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THE PARISI FORMULA IS A HAMILTON-JACOBI EQUATION

IN WASSERSTEIN SPACE

J.-C. MOURRAT

Abstract. The Parisi formula is a self-contained description of the infinite-volume
limit of the free energy of mean-field spin glass models. We show that this quantity
can be recast as the solution of a Hamilton-Jacobi equation in the Wasserstein
space of probability measures on the positive half-line.

1. Introduction

Let (βp)p⩾2 be a sequence of non-negative numbers, which for simplicity we assume
to contain only a finite number of non-zero elements, and, for every r ∈ R, let
ξ(r) ∶= ∑p⩾2 βprp. For every integer N ⩾ 1, let PN denote a probability measure

on RN , which we often (but not always) assume to be such that

(1.1)

⎧⎪⎪
⎨
⎪⎪⎩

either PN is the uniform measure on {−1,1}N for every N ⩾ 1,

or PN is the uniform measure on {σ ∈ RN ∶ ∣σ∣2 = N} for every N ⩾ 1.

We aim to study Gibbs measures built from the probability measure PN using as
energy function the centered Gaussian field (HN(σ))σ∈RN with covariance

E [HN(σ)HN(τ)] = Nξ (
σ ⋅ τ

N
) (σ, τ ∈ RN).

This Gaussian vector can be built explicitly using independent linear combinations of
quantities of the form ∑1⩽i1,...,ip⩽N Ji1,...,ipσi1⋯σip , where (Ji1,...,ip) are independent
standard Gaussian random variables. The Gibbs measures thus obtained are often
called mixed p-spin models, possibly with the qualifiers “spherical” or “with Ising spins”
when PN is the uniform measure on the sphere in RN or on {−1, 1}N respectively. The
Sherrington-Kirkpatrick model corresponds to the case of Ising spins and ξ(r) = βr2.
The Parisi formula is a self-contained description of the limit free energy

lim
N→∞

1

N
E log∫ exp (HN(σ)) dPN(σ).

The identification of this limit was put on a rigorous mathematical footing in [19, 31,
32, 33, 26], after the fundamental insights reviewed in [20].

The main goal of the present paper is to propose a new way to think about this
result. This new point of view reveals a natural connection with the solution of a
Hamilton-Jacobi equation posed in the space of probability measures on the positive
half-line. For every metric space E, we denote by P(E) the set of Borel probability
measures on E, and by δx the Dirac measure at x ∈ E. We also set, with ξ∗ denoting
the convex dual of ξ defined precisely below in (1.4),

P∗(R+) ∶= {µ ∈ P(R+) ∶ ∫
R+
ξ∗(s)dµ(s) < ∞} .
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2 J.-C. MOURRAT

Theorem 1.1 (Hamilton-Jacobi representation of Parisi formula). Assume (1.1), fix
the normalization ξ(1) = 1, and let (t, µ) ↦ f(t, µ) ∶ R+ × P∗(R+) → R be the solution
of the Hamilton-Jacobi equation

(1.2)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∂tf − ∫ ξ(∂µf)dµ = 0 on R+ × P∗(R+),

f(0, ⋅) = ψ on P∗(R+),

where the function ψ is described below in (3.1) and Proposition 3.1. For every t ⩾ 0,

(1.3) lim
N→∞

−
1

N
E log∫ exp (

√
2tHN(σ) −Nt) dPN(σ) = f(t, δ0).

Interestingly, the evolution equation in (1.2) depends on the correlation function ξ
but not on the measures PN , while, as will be seen below, the initial condition ψ
depends on the measures PN but not on ξ. We postpone a precise discussion of
the meaning of the equation (1.2), and start by explaining the background and
motivations for looking for such a representation.

Recently, a new rigorous approach to the identification of limit free energies of
mean-field disordered systems was proposed in [23, 22], inspired by [18, 4, 3]. The
idea proposed there is to place the main emphasis on the fact that after “enriching”
the problem, we can identify the limit free energy as the solution of a Hamilton-Jacobi
equation. At least for the problems considered there, one can show that finite-volume
free energies already satisfy the same Hamilton-Jacobi equation, except approximately.
In particular, the approach allows for a convenient breakdown of the proof into two
main steps: a first, more “probabilistic” part, which aims at showing that finite-
volume free energies indeed satisfy an approximate Hamilton-Jacobi equation; and a
second, more “analytic” part, which takes this information as input and concludes
that the limit must solve the equation exactly.

The problems studied in [23, 22] relate to statistical inference. They possess a
particular feature that enforces “replica symmetry”, and this allows for a complete
resolution of the problem by adding only a finite number of extra variables to the
problem. As is well-known, this is not the case for mean-field spin glasses as those
considered here. The relevant Hamilton-Jacobi equation, if any, must therefore be
set in an infinite-dimensional space.

The identity of this Hamilton-Jacobi equation is revealed by Theorem 1.1. The
aim of the present paper is to demonstrate the presence of this structure, and we
will therefore simply borrow formulas from the literature for the limit on the left side
of (1.3), and check that the expressions found there agree with the right side of (1.3).
Hence, I want to stress that Theorem 1.1 is a rephrasing of known results.

However, I believe that Theorem 1.1 can be useful in furthering our understanding
by providing a new way for us to think about these results—see also [34] for general
considerations on the relevance of such endeavors. In the long run, I hope indeed
that this new interpretation of the Parisi formula will suggest a new and possibly
more robust and transparent approach to the identification of the limit free energy
of disordered mean-field systems. For this purpose, it will be important to rely
on stability estimates for the Hamilton-Jacobi equation (1.2) (that is, estimates
asserting that a function satisfying the equation approximately must be close to the
true solution). This should leverage on powerful approaches to the well-posedness
of Hamilton-Jacobi equations such as the notions of viscosity or weak solutions, as
exemplified in the finite-dimensional setting in [23] and [22] respectively. Since the
purpose of the present paper is only to demonstrate the presence of the Hamilton-
Jacobi structure, I will refrain from exploring this direction here. Since the completion
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of this work, partial results on bipartite models have been obtained in [21] using
the idea uncovered here. In [21, Section 6], it is also argued that more standard
variational approaches do not seem to be applicable for such models.

This Hopf-Lax formulation features an optimal transport problem involving the
cost function (x, y) ↦ ξ∗(x − y), where ξ∗ is the convex dual of ξ defined by

(1.4) ξ∗(s) ∶= sup
r⩾0

(rs − ξ(r)).

Notice that the function ξ is convex on R+, and the precise way to interpret ξ∗ is as
the dual of the convex and lower semicontinuous function on R which coincides with ξ
on R+ and is +∞ otherwise. (The function f of interest to us satisfies a monotonicity
property which can be interpreted as ∂µf ⩾ 0 in a weak sense, and thus modifying ξ
on R ∖R+ is irrelevant to the interpretation of (1.2)—see also [22] for a more precise
discussion of this point in finite dimension, as well as Lemma 2.4 below).

Optimal transport problems for measures on the real line are in some sense trivial,
in that the couplings between pairs of measures can be realized jointly over all
measures, and do not depend on the convex function ξ∗ entering the definition of the
cost function. Denoting, for every µ ∈ P(R+) and r ∈ [0,1],

(1.5) F−1
µ (r) ∶= inf {s ⩾ 0 ∶ µ ([0, s]) ⩾ r} ,

and letting U be a uniform random variable over [0,1] under P, we set

(1.6) Xµ ∶= F
−1
µ (U).

It is classical to verify that the law of Xµ under P is µ, and that for any two measures
µ, ν ∈ P∗(R+), the law of the pair (Xµ,Xν) is an optimal transport plan for the cost
function (x, y) ↦ ξ∗(x − y) (see e.g. [35, Theorem 2.18 and Remark 2.19(ii)] or [2,
Theorem 6.0.2]). As discussed above, for the purposes of this paper we define the
solution of (1.2) to be given by the Hopf-Lax formula

(1.7) f(t, µ) ∶= sup
ν∈P∗(R+)

(ψ(ν) − tE [ξ∗ (
Xν −Xµ

t
)]) .

Although this will not be used here, one can give a brief and nonrigorous idea of the
definition of the derivative ∂µ formally appearing in (1.2) in the case when it applies
to a sufficiently “smooth” function g ∶ P∗(R+) → R: for each µ ∈ P∗(R+), we want
∂µg(µ, ⋅) to satisfy ∫ ξ(∂µg(µ, ⋅))dµ < ∞, and be such that, as ν → µ in P∗(R+),

(1.8) g(ν) = g(µ) +E [∂µg(µ,Xµ)(Xν −Xµ)] + o (∥Xν −Xµ∥L∗) ,

where ∥Y ∥L∗ denotes the ξ∗-Orlicz norm of a random variable Y , see [29],

∥Y ∥L∗ ∶= inf {t > 0 ∶ E [ξ∗(t−1Y )] ⩽ ξ∗(1)} .

From this informal definition, one can work out finite-dimensional approximations
of the equation (1.2) by imposing, for instance, that only measures of the form

k−1∑k`=1 δx` are “permitted”. This brings us within the realm of finite-dimensional
Hamilton-Jacobi equations and allows for instance to verify the correspondence
between the equation (1.2) and the Hopf-Lax formula (1.7) at the level of these
approximations.

We will in fact consider a richer family of finite-volume free energies than what
appears on the left side of (1.3), parametrized by (t, µ) ∈ R+ × P∗(R+), and I expect
that these free energies converge to f(t, µ) as N tends to infinity, where f is the
solution of (1.2). In fact, I expect that a similar result holds for a much larger class
of measures PN than those covered by the assumption of (1.1). A precise conjecture
to this effect is presented in Section 2. The identification of the initial condition ψ
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appearing in (1.2) is then discussed in Section 3. The proof of Theorem 1.1 is given
in Section 4. Finally, finite-dimensional approximations of (1.2) are briefly explored
in Section 5.

2. Conjecture for a general reference measure

The main goal of this section is to state a conjecture generalizing Theorem 1.1 to
a wider class of measures PN than those appearing in (1.1). For simplicity, we retain
the assumption that

(2.1) the measure PN is supported in the ball {σ ∈ RN ∶ ∣σ∣2 ⩽ N}.

If there exists some R ∈ (0,∞) such that for every N , the measure PN is supported
in the ball {σ ∈ RN ∶ ∣σ∣2 ⩽ RN}, then one can without loss of generality reduce to
the case in (2.1) by rescaling the function ξ.

In order to gain some familiarity with Theorem 1.1 and its conjectured generaliza-
tion, we start by illustrating the driving idea in simpler settings. Possibly the simplest
demonstration of the idea of identifying limit free energies of mean-field systems
as solutions of Hamilton-Jacobi equations concerns the analysis of the Curie-Weiss
model, see e.g. [23, Section 1] (earlier references include [25, 6]). We give here another
simple illustration for spin glasses in the high-temperature regime, which is similar
to discussions in [18]. For every t, h ⩾ 0, we consider the “enriched” free energy

(2.2) F
○
N(t, h)

∶= −
1

N
E log∫ exp (

√
2tHN(σ) −Ntξ (N−1

∣σ∣2) +
√

2hz ⋅ σ − h∣σ∣2) dPN(σ),

where z = (z1, . . . , zN) is a vector of independent standard Gaussians, independent
of HN , and where ∣σ∣2 = ∑Ni=1 σ2i . Notice that under the assumptions of Theorem 1.1,

we have ∣σ∣2 = N and ξ(N−1∣σ∣2) = 1. The terms −Ntξ (N−1∣σ∣2) and −h∣σ∣2 inside
the exponential in (2.2) are natural since they ensure that

E [exp (
√

2tHN(σ) −Ntξ (N−1
∣σ∣2) +

√
2hz ⋅ σ − h∣σ∣2)] = 1.

(Observing that HN(σ) and z ⋅ σ are independent centered Gaussians of variance
Nξ (N−1∣σ∣2) and ∣σ∣2 respectively, this follows either by recognizing an exponential
martingale, or by differentiating in t and h and using Gaussian integration by
parts.) In statistical physics’ terminology, one may say that we have normalized
the Hamiltonian so that the annealed free energy is always zero. The minus sign in
front of the expression on the right side of (2.2) is also convenient since, by Jensen’s

inequality, we thus have F
○
N ⩾ 0. One can check that

(2.3) ∂tF
○
N − ξ (∂hF

○
N) = E ⟨ξ (

σ ⋅ σ′

N
)⟩ − ξ (E ⟨

σ ⋅ σ′

N
⟩) .

In the case when ξ is convex over R, the right side of (2.3) is non-negative, and thus

we already see that F
○
N is a supersolution of a simple Hamilton-Jacobi equation.

Moreover, one can expect in many settings that the initial condition F
○
N(0, h)

converges as N tends to infinity; for instance, when PN is the N -fold product measure
PN = P⊗N

1 , we have

F
○
N(0, h) = F

○
1(0, h) = −E log∫

R
exp (

√
2hz1σ − hσ

2
) dP1(σ),

where in this expression, the variable z1 is a scalar standard Gaussian. Finally, if we
expect the overlap σ ⋅ σ′ to be concentrated around its expectation, which should be
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correct in a high-temperature region (that is, for t sufficiently small), then it should

be that F
○
N converges to the solution of the equation ∂tf − ξ(∂hf) = 0.

However, as is well-known, the overlap σ ⋅ σ′ is in fact not always concentrated
around its mean value, and a more refined approach is necessary. In order to proceed,
as in [19, 31, 32, 33, 26], we need to compare the system of interest with a much more

refined “linear” system than
√

2hz ⋅ σ. We parametrize the more refined systems by
a measure µ ∈ P(R+) (and not µ ∈ P([0, 1]) as experts may expect). It is much more
convenient to describe this more refined system in the case when µ is a measure of
finite support: we assume that for some integer k ⩾ 0, there exist

(2.4) 0 = ζ0 < ζ1 < ⋯ < ζk < ζk+1 = 1, 0 = q−1 ⩽ q0 < q1 < ⋯ < qk < qk+1 = ∞

such that

(2.5) µ =
k

∑
`=0

(ζ`+1 − ζ`)δq` .

We represent the rooted tree with (countably) infinite degree and depth k by

A ∶= N0
∪N ∪N2

∪⋯ ∪Nk,

where N0 = {∅}, and ∅ represents the root of the tree. For every α ∈ N`, we
write ∣α∣ ∶= ` to denote the depth of the vertex α in the tree A. For every leaf
α = (n1, . . . , nk) ∈ Nk and ` ∈ {0, . . . , k}, we write

α∣` ∶= (n1, . . . , n`),

with the understanding that α∣0 = ∅. We also give ourselves a family (zα,i)α∈A,1⩽i⩽N
of independent standard Gaussians, independent of HN , and we let (vα)α∈Nk denote
a Poisson-Dirichlet cascade with weights given by the family (ζ`)1⩽`⩽k. We refer
to [26, (2.46)] for a precise definition, and briefly mention here the following three
points. First, in the case k = 0, we simply set v∅ = 1. Second, in the case k = 1,
the weights (vα)α∈N are obtained by normalizing a Poisson point process on (0,∞)

with intensity measure ζ1x
−1−ζ1 dx so that ∑α vα = 1. Third, for general k ⩾ 1, the

progeny of each non-leaf vertex at level ` ∈ {0, . . . , k − 1} is decorated with the values
of an independent Poisson point process of intensity measure ζ`+1x−1−ζ`+1 dx, then the
weight of a given leaf α ∈ Nk is calculated by taking the product of the “decorations”
attached to each parent vertex, including the leaf vertex itself (but excluding the
root), and finally, these weights over leaves are normalized so that their total sum
is 1. We take this Poisson-Dirichlet cascade (vα)α∈Nk to be independent of HN and
of the random variables (zα)α∈A. For every σ ∈ RN and α ∈ Nk, we set

(2.6) H ′
N(σ,α) ∶=

k

∑
`=0

(2q` − 2q`−1)
1
2 zα

∣`
⋅ σ,

where we write zα
∣`
⋅ σ = ∑

N
i=1 zα∣`,i σi. The random variables (H ′

N(σ,α))σ∈RN ,α∈Nk
form a Gaussian family which is independent of (HN(σ))σ∈RN and has covariance

E [H ′
N(σ,α)H ′

N(τ, β)] = 2qα∧β σ ⋅ τ (σ, τ ∈ RN , α, β ∈ Nk),

where we write, for every α,β ∈ Nk,

α ∧ β ∶= sup{` ⩽ k ∶ α∣` = β∣`}.
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We define the “enriched” free energy as

(2.7) FN(t, µ) ∶= −
1

N
log∫ ∑

α∈Nk
exp (

√
2tHN(σ) −Ntξ (N−1

∣σ∣2)

+H ′
N(σ,α) − qk∣σ∣

2
) vα dPN(σ),

and FN(t, µ) ∶= E [FN(t, µ)]. As for (2.2), we have normalized this expression so
that, by Jensen’s inequality, we have FN ⩾ 0. We first notice that this quantity can
be extended to all µ ∈ P1(R+) by continuity.

Proposition 2.1 (Continuity and extension of FN(t, µ)). Assume (2.1). For each
t ⩾ 0 and µ,µ′ ∈ P(R+) with finite support, we have

(2.8) ∣FN(t, µ′) − FN(t, µ)∣ ⩽ E [∣Xµ′ −Xµ∣] .

In particular, the mapping µ↦ FN(t, µ) can be extended by continuity to the set

P1(R+) ∶= {µ ∈ P(R+) ∶ ∫ sdµ(s) < ∞} .

The proof of proposition 2.1 makes use of the following two lemmas. The first
one provides an explicit procedure for integrating the randomness coming from the
Poisson-Dirichlet cascade. We refer to [26, Theorem 2.9] for a proof. (Notice that
the indexation of the family ζ differs by one unit between here and [26].)

Lemma 2.2 (Integration of Poisson-Dirichlet cascades). Assume (2.1), and fix t ⩾ 0.
For every y0, . . . , yk ∈ RN , define

(2.9) Xk(y0, . . . , yk) ∶=

log∫ exp(
√

2tHN(σ) −Ntξ (N−1
∣σ∣2) +

k

∑
`=0

(2q` − 2q`−1)
1
2 y` ⋅ σ − qk∣σ∣

2
) dPN(σ),

and then recursively, for every ` ∈ {1, . . . , k},

(2.10) X`−1(y0, . . . , y`−1) ∶= ζ−1` logEy` exp (ζ`X`(y0, . . . , y`)) ,

where, for every ` ∈ {0, . . . , k}, we write Ey` to denote the integration of the variable

y` ∈ RN along the standard Gaussian measure. We have

−N E [FN(t, µ) ∣ (HN(σ))σ∈RN ] = Ey0 [X0(y0)] .

In order to state the second lemma, we introduce notation for the Gibbs measure
associated with the free energy FN . That is, for every bounded measurable function
f ∶ RN ×Nk → R, we write

(2.11) ⟨f(σ,α)⟩t,µ ∶= exp (NFN(t, µ))

×∫ ∑
α∈Nk

f(σ,α) exp (
√

2tHN(σ) −Ntξ (N−1
∣σ∣2) +H ′

N(σ,α) − qk∣σ∣
2
) vα dPN(σ).

We usually simply write ⟨⋅⟩ instead of ⟨⋅⟩t,µ unless there is a risk of confusion. Notice

that the measure ⟨⋅⟩ depends additionally on the realization of the Gaussian field
(HN(σ)) and of the variables (zα). By the definition of FN(t, µ), we have ⟨1⟩ = 1,
and thus ⟨⋅⟩ can be interpreted as a probability distribution on RN ×Nk. We also
need to consider “replicated” pairs, denoted by (σ,α), (σ′, α′), (σ′′, α′′), . . ., which
are independent and are each distributed according to ⟨⋅⟩ (conditionally on (HN(σ))
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and (zα)). We keep writing ⟨⋅⟩ to denote the tensorized measure, so that for instance,
for every bounded measurable f, g ∶ RN ×Nk → R, we have

⟨f(σ,α) g(σ′, α′)⟩ = ⟨f(σ,α)⟩ ⟨g(σ′, α′)⟩ .

The second lemma we need identifies the law of the overlap between α and α′ under
the Gibbs measure, after also averaging over the randomness coming from (HN(σ))
and (zα) (averaging over (zα) only would be sufficient).

Lemma 2.3 (overlaps for the Poisson-Dirichlet variables). Whenever the measure µ
is of the form in (2.4)-(2.5), we have, for every t ⩾ 0 and ` ∈ {0, . . . , k},

E ⟨1{α∧α′=`}⟩t,µ = ζ`+1 − ζ`.

Proof. The argument can be extracted from [33], or by observing that the derivation
of [26, (2.82)] applies as well to the measures considered here. A slightly adapted
version of the latter argument is as follows. We fix ` ∈ {0, . . . , k}, and let (gβ)β∈N`
be a family of independent standard Gaussians, independent of any other random
variable considered so far. For every α,β ∈ Nk, we have

(2.12) E [gα
∣`
gβ
∣`
] = 1{α

∣`=β∣`}.

Recall the construction of the Poisson-Dirichlet cascade outlined in the paragraph
above (2.6), see also [26, (2.46)], and denote by wα the weights attributed to the
leaves by taking the product of the “decorations” of the parent vertices, before
normalization, as in [26, (2.45)], so that

vα =
wα

∑β∈Nk wβ
.

By [26, (2.26)], for every s ∈ R, we have that

(wα, gα
∣`
)α∈Nk and (wα exp (s (gα

∣`
−
sζ`
2 )) , gα

∣`
− sζ`)

α∈Nk

have the same law up to reorderings that preserve the tree structure: that is,
we identify two families (aα)α∈Nk and (bα)α∈Nk whenever there exists a bijection
π ∶ Nk → Nk satisfying, for every α,β ∈ Nk,

aα = bπ(α) and π(α) ∧ π(β) = α ∧ β.

We denote

vα,`,s ∶=
wα exp (sgα

∣`
)

∑β∈Nk wβ exp (sgβ
∣`
)
,

and write ⟨⋅⟩t,µ,`,s to denote the measure defined as in (2.11) but with vα replaced

by vα,`,s. By the invariance described above, Gaussian integration by parts, and (2.12),
we have, for every s ∈ R,

0 = E ⟨gα
∣`
⟩
t,µ,`,0

= E ⟨gα
∣`
− sζ`⟩t,µ,`,s = sE ⟨1 − 1{α

∣`=α′∣`} − ζ`⟩t,µ,`,s
,

and, using the invariance once more, we can replace ⟨⋅⟩t,µ,`,s by ⟨⋅⟩t,µ in the last
expression. We thus conclude that

E ⟨1{α
∣`=α′∣`}⟩t,µ

= 1 − ζ`,

which yields the desired result. �
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Proof of Proposition 2.1. We decompose the proof into two steps.

Step 1. In this step, we give a consistent extension of the definition of FN(t, µ) to
the case when the parameters in (2.4) may contain repetitions. More precisely, we
give ourselves possibly repeating parameters

(2.13) 0 = ζ0 ⩽ ζ1 ⩽ ⋯ ⩽ ζk < ζk+1 = 1, 0 = q−1 ⩽ q0 ⩽ ⋯ ⩽ qk < qk+1 = ∞,

and let µ be the measure defined by (2.5). We show that the naive extension of
the definition of FN(t, µ) obtained by simply ignoring the fact that there may be
repetitions in the parameters in (2.13) yields the same result as the actual definition
that was given using non-repeating parameters. The first thing we need to do is
extend the definition of the Poisson-Dirichlet cascade (vα)α∈Nk to the case when some
values of (ζ`)`∈{1,...,k} may be equal to 0. Recall that for ζ` ∈ (0,1), the definition
briefly described in the paragraph above (2.6) involves a Poisson point process of
intensity measure ζ`x

−1−ζ` dx. In the case ζ` = 0, we interpret this Poisson point
process as consisting of a single instance of the value 1 and then a countably infinite
repetition of the value 0. This allows us to define the quantity on the right side of
(2.7) for arbitrary values of the parameters in (2.13). The average of this quantity
can be calculated using Lemma 2.2: the only point that needs to be added is that in
the case ζ` = 0, we interpret (2.10) as

X`−1(y0, . . . , y`−1) ∶= Ey` [X`(y0, . . . , y`)] .

From this algorithmic procedure, one can check that the result does not depend on
whether or not there were repetitions in the parameters in (2.13). Indeed, on the one
hand, when ζ` = ζ`+1, we have

X`−1(y0, . . . , y`−1) = ζ−1` logEy`,y`+1 exp (ζ`X`+1(y0, . . . , y`+1)) ,

where Ey`,y`+1 denotes the averaging of the variables y`, y`+1 when sampled indepen-

dently according to the standard Gaussian measure on RN ; and under this measure,
the sum

[(2q` − 2q`−1)
1
2 y` + (2q`+1 − 2q`)

1
2 y`+1] ⋅ σ

has the same law as

(2q`+1 − 2q`−1)
1
2 y` ⋅ σ.

On the other hand, if q` = q`+1, then the term indexed by ` + 1 in the sum on the
right side of (2.9) vanishes, and

X`(y0, . . . , y`) =X`+1(y0, . . . , y`+1).

It is thus clear in both cases that removing repetitions does not change the value of
the resulting quantity.

Step 2. Consider now two measures µ,µ′ ∈ P(R+) of finite support. There exist
k ∈ N, (ζ`)0⩽`⩽k, (q`)0⩽`⩽k and (q′`)0⩽`⩽k satisfying (2.5), (2.13),

0 = q′−1 ⩽ q
′
0 ⩽ q

′
1 ⩽ ⋯ ⩽ q′k < q

′
k+1 = ∞, and µ′ =

k

∑
`=0

(ζ`+1 − ζ`)δq′
`
.

Using this representation, we can rewrite the L1-Wasserstein distance between the
measures µ and µ′ as

(2.14) E [∣Xµ′ −Xµ∣] =
k

∑
`=0

(ζ`+1 − ζ`) ∣q′` − q`∣.
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Abusing notation, we denote

(2.15) FN(t, ζ, q) ∶= FN (t,
k

∑
`=0

(ζ`+1 − ζ`)δq`) ,

and proceed to compute ∂q`FN(t, ζ, q), for each ` ∈ {0, . . . , k}. For every σ, τ ∈ RN ,

α ∈ Nk and β ∈ A, we have

(2.16) E [H ′
N(σ,α)zβ ⋅ τ] = ∣

(2q` − 2q`−1)
1
2 σ ⋅ τ if β = α∣` with ` ∈ {0,1, . . . , k},

0 otherwise.

For every ` ∈ {0, . . . , k − 1}, we have

∂q`FN(t, ζ, q) = −
1

N
E ⟨(2q` − 2q`−1)−

1
2 zα

∣`
⋅ σ − (2q`+1 − 2q`)

− 1
2 zα

∣(`+1)
⋅ σ⟩ .

By (2.16) and Gaussian integration by parts, see e.g. [26, Lemma 1.1], we obtain

∂q`FN(t, ζ, q) =
1

N
E ⟨(1{α

∣` =α′∣`} − 1{α
∣(`+1)=α′∣(`+1)})σ ⋅ σ

′
⟩(2.17)

=
1

N
E ⟨1{α∧α′=`} σ ⋅ σ′⟩ .

The same reasoning also shows that

∂qkFN(t, ζ, q) =
1

N
E ⟨1{α=α′}σ ⋅ σ′⟩ ,

so that the last identity in (2.17) is also valid for ` = k. In particular, for every
` ∈ {0, . . . , k}, we have by (2.1) that

∣∂q`FN(t, ζ, q)∣ ⩽ E ⟨1{α∧α′=`}⟩ = (ζ`+1 − ζ`),

and thus, by integration,

∣FN(t, ζ, q′) − FN(t, ζ, q)∣ ⩽
k

∑
`=0

(ζ`+1 − ζ`) ∣q′` − q`∣ .

A comparison with (2.14) then yields the desired result. �

We can also use Lemma 2.2 to give a more precise meaning to the vaguely stated
monotonicity claim of ∂µf ⩾ 0 expressed in the paragraph below (1.4), already at the

level of the functions FN .

Lemma 2.4. Let ζ, q be parameters as in (2.4), and let FN(t, ζ, q) be as in (2.15).
For every ` ⩽ `′ ∈ {0, . . . , k}, we have

(2.18) ∂q`FN ⩾ 0,

as well as

(2.19) (ζ`′+1 − ζ`′)∂q`FN ⩽ (ζ`+1 − ζ`)∂q`′FN .

Remark 2.5. As the proof will make clear, we can make sense of the quantity

(ζ`+1 − ζ`)−1∂q`FN
even when ζ` = ζ`+1, by continuity. In view of (2.17) and Lemma 2.3, the monotonicity
expressed in (2.19) can be rephrased as the statement that, for every ` ⩽ `′,

E ⟨σ ⋅ σ′ ∣α ∧ α′ = `⟩ ⩽ E ⟨σ ⋅ σ′ ∣α ∧ α′ = `′⟩ ,

where we understand that the conditioning is with respect to the measure E ⟨⋅⟩.
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Proof of Lemma 2.4. The main step of the proof is similar to that of [33, Propo-
sition 14.3.2]; see also [18, 27, 4, 3]. We will rewrite the left side of (2.18) as an
averaged overlap, taking Lemma 2.2 as a starting point, the subtle point being in
the identification of the correct measure with respect to which the average is taken.
We start by introducing some notation. We let Xk,Xk−1, . . . ,X0 be as in Lemma 2.2,
and define X−1 ∶= Ey0 [X0(y0)]. For every ` ⩽m ∈ {0, . . . , k}, we write

D`,m =D`m ∶=
exp (ζ`X` +⋯ + ζmXm)

Ey` [exp (ζ`X`)] ⋯ Eym [exp (ζmXm)]
.

We also write Ey⩾` to denote the integration of the variables y`, . . . , yk along the
standard Gaussian measure, and we write Ey as shorthand for Ey⩾0 . Within the
current proof (and only here), we abuse notation and use ⟨⋅⟩ with a meaning slightly
different from that in (2.11), namely,

⟨f(σ)⟩ ∶= exp (−Xk)

×∫ f(σ) exp(
√

2tHN(σ) −Ntξ (N−1
∣σ∣2) +

k

∑
`=0

(2q` − 2q`−1)
1
2 y` ⋅ σ − qk∣σ∣

2
) dPN(σ).

Defining FN(t, ζ, q) as in (2.15) (substituting FN by FN there), we will show that
for every ` ∈ {0, . . . , k},

(2.20) ∂q`E [FN(t, ζ, q) ∣ (HN(σ))σ∈{±1}N ]

=
ζ`+1 − ζ`
N

N

∑
i=1

Ey [(Ey⩾`+1 [⟨σi⟩D`+1,k])
2
D1`] .

We decompose the proof of (2.20) into two steps, and then conclude in a last step.

Step 1. We show that, for every `,m ∈ {0, . . . , k},

(2.21) ∂qmX`−1 = Ey⩾` [(∂qmXk)D`k] .

We prove the result by decreasing induction on `. Setting Dk+1,k = 1, the result is
obvious for ` = k + 1. Let ` ∈ {1, . . . , k}, and assume that the statement (2.21) holds
with ` replaced by ` + 1. Using (2.10), we obtain (2.21) itself. This proves (2.21) for
every ` ∈ {1, . . . , k}. The statement for ` = 0 is then immediate (recall that ζ0 = 0).
Similarly, for every `,m ∈ {0, . . . , k} with m > ` and i ∈ {1, . . . ,N}, we have

(2.22) ∂ymiX`−1 = Ey⩾` [(∂ymiXk)D`k] ,

where we write ym = (ymi)1⩽i⩽N ∈ RN . For m ⩽ `, we clearly have ∂ymiX`−1 = 0.

Step 2. Notice that, for every m ∈ {0, . . . , k − 1},

(2.23) ∂qmXk = ⟨(2qm − 2qm−1)−
1
2 ym ⋅ σ − (2qm+1 − 2qm)

− 1
2 ym+1 ⋅ σ⟩ .

We are ultimately interested in understanding ∂qmX−1, which, in view of (2.21),
prompts us to study, for every i ∈ {1, . . . ,N},

(2.24) Ey [ymi ⟨σi⟩D1k] = Ey [∂ymi (⟨σi⟩D1k)] ,

where we performed a Gaussian integration by parts to get the equality. (Recall that
D1k =D0k since ζ0 = 0.) We have

(2.25) ∂ymi ⟨σi⟩ = (2qm − 2qm−1)
1
2 (⟨σ2i ⟩ − ⟨σi⟩

2
) ,

and

∂ymiD1k = (
k

∑
`=m

ζ`∂ymiX` −
k

∑
`=m+1

ζ`
Ey` [∂ymiX` exp (ζ`X`)]

Ey` [exp (ζ`X`)]
)D1k.
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We next derive from (2.22) that, for every `,m ∈ {0, . . . , k} with m > ` and i ∈
{1, . . . ,N},

∂ymiX`−1 = (2qm − 2qm−1)
1
2 Ey⩾` [⟨σi⟩D`k] .

It thus follows that

Ey` [∂ymiX` exp (ζ`X`)]

Ey` [exp (ζ`X`)]
= (2qm − 2qm−1)

1
2 Ey⩾` [⟨σi⟩D`k] ,

and

∂ymiD1k = (2qm − 2qm−1)
1
2 (

k

∑
`=m

ζ`Ey⩾`+1 [⟨σi⟩D`+1,k] −
k

∑
`=m+1

ζ`Ey⩾` [⟨σi⟩D`k])D1k

= (2qm − 2qm−1)
1
2 (⟨σi⟩ −

k

∑
`=m

(ζ`+1 − ζ`)Ey⩾`+1 [⟨σi⟩D`+1,k])D1k,

with the understanding that Ey⩾k+1 is the identity map, Dk+1,k = 1, and recalling that
ζk+1 = 1. Combining this with (2.24) and (2.25), we thus get that

(2qm − 2qm−1)−
1
2Ey [ymi ⟨σi⟩D1k]

= Ey [(⟨σ2i ⟩ − ⟨σi⟩
k

∑
`=m

(ζ`+1 − ζ`)Ey⩾`+1 [⟨σi⟩D`+1,k])D1k] .

Using this identity in conjunction with (2.21) and (2.23), we arrive at

−∂qmX−1 = (ζm+1 − ζm)
N

∑
i=1

Ey [Ey⩾m+1 [⟨σi⟩Dm+1,k] ⟨σi⟩D1k] .

This identity is also valid when m = k, as can be checked by following the same
argument. We can then write D1k =D1mDm+1,k, and use that D1m does not depend
on ym+1, . . . , yk, to conclude that

−∂qmX−1 = (ζm+1 − ζm)
N

∑
i=1

Ey [(Ey⩾m+1 [⟨σi⟩Dm+1,k])
2
D1m] .

By Lemma 2.2, this is (2.20).

Step 3. We now show that (2.20) implies the lemma. First, it is clear from (2.20)
that ∂q`FN ⩾ 0. Turning to (2.19), we observe that, for each ` ∈ {0, . . . , k − 1}, we
have by Jensen’s inequality that

(Ey⩾` [⟨σi⟩D`k])
2
= (Ey` [Ey⩾`+1 [⟨σi⟩D`+1,k]D``])

2

⩽ Ey` [(Ey⩾`+1 [⟨σi⟩D`+1,k])
2
D``] ,

and therefore

Ey [(Ey⩾` [⟨σi⟩D`k])
2
D1,`−1] ⩽ Ey [Ey` [(Ey⩾`+1 [⟨σi⟩D`+1,k])

2
D``]D1,`−1]

= Ey [(Ey⩾`+1 [⟨σi⟩D`+1,k])
2
D1`] .

It thus follows that the sequence

(
N

∑
i=1

Ey [(Ey⩾`+1 [⟨σi⟩D`+1,k])
2
D1`])

0⩽`⩽k
is increasing (in the sense of wide inequalities). By (2.20), this implies (2.19). �

We can now state the conjecture generalizing Theorem 1.1.
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Conjecture 2.6. Assume (2.1) and that there exists a function ψ ∶ P∗(R+) → R
such that for every µ ∈ P∗(R+), FN(0, µ) converges to ψ(µ) as N tends to infinity.
For every t ⩾ 0 and µ ∈ P∗(R+), we have

lim
N→+∞

FN(t, µ) = f(t, µ),

where f ∶ R+ × P(R+) → R solves the Hamilton-Jacobi equation in (1.2).

Recall that for the purposes of the present paper, we take the Hopf-Lax formula (1.7)
as the definition of the solution to (1.2). In the case when PN is a product measure,
this conjecture has now been proved in more recent work, see [24].

3. Convergence of initial condition

We now give two typical situations in which the convergence of FN(0, ⋅) to some
limit is valid. Whenever the limit exists, we write, for every µ ∈ P∗(R+),

(3.1) ψ(µ) ∶= lim
N→∞

FN(0, µ).

In agreement with Conjecture 2.6, the function ψ is the initial condition we need to
use for the Hamilton-Jacobi equation (1.2).

Proposition 3.1 (Convergence of initial condition). (1) If the measure PN is of the
product form PN = P⊗N

1 , with P1 of bounded support, then FN(0, ⋅) = F 1(0, ⋅).

(2) For every µ ∈ P(R+) of compact support and q ⩾ 0 such that µ([0, q]) = 1, let

(3.2) ψ○(µ) ∶=

inf {∫
q

0

1

b − 2 ∫
q
s µ([0, r])dr

ds +
1

2
(b − 1 − log b) − q ∶ b > 2∫

q

0
µ([0, r])dr} .

The right side of (3.2) does not depend on the choice of q satisfying µ([0, q]) = 1,
and the mapping µ↦ ψ○(µ) can be extended by continuity to P1(R+). Moreover, if
the measure PN is the uniform measure on the sphere {σ ∈ RN ∶ ∣σ2∣ = N}, then for
every µ ∈ P1(R+), we have

(3.3) lim
N→∞

FN(0, µ) = ψ○(µ).

Proof. For part (1), we appeal to Lemma 2.2 and observe that, when t = 0, the
definition of Xk given there becomes

Xk(y0, . . . , yk) =
N

∑
i=1

log∫
R

exp(
k

∑
`=0

(2q` − 2q`−1)
1
2 y`,iσi − qkσ

2
i ) dP1(σi).

Notice that the summands indexed by i are independent random variables under Eyk ,
and this structure is preserved as we go down the levels, up to the definition of X0,
where we end up with a sum of N terms that are deterministic and all equal to a
constant which does not depend on N . This proves the claim (see also [26, (2.60)]).

For part (2), we first verify that the right side of (3.2) does not depend upon the
choice of q ⩾ 0 satisfying µ([0, q]) = 1. Indeed, for every q satisfying µ([0, q]) = 1,

q′ ⩾ q and b > 2 ∫
q′

0 µ([0, r])dr, we have

∫

q′

0

1

b − 2 ∫
q′

s µ([0, r])dr
ds

= ∫

q

0

1

b − 2(q′ − q) − 2 ∫
q
s µ([0, r])dr

ds +
1

2
(log b − log [b − 2(q′ − q)]) .
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We thus obtain that

∫

q′

0

1

b − 2 ∫
q′

s µ([0, r])dr
ds +

1

2
(b − 1 − log b) − q′

= ∫

q

0

1

b − 2(q′ − q) − 2 ∫
q
s µ([0, r])dr

ds+
1

2
(b − 2(q′ − q) − 1 − log [b − 2(q′ − q)])−q.

Taking the infimum over b > 2 ∫
q′

0 µ([0, r])dr = 2(q′ − q) + 2 ∫
q
0 µ([0, r])dr concludes

the verification of the fact that the right side of (3.2) does not depend on the choice
of q satisfying µ([0, q]) = 1.

In order to verify the convergence in (3.3), we start by considering the case of
a measure of finite support. In this case, we can follow the arguments leading to
[30, Proposition 3.1] and obtain (3.3). The full result then follows by the continuity
property of FN , see Proposition 2.1. �

It so happens that at least in the case when PN is a product measure, the initial
condition ψ = limN→∞ FN(0, ⋅) can itself be described in terms of a Hamilton-Jacobi
equation of second order [28]. We recall this fact in the proposition below for
completeness, and so as to clarify the small modifications necessary to match the
slightly different presentation explored in the present paper. As far as I understand,
the fact that the initial condition admits such a representation seems to be unrelated
to the (first-order) Hamilton-Jacobi structure explored in the rest of the paper.
Somewhat surprisingly, this representation makes it less clear that ψ ⩾ 0.

Proposition 3.2 (Initial condition as second-order HJ equation). Assume that PN
is the N -fold tensor product PN = P⊗N

1 , with P1 a measure of bounded support, and

denote ψ = limN→∞ FN(0, ⋅) = F 1(0, ⋅). For every µ ∈ P(R+) with compact support
and q ⩾ 0 such that µ([0, q]) = 1, letting uµ ∶ [0, q] × R → R be the solution of the
backward-in-time equation

(3.4)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∂suµ + ∂
2
xuµ + µ([0, s]) (∂xuµ)

2
= 0 on [0, q] ×R,

uµ(q, x) = log∫
R

exp (xσ − q∣σ∣2) dP1(σ) for x ∈ R,

we have ψ(µ) = −uµ(0,0).

Proof. We first verify that uµ does not depend on the choice of q ⩾ 0 satisfying
µ([0, q]) = 1. More precisely, denoting by uµ,q the solution obtained for a given choice
of such q, and letting q′ ⩾ q, we have that the solutions uµ,q and uµ,q′ coincide on
[0, q] ×R. Indeed, this is a consequence of the fact that, writing

φ(s, x) ∶= log∫
R

exp (xσ − s∣σ∣2) dP1(σ),

we have

∂sφ + ∂
2
xφ + (∂xφ)

2
= 0.

(Verifying this boils down to the observation that the second moment of σ under
the appropriate Gibbs measure is the sum of the variance and the square of the first
moment.) Let µ be a measure of the form (2.4)-(2.5), and let (Bt) be a standard
Brownian motion. We define, for every x ∈ R,

vµ(qk, x) ∶= φ(qk, x),

and then recursively, for every ` ∈ {0, . . . , k} and s ∈ [q`−1, q`),

vµ(s, x) ∶= ζ
−1
` logE exp [ζ`vµ (q`,B2q` −B2s + x)] .
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Recall that when ` = 0, we have ζ0 = 0 and we interpret the right side above as

E [vµ(q0,B2q1 −B2s + x)] .

By induction, we have that for every ` ∈ {0, . . . , k},

vµ(q`−1, x)

= ζ−1` logEy` [E
ζ`
ζ`+1
y`+1 [E

ζ`+1
ζ`+2
y`+2 [⋯E

ζk−1
ζk
yk [exp(ζkφ(qk, x +

k

∑
`′=`

(2q` − 2q`−1)
1
2 y`))]⋯]]] ,

where here Ey` denotes the integration of the variable y` according to the standard
scalar Gaussian measure, and for ` = 0, the right side above is interpreted as

Ey0 [ζ
−1
1 log(Ey1 [E

ζ1
ζ2
y2 [⋯]])] .

By Lemma 2.2 with t = 0 and N = 1, we deduce that F 1(0, µ) = −vµ(0,0), and we

have already seen in part (1) of Proposition 3.1 that FN(0, ⋅) = F 1(0, ⋅). Moreover,
denoting, for every ` ∈ {0, . . . , k} and s ∈ [q`−1, q`),

wµ(s, x) ∶= E exp [ζ`vµ (q`,B2q` −B2s + x)] ,

we have ∂swµ + ∂
2
xwµ = 0 on [q`−1, q`) × R, with continuity at the junction times

s ∈ {q0, . . . , qk}, and a change of variables then gives that vµ solves (3.4). This shows
that Proposition 3.2 holds whenever µ is a measure of finite support. The general case
can then be obtained by continuity in µ (the continuity of F 1(0, ⋅) is a consequence of
Proposition 2.1; for that of µ↦ uµ(0, 0), one can start by verifying that ∥∂xuµ∥L∞ is
bounded by an upper bound on the support of P1 using the maximum principle). �

4. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. Recall that we interpret the
solution of (1.2) as being given by the Hopf-Lax formula in (1.7). The formula (1.7)
simplifies slightly in the case when µ = δ0, and thus the statement of Theorem 1.1
can be reformulated as follows.

Proposition 4.1 (Hopf-Lax representation of Parisi formula). Assume (1.1), and
fix the normalization ξ(1) = 1. For every t > 0, we have

lim
N→∞

−
1

N
E log∫ exp (

√
2tHN(σ) −Nt) dPN(σ)

= sup
µ∈P∗(R+)

(ψ(µ) − t∫
R+
ξ∗(t−1s)dµ(s)) .

Proof. We first focus on the case when PN is the uniform probability measure
on {−1,1}N . We decompose the argument for this case into four steps.

Step 1. In this step, we recast the standard expression for the Parisi formula,
borrowed from [26], in the following form:

(4.1) lim
N→∞

−
1

N
E log∫ exp (

√
2tHN(σ) −Nt) dPN(σ)

= t + sup
ν∈P([0,1])

(ψ ((tξ′)(ν)) − tξ′(1) + t∫
1

0
sξ′′(s)ν([0, s])ds) .
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On the right side, the notation (tξ′)(ν) denotes the image of the measure ν under the
mapping r ↦ tξ′(r). Let ν ∈ P([0,1]) be a measure with finite support containing
the extremal points 0 and 1. For some k ∈ N and parameters

0 = ζ0 < ζ1 < ⋯ < ζk < ζk+1 = 1, 0 = q−1 = q0 < q1 < ⋯ < qk = 1,

we can represent this measure as

ν =
k

∑
`=0

(ζ`+1 − ζ`)δq` .

The reason for the perhaps slightly surprising choice of setting q−1 = q0 = 0 is that we
have chosen here to include a term associated with the root of A, at level ` = 0, in the
definition (2.6), while a different choice was taken in [26]. (The motivation for this
inconsequential difference is that it then covers more naturally the situation in (2.2)
as a particular case. Relatedly, by default, the measures of finite support considered
in [26] have an atom at zero.) In order to extract the free energy associated with the

Hamiltonian σ ↦
√

2tHN(σ) from [26, Theorem 3.1], we need to replace ξ by 2tξ in
[26, (3.3)]. With this modification in place, and recalling Lemma 2.2, we see that the
quantity denoted EX0 in [26, (3.11)] can be rewritten as

E log

⎡
⎢
⎢
⎢
⎢
⎣

∑
σ∈{±1}

∑
α∈A

vα exp(
k

∑
`=1

(2tξ′(q`) − 2tξ′(q`−1))
1
2 zα

∣`
⋅ σ)

⎤
⎥
⎥
⎥
⎥
⎦

.

On the other hand, by (3.1) and Proposition 3.1, we have

ψ ((tξ′)(ν))

= −E log

⎡
⎢
⎢
⎢
⎢
⎣

1

2
∑

σ∈{±1}
∑
α∈A

vα exp(
k

∑
`=1

(2tξ′(q`) − 2tξ′(q`−1))
1
2 zα

∣`
⋅ σ − tξ′(1))

⎤
⎥
⎥
⎥
⎥
⎦

.

We thus deduce that the quantity denoted EX0 in [26, (3.11)] is

log 2 − ψ ((tξ′)(ν)) + tξ′(1).

The finite-volume free energy is normalized slightly differently here and in [26]: there
is a multiplicative factor of 2−N hidden in the fact that PN is normalized to be a
probability measure, and an additional minus sign, on the left side of (4.1). Com-
bining these observations and appealing to [26, Theorem 3.1] and to Proposition 2.1
yields (4.1).

Step 2. We fix ν ∈ P([0,1]), t > 0, and define µ ∶= (tξ′)(ν) to be the image of ν
under the mapping r ↦ tξ′(r). In this step, we show that

(4.2) ∫[0,1]
(sξ′(s) − ξ(s)) dν(s) = ∫

R+
ξ∗(t−1s)dµ(s).

By the definition of µ and a change of variables, we have

∫
R+
ξ∗(t−1s)dµ(s) = ∫[0,1]

ξ∗(ξ′(s))dν(s).

Recall that

ξ∗(ξ′(s)) = sup
r⩾0

(rξ′(s) − ξ(r)) .

Since ξ′(0) = 0, for each s > 0, the supremum above is achieved at some r > 0, and
calculating the derivative in r shows that it is in fact achieved at r = s, since ξ′ is
injective. That is, we have ξ∗(ξ′(s)) = sξ′(s) − ξ(s), and thus (4.2) holds.
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Step 3. In this step, we show that

(4.3) lim
N→∞

−
1

N
E log∫ exp (

√
2tHN(σ) −Nt) dPN(σ)

= sup{ψ(µ) − t∫
R+
ξ∗(t−1s)dµ(s) ∶ µ ∈ P(R+), suppµ ⊆ [0, tξ′(1)]} .

We start by rewriting the last term in the supremum on the right side of (4.1), by
appealing to the following integration by parts formula: for every f ∈ L1([0,1]),

(4.4) ∫

1

0
f(r)ν([0, r])dr = ∫[0,1]∫

1

r
f(u)dudν(r).

This formula itself is a consequence of Fubini’s theorem. We notice that

∫

1

r
sξ′′(s)ds = ξ′(1) − ξ(1) − (rξ′(r) − ξ(r)) .

Recalling that we have fixed the normalization ξ(1) = 1 yields that

∫

1

0
sξ′′(s)ν([0, s])ds = ξ′(1) − 1 − ∫[0,1]

(rξ′(r) − ξ(r)) dν(r).

Combining this with (4.1), (4.2), and the fact that ξ′ ∶ [0,1] → [0, ξ′(1)] is bijective,
we obtain (4.3).

Step 4. In order to conclude the proof (in the case of Ising spins), there remains to
show that the supremum on the right side of (4.3) does not increase if we remove
the restriction that the support of the measure µ be in [0, tξ′(1)]. Let µ ∈ P∗(R+),
and let µ̃ denote the image of µ under the mapping r ↦ r ∧ (tξ′(1)), where we write
a ∧ b ∶= min(a, b). We show that

(4.5) ψ(µ) − t∫
R+
ξ∗(t−1s)dµ(s) ⩽ ψ(µ̃) − t∫

R+
ξ∗(t−1s)dµ̃(s).

By Proposition 2.1 and Fubini’s theorem, we have

ψ(µ) − ψ(µ̃) ⩽ E [∣Xµ −Xµ̃∣] = ∫

+∞

0
∣µ([0, r]) − µ̃([0, r])∣ dr

= ∫

+∞

tξ′(1)
µ((r,+∞))dr

= ∫

+∞

tξ′(1)∫R+
1s⩾r dµ(s)dr

= ∫
R+

(s − tξ′(1))1s⩾tξ′(1) dµ(s).(4.6)

On the other hand, by the definition of µ̃, we have

∫
R+
ξ∗(t−1s)dµ̃(s) = ∫

R+
ξ∗ ((t−1s) ∧ ξ′(1)) dµ(s),

and thus

(4.7) ∫
R+
ξ∗(t−1s)dµ(s) − ∫

R+
ξ∗(t−1s)dµ̃(s)

= ∫
R+

(ξ∗(t−1s) − ξ∗ (ξ′(1)))1s⩾tξ′(1) dµ(s).

Recall that ξ∗(ξ′(1)) = ξ′(1) − ξ(1). By the definition of the convex dual, we also
have that ξ∗(s) ⩾ s − ξ(1). Hence, the integral on the right side of (4.7) is bounded
from below by

∫
R+

(t−1s − ξ′(1))1s⩾tξ′(1) dµ(s).
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Combining this with (4.6) yields (4.5) and thus completes the proof in the case of
Ising spins.

Step 5. We show Proposition 4.1 in the case when PN is the uniform probability
measure on the sphere {σ ∈ RN ∶ ∣σ∣2 = N}. Using [30, Corollary 4.1] and arguing as
in Step 1, one can check that the formula (4.1) is also valid in this case. The rest of
the argument carries over without modification. �

5. Finite-dimensional approximations

In this last section, we lightly touch upon the question of giving an intrinsic meaning
to the Hamilton-Jacobi equation (1.2). This allows us to give some substance to the
connection between this equation and the Hopf-Lax formula in (1.7).

There already exists a rich literature on Hamilton-Jacobi equations in infinite-
dimensional Banach spaces, as well as on the Wasserstein space of probability measures
or more general metric spaces; see in particular [10, 11, 12] for the former and
[14, 15, 8, 9, 16, 17, 1, 7] for the latter. I will refrain from engaging with these works
here, and only discuss finite-dimensional approximations of the solution to (1.2).

A simple way to obtain a finite-dimensional approximation of (1.2) is to fix an
integer k ⩾ 1 and restrict the space of allowed probability measures to those belonging
to

P
(k)

(R+) ∶= {
1

k

k

∑
`=1
δx` ∶ x1, . . . , xk ⩾ 0} .

A natural discretization of the formula (1.7) is then obtained by setting, for every

t ⩾ 0 and µ ∈ P(k)(R+),

f (k)
(t, µ) ∶= sup

ν∈P(k)(R+)
(ψ(ν) − tE [ξ∗ (

Xν −Xµ

t
)]) .

Abusing notation slightly, we also write, for every x ∈ Rk+,

f (k)
(t, x) ∶= f (t,

1

k

k

∑
`=1
δx`) , and ψ(k)

(x) ∶= ψ (
1

k

k

∑
`=1
δx`) .

We note the following elementary observation.

Lemma 5.1. For every t ⩾ 0 and x ∈ Rk+, we have

(5.1) f (k)
(t, x) = sup

y∈Rk
+

(ψ(k)
(y) −

t

k

k

∑
`=1
ξ∗ (

y` − x`
t

)) .

Proof. We introduce the notation

Rk↑+ ∶= {x = (x1, . . . , xk) ∈ Rk+ ∶ x1 ⩽ ⋯ ⩽ xk} .

Notice first that the quantities f (k)(t, x) and ψ(k)(x) are invariant under permutation
of the coordinates of x. Hence, it suffices to prove the relation (5.1) under the

additional assumption that x ∈ Rk↑+ . It is clear that equality holds if on the right side,
we take the supremum over y ∈ Rk↑+ only. We now verify that other orderings of a
given vector y yield a larger value for the sum on the right side of (5.1). Indeed, fix

x ∈ Rk↑+ , y ∈ Rk, and assume that there exist i < j ∈ {1, . . . , k} such that yi ⩾ yj . By

the convexity of ξ∗ and the fact that xi ⩽ xj ,, the function u↦ ξ∗ (u−xit ) − ξ∗ (u−xjt )

is increasing. In particular,

ξ∗ (
yi − xi
t

) − ξ∗ (
yi − xj

t
) ⩾ ξ∗ (

yj − xi

t
) − ξ∗ (

yj − xj

t
) ,
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and therefore

ξ∗ (
yj − xi

t
) + ξ∗ (

yi − xj

t
) ⩽ ξ∗ (

yi − xi
t

) + ξ∗ (
yj − xj

t
) .

That is, whenever i < j and yi ⩾ yj , replacing y by the vector with the coordinates yi
and yj interchanged can only reduce (or keep constant) the value of the quantity

k

∑
`=1
ξ∗ (

y` − x`
t

) .

By induction, this implies that replacing the vector y by the increasingly ordered
sequence of coordinates of y can only reduce (or keep constant) the quantity above. �

The convex dual of the mapping

{
Rk → R
x ↦ 1

k ∑
k
`=1 ξ

∗(x`)

is

(5.2)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Rk → R

p ↦ ∣
1
k ∑

k
`=1 ξ(k p`) if p ∈ Rk+

+∞ otherwise.

It follows from Proposition 2.1 that ψ(k) is Lipschitz continuous, and from this,
one can show that f (k) is Lipschitz continuous in x and in t. In particular, the
function f (k) is differentiable almost everywhere in [0,∞) ×Rk+. Following classical
arguments, see e.g. [5] or [13, Theorem 3.3.5], we thus deduce from (5.1) that at every

(t, x) ∈ (0,∞) × (0,∞)k at which f (k) is differentiable, we have

(5.3) ∂tf
(k)

(t, x) −
1

k

k

∑
`=1
ξ (k∂x`f

(k)
(t, x)) = 0.

This identification also uses that ∂x`f
(k)(t, x) ⩾ 0, see (5.2). The latter property

can be obtained as a consequence of the fact that ∂x`ψ
(k) ⩾ 0, which itself follows

from Lemma 2.4.

We can now verify that the equation in (5.3) is formally consistent with a finite-
dimensional interpretation of the Hamilton-Jacobi equation (1.2). In view of (1.8), and

assuming “smoothness” of the function f , we must have, for every µ = k−1∑k`=1 δx` ∈
P(k)(R+) and ` ∈ {1, . . . , k} that

∂µf(t, µ, x`) = k ∂x`f
(k)

(t, x),

and thus

∫ ξ(∂µf)dµ =
1

k

k

∑
`=1
ξ (k ∂x`f

(k)
) .

We have thus obtained a formal relation between the Hamilton-Jacobi equation
in (1.2) and that in (5.3), which itself can be rigorously connected with the Hopf-Lax
formula (5.1)—see [23] and [22] on how to handle the boundary condition on ∂(Rk+)
in the contexts of viscosity solutions and weak solutions respectively.
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