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A computational homogenization procedure for a material layer that pos-

sesses an underlying heterogeneous microstructure is introduced within the

framework of finite deformations. The macroscopic material properties of

the material layer are obtained from multiscale considerations. At the macro

level, the layer is resolved as a cohesive interface situated within a con-

tinuum, and its underlying microstructure along the interface is treated as

a continuous representative volume element of given height. The scales

are linked via homogenization with customized hybrid boundary conditions

on this representative volume element, which account for the deformation

modes along the interface. A nested numerical solution scheme is adopted

to link the macro and micro scales. Numerical examples successfully dis-

play the capability of the proposed approach to solve macroscopic boundary

value problems with an evaluation of the constitutive properties of the ma-

terial layer based on its micro-constitution.

1 Introduction

Material layers that transmit cohesive tractions occur in several engineering disciplines.

Solder connections, adhesive bonding layers, laminated composite structures, building

materials such as masonry, as well as geomaterials are some notable examples. Two

are illustrated in Figure 1. In most cases, the material in the connecting layer is signif-

icantly weaker than the surrounding bulk material and therefore the deformation will
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(a) (b)

Figure 1: (a) Adhesive bonding of two solid substrates with a polymeric glue: circular

uni-axial tension specimen with incompletely cured polyurethane layer (cour-

tesy of Gunnar Possart). (b) Material layer within geological bulk material of

different properties.

be strongly confined to this layer. If the material layer is composed of a heterogeneous

microstructure, the geometric and material properties of that will crucially govern the

global behaviour. Such heterogeneities can for instance appear as voids, micro cracks, or

inclusions, and can be found in fibre-reinforced materials (e. g. , metal–polymer matrix,

concrete), or in natural materials (e. g. , geological conglomerates). Homogenization

approaches as pioneered by Hill [4, 5] provide an appropriate framework to relate the

mechanical behaviour within the different spatial scales of observation. The key issue

of the current contribution is to account for this microstructure of the material layer in

an appropriate way. Beyond existing approaches, which are achieved for instance by

asymptotic homogenization [15, 16], we particularly aim to propose a computational

multiscale framework that is suitable for nonlinear multiscale finite-element simulations

in the spirit of FE2.

Within a multiscale consideration, on the macro scale the material layer is treated

as a cohesive interface situated within a continuum. The governing quantities in this

cohesive interface, i. e. the displacement jump (or rather separation) and the cohesive

tractions, are related based on the underlying microstructure rather than employing an

a priori constitutive assumption, coined as a cohesive traction–separation law. On the

micro scale, representative volume elements (RVE) along the material layer advocate the

heterogeneous microstructure, as illustrated in Figure 2. Their height is directly given by

the thickness of the material layer. For the concept of representative volume elements

the reader is for instance referred to References [5, 28]. The micro–macro transition

between the RVE and the interface is achieved based upon the averaging of the gov-
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h0

. . .

. . . . . .

Figure 2: Heterogeneous material layer, which is shown over-sized for the sake of vis-

ibility, situated within a macro bulk material with sketches of RVEs that are

locally periodic, but may vary along the material layer.

erning kinematic, stress and energetic quantities over the respective underlying RVE.

The boundary conditions stemming from the cohesive interface at the macro level im-

posed on the RVE must be chosen consistently—on the one hand, they need to fulfil the

Hill condition [5], which ensures the equivalence of the macro and the micro response,

whereas on the other hand, the boundary conditions shall account for the interface ge-

ometry and capture the occurring mixed-mode (shear and tension) deformation modes.

The homogenization approach is numerically implemented within a computational

homogenization along the lines of References [9, 10, 11, 20, 22, 21, 25, 24]. Within

a geometrically nonlinear finite-element framework, we straightforwardly model the

material layer by means of cohesive interface elements situated between the adjacent

bulk finite elements. With these elements, the finite-element formulation which can be

found in References [1, 18, 23, 29, 30, 34, 35, 37], the constitutive relation consists

by a cohesive traction–separation law, which has traditionally been treated by a priori

assumptions, as they were proposed by Xu and Needleman [27, 38]. Instead of us-

ing such constitutive assumption, we obtain the material response from computational

homogenization. To this end, the solution of a micro scale boundary value problem is in-

voked at each integration point of each interface elements. Thereby upon application of

customized hybrid boundary conditions stemming from the interface, the macroscopic

constitutive behaviour is extracted at the RVE boundaries towards the bulk. The rep-

resentative volume element is modelled as a nonlinear finite-element boundary value

problem, which is subjected to the deformation induced by the interface element on
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the macro scale. The macroscopic traction and the constitutive tangent operator for a

Newton–Raphson solution scheme are extracted from the micro problem. In this way, a

fully nested iterative multiscale solution for a bulk including a material layer accounting

for the micro-heterogeneous properties of the latter is accomplished.

The current paper extends the multiscale approach of Matous et al. [17] to the gen-

eral case of finite deformations. Beyond both the latter contribution and that of Larsson

and Zhang [14], not only the cohesive behaviour of the microscopically heterogeneous

material layer shall be considered, but rather we are interested in solving macroscopic

boundary value problems involving this material layer. To this end, emphasis is placed

on a multiscale framework, that utilizes computational homogenization. If the intrin-

sic microstructure is negligibly small such that no size effects occur, as is the case in the

current paper, we restrict ourselves to a classical (Boltzmann) continuum within the rep-

resentative volume element. In contrast, if the size effect of the intrinsic microstructure

is significant, the microstructure can be modelled as a micromorphic continuum, which

is pursued in Reference [7].

1.1 Outline and Notation

The remainder of the paper is structured as follows: In Section 2, we present the con-

tinuum mechanics framework on the macro scale with the material layer treated as a

cohesive interface. In Section 3, the governing equations for the representative volume

element that represents the underlying microstructure, are presented. Once both the

macro and the micro level descriptions are present, the micro–macro transition based on

the homogenization of the decisive micro quantities is examined in Section 4. Section 5

provides the numerical framework of the computational homogenization. Numerical

examples in Section 6 exhibit the main features of the proposed approach, and finally

some concluding remarks are mentioned in Section 7. For the sake of distinction and

clarity, the quantities on the macro scale are denoted by an over-bar (̄·), whereas all

other quantities refer to the micro scale.

2 Material layer represented by an interface at the macro

level

On the macro scale we consider a body B̄0 that consists of a bulk that is separated by a

thin material layer of significantly different properties. We treat this layer as an interface,

Γ̄0, as illustrated in Figure 3. On the interface we define the unit normal vector N̄ as

N̄(X̄) = −N̄
+
(X̄) = +N̄

−
(X̄) , ∀ X̄ ∈ Γ̄0 . (1)

Thereby N̄
+
(X̄) is the outward normal on the positive part B̄+0 and N̄

−
(X̄) on the neg-

ative part B̄−0 , respectively. In the following, we introduce the governing continuum

mechanics framework that defines a general boundary value problem for the macro

level involving this interface.
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Figure 3: Interface geometry and deformation maps from the material configuration Γ̄0

to the spatial configuration Γ̄t .

2.1 Deformation

The deformation in the bulk is described via the deformation map x̄ = ϕ̄(X̄) and its

gradient F̄ :=∇X̄ ϕ̄ for all material points X̄ ∈ B̄+0 ∪ B̄
−
0 \Γ̄0.

The deformation jump or separation between the opposite spatial edges of the inter-

face,

¹ϕ̄º(X̄) := ϕ̄+(X̄)− ϕ̄−(X̄) ∀ X̄ ∈ Γ̄0 , (2)

acts as the primary deformation quantity of the interface. The vectorial representation

at this point incorporates a loss of information compared to the full deformation tensor.

Nevertheless, for the considered material layer this assumption is fully sufficient, since

its initial height h0 is much smaller than the total extension of the bulk.

2.2 Equilibrium

For the material body B̄0 to be in equilibrium the balance of momentum for the bulk

B̄0 \ Γ̄0 and the equilibrium relations for the cohesive interface Γ̄0 must be fulfilled. The

balance of momentum for the bulk reads

Div P̄ =−b0 in B̄0 \ Γ̄0 , (3)

in terms of the Piola stress P̄. The corresponding Neumann and Dirichlet boundary

conditions prescribe the spatial traction t̄ 0 with respect to material reference or the

deformation map ϕ̄ on the respective part of the boundary:

P̄ · N̄ =: t̄ 0
pre on ∂ B̄ P

0 , ϕ̄ =: ϕ̄pre on ∂ B̄
ϕ
0 . (4)
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Across the interface, cohesive tractions are transmitted. The additional equilibrium

condition concerning the interface,

t̄ 0
+
+ t̄ 0

−
= 0 , (5)

together with the Cauchy theorem entails a relation for the jump of the Piola stress,

¹P̄º, and for its average {P̄} across the discontinuity:

¹P̄º · N̄ = 0 , {P̄} · N̄ = t̄ 0 on Γ̄0 . (6)

The weak formulation of the balance relations (3)–(6) renders the virtual work state-

ment, which requires the sum of the internal contributions of both the bulk and the

interface to equal the external virtual work:

∫

B̄0\Γ̄0

P̄ : δF̄ dV +

∫

Γ̄0

t̄ 0 ·¹δϕ̄ºdA=

∫

B̄0

b̄0 ·δϕ̄ dV +

∫

∂ B̄ P
0

t̄ 0
pre
·δϕ̄ dA . (7)

The relation between the stress and the deformation measures is supplied via a consti-

tutive relation.

2.3 Constitutive framework

For the surrounding bulk, we avail ourselves of a hyperelastic constitutive formulation

which is stated a priori, for instance a neo-Hooke ansatz. Thus the Piola stress is evalu-

ated from the stored-energy density as P̄ = DF̄W̄0.

The traction t̄ 0 transmitted across the cohesive interface is energetically conjugate

to the separation ¹ϕ̄º in a hyperelastic format. Within an entirely reversible isother-

mal constitutive framework, it is a function of the interface separation, i. e. t̄ 0(¹ϕ̄º).
Our objective is to find such a relation based on the underlying microstructure using a

multiscale approach. Particularly, in the context of a numerical finite-element simula-

tion utilizing a Newton–Raphson procedure, we are moreover interested in the tangent

operator Ā in an incremental traction–separation law,

δ t̄ 0 = Ā ·¹δϕ̄º , Ā := D¹ϕ̄º t̄ 0 . (8)

Towards a multiscale framework we will next present a formulation for the underlying

microstructure and thereafter bridge the two scales by means of homogenization.

3 Representative volume element at the micro level

Within the proposed multiscale approach, we now consider the modelling of the un-

derlying heterogeneous microstructure. As was illustrated in Figure 2, representative

volume elements are used to model statistically representative portions of the material

layer. To match them with the interface geometry, we align these volume elements with
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Figure 4: RVE geometry and deformation maps from the material configuration B0 to

the spatial configuration Bt .

the interfacial plane and limit its dimension out of plane by the initial height h0 of the

material layer. Thereby the dimension of the RVE in plane must be chosen sufficiently

large to make the element representative, yet small enough compared to the in plane

dimension of the layer to exclude boundary effects. In the two-dimensional setting pur-

sued here, such element has an initial width w0 and thus a material volume (or rather

area) of V0 = w0 h0.

Any appropriate mechanical framework could be employed on the RVE level, such as

a continuum (either in a standard, a higher-order or a higher-grade formulation), dis-

crete particles to account for granular media, molecular dynamics, or atomistics, just to

mention a few. However, in this article we restrict ourselves to a standard (or rather

Boltzmann) continuum, whereas a further extension to a micromorphic RVE accounting

for size effects induced by a significant intrinsic microstructure can be found in Refer-

ence [7]. In order to clarify the notation at the micro level, we will in the following

briefly review the governing equations stating a boundary value problem on the RVE.

Based upon this geometrically nonlinear framework, the connections with the macro

problem will be treated in Section 4.

3.1 Deformation

The finite deformation, also illustrated in Figure 4, is described through the deformation

map ϕ and the deformation gradient F :

x = ϕ(X) , F(X) :=∇Xϕ(X) ∀X ∈ ∂B0 . (9)

The placement X can be chosen with respect to any basis; however for practical reasons

corresponding to the micro–macro transition, the origin shall be placed in the geometric

centre of the RVE.
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3.2 Equilibrium

The representative volume element is in equilibrium if the balance of momentum for the

static case,

Div P = 0 in B0 , (10)

is fulfilled under the supplied Neumann and Dirichlet boundary conditions:

P · N =: t
pre

0 on ∂B P
0 , ϕ =: ϕpre on ∂B

ϕ
0 . (11)

Thereby at a particular part of the boundary, either the spatial traction t 0 = P · N or the

deformation ϕ may be prescribed, with ∂B P
0 ∩ ∂B

ϕ
0 = ;.

At the micro level, the influence of the body force is neglected, as suggested for in-

stance by [21]. This choice proves convenient in view of the homogenization, which

utilizes only quantities on the RVE boundary. With this assumption, the corresponding

virtual work statement at the micro level reads:
∫

B0

P : δF dV =

∫

∂B0

t 0 ·δϕ dA . (12)

3.3 Constitutive framework

Any appropriate constitutive formulation could be incorporated. However, for the sake

of clarity of exposition, we avail ourselves of a straightforward hyperelastic format for

the stored-energy density.

3.4 Boundary value problem

The representative volume element is subjected to boundary conditions that stem from

the interfacial traction and separation at the macro level. The necessary relations con-

necting the two scales consistently with respect to the geometry of the material layer

will be addressed in the following section.

4 Micro–macro transition

The proposed homogenization approach is based on the averaging of the governing

quantities over the volume of the RVE as proposed by Hill [4, 5]. First, we recall the

volume averages of the deformation gradient, the stress, and the virtual work over the

RVE, as they are well-known from the literature. Then, these RVE averages are related

to the governing quantities in the interface. Boundary conditions on the RVE finalize a

consistent scale transition.

8
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4.1 Averages of micro quantities over the RVE

The average of the deformation gradient F over the volume of the RVE is given as

〈F〉=
1

V0

∫

B0

FdV =
1

V0

∫

∂B0

ϕ ⊗ N dA . (13)

The volume average of the Piola stress P in the RVE,

〈P〉=
1

V0

∫

B0

PdV =
1

V0

∫

∂B0

t 0⊗ X dA , (14)

is required in view of the macroscopic traction vector t̄ 0 in the interface given in (6)2.

Finally, based on (12) the average of the virtual work in the RVE reads

〈P : δF〉=
1

V0

∫

B0

P : δF dV =
1

V0

∫

∂B0

δϕ · t 0 dA . (15)

Thereby, as already mentioned in Section 3.1, we assume without loss of generality that

the origin of the coordinate system is placed in the geometric centre of the RVE. The

following canonical auxiliary relations [2, 21],

F = Div (ϕ ⊗ I) , P t = Div (X ⊗ P) , P : F = Div (ϕ · P) , (16)

are utilized to convert the averaging theorems from volume to surface integrals. For

the latter two conversions, the equilibrium in omission of body forces was used, as for

instance also documented in References [10].

4.2 Micro–macro transition

In order to accomplish a consistent transition between the micro and the macro level,

the averaged RVE quantities need to be related to the interface quantities. Therefore,

the deformation, the traction as well as the virtual energy need to be equivalent on both

scales.

4.2.1 Deformation

Upon the consideration of the initial height h0 of the material layer, the averaged defor-

mation gradient (13) is linked to the interface kinematics on the macro level as follows:

Since the governing kinematic quantity on the RVE level is given by the homogenized

deformation gradient, which is tensor of second order, it is desirable to find a second-

order tensor to represent the macro interface deformation as well. Therefore we avail

9
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ourselves of a deformation tensor, which was first proposed in the context of localized

plasticity, (see, for instance References [12, 13, 31, 32]):

F̄ := I +
1

h0

¹ϕ̄º⊗ N̄ . (17)

Instead of an artificial scaling parameter, which in those approaches is used to achieve

regularization, here indeed the initial height h0 enters this deformation tensor. Clearly,

this measure resolves the information given by the macro separation as follows:

F̄ = M̄ ⊗ M̄ + [
1

h0

¹ϕ̄º · M̄]M̄ ⊗ N̄ + [1+
1

h0

¹ϕ̄º · N̄]N̄ ⊗ N̄ , (18)

or translated into a straightforward matrix notation with respect to the orthonormal

basis (M̄ , N̄):

F̄ =̂

�
1 ¹ϕ̄M̄º/h0

0 1+¹ϕ̄N̄º/h0

�
(19)

With this macro assumption at hand, we can relate the macro deformation to the RVE

average deformation gradient as

I +
1

h0

¹ϕ̄º⊗ N̄ ≡ 〈F〉 . (20)

Although it obeys the restriction that M̄ · F̄ · M̄ = 1, it involves all the information that is

contained in the vectorial representation of the interface separation ¹ϕ̄º. This assump-

tion yields a somewhat rigorous restriction on the deformation of the RVE, as we will

examine later on.

4.2.2 Traction

The traction t̄ 0 in the interface is related to the averaged Piola stress (14) in the under-

lying RVE based on the Cauchy theorem (6)2:

t̄ 0 ≡ 〈P〉 · N̄ . (21)

assuming the average RVE Piola stress to be equivalent to the average across the interface

of the Piola stress on the macro scale 〈P〉 ≡ {P̄}.

4.2.3 Virtual work

The Hill condition requires the virtual work performed in the interface to be equivalent

to the average of the virtual work performed within the representative volume element.

The RVE virtual work density, P : δF , acts within a continuum element dV and the

interface virtual work density is referred to a surface element dA. Due to their different

10
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∂BT
τ

∂BB
τ

∂BR
τ

∂BL
τ

M̄

N̄

Figure 5: Hybrid boundary conditions on the RVE: prescribed deformation on ∂BT
τ and

∂BB
τ ; periodic deformation ∂BR

τ and ∂BL
τ, τ ∈ {0, t}.

dimension, the average of the virtual work in the underlying RVE, (15), needs to be

scaled by the height h0 of the material layer and we obtain

t̄ 0 ·¹δϕ̄º ≡ h0〈P : δF〉 . (22)

With the particular equivalences of the interfacial separation (17) and traction (21),

with this condition the usual requirement in the form

〈P〉 : 〈δF〉 ≡ 〈P : δF〉 . (23)

is retrieved. In this form the Hill condition requires the average of the virtual work

performed in the RVE to equal the virtual work performed by the respective averages of

the deformation gradient, (13), and the stress, (14), and was thus also referred to as the

macro-homogeneity condition [2].

4.3 Boundary conditions on the RVE

The micro–macro transition is achieved by the choice of appropriate boundary condi-

tions on the RVE. These are governed by the corresponding quantities in the interface

and must fulfil the Hill condition (23) to be admissible. Generally the boundary con-

ditions to impose on the RVE will depend on the deformation and the traction in the

interface. However, we omit the rather tedious application of traction boundary condi-

tions since we are aiming at a deformation- driven computational homogenization.

Due to the vectorial representation of the deformation jump within the material layer,

only two deformation modes can occur in the interface, i. e. relative shear and normal

11
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tension/compression. Furthermore, the extension of the interface in tangential direction

is by orders larger than its height, which gives rise to boundary conditions that are hybrid

between linear displacement and periodic displacements and anti-periodic tractions on

the RVE boundary, as depicted in Figure 5 and examined in the sequel.

4.3.1 Choice of boundary conditions

For the first part of the hybrid choice of boundary conditions, we fully prescribe the

boundary conditions by means of the macro interface opening ¹ϕ̄º on the top and

the bottom boundaries of representative volume element, since these are conceptually

aligned with the positive and negative edges of the cohesive interface, Γ̄+0 and Γ̄−0 , re-

spectively. This displacement boundary condition is first expressed in terms of the proxy

macro deformation tensor of (13), which is easily transferred into an expression in terms

of the deformation jump only:

ϕ(X) =

�
I +

1

h0

¹ϕ̄º⊗ N̄

�
· X =

¨
X+ 1

2
¹ϕ̄º ∀X ∈ ∂BT

0

X − 1

2
¹ϕ̄º ∀X ∈ ∂BB

0

. (24)

As a second ingredient of the hybrid boundary conditions, in tangential direction of the

interface (or rather in-plane), we assume periodic deformation and anti-periodic traction

boundary conditions

δϕR−δϕL = 0 t R
0 + t L

0 = 0 (25)

on the RVE, whereby the notations

δϕR := δϕ(X) , t R
0 := t 0(X) ∀X ∈ ∂BR

0 (26)

δϕL := δϕ(X) , t L
0 := t 0(X) ∀X ∈ ∂BL

0 (27)

are used. The straightforward proof of the admissibility of this choice of boundary con-

ditions is examined in the following section.

The vectorial representation of both separation and traction in the interface restricts

the deformation to two deformation modes: shearing tangential to the interface plane

and tension out of the interface plane, which is also reflected by the deformation mea-

sure in (13). Therefore, with this model, it is not possible to account for in-plane tension

within the RVE. However, the macro level does not sense this restriction and the lateral

contraction along the interface is entirely controlled by the surrounding bulk in a natural

manner.

4.3.2 Admissibility of hybrid boundary conditions

To show that this choice of boundary condition fulfil the Hill condition (23), the relation

〈P〉 : 〈δF〉 = 〈P : 〈δF〉〉 is used. The Hill condition holds if the following identity is

fulfilled:

h0〈P : δF〉 − h0〈P : 〈δF〉〉
.
= 0 . (28)

12
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For the proposed hybrid boundary conditions, this relation is both shown to be fulfilled

for the prescribed deformation on the top and the bottom boundary of the RVE and for

the periodic in-plane deformation.

To this end, the relation is transformed to the following:

h0〈P : δF〉 − h0〈P : 〈δF〉〉=
1

w0

∫

∂B0

t 0 · [δϕ − 〈δF〉 · X]dA0 , (29)

For the prescribed displacement (24) the term in brackets directly vanishes and thus the

entire integral becomes zero.

In a second step, the periodic boundary conditions (25) in-plane are shown to be

admissible by regarding (29). Since for a macro deformation (24) affinely imposed on

the RVE, the term 〈δF〉·X is periodic to begin with, thus the fluctuation term δϕ−〈δF〉·X

proves periodic as well. Consequently the integral

1

w0

∫

∂BL
0

t 0 · [δϕ − 〈δF〉 · X]dA+
1

w0

∫

∂BR
0

t 0 · [δϕ − 〈δF〉 · X]dA= 0 (30)

vanishes over opposite periodic boundaries if the traction t 0 is anti-periodic, which it-

self follows from equilibrium. Due to their periodicity, the sum of the integrals over

the opposite edges on the left and the right side BL
0 and BR

0 respectively, vanishes as

described.

To gather all contributions of the hybrid boundary conditions, we build the sum of the

particular parts of (29) and (30),

h0〈P : δF〉 − h0〈P : 〈δF〉〉=
1

w0

∫

∂B0

t 0 · [δϕ − 〈δF〉 · X]dA=

1

w0

∫

∂BT
0

t 0 · [δϕ − 〈δF〉 · X]dA+
1

w0

∫

∂BB
0

t 0 · [δϕ − 〈δF〉 · X]dA

+
1

w0

∫

∂BL
0

t 0 · [δϕ − 〈δF〉 · X]dA+
1

w0

∫

∂BR
0

t 0 · [δϕ − 〈δF〉 · X]dA= 0 . (31)

This is then zero as well, because each of the first terms is zero and due to the anti-

periodicity the sum of the latter two is zero. Thus the proposed hybrid boundary condi-

tions are admissible.

5 Computational homogenization

The homogenization framework of the preceding section is now transferred to a com-

putational homogenization scheme in the FE2 spirit of References [3, 9, 11, 25]. This

13



Hirschberger et al., 2008 Comp. multiscale model. heterog. material layers

11
2

2

33

4

4 IPIP
N̄

M̄

ϕ̄

ϕ̄
+

ϕ̄
−

¹ϕ̄º, N̄ t̄ 0, Ā

Γ̄ e
0 Γ̄ e

t

Bh
t

Bh
0

ϕ

F

Figure 6: Computational homogenization between the interface integration point (IP) of

the interface element on Γ̄ e
0 at the macro scale and the underlying discretized

representative volume element Bh
0 with boundary ∂Bh

0 .

consists of a nested solution scheme [11] involving both the macro- and the micro-level

boundary value problems, which are solved iteratively by means of the nonlinear finite-

element method.

Situated between the bulk elements, interface elements, as they were introduced in

Reference [1], represent the material layer on the macro scale. The constitutive be-

haviour of the bulk is assumed a priori, for which a constitutive routine is provided.

Contrary, the constitutive behaviour or rather the traction–separation relation (8) of the

interface element is obtained from the underlying microstructure. For this purpose, at

each integration point of each interface element, the traction vector t̄ 0 and the tangent

operator Ā are evaluated by means of a computational homogenization of the underly-

ing micro-properties in the RVE based on the macro kinematics as illustrated in Figure 6.

5.1 Nested solution procedure

The nested multiscale solution, which involves one macro boundary value problem and

as many RVE boundary value problems as integration points in the macroscopic interface

14
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macro micro

initialization

macro BVP
– geometry and material
– set boundary conditions
– assign RVE to each

interface element IP
• loop over elements
◦ bulk elements
◦ interface elements
⋆ loop over IP

store tangent

BVPs of RVEs
– geometry, identify boundary

nodes
– material(s)

¹ϕ̄º = 0
✲

Ā
✛

at each RVE
– set boundary conditions
– Newton–Raphson iteration
• loop over all elements

RVE assembly
• find RVE solution

– loop over prescribed nodes
• compute (macro) inter-

face tangent

main programme

loop over load increments
– loop over load steps
⋆ Newton–Raphson iteration
• loop over macro elements
◦ bulk elements
◦ interface elements
∗ loop over IP

store tangent

store traction
• find macro solution

⋆ end NR iteration at convergence

¹ϕ̄º
✲

Ā
✛

t̄ 0
✛

at each RVE
⋆ set boundary conditions
⋆ Newton–Raphson iteration
• loop over all elements

RVE assembly
• find solution to RVE system

⋆ end NR iteration at convergence
⋆ loop over prescribed nodes
• compute interface tangent

• compute interface traction

Figure 7: Schematic flowchart on nested multiscale solution.
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elements of Figure 6, is in particular achieved as follows.

The macro specimen B̄h
0 is discretized with bulk finite elements in B̄h

0 , while co-

hesive interface elements represent the material layer on Γ̄ h
0 . The formulations of

these interface element are well-established and for instance are described in Refer-

ences [23, 30, 34, 35]. Assigned to each macro integration point of each interface

element, the corresponding RVE is discretized with a finite element mesh in Bh
0 . In or-

der to handle the in-plane periodicity being part of the hybrid boundary conditions, this

RVE mesh is subject to the restriction that the left and the right boundary, ∂BhL
0 and

∂BhR
0 , respectively, have equal arrangement. In order to achieve a geometrically non-

linear multiscale solution, at each macroscopic iteration step within a Newton–Raphson

algorithm, in each integration point of each interface element the nonlinear systems of

the RVEs are solved iteratively subject to the current macro deformation jump, as de-

picted in the schematic flow chart of Figure 7, see also Reference [8]. In particular at

each integration point of each interface element on Γ̄ h
0 the macro separation ¹ϕ̄º is

evaluated iteratively, being zero initially. Its increments deliver the boundary conditions

to the RVE finite-element mesh, see (24). During each macro iteration step, the nonlin-

ear micro systems are solved subject to these incremental boundary conditions. When

equilibrium is obtained at the RVE level, both the homogenized macroscopic tangent

operator Ā and the macroscopic traction vector t̄ 0 of (8) at the respective integration

point along the interface are computed from this solution. Precisely, the contributions

of the stiffness matrix and the residual vector at the RVE boundary are extracted to this

end. With the constitutive macro quantities at hand, the macro system is solved itera-

tively until a global solution for the current load step is obtained. In case the interface

coordinate system does not coincide with the global coordinate system, the components

of the separation vector in tangential and normal direction are transferred to the RVE.

5.1.1 Nonlinear system at the macro level

At the macro level, the global residual must vanish for all degrees of freedom ϕ̄ I . Based

on the weak form (7), it is obtained from an assembly of the contributions of all the bulk

and all the interface elements as

R̄I =
n̄el

A
ē=1

∫

B̄ e
0

P̄ · ∇X̄ N̄
ϕ̄
I dV +

n̄iel

A
īe=1

∫

Γ̄ e
0

t̄ 0 · N̄
¹ϕº
I dA− f̄

ext .
= 0 . (32)

Herein the shape functions N̄
ϕ̄
I act in the bulk and N̄

¹ϕº
I within the interface element.

The external force vector at the macro level in general contains both external traction

and body forces acting on the bulk surface and volume, respectively:

f̄
ext

I =
n̄el

A
ē=1

∫

B̄ e
0

b̄0N
ϕ
I dV +

∫

∂ B̄ e
0

t̄ 0N
ϕ
I dA . (33)
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For the iterative solution of the nonlinear system of equations given by (32), we avail

ourselves of a Newton–Raphson algorithm. To this end, we introduce the stiffness ma-

trix, defined as K̄I L = ∂ϕ̄ L
R̄I , and solve the linearized system of equations

K̄I L ·∆ϕ̄
h
L = f̄

ext

I − f̄
int

I . (34)

For the given macro problem, the stiffness matrix in particular reads

K̄I L =
n̄el

A
ē=1

∫

B̄ e
0

DF̄ (P̄ · ∇X̄ N̄
ϕ
I ) · ∇X̄ N̄

ϕ̄
L dV +D¹ϕ̄º(t̄ 0N̄

¹ϕº
I )N̄
¹ϕº
L dV . (35)

Herein the derivative DF̄ (P̄ · ∇X̄ N̄
ϕ
I ) for the bulk can be evaluated directly based on an a

priori constitutive assumption. Contrary, the material tangent operator D¹ϕ̄º(t̄ 0) of each

interface element calls to be determined from the underlying RVE in a computational

homogenization at each integration point. In particular, a Gauss quadrature is used

for the numerical integration within the interface elements, whereas other numerical

integration schemes [30] go beyond the scope of the current contribution. Within the

loop over the Gauss points, instead of a material routine, the underlying RVE programme

is called in order to retrieve the tangent operator as well as the traction vector. To this

end, the current trial value of the macro separation are passed to this RVE routine and

the resulting procedure is described in the following section.

5.1.2 Solution of the nonlinear RVE problem

For each macroscopic interface integration point the material response needs to be eval-

uated on the underlying RVE. To this end, each RVE receives the current trial separation

vector which is translated to a boundary condition according to Equation (24). Only

after the RVE system is solved subject to this boundary condition, the sought-for macro

material information can be extracted.

In the system subject to the Dirichlet boundary conditions stemming from the macro

level, the finite-element stiffness matrix and the residual vector of the RVE problem are

assembled from the individual finite-element contributions in a standard manner:

RI =
nel

A
e=1

∫

Be
0

P · ∇X NI dV − fext
I

.
= 0 , (36)

KI L =
nel

A
e=1

∫

Be
0

DF

�
P · ∇X N

ϕ
I

�
· ∇X N

ϕ
L dV , (37)

with NI and NL being the shape functions for the trial and test function respectively.

Thereby a priori constitutive formulations are used to compute the stress P and the

material operator DF P in each element.
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In order to account for the periodicity (25), during the iterative solution the entire

system of equations is transformed into a reduced system of independent degrees of

freedom exclusively:

K⋆I L ·∆ϕ
⋆
L = R⋆ . (38)

with ϕ⋆ = ϕ i comprising the independent degrees of freedom only. As proposed by

Kouznetsova et al. [8, 10] this is accomplished by means of a dependency matrix, which

relates the dependent with the independent nodal displacements as

ud =Ddi · u i . (39)

With the deformation map ϕ being the actual degree of freedom, we have made use of

the fact, that the Newton–Raphson algorithm deals with increments and thereby ∆u =

∆ϕ. In the transformed system (38), the reduced stiffness matrix and residual vector

are computed as

K⋆ =Kii+Dt
di ·Kid+Kid ·Ddi+Dt

di ·Kdd ·Ddi (40)

R⋆ = Ri+Ddi ·Rd (41)

For the material layer RVE under the boundary conditions proposed in Section 4.3.1, the

independent degrees of freedom comprise the degrees of freedom of all boundary nodes

at the top and bottom (including all corner nodes), on the left, as well as all interior

nodes. Complementarily, the right boundary nodes supply the set of dependent degrees

of freedom, as illustrated in Figure 8.

Ii ∈ {top, left, bottom, interior} , Id ∈ {right} (42)

In this reduced system, the displacement-boundary conditions (24) stemming from the

interface deformation, are imposed at the top and bottom nodes in order to find a so-

lution. The vector of unknowns is updated, before the independent and the dependent

degrees of freedom are gathered. In this way the nonlinear micro system of equations is

iteratively solved until equilibrium is reached. The procedure is summarized in Table 1.

Remark 5.1 Other techniques to enforce the periodicity have been proposed in the litera-

ture. For instance Miehe [21] uses Lagrange multipliers. Another alternative lies in the

modification of the basis functions of the respective degrees of freedom on the positive and

negative edge of the RVE, see Reference [33].

5.2 Homogenized macro quantities

With the respective solved RVE system at hand, we obtain the sought-for macroscopic

quantities, i. e. the traction vector (6)2 and the tangent operator (8) at the superordi-

nate interface integration point from a computational homogenization. Therefore the

prescribed nodes at the top and bottom of the RVE (pn) and the free nodes (fn) given

by all other independent nodes are identified,

Ipn ∈ {top, bottom} , Ifn ∈ {left, interior} , (43)
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M̄

N̄

h0

independent dofs:

dependent dofs:

left-side

right-side

interior

top, bottom

Figure 8: Simple RVE mesh displaying the independent degrees of freedom, which com-

prise the prescribed nodes on the top and the bottom boundary (black-filled),

the left-hand side nodes as well as the interior nodes, and the dependent de-

grees of freedom (white-filled), which only consist of the right-hand side nodes

of the RVE.

Table 1: Flow chart on the numerical treatment of the periodicity. ϕ(0) is the vector with

the deformation dofs before and ϕ(1) after the solution of the current step.

0. initialization: get dofs ϕ(0) from coordinates of last step (initially ϕ(0) = X)

1. get Ke and Re from individual RVE elements

2. assemble to global stiffness K=
nel

A
e=1

Ke, R=
nel

A
e=1

Re

3. separate K and R into independent and dependent dofs

K=

�
Kii Kid

Kdi Kdd

�
, R=

�
Ri

Rd

�

4. get stiffness matrix K
⋆ for independent dofs by transformation

get residual vector R⋆ for the transformed system

extract all independent dofs ϕ
(0)

i

5. solve system of independent dofs and obtain ϕ
(1)

i

6. update dependent dofs : ϕ
(1)

d
=Ddi · [ϕ

(1)

i
− X i] + Xd

7. gather all dofs ϕ(1) = [ϕ
(1)

i
,ϕ
(1)

d
]t

8 check convergence

⊲ if residual norm of system in independent dofs > TOL

set ϕ(0) = ϕ(1), go to step 1 and repeat procedure

⊲ else if residual norm of system in independent dofs ≤ TOL

RVE system is solved
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in the system, as it was solved for the independent degrees of freedom:

�
K⋆pn,pn K⋆pn,fn

K⋆fn,pn K⋆fn,fn

�
·

�
∆ϕ⋆pn

∆ϕ⋆
fn

�
=

�
∆ f ⋆pn

0

�
(44)

Note that at the solved state, the internal nodal forces at the prescribed nodes represent

the reaction forces. With this the system can be further condensed into the contribution

of the prescribed nodes only

K⋄ ·∆ϕpn =∆f⋄ . (45)

Therein stiffness matrix K⋄ and the external nodal force vector f⋄ are determined as

K⋄ =K⋆pn,pn−K⋆pn,fn · (K
⋆
fn,fn)

−1 ·K⋆fn,pn , f⋄ := f⋆pn . (46)

This allows to obtain the resulting traction from the reaction forces at these prescribed

nodes and the tangent being the operator that, applied on the macro separation incre-

ment, yields the the resulting traction increment.

5.2.1 Traction

With the reaction force at the prescribed boundary nodes (46) at hand, we retrieve the

homogenized macro traction vector (21) by means of the average of the Piola stress (14)

as

t̄ 0 =
1

V0

npn∑

Ipn

[f⋄Ipn
⊗ X Ipn

] · N̄ (47)

Thereby the summation runs over all npn prescribed nodes on the top and bottom bound-

aries of the representative volume element, ∂Bh
0

T
∪ ∂Bh

0

B
.

5.2.2 Tangent

For the RVE we are seeking the tangent operator in the incremental formulation of (8) for

a finite increment ∆t̄ 0 as it is used in a Newton–Raphson scheme. From the increment

of the macro traction (47) with the reduced system (45) we directly obtain the tangent

as

Ā=
1

w0h2
0

�
N̄ ⊗ N̄
�

:




npn∑

Ipn

npn∑

Kpn

[XKpn
⊗ X Ipn

]⊗K⋄IpnKpn


 . (48)

Therein the prescribed deformation boundary conditions (24) at nodes Kpn were con-

sidered. Hereby the summation runs over all nodes Ipn, Kpn on the prescribed top and

bottom boundary ∂Bh
0

T
∪ ∂Bh

0

B
. For further details on the set of equations constituting

the computational framework, the reader is referred to Reference [6].
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6 Numerical examples

In order to illustrate the proposed computational homogenization procedure, numerical

examples are presented. Underlying to a material layer, sample microstructures with ei-

ther voids or inclusions are simulated. First, we study the proper choice of the RVE at the

example of a tailored microstructure within a periodic material layer, Section 6.1, with

one interface element, as illustrated in Figure 9. More complex macro boundary value

problems are studied in Sections 6.2 and 6.3. At the macro level, the cohesive interface

is embedded in a bulk finite-element mesh with linear, respectively bi-linear approxima-

tions. The underlying microstructure or rather the representative volume elements are

discretized by bi-quadratic bulk elements.

6.1 Choice of the RVE

Within the simplified multiscale framework that is shown in Figure 9, a material layer

with a periodic microstructure is considered. In the darker grey region of the periodic

microstructure in Figure 10, the Young’s modulus is chosen five times as high as in the

lighter one. For this periodic microstructure, the proper choice of the RVE is investigated.

To this end, out of the various possible options, one non-symmetric and one symmetric

RVE are chosen, which both possess a width to height ratio of 2/3. With the aid of the

simplest possible macro problem, a single interface element, which is shown in Figure 9,

we evaluate the homogenized macro response to fully prescribed mixed-mode loading,

ūM̄ = 5 ūN̄ . This deformation is applied step-wise until a final shearing of ūM̄ = 0.4h0 is

reached. The response is evaluated for both cases, the non-symmetric and the symmetric

RVEs. Figure 11 shows the spatial meshes of these after the first load step of ūM̄ = 0.04h0.

The stress in the RVE is considered first. Figure 12 shows the components of the

ūM̄

ūM̄
ūM̄

ūM̄

Figure 9: Benchmark problem for multiscale framework: Single interface element sub-

jected to shear with a arbitrary sample RVE underlying to each of its integration

points.
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Figure 10: Periodic microstructure: choice of non-symmetric RVE vs. symmetric RVE.

(a) (b)

Figure 11: Spatial meshes of (a) non-symmetric RVE vs. (b) symmetric RVE at ūM̄ =

5 ūN̄ = 0.04h0.

Cauchy type stress in the RVE. In the first row the stress in the non-symmetric and in

the second row that of the symmetric RVE are plotted. Repetitive features in the stress

distribution can be recognized. However, especially close to the lateral boundaries of the

respective RVE, the stress patterns are not fully congruent. This is attributed to the stress

interpolation algorithm in the plot routine, which does not account for the periodicity

along the lateral edges.

Although the stress distributions do not appear entirely identical, the macro response

is. This is shown with the resulting traction–separation laws from the computational

homogenization (47). It is compared for both RVE choices in Figure 13. The response

in normal direction obeys a nonlinear relation, whereas the traction–separation curve

for the shear is approximately linear. Both the tangential and the normal traction–

separation curves of the two RVEs prove to coincide. Consequently, despite the slightly

deviating stress, this choice of the RVE in the infinite layer has no impact on the macro

response.
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(a)

σM̄ M̄ σN̄ N̄ σM̄ N̄ =σN̄ M̄

(b)

Figure 12: Cauchy stress components for (a) non-symmetric and (b) symmetric RVE.
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Figure 13: Traction–separation curve with (a) non-symmetric and (b) symmetric RVE.
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6.2 Infinite material layer under shear-dominated mixed-mode loading

In order to simulate a straight material layer of large in-plane extension, a single column

of elements, comprising one interface element, is modelled periodically on the macro

level, as depicted in Figure 14. The total height of the shear layer is given as H̄0 = 20h0.

For opposite nodes at the left and right side, periodic deformations are enforced. In

this way, the column represents a small portion of a layer with ideally infinite in-plane

extension. The deformation of the problem is prescribed at the top and the bottom

(ūpre,T = −ūpre,B), with a shear-dominated mixed mode, with the horizontal or rather

tangential displacement being ten times the tensile or rather normal displacement. This

deformation is applied step-wise, until a final tangential deformation of ū
pre,T

M̄
= 0.2w̄0 is

reached.

Different micro meshes are examined: First, microstructures with a void of differ-

ent shape and size are simulated and compared to the response of a homogeneous mi-

crostructure. Thereafter, the shear layer is investigated with RVEs containing inclusions

of higher stiffness and different distributions. At the macro level, bi-linear shape func-

tions are used.

6.2.1 Microstructures with voids

The problem is first studied for microstructures with voids. A homogeneous RVE of

width w0 = 0.1h0 is compared with two square RVEs with each containing a centred

circular hole of 5% and 25% void ratio, respectively, and another square specimen with

a centred lentil-shaped void. These microstructures are discretized with bi-linear finite

elements. The macro material parameters are chosen to be Ē = 100E, ν̄ = ν = 0.3.

For a macro displacement load of ūpre,T = −ūpre,B = 0.2w̄0 M̄ + 0.02w̄0 N̄, in Fig-

ure 15(b)–(d) the respective spatial macro meshes are plotted, whereas the correspond-

ing spatial micro meshes are shown in Figure 16. Based on the different size and shape

of the voids, the stiffness of the specimen differs. This is qualitatively reflected in the de-

formed meshes. The weaker the RVE reacts, the stronger is the deformation localized in

the material layer. The differently stiff response is quantitatively analyzed in Figure 17.

The force– displacement curves in tangential and normal direction are evaluated for the

top nodes of the macro specimen. The specimen with the lens-shaped void yields the

least stiff response, whereas for decreasing size of the void, the stiffness increases.

6.2.2 Microstructures with inclusions

Next, underlying to the material layer situated within the periodic macro shear layer,

microstructures equipped with inclusions are examined. These possess a greater stiff-

ness than the surrounding matrix material in the material layer. The different material

meshes are schematized in Figure 18. In the darker elements, Young’s modulus is cho-

sen five times that of the light-grey elements, E2 = 5E1 = Ē/200, while Poisson’s ratio is

chosen equally as ν̄ = ν1 = ν2 = 0.3.
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ūM̄

ūM̄

ūN̄

ūN̄

Figure 14: Infinite periodic shear layer including material layer: multiscale boundary

value problem.

As for the microstructures with voids in Section 6.2.1, the force–displacement curves

at the top of the macro specimen are compared here in Figure 19. Depending on the

size and distribution of the inclusions, the resulting macroscopic force–displacement

curves differ from each other. As expected, the specimen with the largest inclusion ratio,

Figure 18(b), exhibits the stiffest behaviour.
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(a) (b) (c) (d) (e)

Figure 15: Shear layer with interface: (a) material macro mesh; spatial macro mesh

at ūM̄ = 0.2w̄0 for different microstructures: (b) benchmark homogeneous

microstructure, (c) 5% void, (d) 25% void, (e) lens-shaped void.

σM̄ M̄

σN̄ N̄

σM̄ N̄

Figure 16: Shear layer with interface: spatial RVEs and Cauchy-stress σ.
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Figure 17: Shear layer with interface, underlying RVE with voids: force–displacement

curves at top node, (a) tangential, (b) normal component

(a) (b) (c)

(d) (e) (f)

Figure 18: RVEs for microstructure with inclusions: (a)–(c) material meshes with het-

erogeneous material properties, (d)–(e) corresponding spatial meshes.
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Figure 19: Macro force–displacement curves, (a) tangential and (b) normal components.
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6.3 Macrostructure with material layer next to a hole

As the final example, we consider a square specimen with an initially circular centred

hole at the macro level with a material layer located at the lateral sides of this hole,

shown in Figure 20. The response of this layer is evaluated based on its underlying

microstructure, which is represented by a square RVE with a centred lens shaped void.

As also illustrated in Figure 20, we consider two different orientation of this RVE: a

horizontal (or rather tangential) and a vertical one. In the discretized macro specimen,

three interface elements are located at each side of the hole. At each of their integration

points, the respective RVE is used to evaluate the material response of the material layer.

In contrast to the similar RVE of Section 6.2.1, Figure 16, here fewer elements with bi-

quadratic shape functions are chosen. The total height of the macro specimen is chosen

to be H̄0 = 10h0, with h0 being the height of the material layer. For the choice of a square

RVE, its width then results as w0 = h0 = H̄0/10.

In order to identify the respective spatial RVEs assigned to the interface element in-

tegration points along the interface element, we introduce the coordinate Ξ̄ = 2X̄ M̄/w̄0

that denotes the relative initial location compared to half the width of the macro spec-

imen as illustrated in Figure 20. Figure (21) displays the corresponding spatial RVE

meshes at the integration point coordinates. Knowing that the model prevents a lateral

deformation of the RVE, we observe that the RVE with the horizontally oriented void

undergoes larger deformations in loading direction. This qualitative result is supported

by the quantitative curves in in Figure 22. Here, besides the spatial macro mesh, the cor-

responding homogenized tractions t̄N̄ and the separations ¹ϕ̄N̄º at these macro Gauss

points are plotted versus their position Ξ̄. As expected, closer to the macroscopic hole,

both the traction and the deformation increase more steeply. Furthermore, the orien-

tation of the lens-shaped void plays a significant role. The horizontally oriented void

attracts more separation and less traction, while the slope of the traction–separation

curve is less steep. Consequently, this specimen involves a weaker response than that

with the vertically oriented void. This is also reflected in the two resulting traction–

separation curves at the macro integration point closest to the hole, t̄N̄ versus ¹ϕ̄N̄º. It

can be observed that by their orientation, heterogeneities in the microstructure can yield

anisotropic effects in the global response of the material layer.
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Ξ̄

0 1

RVE (a)

RVE (b)

Figure 20: Multiscale boundary value problem with the two RVEs under investigation,

material finite-element mesh: Macro specimen with circular void and hori-

zontal interface layer, RVE (a) with horizontally and RVE (b) with vertically

oriented lens-shaped void.
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(a)

Ξ̄1 Ξ̄2 Ξ̄3 Ξ̄4 Ξ̄5 Ξ̄6

(b)

Ξ̄1 Ξ̄2 Ξ̄3 Ξ̄4 Ξ̄5 Ξ̄6

Figure 21: Spatial RVE meshes along the interface at interface integration point coor-

dinates Ξ̄i = 0.522,0.581,0.638,0.737,0.821,0.952: (a) horizontally and (b)

vertically oriented lens-shaped void.
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Figure 22: (a) Spatial macro mesh; (b) traction–separation curve at point Ξ̄ = 0.522;

(c) separation and (d) traction over the integration point position Ξ̄ along

the interface.
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7 Conclusion

In this contribution, we have proposed a computational homogenization approach for a

microscopically heterogeneous material layer. On the basis of the underlying microstruc-

tural constitution, the macroscopic response of a body containing this material layer

is efficiently determined. The proposed approach is based on a continuum mechanics

framework at finite deformations with a cohesive interface to represent the material

layer. Based on existing continuum homogenization principles, the vectorial quantities

traction and separation at the macro level have been related to the averaged tensorial

stress and deformation gradient at the micro level. The height of the representative

volume element has been considered as the height of the material layer itself. Thus

this quantity enters the equivalence of the virtual work of both scales. The possible

tensile and shear deformation modes in the interface have been accounted for through

customized boundary conditions on the representative volume element, which are hy-

brid between prescribed deformation out of the plane and periodic deformation in the

plane of the interface. The developed theoretical framework has been successfully em-

bedded in a computational homogenization procedure that couples the macroscopic and

the microscopic response in an iterative nested solution procedure. Numerical examples

have revealed that the macroscopic response depends on the particular geometry and

material properties of the respective microstructure. With the continuous representative

volume element and the customized hybrid boundary conditions, mixed-mode loading

is captured in a natural manner. Additionally to existing approaches to mixed-mode re-

sponse, e. g. of References [29, 36], the behaviour here is dictated by its microstructure

rather than by an a priori constitutive assumption.

Some challenges for future research evolve from this contribution, either concerning

the constitutive/continuum formulation or the numerical framework. First of all, in

addition to the hyperelastic constitutive format chosen here, the incorporation of irre-

versible behaviour within the microstructure, as done in Reference [17] for small strain,

for finite strains remain as a challenge for future research. Only such choices can render

the typical traction–separation laws expected based on References [27, 38]. The present

multiscale framework with the classical continuum within the RVE does not account for

size effects, which can occur when a significant intrinsic microstructure in the interfa-

cial material coincides with a particularly thin material layer. In such cases, we suggest

to employ a generalized continuum as for instance a micromorphic or higher-gradient

continuum on the RVE level, as pursued in Reference [7]. One limitation of the mul-

tiscale model, which we have particularly identified in the last numerical example, is

the fact that although at the macro level there is no obstacle to a lateral contraction of

the material layer, the present homogenization framework provides no option to pass

this lateral contraction to the underlying representative volume element or vice versa to

incorporate the resistance of the RVE against lateral contraction into the homogeniza-

tion. Recognizing this limitation, it remains as a non-trivial task for future research to

enhance the micro–macro transition in this respect such that also a lateral contraction

can be taken into account appropriately whenever it is needed.

The interface elements used to model the cohesive layer at the macro level could be
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used in a wider range of boundary value problems, once contact algorithms to capture

compression in the interface are implemented. It is noteworthy that the proposed com-

putational homogenization for material layers is not only restricted to finite interface

elements, but can be employed whenever a constitutive relation for a cohesive layer is

to be evaluated at an integration point. When the proposed computational homoge-

nization framework is combined with more elaborate approaches to treat discontinuous

deformations, such as the partition-of-unity based X-FEM [26] or approaches based on

Nitsche’s method [19], it has potential to serve as a powerful multiscale tool in the simu-

lation of cohesive discontinuities which are governed by their underlying heterogeneous

microstructure.
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