They are governed by the Lugiato-Lefever equations [29, 47] and exhibit unique optical spectra 

(Fig. 4f) profiles typically termed “palm shaped”, resulting from the spectral interference between the tightly packed 

solitons that circulate around the micro-ring. Soliton crystals obey highly reliable and repeatable deterministic generation 

that results from interference induced by the mode crossing on the background wave and the very high optical power in 

the cavity (Fig. 4c). This allows a very simple and reliable initiation even with just simple and slow adiabatic pump 

wavelength tuning. [35] In fact, soliton crystals can even be generated by using simple manual tuning of the pump laser 

wavelength. Figure 4d shows the intracavity optical power inside the micro-ring during the pump sweeping process. The 

reason that it is possible to slowly or adiabatically sweep the pump is because the optical power inside the cavity is over 

thirty times higher than that of single dissipative Kerr solitons (DKS), to the point where it is very close to the power of 

the background spatio-temporal chaos states [29, 35] from which they emerge. Therefore, soliton crystals have negligible 

thermal detuning that, for the case of DKS states, arises from the ‘soliton step’ at threshold and which leads to instability.  

This makes resonant pumping of DKS states extremely difficult, requiring dynamic pump wavelength and power 

“kicking” often with reverse tuning. It is this combination of high conversion efficiency together with the ease of 

generation that results in soliton crystals being highly useful. Our coherent optical soliton crystal microcomb (Figure 4) 

was a result of optical parametric gain followed by oscillation in a single integrated MRR (Fig. 4a, 4b). The device was  

fabricated in CMOS-compatible Hydex [23, 24, 35], and achieved a Q factor greater than 1.5 million, with a radius of 

592 μm, and a very low free spectral range (FSR) of ~ 48.9 GHz. The pump laser power was amplified by an erbium 

doped optical fiber amplifier (Pritel PMFA-37) to produce soliton crystal microcombs with more than 90 channels across 

the telecommunications C-band (1540-1570 nm). It resulted in very low-noise frequency microcomb lines produced by a 

device having an extremely small size of less than one square millimeter, with a power consumption of less than 100 

milliwatts using the technique in [35].  

3.2 Matrix Convolution Accelerator 

The experimental arrangement for the convolutional accelerator operating in full matrix mode in order to operate on 

classic 500×500 face image is shown in Figure 2. The system generates 10 parallel convolutions simultaneously with 

3×3 kernels in order to produce the distinct image processing functions. The weight matrices for all ten kernels were 

flattened into a composite kernel vector represented by W that embodies all of the 90 weights (10 kernels with 3x3=9 

weights each). These were all then encoded onto the optical power of all ninety microcomb lines through the use of an 

optical spectral shaper (Waveshaper). Each kernel occupied its own frequency band consisting of nine wavelengths. The 

wavelength channels were generated by a coherent soliton crystal microcomb source that operated via optical parametric 

oscillation within a single micro-ring resonator (MRR) (Fig. 4b) with a radius of 592 μm, a FSR spacing ~ 48.9 GHz and 

with an optical bandwidth of ~ 36 nm for 90 wavelengths in the C-band (1540-1570 nm) [35].  

The experimental results of the image processing are shown in Figure 5, where Fig. 5a shows the kernel weights and the 

optical spectrum of the shaped microcomb, while at the same time the electrical input waveform of the image (grey lines 

are theoretical while the blue lines are the experimental waveforms) are in Figure 5b. Figure 5c depicts the convolved 

results of the fourth kernel that consists of a top image processing Sobel function (grey lines = theory, red = 

experimental). Finally, Figure 5d displays the matrices of the corresponding recovered images and weight kernels.  

The raw input face image that is 500×500 pixels in size was first electronically flattened into a vector X and then 

encoded as the intensities of the 250,000 temporal symbols, each having a resolution of 8 bits/symbol (limited by the 

electronic arbitrary waveform generator (AWG)), in order to form the electrical input waveform through the use of a 

high-speed electrical digital-to-analog converter, at a data rate of 62.9 Giga Baud (time-slot τ =15.9 ps) (Fig. 5b). The 

duration of each waveform was 3.975µs for each image, yielding a processing rate for all ten kernels of > 1/3.975µs, 

equivalent to 0.25 million ultra-large-scale images a second.  



 

 
 

 

 

 

The input waveform (X) was then multi-cast onto all ninety shaped microcomb lines using an electro-optic modulator. 

This yielded replicas that were each weighted by the kernel vector W. Following this, the waveform was propagated 

across about 2.2 km of standard single mode optical fibre that had a standard dispersion equal to 17ps/nm/km. This 

length of fibre was chosen carefully to yield a sequential time shift in the weighted replicas with a progressive delay step 

of 15.9 ps between the adjacent wavelengths. This precisely matches the length of each input data symbol τ, and so 

results in wavelength to time interleaving for all of the 10 kernels. 

After this, the ninety wavelengths were de-multiplexed into ten sub-bands each consisting of 9 wavelengths, with every 

sub-band equating to each kernel, and with each separately detected by ten high speed photodetectors. Detecting each 

wavelength acts to sum the temporally aligned symbols of each replica, and the output electrical signal for each kernel is 

shown in Fig. 5c (for kernel 4). All 10 electrical waveforms for the kernels were then converted into digital waveforms 

using ADCs and then resampled so that each waveform time slot contained the vector dot product between a kernel 

convolutional matrix and the input image, all moving with a sliding receptive field, or window. The output signals thus 

contained the ten convolutional matrix outputs (feature maps) representing the hierarchical extracted features of the input 

image waveform (Figure 5d). 

The convolutional accelerator was based on the combination of spatial wavelength and temporal multiplexing, with the 

convolution window essentially sliding across X, the input data signal, at 62.9 Giga Symbols/s, the modulation baud-

rate. Each output symbol is generated by nine MAC (multiply-and-accumulate) operations, which is the size of each of 

the kernels.  Therefore, the throughput, or vector computing speed for each kernel is 2×9×62.9 = 1.13 TOPS, and since 

all 10 kernels were generated simultaneously in parallel, the net computing speed of the system is given by 1.13×10 = 

11.3 TOPS, or 11.321×8=90.568 Tb/s. Note that the speed in terms of Tb/s is slightly reduced by the optical signal to 

noise ratio (OSNR), which acts to reduce the effective number of bits (ENOBs), but in our case this reduction was small. 

Note that this speed is over 500 times the fastest ONNs that had been reported when this work was first published, and 

only one system published since has been faster [16].  

For the experiments on matrix image processing reported here, the convolution window had a sliding vertical stride of 3 

(because of the kernels being 3×3), and so the net matrix computing speed was reduced by 3 to 11.3/3=3.8 TOPs. The 

use of homogeneous strides with unity horizontal and vertical strides, that would result in full vector speed operation, can 

easily be accomplished simply by replicating the system in parallel with weight-and-delay paths [14]. As mentioned, 

however, we did not find this necessary in order to achieve our successful performance. For the experiments performed 

here, the input data had a length of 250,000 pixels, but in principle this is unlimited in size – the only consideration is the 

practical limitation imposed by the capacity of the external electronics. 

 

Figure 4 | a. Soliton crystal microcomb, generated by pumping an on-chip high-Q nonlinear micro-ring resonator with a CW laser. 

b. Image of the MRR and a SEM image of the MRR cross section. c. Measured dispersion of the MRR showing the mode crossing 

at ~1552 nm. d. Measured soliton crystal step of the intra-cavity power, and e. optical spectrum of the microcomb when sweeping 

the pump wavelength. f. Optical spectrum of the generated coherent microcomb at different pump detunings at fixed power. 

 



 

 
 

 

 

 

To implement the required weights for the kernels, the power of the soliton crystal microcomb lines were modulated 

through the use of 2 commercial spectral shapers (Finisar WaveShaper 4000S) that are based on liquid crystal on silicon 

(LCOS) technology. The first waveshaper flattened the microcomb lines while the second was positioned immediately 

before the photo-detectors, and accomplished the precise shaping of the come lines that was required by the kernel 

weights. We used a feedback loop to increase the comb shaping accuracy with an error signal being obtained by  

measuring the system impulse response for an input pulse (Gaussian shaped) and comparison with the theoretical  

weights.  

Both the theoretical and experimental facial image processing results produced by the matrix convolutional accelerator 

for all 10 kernels, is shown in Figure 6, for the 500×500 pixel (250,000) facial image, featuring both the recorded 

waveforms and the recovered images. The time dependent waveform at the operation baud rate was generated from the 

electrical input data through the use of  an electronic arbitrary waveform generator (AWG) (Keysight M8195A). The 

electrical waveform was then converted to optical signals by multicasting it onto all wavelength channels simultaneously 

using an electro-optic intensity modulator (iXblue) having a bandwidth of 40GHz. We used sampling points at a speed of 

62.9 Giga samples/s for the image processing to form the input symbols. All of the optical signals, propagating down the 

same single fibre, were then transmitted across 2.2 km of standard single mode fiber with a dispersion of 17ps/nm/km in 

the telecom band , that was chosen to generate a relative temporal delay between adjacent wavelengths 15.9 ps/channel, 

in order to exactly match the baud rate of the input data.  

Since there are no conventions in this very young field for quantifying or classifying the processing computing speed or 

performance of ONNs, here we clearly outline the definitions for performance that we use to quantify the system 

performance. We adapt a method that is commonly used in the electronics world to evaluate the performance of micro-

processors. Here, the convolution accelerator processing power, which is closely related to the operational bandwidth, is 

termed the data throughput, given by the number of operations performed within a given time period. Since in our 

system the weight vectors and input data follow different paths and are interleaved in temporal, wavelength, and spatial 

dimensions, we use the time sequence at the electrical output port to calculate the throughput in a clear manner. 

At the electrical output port, the output waveform has a total of L+R−1 symbols (where L and R are the lengths of the 

data input vector and kernel vector weights, respectively), amongst which L−R+1 symbols consist of the results of the 

convolution. Each output symbol is the result of R MAC operations or 2R OPS, where the duration of the symbols τ is 

given by the waveform input symbol duration. Therefore, since L is typically much greater than R for practical neural 

networks, the term (L−R+1)/(L+R−1) does not affect the throughput, or vector computing speed, which is given by (in 

OPS) 

   

2 1 2

1

R L R R

L R 

 
 

           (4) 

Hence, the computing speed of the vector convolutional accelerator that we report here is given by 2×9×62.9×10 = 

11.321 Tera-OPS, or TOPS, for 10 parallel convolutional kernels. 

Many applications, such as speech or audio recognition, operate directly on vectors and in that case the computing speed 

of the system is given directly by the vector speed of 2R/ τ. On the other hand, when processing matrix data as is typical 

for images, one has to include the overhead that reduces the net computing speed as a result of the flattening process 

used to convert the matrix to a vector. This is directly related to the size of the convolutional kernel, with 3-by-3 kernels, 

for example, generating an overhead of 1/3 so that the effective computing speed is correspondingly reduced to ~ 1/3 * 

2R/τ. In our case this still resulted in a matrix operation speed that was in the multiple TOP regime, a result of the high 

degree of leveraging and parallelism yielded by interleaving the spatial-temporal-wavelength dimensions.  

The output waveform for each kernel of the convolutional accelerator (length = L−R+1=250,000−9+1=249,992) contains 

166×498=82,668 useful symbols. These are then temporally sampled in order to obtain the feature maps, with the 

balance of the symbols being discarded. Hence, the net experimental speed of the matrix convolution process is slower 

than the corresponding vector speed by the overhead factor of 3, with a resulting net speed of 11.321 × 82,668/249,991 = 

11.321 × 33.07% = 3.7437 TOPS.  

For the deep learning CNN, the front end convolutional accelerator layer had a computing vector speed of 2×25×11.9×3 

= 1.785 TOPS while the convolution matrix speed, where we use 5x5 kernels, was 1.785×6×26/(900−25+1) = 317.9 

Giga-OPS. For the deep CNN fully connected layer, Eq. (4) shows that each neuron’s waveform output has a length of 

2R−1, with the relevant (ie., useful) symbol being the one located at R+1, also arising from 2R operations. Hence, the 

fully connected layer speed is 2R / (τ*(2R−1)) for each neuron, and so for R = 72 for the experiment, and with 10 

neurons being calculated in parallel, the net matrix multiplication speed then becomes 2R / (τ*(2R−1)) × 10 = 2×72 / 

(84ps* (2×72−1)) = 119.83 Giga-OPS for our experiments. 

One further consideration is that the digital system intensity bit resolution in terms of effective number of bits (ENOBs) 

for analog ONNs is affected by the signal-to-noise ratio (SNR). For an ENOB of 8-bits, the system SNR must be greater 



 

 
 

 

 

 

than 20∙log10(28) = 48 dB. Our system had an SNR greater than this and so our speed in Tb/s was very close to 8 x the 

speed in Ops, and not reduced noticeably by our OSNR. 

3.3 Deep Learning Optical Convolutional Neural Network  

Our convolutional accelerator is scalable as well as completely and dynamically reconfigurable without any changes to 

the hardware. Hence, we used the exact same hardware to achieve the stand alone accelerator as well as both components 

of the CNN – namely the front-end convolution accelerator followed by the fully connected layer, which both together 

comprised the deep optical CNN. We used the system (optical CNN) to perform recognition of the full ten digit (0-9) 

handwritten images, a task that is rarely demonstrated with optical networks. Figure 7 shows the full deep (multiple) 

level optical CNN architecture. The feature maps are the convolutional matrix accelerator front end generates the feature 

map outputs that are then input into the subsequent fully connected layers that embody the neural network of the system.  

The optical CNN architecture (Figure 8) includes convolution, pooling, and fully connected layers. Figure 9 shows The 

detailed experimental schematic of the optical CNN (Figure 9) shows the input front end convolutional accelerator on the 

left side and the fully connected layer on the right - both together forming a deep learning (more than one layer) optical 

CNN. The optical wavelengths were generated by the soliton crystal microcomb, that were used by both the convolution 

accelerator and fully connected layers. A digital electronic signal processing (DSP) module was used for the temporal 

sampling, with the pooling function being performed by an external computer, although this latter function can be readily 

done all-optically.  

The convolutional layer generates the heaviest computing workload of the entire network, typically occupying anywhere 

from 55% to 90% of the total system processing power. The digit images consist of 30×30 matrices each, containing 

grey-scale quantities that are digitized with a resolution of 8-bits. These were then flattened into vectors and then 

converted into a temporal signal at a speed of 11.9 Giga Baud (time-slot τ =84 ps) – about 5 times slower than the stand 

alone convolutional accelerator discussed previously. We employed three kernels, each of size 5×5, and so the system 

needed 75 wavelengths from the microcomb. This resulted in a vertical stride of 5. The required temporal dispersive 

delay was generated by about 13 km of SMF in order to be commensurate with the input data baud-rate. The microcomb 

wavelengths were separated, or de-multiplexed, into the 3 kernels, each of which were then photodetected separately 

with high speed photodetectors, after which the electronic waveforms were sampled and finally scaled with a nonlinear 

transfer function using digital electronics to generate the output of the convolutional front-end which consisted of the 

extracted hierarchical feature maps of the input images. The feature maps were then pooled electronically and flattened 

into a vector (Eq. 2,3) XFC (72×1= 6×4×3) per image that was then sent to the fully connected layer.  

The fully connected layer featured 10 neurons, one each for each of 10 handwritten digits (0 to 9).  The input consisted 

of synapses with the synaptic weights represented by a 72×10 weight matrix WFC
(l)

 (ie., 10  column vectors each of size 

72×1) for the l th neuron (l ∈ [1, 10]) –  with the number of microcomb wavelengths (72) equal to the length of the 

flattened feature map vector XFC. The lth port had a shaped optical spectrum with the optical power distribution being 

determined by the weight vector WFC
(l), which therefore served as the effective optical input to the lth neuron. After 

multicasting onto all 72 wavelengths simultaneously with a single optical modulator, and then propagating through the 

single mode fiber which generated the sequential delays between wavelengths, the optical signals were then weighted 

and then spatially and spectrally demultiplexed into 10 spatial output ports using a single Waveshaper — each 

corresponding to one neuron. Since this part of the network operated via linear processing, the kernel wavelength 

weighting can be performed at any stage of the network - either before EO modulation or later just in front of the 

photodetectors. The advantage of applying the weights at the end just before detection is that both the demultiplexing 

and weighting functions can be performed using only one Waveshaper rather than two. Finally, the different outputs of 

the nodes and neurons were extracted through sampling the 73rd symbol of the convolved results. The final output of the 

optical CNN was contained in the intensities of the output neurons, with the neuron having the highest intensity yielding 

the predicted category of the tested image. The external, or peripheral systems used in our experiments included signal 

sampling, the nonlinear transfer function and the pooling functions. Here, these functions were performed with electronic 

digital signal processing hardware. However, in principle most, if not all, of these functions could be achieved purely in 

the optical domain with the VCA. The supervised network training, which only needs to be performed once for a given 

network task, was achieved beforehand using offline digital electronics. 

Using the deep optical CNN, we experimentally tested 500  images, each having a resolution of 8-bits, with a pixel 

matrix size of  30 × 30 pixels (900 pixels) for each of the handwritten digit dataset. Figure 10 shows the resulting 

confusion matrix that indicates that our system has a prediction accuracy of 88%, versus a theoretical accuracy of 90% 

calculated by computer. The computing speed of the CA front end of the system was 2×75×11.9 =1.785 TOPS, or 14.3 

Tb/s. As mentioned, to perform the convolutions of the image matrices we used 5×5 kernels, yielding a matrix flattening 

overhead of 5, and net speed of 1.785/5= 357 Giga OPS. The computing speed of the fully connected layer was 119.8 

Giga-OPS. The waveform duration was 30×30×84ps=75.6ns for each image, and so the convolutional layer processed 

images at a rate of 1/75.6ns = 13.2 million digit handwritten images a second.  



 

 
 

 

 

 

We note that full 10 digit (0 - 9) handwritten digit recognition, although commonly performed by electronic digital 

networks, is very rare for optical ONNs. It requires a very large number of parallel physical paths for fully connected 

networks.  For example, a hidden layer having 10 neurons would need 9000 physical paths, which represents a 

significant challenge for state-of-the-art nanofabrication technologies. Our CNN is the first integrable and reconfigurable 

ONN that able to not only perform complex and high level operations, including the full 10 handwritten digit 

recognition, but also at Tera-OP per second (TOP) processing speeds. The CNN convolutional layer used 5 sample 

points at 59.421642 Giga Samples/s to generate each single symbol of the input waveform, which matched the 

progressive delay time (84 ps) generated by the 13km long dispersive fibre. The generated electronic waveforms for 500 

testing images [14] formed the electrical signal input of both the convolutional and fully connected layers.  

In both the 500×500 image processing experiment and the convolutional layer of the CNN, for the convolutional 

accelerator component the second Waveshaper both de-multiplexed and shaped the wavelength channels into the 

different separate spatial ports according to the configuration of the convolutional kernels. For the fully connected layer, 

the second Waveshaper simultaneously performed both shaping and power splitting (not de-multiplexing) for the 10 

output neurons. The de-multiplexed or power-split spatial ports were sequentially detected and measured. However, 

these two functions could readily be achieved simultaneously in parallel with a commercial 20-port optical spectral 

shaper (WaveShaper 16000S, Finisar) using multiple photodetectors. We achieved the negative channel weights by one 

of two methods. For processing the 500×500 image using the convolutional layer of the CNN, the wavelength channels 

for each kernel were divided into two separate spatial outputs by the WaveShaper depending on the sign of the kernel 

weight, and then detected using a balanced photodetector (Finisar XPDV2020). On the other hand, the weights for the 

fully connected layer were encoded in the input electrical waveform symbols by the electronic digital processing stage. 

Both of these approaches towards implementing negative weights were successful. Finally, the electrical output 

waveform was sampled and digitized by a high-speed oscilloscope (Keysight DSOZ504A, 80 Giga Symbols/s) to derive 

the final convolved output. The extracted outputs of the convolution accelerator part of the CNN were additionally 

processed digitally, including rescaling to factor out the photonic link loss using a reference bit, then mapped onto a 

determined range with a nonlinear tanh function. The pooling layer was also performed digitally, using an algorithm 

introduced in the network model. The residual small disagreement between theory and experiment, for both the 

recognition and convolution functions, arose mainly from the degradation of the input waveform arising from the 

electrical arbitrary waveform generator’s performance limitations. Improving this would produce greater accuracy and 

result in better agreement with theory.  

3.4 Network training and digital processing 

For the deep learning optical CNN experiments we used the MNIST (Modified National Institute of Standards and 

Technology) datasets of handwritten digital images [144] that comprises 60000 images for the training set and 10000 

images as the test set. Figure 7 shows the structure of the CNN. In our case designing the network was significantly 

helped by the fact that the number of synapses and neurons of the network could be dynamically reconfigured without 

the need to modify the hardware. The 28×28pixel images of the input data was first padded with zeros into 30×30 images 

and then sliced into 5×180 matrices which were then convolved with the 5×5 kernels. The slicing operation made the 

receptive field slide horizontally with a stride of 1 across the rows and a vertical stride of 5 over the columns of the 

30×30 input data (= 900 input nodes). Following this, the 6×26×3 feature maps were then pooled (using an average 

pooling method) to create matrices with a smaller dimension of 6×4×3. Finally, the matrix was further flattened into a 

72×1 vector that generated the input nodes to the fully connected layer. Finally, the fully connected layer calculated the 

predictions which were encoded into the output of the 10 neurons. We used a nonlinear tanh function following the 

convolutional layer, pooling function and fully connected layers. We chose this, rather than other nonlinear functions 

such as ReLU which are widely used, since it can be experimentally achieved using a saturating electrical amplifier. 

The training to determine the pre-trained weights and biases was achieved prior to the experiments, offline using a digital 

computer. We used the well-known Back Propagation algorithm [145] to adjust the weights. To validate the hyper-

parameters of the CNN, we performed a 10-fold cross validation with 60000 samples of the training dataset, separated 

into 10 subsets and each was then used to test the trained network (6000 samples) with the rest of the 9 subsets (54000 

samples). The test sets [14] were processed by both the optical CNN (500 images) and an electronic computer (10000 

images) for comparison. 



 

 
 

 

 

 

 
Figure 5 | Experimental results of the image processing. a. The kernel weights and the shaped microcomb’s optical 

spectrum. b. The input electrical waveform of the image (grey lines are theory and blue experimental). c. The convolved 

results of the 4th kernel that performs top Sobel image processing. d. The weight matrices of the kernels and 

corresponding recovered images. 

 



 

 
 

 

 

 

 

Figure 6. Experimental and simulated large scale facial image processing results performed by the convolutional 

accelerator with simultaneously processing ten convolutional kernels.  

 



 

 
 

 

 

 

 

Figure 8. The architecture of the optical CNN, including the convolutional, pooling, and fully connected layers.  

 

 

Figure 7. Deep (multiple) level CNN structure. The feature maps are the convolutional matrix outputs while the fully 

connected layers embody the neural network component.  

 



 

 
 

 

 

 

 

Figure 10 Experimental and theoretical results for image recognition. The upper figures show the sampled intensities of the ten 

output neurons of the fully connected layer, while the lower figures show the confusion matrices with the darker colours 

indicating a higher recognition score. 

 

 
Figure 9. Experimental configuration of the optical CNN. Left side: input convolutional accelerator front end. Right side: fully 

connected layer, both of which comprise the deep learning optical CNN. The microcomb generates the wavelengths for both the 

convolution accelerator and fully connected layer. The electronic digital signal processing (DSP) module that performs the 

sampling and pooling functions is separate to this structure. 



 

 
 

 

 

 

Table 1 

Performance comparison of state-of-the-art optical neuromorphic hardware 

 

 
CW§: Indicating the approach used continuous-wave sources as the input data signal, high-speed updating of the input data is not 

demonstrated to achieve a high computing speed. 

3.5 Performance comparison  

We list the performance of recent optical neuromorphic processors in Table 1. This section is not intended to be 

complete but just highlights some key work that addresses the most crucial technical issues for optical processors. The 

dimension of the input data directly governs the processing task complexity. In real world applications, the dimension of 

the input data is typically quite large, with a human face image requiring > 60,000 pixels, for example. Therefore, to 

ultimately make optical computing hardware practical, the input data dimension needs to be at > 20,000 at a minimum. 

Here, we process of images with 250,000 pixels, which is 224 times higher than previously reported. 

The most important metric for computing hardware is arguably the computing speed and this is the main advantage of 

optical systems. Although to date there has not been a consensus on a definition of optical hardware computing speed, 

the key parameter is the number of data sets that can be processed within a given time frame - how many images per 

second can be processed. Therefore, although some systems [8, 11, 12], have a low latency because of the short optical 

paths, the computing speed is nonetheless very low because of the lack of high-speed data interfaces - in other words, the 

input and output nodes are not updated at a high rate. Although some methods [9, 28] have high-speed data interfaces, 

the parallelism of their computing is not high and so the speed is very similar to the input data rate. In our work, [14] we 

achieve a record speed of 11.321 Tera-OPS, more than 500 x higher than any systems that had been reported when our 

results were published, by using high-speed data interfaces (62.9 Giga Baud) combined with time-wavelength 

interleaving,. 

Finally, the reconfigurability and scalability of our method greatly enhances the versatility of the optical computing 

hardware. Approaches that are unable to reconfigure the synapses dynamically [11] (termed “Level 1” in the table) are 

hardly even trainable. While Level 2 systems [9, 12, 28] support online training, they are only able to perform one 

specific task  since the network structure is fixed and inflexible after the system is fabricated. Level 3 systems [28] can 

process different tasks although the function of each layer is fixed. This significantly limits the hardware in terms of 

being able to implement more complex tasks than matrix multiplication. Our work is the first that operates at Level 4 

with full dynamic reconfigurability in all aspects of the system performance. With our approach the synaptic weights can 

be reconfigured simply by software reprogramming of a WaveShaper. Moreover, the number of synapses for each 

neuron can also be redesigned by re-assigning the wavelength channels using the de-multiplexer. The number of layers 

can be redesigned by simply varying the number of stacked devices. Finally, the computing function can be changed 

from convolution to matrix multiplication simply by changing the method of sampling. Finally, the physical level of 

integration of the system determines the computing density (processing capability per unit area). For systems that are not 

that amenable to integration [8, 11, 28], the ultimate achievable computing density is very low. While other approaches 

have achieved a limited level of integration of the weights and summing circuits [8, 12] - probably the most challenging 

issue — advanced integrated light sources — have yet to be achieved. The performance of the light source directly 

impacts the capacity of the overall system for both input data scale [8] and number of synaptic connections per neuron 

[12]. The square millimeter sized microcomb that we use produces a great many  precisely spaced wavelengths. This 

significantly enhances the overall parallelism and thus the computing density. Our approach is a significant step towards 

the full integration of optical computing hardware.  

[22] 



 

 
 

 

 

 

4. SCALING THE NETWORK 

The architecture that we present here based on optical microcombs is highly amenable to scaling in network speed, size 

and performance to be able to process arbitrarily large input data size. The size of the input data is only limited in 

practical terms by the electrical digital-to-analog converter memory. Hence, it is possible in principle to process images 

with 4K-resolution (4096×2160). Furthermore, by integrating 100 photonic convolution accelerators layers together, 

which is still far fewer than the typical numbers of processors in electronic chips, such as the 65536 processors integrated 

in the Google TPU [22] chip, the optical CNN would then be able to solve much more challenging image recognition 

functions, and with a vector computing speed of 100 × 11.3=1.130 Peta-OPS. Moreover, the network structure presented 

here is able to be trained online, since the optical Waveshaper used to weight the synapses can be reconfigured 

dynamically at speeds as fast as 500 milliseconds, or even potentially much faster with recently demonstrated optical 

integrated spectral shapers [147]. 

Even though our system had a reasonably large optical latency of over 100 nanosecond, mainly a result of the fibre 

spool, the latency does not affect the operational speed, which is a separate performance metric. Further, the latency of 

the system can be essentially eliminated to less than 200 picoseconds by using integrated highly dispersive elements such 

as customized chirped Bragg gratings or photonic crystals [148] or etalon based tunable dispersion compensators [149, 

150]. Finally, existing nanofabrication technology can yield significantly higher levels of integration. The micro-comb 

source itself is already integrated and based on a CMOS compatible platform that is highly compatible with large-scale 

integration. Other components including the modulator, dispersive media, de-multiplexer optical spectral shaper, and 

photodetector have all been reported in integrated devices [147, 148, 151].  

While optical neural networks are not yet at the level of performance as state-of-the-art electronic chips (>200 TOPs/s, 

scales with bit depth [13, 14, 15, 34]), our approach achieves operation speeds in the TeraOPs/s regime for the first time 

for optical networks. Further, there is enormous potential for scaling our systems through enhancing the spatial and 

wavelength dimensions and additional schemes such as using polarization. Both the convolutional accelerator and the 

CNN can be scaled in speed and processing power to enhance the parallelism using readily available off-the-shelf  

components. In the first instance, expanding the systems beyond the telecommunications C-band (1530-1570nm) to 

include the L-band (1570-1620nm) would yield a bandwidth of 90nm or 225 wavelengths (or channels) at a 50GHz 

spacing (0.4nm), versus the 90 wavelengths over 36nm in the C-band used here. These are both mainstream 

telecommunications bands for which there exists a tremendous amount of commercially available components and 

systems, including L-band EDFAs, Waveshapers, and many other components. Further, in the mainstream 

telecommunications bands (C+L) polarization sensitive components and devices are also available, meaning that taking 

advantage of polarization would yield an additional factor of 2x. Finally, spatial-division multiplexing, readily 

achievable using wavelength separation with either the Waveshaper or even just simple passive devices such as comb 

interleavers and passive filters, can offer, almost unlimited scalability, subject only to power/noise and scaling issues 

(cost, footprint, energy etc). Multiplying the system by a factor of at least 10, by using 10 parallel spatial paths, in 

principle is straightforward with existing components. 

For the convolutional vector accelerator, operating with 3×3 kernels, and making use of polarization, the computational 

speed would be 2 × 2 × 9 × 62.9 = 2.26 TeraOPs/s per kernel. Making use of the C+L bands would produce 225 

wavelengths at a 50GHz spacing, which would in turn allow 25 kernels, resulting in a processing speed of 25 × 2.26 = 

56.6 TeraOPs/s. Using 10 spatial dimensions (through the Waveshaper) would enhance this to 0.57 PetaOPs/s.   

The scale of the fully connected layer also has the potential to be significantly and readily increased with existing off-

the-shelf technology. Since the number of neurons relies on spatial-division parallelism, or multiplexing, this number is, 

in principle, unlimited –subject only to tradeoffs in the OSNR (optical signal to noise ratio). By increasing the number of 

spatial paths (each with individual spectral shaping via more powerful WaveShapers and separate photo-detection), the 

number of neurons can be increased arbitrarily with existing instrumentation (subject to the SNR as mentioned). The 

number of synapses can also be significantly boosted though both wavelength and spatial division multiplexing. Making 

use of the full C+L band, supporting over 225 50GHz-spaced or 450 25GHz-spaced wavelength channels, and by 

exploiting dual polarization modes, the wavelength-division parallelism, and hence number of synapses per neuron could 

reach 225×2=450 (or even 900 at a 25GHz spacing, with tradeoffs in modulation rate). Further, even introducing a 

minimal number of additional spatial paths for each neuron (3 spatial paths, for example), the total number of synapses 

for 10 neurons @ 50GHz can reach 225 × 2 × 3 × 10 = 13,500 synapses in total.  

Beyond this, a wider spectral region can readily be employed, although beyond the C+L bands, each has some challenges 

associated with it. Using the S+C+L telecommunications bands (1460-1620nm) would yield over 20THz in bandwidth. 

The telecommunications S-band (1460-1530nm), although less widely used than the mainstream C and L bands, is still 

practical with wideband optical devices available including semiconductor and Raman amplifiers. This would yield a 

total wavelength range of 160nm, equating to 400 channels at 50GHz spacing. Figure 11 shows a fully connected layer 

using the full C+L+S bands along with polarization, 3 spatial dimensions and 10 neurons, yielding 405 (wavelengths) × 

2 (polarizations) × 3 (spatial paths) × 10 neurons = 24,300 synapses. Figure 12 shows the vector convolutional 



 

 
 

 

 

 

accelerator, using the C+L+S bands (with 405 wavelengths) as well as 10 parallel spatial paths, and exploiting 

polarization. This would yield a speed of 62.9 Giga-Baud × 405 × 2 × 2 × 10 = 1.019 PetaOPs/s (or “POPs/s”). In this 

case the wavelengths would be distributed over 45 kernels each at 3×3 in size (so that 405=45×9).  

Finally, in the long term, the full telecommunications bands including the O-band (1260 nm to 1360 nm) and even the E-

band (water absorption band: 1360nm-1460nm) could be exploited, resulting in a total optical bandwidth of 1260nm-

1620nm = 360nm, or 900 channels. Using the same arguments as above, extending the network to 50 neurons (which is 

feasible since only spatial multiplexing is used for this) the CNN could be expanded to yield 900 (wavelengths) × 2 

(polarizations) × 3 (spatial paths) × 50 neurons = 270,000 synapses.  

Note that in terms of optical bandwidth, micro-combs themselves are not a limiting factor – they have demonstrated full 

octave-spanning spectra – and more – from a single device, including from the near and mid-infrared [152-158] down to 

the visible region. One of the more restrictive components is the optical amplifier. While both C and L band amplifiers 

are in widespread use in installed optical fibre networks, they do not operate in any other band. Raman amplifiers are 

extremely flexible and versatile in wavelength and so can potentially operate in any of the telecommunications bands. 

SOAs as well are quite versatile with devices available in the O and S bands. While the Waveshaper has commercially 

developed for the C and L bands, the fundamental technology behind it (liquid crystal on silicon – LCOS) is capable of 

supporting operation in any of the telecommunications bands. The same holds true for most of the other components 

such as modulators, detectors etc. – while the commercially available components are generally designed for operation in 

the C and L bands, there is nothing fundamental in producing devices designed for the other bands – it is mostly a 

question of cost and scale.  

In terms of the microcomb structure, the tradeoffs between comb FSR spacing and baud-rate are subject to the total 

available optical bandwidth, and are very similar to tradeoffs for ultrahigh bandwidth optical data communications. The 

computing speed of the accelerator is fundamentally determined by the available optical bandwidth. Within a certain 

optical band, the number of comb lines is inversely proportional to the FSR (i.e., the modulation rate). As long as the 

modulation rate matches the Nyquist bandwidth (half of the comb spacing), the network can be flexibly tailored to 

specific applications without sacrificing speed. In the case of the 49GHz microcombs studied here, as long as the optical 

band is sufficiently used, (i.e., the comb covers the full band and the modulation bandwidth (~24.5 GHz) matches with 

the FSR (~49GHz), the Nyquist bandwidth is ~ 24.5 GHz)), the computing speed does not vary dramatically with the 

number of comb lines or the FSR. So far, integrated microcombs feature FSRs ranging from 20 GHz to 1 THz, offering 

many options to choose from in terms of Baud-rate versus number of wavelengths. Having said this, we note that even 

for optical communications, this issue (the optimum channel spacing vs baud rate and modulation format) is still in fact 

an open question to a degree. Indeed, the exact optimum between the number of comb lines and the modulation rate is a 

function of the specific requirements for a given application. For applications that do not require a large number of 

kernel weights (wavelengths), a large FSR (modulation bandwidth) should be employed to make more extensive use of 

the optical band and achieve a high computing speed. While for those requiring a large number of kernel weights, a small 

FSR would be more favorable towards offering sufficient wavelengths. 

Note that the preceding discussion does not address the issue of extending the CNN to much deeper levels. The 

electronic functions required for this have already been performed in this work, and include pooling, re-sampling, and re-

timing. Further, some if not all of these can be realized all-optically. The pooling function can be implemented via the 

convolution accelerator with an averaging kernel (with all kernel weights set to be equal), followed with down-sampling 

to reduce the data scale. The reduction in speed of the convolutional accelerator when used for matrix processing, 

brought about by the overhead associated with flattening the matrix into a vector, is outlined in detail in [14], along with 

an example of a system architecture designed to eliminate this overhead for the case of an accelerator operating with 3×3 

kernels, and in the process generating a symmetric convolution. We note that this is almost never an issue, however, and 

that asymmetric convolutions are the norm.  



 

 
 

 

 

 

 

Figure 11. Designed expanded fully connected layer with 3 additional spatial dimensions and 10 neurons, making use of polarization 

multiplexing. Pump: continues-wave pump laser. EDFA: erbium doped fibre amplifier.  MRR: micro-ring resonator. EOM: electro-

optical Mach-Zehnder modulator. PBS: polarization beam splitter. PD: photodetector. 

 

 

Figure 12. Designed scaled convolutional accelerator over the C+L+S bands, with spatial and polarization multiplexing. The 405 

available wavelengths (on a 50GHz grid) would be split into 45 kernels each 3×3 in size.  

 

 



 

 
 

 

 

 

5. CONCLUSION 
We report an ultra-high speed universal optical convolutional accelerator that operates at speeds beyond 10 Tera-

Operations per second (10 TOPS). It performs convolutions of ultra-large scale images at 250,000 pixels, with a digital 

resolution of 8-bits, and simultaneously for 10 kernels. This scale is more than adequate enough for facial image 

recognition tasks. We then employ the identical hardware to combine and form a sequential deep optical CNN with 10 

output neurons. We successfully achieverecognition of the full 10 handwritten digits, each image being 900 pixels in 

size, achieving an accuracy of 88% which is very close to the theoretically calculated accuracy of 90% for our system. 

Our approach is trainable and scalable to much more complex networks to perform much more demanding tasks for 

applications such as real-time video recognition for unmanned autonomous vehicles.   
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