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STATISTICAL INFERENCE OF FINITE-RANK TENSORS

HONG-BIN CHEN, JEAN-CHRISTOPHE MOURRAT, AND JIAMING XIA

Abstract. We consider a general statistical inference model of finite-rank tensor
products. For any interaction structure and any order of tensor products, we identify
the limit free energy of the model in terms of a variational formula. Our approach
consists of showing first that the limit free energy must be the viscosity solution to a
certain Hamilton-Jacobi equation.

1. Introduction

1.1. Setting. Let K,L,p ∈ N and A ∈ RKp×L, which will be kept fixed throughout the
paper. For every N ∈ N, t ⩾ 0 and a random matrix X ∈ RN×K , we consider the inference
task of recovering X from the observation of

Y ∶=

√
2t

Np−1
X⊗pA +W ∈ RN

p×L,(1.1)

where ⊗ denotes the tensor product of matrices, and W ∈ RNp×L consists of independent
standard Gaussian entries (we view X⊗p as an Np-by-Kp matrix). Throughout, the dot
product between two vectors or matrices of the same size is the entry-wise inner product.
The associated norm is denoted by ∣ ⋅ ∣. For convenience of analysis, we assume that the
random matrix X almost surely satisfies

∣X ∣ ⩽
√
NK.(1.2)

We denote the law of X by PXN . Using Bayes’ rule, the law of X conditioned on observing Y

is the measure proportional to eH
○

N (t,x) dPXN (x), where the Hamiltonian H○
N is

H○
N(t, x) ∶=

√
2t

Np−1
(x⊗pA) ⋅ Y −

t

Np−1
∣x⊗pA∣

2.

The associated free energy is given by

F ○
N(t) ∶=

1

N
log∫

RN×K
eH

○

N (t,x) dPXN (x).

The mutual information I(X,Y ) between X and Y is an important information-theoretical
quantity, which is equal to EF ○

N(t) up to a simple additive term. Computing the limit of
the mutual information as N →∞ allows one to determine the critical value of t below
which the inference task is theoretically impossible. Therefore, the limit of EF ○

N(t) is the
central object of investigation in many inference models. For more details, we refer to
the discussion in [1].

In order to analyze this model, we start by enriching the system by adding an additional
observation Y =X

√
2h +Z for h ∈ SK+ , where SK+ is the set of K ×K symmetric positive

semi-definite matrices, and Z consists of i.i.d. standard Gaussian entries. Then, the law
of X conditioned on observing Y and Y is a Gibbs measure with Hamiltonian

HN(t, h, x) ∶=H○
N(t, x) +

√
2h ⋅ (x⊺Y ) − h ⋅ (x⊺x).
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The corresponding free energy is

FN(t, h) ∶=
1

N
log∫

RN×K
eHN (t,h,x) dPXN (x).(1.3)

We also set FN = EFN . Note that the initial free energy satisfies F ○
N(t) = FN(t,0). We

let H ∶ SK+ → R be the mapping such that, for every q ∈ SK+ ,

H(q) ∶= (AA⊺
) ⋅ q⊗p.(1.4)

Our main result is the identification of the limit free energy, for any given choice of
interaction matrix A and p ∈ N.

Theorem 1.1. In addition to (1.2), suppose that

● (FN(0, ⋅))
N∈N converges pointwise to some C1 function ψ ∶ SK+ → R;

● limN→∞E∥FN − FN∥2L∞(D)
= 0 for every compact D ⊆ [0,∞) × SK+ .

Then, for every (t, h) ∈ [0,∞) × SK+ , we have

lim
N→∞

FN(t, h) = sup
h′′∈SK

+

inf
h′∈SK

+

{h′′ ⋅ (h − h′) + ψ(h′) + tH(h′′)}.(1.5)

Remark 1.2. The above convergence can be improved into convergence in the local uniform
topology by using that FN is Lipschitz uniformly over N (see Lemma 2.1).

We briefly comment on the hypotheses of the theorem. One can see that FN(0, ⋅) is
the free energy associated with a decoupled system where the only observation Y is linear
in X. Therefore, in many cases, the limit of FN(0, ⋅) can be computed straightforwardly.
In particular, if PXN is the N -fold tensor product of a fixed probability measure on RK ,

then FN(0, ⋅) in fact does not depend on N , and is C1. The next assumption can be
rephrased as local uniform concentration of FN . Again, this condition is straightforward
to verify in many models, with standard tools available: see for instance [8, Lemma C.1]
for the case when the rows of X are i.i.d. and bounded.

Among our assumptions, perhaps the only surprising one is the requirement that ψ
be of class C1. For certain choices of the nonlinearity H, such as when H is convex, this
assumption is not necessary (see for instance [8]). However, when considering arbitrary
choices of A and p as we do here, this assumption may be required. In a simpler setting,
we illustrate the usefulness of this assumption in Remark A.3.

1.2. Related works. Many inference models can be viewed as special cases of (1.1).
Indeed, one could argue that essentially any “fully-connected” inference problem will have
the form of (1.1) for some suitable choice of A and p. Among them, the models where
the limit free energy has been studied include the spiked Wigner model [1, 12, 2, 18, 19],
the spiked Wishart model [17, 4, 11, 15, 7], the stochastic block model (or community
detection problem) [12, 16, 25], the inference of second order matrix tensor products [24],
and the inference of higher order vector tensor products [13, 2, 18]. The model closest
to (1.1) is the inference of finite-rank even-order tensor products studied in [14]. The
case of tensors of odd order was left open there, see [14, Section 7]. In Section 5.2, we
apply our main result to this model, for tensor products of arbitrary order (p ∈ N). For a
more detailed discussion on these models, we refer to the introduction in [8].

Many of the results mentioned above were obtained by the powerful method of adaptive
interpolation introduced in [2, 3] and refined in subsequent works. In [24], a novel
extension using interpolation paths parameterized by order-preserving positive semi-
definite matrices was employed to completely describe the limit in the general second
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order tensor products model. The order-preserving property ([24, Proposition 4]) has a
similar counterpart that plays a crucial role in this work (Lemma 2.2 and Proposition 4.7).

The approach taken up in the present paper is based instead on identifying the limit free
energy as the viscosity solution to a certain Hamilton-Jacobi equation. This alternative
approach was introduced in [18, 19], and can also inform the analysis of spin glass models
[20, 23, 21, 22]; related considerations also appeared in the physics literature [9, 10, 6, 5].

The setting of the present paper is identical to that of [8], in which partial results were
obtained. There, for general interaction matrix A and order p, only an upper bound on
the limit free energy could be proved; a complete identification of this limit could only be
obtained for particular choices of A and p. Here, we close this gap and cover all cases in
a unified approach.

Compared with [8], the main novelty of the present paper is that we will rely on
a different method for the identification of the viscosity solution. This method relies
crucially on the fact that the functions under consideration are convex. We explain
this new uniqueness criterion in the simpler context of Hamilton-Jacobi equations on
[0,∞) × Rd in the appendix. The gist of our work is then to extend this criterion to
Hamilton-Jacobi equations posed on [0,∞) × SK+ , and then to verify that any possible
limit of the free energy does satisfy this criterion.

The rest of the paper is organized as follows. In Section 2, we present basic properties
of FN . In particular, we record that FN is convex, nondecreasing, and has nondecreasing
gradients. In Section 3, we recall basic facts of convex analysis and prove some useful
results in preparation for the study of the Hamilton-Jacobi equation. Using these, we prove
a convenient criterion for identifying viscosity solutions in Section 4. Lastly, Section 5
contains the proof of Theorem 1.1 and an application to the model (5.7).

Acknowledgements. We would like to warmly thank Stefano Bianchini for providing
us with the idea for the proof of Proposition A.2. JCM was partially supported by the
NSF grant DMS-1954357.

2. Properties of the free energy

In this section, we study basic properties of FN . We start by introducing notation.

For any measurable g ∶ RN×K → R, we denote by ⟨g(x)⟩ the expectation of g with

respect to the Gibbs measure proportional to eHN (t,h,x) dPXN (x), which can also be written

as ⟨g(x)⟩ = E[g(X)∣Y,Y ] for Y and Y introduced in the previous section. Note that the
dependence of ⟨ ⋅ ⟩ on t, h is suppressed from the notation when there is no confusion.
Within the bracket ⟨ ⋅ ⟩, we denote by x′, x′′, x′′′ independent copies of x, which are called
replicas of x. The transpose operator on matrices is denoted by superscript ⊺.

In addition to SK+ , we denote by SK and SK++, the set of K ×K symmetric matrices,
and symmetric positive definite matrices, respectively. We view SK as an ambient linear
space for SK+ and SK++. By choosing an orthonormal basis with respect to the entry-wise

dot product, we can identify SK with RK(K+1)/2 isometrically. Therefore, differentiation
makes sense on SK as the usual one on Euclidean spaces. Naturally, we also identify the
dual space of SK with itself. For a function g ∶ [0,∞) × SK+ → R which is differentiable at
(t′, h′), we denote by ∂tg(t

′, h′) ∈ R its derivative with respect to the first variable, and
by ∇g(t′, h′) ∈ SK the gradient with respect to the second variable.

Using the expression (1.3), we can compute that

∂tFN =
1

Np
E ⟨x⊗pA ⋅ x′⊗pA⟩ ,
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and

∇FN =
1

N
E ⟨x⊺x′⟩ .

This computation involves the Nishimori identity and Gaussian integration by parts.
For details, we refer to [8, (3.5)-(3.6)]. Recalling the definition of H in (1.4), we obtain
that FN satisfies

∂tFN −H(∇FN) =
1

Np
(E⟨H(x⊺x′)⟩ −H(E⟨x⊺x′⟩)),

and the right-hand side is expected to be small when N is large. Hence, FN can be
viewed to approximately satisfy the Hamilton-Jacobi equation

∂tf −H(∇f) = 0 in [0,∞) × SK+ .(2.1)

This is the key insight for the Hamilton-Jacobi equation approach. Later, we will show
that indeed FN converges to the unique solution to (2.1); and then that this solution
admits the variational representation appearing on the right side of (1.5).

In the remaining two subsections, we collect useful properties of derivatives of FN and
prove that FN is convex.

2.1. Derivatives of free energy. From [8, Lemma 3.2], we recall the following result.

Lemma 2.1. For each N ∈ N, the function FN is C1 and the following holds:

sup
N∈N, (t,h)∈[0,∞)×SK

+

∣(∂t,∇)FN ∣(t, h) < ∞;

(∂t,∇)FN(t, h) ∈ [0,∞) × SK+ , ∀N ∈ N, (t, h) ∈ [0,∞) × SK+ .

The first display ensures that FN is Lipschitz uniformly in N . The second display
indicates that (∂t,∇)FN is “nonnegative” in the sense of the following partial orders. On
SK and on R × SK , we declare

h1 ⩽ h2 ⇐⇒ h2 − h1 ∈ SK+ ;(2.2)

(t1, h1) ⩽ (t2, h2) ⇐⇒ (t2, h2) − (t1, h1) ∈ [0,∞) × SK+ .(2.3)

The next result shows that (∂t,∇)FN is “nondecreasing”.

Lemma 2.2. For each N ∈ N, for every (t1, h1) ⩽ (t2, h2), it holds that

(∂t,∇)FN(t1, h1) ⩽ (∂t,∇)FN(t2, h2).

Proof. For k = 1,2, we set

Yk ∶= (

√
2tk
Np−1

X⊗pA +Wk , X
√

2hk +Zk)

where Wk and Zk consist of i.i.d. standard Gaussian random variables. To display the
dependence of ⟨ ⋅ ⟩ on (tk, hk), we write

⟨g(x)⟩tk,hk = E[g(X) ∣Yk]

for any measurable function g. Let X̂ ∶= diag(X⊗pA, X). For any matrix y, we write
c(y) ∶= y⊺y. Note that c(X⊗pA) ∈ RL×L and c(X) ∈ RK×K . Let D = diag(IL,0K) where
Im is the m ×m identity matrix and 0m is the m ×m zero matrix. Let P ∈ RL+K,K be
the matrix projecting RL+K onto the last K coordinates. Then, we have

(∂t,∇)F (tk, hk) = (
1

Np
D ⋅Ec(E[X̂ ∣Yk]),

1

N
P ⊺

(Ec(E[X̂ ∣Yk]))P),
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Hence, it suffices to show that

Ec(E[X̂ ∣Y1]) ⩽ Ec(E[X̂ ∣Y2]).(2.4)

To compare these quantities, we introduce

Y ′
∶= (

√
2t2 − 2t1
Np−1

X⊗pA +W ′, X
√

2h2 − 2h1 +Z
′
),

where W ′ and Z ′ have i.i.d. standard Gaussian entries. We claim that, for every nonneg-
ative measurable function f , we have

E[f(X) ∣Y2]
d
= E[f(X) ∣Y1, Y

′
],(2.5)

where the equality holds in the sense of distributions. Temporarily assuming this, and
using that E[X̂ ∣Y1] = E[E[X̂ ∣Y1, Y

′] ∣Y1], we can verify, analogously to a bias-variance
decomposition, that

Ec(E[X̂ ∣Y1, Y
′
]) = Ec(E[X̂ ∣Y1, Y

′
] −E[X̂ ∣Y1]) +Ec(E[X̂ ∣Y1]).

Since the first term on the right is a positive semi-definite matrix, we get that

Ec(E[X̂ ∣Y1, Y
′
]) ⩾ Ec(E[X̂ ∣Y1]).

In view of (2.5), this yields (2.4) and thus the desired result.

It remains to prove (2.5). The quantities on both sides can be written as integrations
of f with respect to Gibbs measures with a common reference measure PXN (the law of X).
Hence, it suffices to compare the Hamiltonians. The Hamiltonian for the left-hand side
can be computed to be

2t2
Np−1

(x⊗pA) ⋅ (X⊗pA) +
1

√
Np−1

(x⊗pA) ⋅
√

2t2W2 −
t2

Np−1
∣x⊗pA∣

2

+2h2 ⋅ (x
⊺X) + (Z2

√
2h2) ⋅ x − 2h2 ⋅ (x

⊺x),

while the Hamiltonian for the right-hand side is

2t2
Np−1

(x⊗pA) ⋅ (X⊗pA) +
1

√
Np−1

(x⊗pA) ⋅ (
√

2t1W1 +
√

2t2 − 2t1W
′
) −

t2
Np−1

∣x⊗pA∣
2

+2h2 ⋅ (x
⊺X) + (Z1

√
2h1 +Z

′
√

2h2 − 2h1) ⋅ x − 2h2 ⋅ (x
⊺x).

Since W1,W2,W
′, Z1, Z2, Z

′ all consist of i.i.d. standard Gaussian entries, we can conclude
that the two Hamiltonians have the same distribution, which implies (2.5). �

2.2. Convexity. In this subsection, we show the following.

Lemma 2.3. For each N ∈ N, the function FN ∶ [0,∞) × SK+ → R is convex.

Proof. We want to show that for every (s, a) ∈ R × SK and every (t, h) ∈ [0,∞) × SK+ ,

(s∂t + a ⋅ ∇)
2
FN(t, h) ⩾ 0.

For brevity, we set y =
√

2
Np−1x

⊗pA and similarly for replicas of x. We can compute that

s2∂2t FN(t, h) =
2s2

N
E ⟨(y ⋅ y′)(y ⋅ y′ − 2y ⋅ y′′ + y′′ ⋅ y′′′)⟩ ,

s∂t(a ⋅ ∇FN(t, h)) =
2s

N
E ⟨(a ⋅ x⊺x′)(y ⋅ y′ − 2y ⋅ y′′ + y′′ ⋅ y′′′)⟩ ,

(a ⋅ ∇)
2FN(t, h) =

2

N
E ⟨(a ⋅ x⊺x′)(a ⋅ x⊺x′ − 2a ⋅ x⊺x′′ + a ⋅ x′′⊺x′′′)⟩ .
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Again, this computation uses the Nishimori identity and the Gaussian integration parts.
Details for deriving the third identity above can be seen in the derivation of [19, (3.27)].
The two other identities can be computed by following the same procedure. Let I be
the identity matrix of the same size as y⊺y′. Setting b = diag(a, sI), z = diag(x, y) and
similarly for replicas, we have b ⋅z⊺z′ = sy ⋅y′+a ⋅x⊺x′ (where the matrix product is carried
out prior to the dot product). In this notation, adding the above identities together and
using the symmetry between replicas, we have

(s∂t + a ⋅ ∇)
2
FN(t, h) =

2

N
E ⟨(b ⋅ z⊺z′)2 − 2(b ⋅ z⊺z′)(b ⋅ z⊺z′′) + (b ⋅ z⊺z′)(b ⋅ z′′⊺z′′′)⟩

=
2

N
E ⟨(b⊗ b) ⋅ (z⊺z′ ⊗ z⊺z′ − 2z⊺⟨z′⟩ ⊗ z⊺⟨z′⟩ + ⟨z⟩⊺⟨z′⟩ ⊗ ⟨z⟩⊺⟨z′⟩)⟩ .

Writing z = z − ⟨z⟩ and similarly for replicas, we obtain that the above is equal to

2

N
E ⟨(b⊗ b) ⋅ (z⊺z′ ⊗ z⊺z′ − z⊺⟨z′⟩ ⊗ z⊺⟨z′⟩)⟩ .

Since b is symmetric, we can see that

(b⊗ b) ⋅ (z⊺⟨z′⟩ ⊗ z⊺⟨z′⟩) = (b⊗ b) ⋅ (⟨z′⟩⊺z ⊗ ⟨z′⟩⊺z).

Using the symmetry between replicas, we conclude from the above three displays that

(s∂t + a ⋅ ∇)
2
FN(t, h) =

2

N
E ⟨(b⊗ b) ⋅ (z⊺z′ ⊗ z⊺z′)⟩ ⩾ 0. �

3. Some results of convex analysis

As mentioned above, our approach to proving Theorem 1.1 relies on the identification
of the limit of FN as the unique viscosity solution to (2.1). The uniqueness criterion we
will use for this purpose is inspired by that described in Appendix A. Compared with the
setting explored there, equation (2.1) poses additional difficulties that are caused by the
fact that the domain SK+ of the “space” variable has a boundary. This is compounded
by the fact that the relevant order on SK+ is not total. The main purpose of this section
is to demonstrate Proposition 3.9, which states that, despite this, the subgradient of
a nondecreasing convex function with nondecreasing gradients always has a maximal
element (and this maximal element has further good properties). This proposition will
be particularly handy in Section 4.

3.1. Preliminaries. We start by recalling basic definitions and results from convex
analysis. Since we need results for both functions defined on SK+ and functions on
[0,∞) × SK+ , we consider a slightly more general setting in this subsection and specialize
into these two spaces when needed.

Let H be a finite-dimensional Hilbert space. The associated inner product is denoted
by a dot product, and the norm by ∣ ⋅ ∣. Since H can be isometrically identified with
a Euclidean space, the usual notion of differentiability for any function u ∶ H → R still
makes sense. If u is differentiable at x ∈ H , we denote by Du(x) its differential at x. We
also identify H with its dual and thus Du(x) ∈ H . For the purpose of this work, the
space H will be taken to be either R × SK or SK , and, correspondingly, D will be taken
to be either (∂t,∇) or ∇.

Let u ∶ H → R ∪ {∞} be a convex function. We define its subdifferential at x ∈ H by

∂u(x) ∶= {y ∈ H ∶ u(x′) ⩾ u(x) + y ⋅ (x′ − x), ∀x′ ∈ H }.(3.1)

The effective domain of u is

domu ∶= {x ∈ H ∶ u(x) < ∞}.
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The function u is called proper if domu ≠ ∅. The outer normal cone to a subset S ⊆ H
at x ∈ H is given by

nS (x) ∶= {y ∈ H ∶ y ⋅ (x′ − x) ⩽ 0, ∀x′ ∈ S }.(3.2)

The following result characterizes the subdifferential as the sum of the outer normal
cone and the set of accumulation points of differentials at nearby differentiable points; we
refer to [26, Theorem 25.6] for a proof.

Lemma 3.1. Let u ∶ H → R ∪ {∞} be a proper lower semi-continuous convex function
such that domu has nonempty interior. Then, for every x ∈ H ,

∂u(x) = cl(convS) + ndomu(x).

where S is the set of all limits of sequences of the form (Du(xi))i∈N such that u is
differentiable at xi and limi→∞ xi = x.

We also record two classical results which, while not relevant to the proof of Proposi-
tion 3.9, will be useful later on. The first one characterizes the subdifferential of the sum
of two convex functions, assuming that one of them is differentiable for simplicity. The
second one states a correspondence between elements of the subdifferential at a point
and smooth functions that “touch the convex function from below”.

Lemma 3.2. Let u ∶ H → R ∪ {∞} be a proper lower semi-continuous convex function
such that domu has nonempty interior. Let v ∶ H → R be convex and differentiable
everywhere. Set u′ = u + v. Then, domu = domu′ and, for every x ∈ domu, it holds that

∂u′(x) = ∂u(x) + {Dv(x)}.

Proof. The first claim is obvious due to the finiteness of v. To see the second claim, we
start by noting that due to domu = domu′, the outer normal cone to domu is the same
as the outer normal cone to domu′ at every point. The differentiability of v implies that
u′ is differentiable at some point x′ if and only if u is also differentiable at x′. Hence, the
second claim follows from Lemma 3.1. �

Lemma 3.3. Let u ∶ H → R ∪ {∞} be convex. Then, p ∈ ∂u(x) for some x if and only
if there exists a smooth function φ ∶ H → R such that u − φ achieves its minimum at x
and Dφ(x) = p.

Proof. Assuming p ∈ ∂u(x), we can deduce from the definition of subdifferential that
u − φ achieves its minimum at x for φ ∶ y ↦ p ⋅ y. Now, let us assume the converse. The
convexity of u implies that

u(x′) − u(x) ⩾
1

λ
(u(x + λ(x′ − x)) − u(x)), ∀x′, ∀λ ∈ (0,1].

Using the minimality of u − φ at x and the differentiability of φ at x, we can obtain
Dφ(x) ∈ ∂u(x) by sending λ→ 0. �

To apply these results to the study of solutions to (2.1), we make the following remark.

Remark 3.4. Any convex function f ∶ [0,∞) × SK+ → R can be extended in a standard

way to a convex function f ∶ R × SK → R ∪ {∞} by setting f = f on [0,∞) × SK+ and

f = ∞ elsewhere. Note that f is proper and its effective domain is [0,∞)×SK+ which has

nonempty interior. If f is continuous, then f is lower semi-continuous. In the following,
we do not distinguish between f and its standard extension. Then, the notions and results
discussed above can be applied to f by setting H = R × SK and D = (∂t,∇). Similar
treatments can be taken for any convex function ψ ∶ SK+ → R.
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Finally, since we will work with functions defined on SK+ and [0,∞) × SK+ , we record
these two simple lemmas.

Lemma 3.5. For every a ∈ SK , we have a ∈ SK+ if and only if a ⋅ b ⩾ 0 for all b ∈ SK+ .

Lemma 3.6. For every t ⩾ 0 and x ∈ SK+ , we have nSK
+

(x) ⊆ −SK+ and n[0,∞)×SK
+

(t, x) ⊆

−([0,∞) × SK+ ).

The first lemma is an application of the diagonalizability of real symmetric matrices
(see e.g. [19, Lemma 2.2]), and the second lemma is a consequence of the definition of
outer normal cones in (3.2).

3.2. Nondecreasing gradients. The key result of this subsection is Proposition 3.9.
To state it, it is convenient to introduce the following definitions. Recall the partial orders
defined in (2.2) and (2.3).

Definition 3.7 (Nondecreasingness). A real-valued function g defined on SK+ or [0,∞)×

SK+ is said to be nondecreasing if g(y1) ⩽ g(y2) whenever y1 ⩽ y2.

Definition 3.8 (Nondecreasing gradients). A Lipschitz function f ∶ [0,∞) × SK+ → R is
said to have nondecreasing gradients if, for every (t1, x1) and (t2, x2) that are differentiable
points of f and satisfy (t1, x1) ⩽ (t2, x2), it holds that

(∂t,∇)f(t1, x1) ⩽ (∂t,∇)f(t2, x2).(3.3)

Recall that, by Rademacher’s theorem, a Lipschitz function is differentiable almost
everywhere. Here is the main result of this section.

Proposition 3.9. Suppose that f ∶ [0,∞) × SK+ → R is nondecreasing, Lipschitz, convex,
and has nondecreasing gradients. Then, for every (t, x) ∈ [0,∞) × SK+ , there exists
(b, q) ∈ ∂f(t, x) ∩ [0,∞) × SK+ such that ∣(b, q)∣ ⩽ ∥f∥Lip and

for every (a, p) ∈ ∂f(t, x), (a, p) ⩽ (b, q).(3.4)

In addition, if f satisfies (2.1) on a dense set, then (b, q) can be chosen to satisfy
b −H(q) = 0.

Remark 3.10. In the statement of Proposition 3.9, the precise interpretation of the phrase
that f satisfies (2.1) on a dense set is that the set

{(t, x) ∈ (0,∞) × SK++ ∶ f is differentiable at (t, x) and (∂tf −H(∇f)) (t, x) = 0}

is dense in [0,∞) × SK+ . We point out that one could equivalently replace this condition
by the condition that f satisfies (2.1) at every point of differentiability in (0,∞) × SK++.
Indeed, one direction of this equivalence is immediate, since every Lipschitz function
is differentiable almost everywhere. Conversely, if (t, x) ∈ (0,∞) × SK++ is a point of
differentiability of f , one can find a sequence of points (tn, xn) that converge to (t, x) and
such that (2.1) is satisfied at (tn, xn). Then every subsequential limit of (∂tf,∇f)(tn, xn),
say (a, p) ∈ R × SK , satisfies a −H(p) = 0, and one can check that (a, p) ∈ ∂f(t, x). But
since f is differentiable at (t, x) and (t, x) is in the interior (implying that the outer
normal cone is {0}), the subdifferential ∂f(t, x) is the singleton {(∂t,∇)f(t, x)}.

Proof of Proposition 3.9. Let (t, x) ∈ [0,∞) × SK+ . We start by fixing some (s0, y0) ∈

(0,∞) × SK++ such that ∣(s0, y0)∣ = 1. Note that

(t, x) + λ(s0, y0) ∈ [0,∞) × SK+ , ∀λ ⩾ 0.
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Since f is differentiable a.e. on [0,∞) × SK+ , we can find a sequence (t0,j , x0,j)j∈N of
differentiable points such that

∣(t0,j , x0,j) − ((t, x) + j−1(s0, y0))∣ ⩽ j
−2, ∀j ∈ N.(3.5)

If, in addition, f satisfies (2.1) on a dense set, then clearly we can choose (t0,j , x0,j)j∈N
from that set. Since f is Lipschitz, by passing to a subsequence, we may assume that
limj→∞(∂t,∇)f(t0,j , x0,j) exists. Denote this limit by (b, q). By Lemma 3.1, we know
that (b, q) ∈ ∂f(t, x). It is clear that ∣(b, q)∣ ⩽ ∥f∥Lip. Since f is nondecreasing, we also

have that (b, q) ∈ [0,∞)×SK+ . Continuity of H implies that b−H(q) = 0 if f satisfies (2.1)
on a dense set. It remains to show (3.4).

We apply Lemma 3.1 to the standard extension of f . Note that dom f = [0,∞) × SK+ .
Let S be the corresponding set at (t, x) in this lemma. Then, due to this and Lemma 3.6,
for each (a, p) ∈ ∂f(t, x), there is (a′, p′) ∈ cl(convS) such that (a, p) ⩽ (a′, p′). Therefore,
it suffices to prove (3.4) for (a, p) ∈ cl(convS). In fact, since the condition on (a, p) in (3.4)
is stable under convex combinations and passage to the limit, it suffices to show (3.4) for
every (a, p) ∈ S.

Let (a, p) ∈ S. By definition of S, there exists a sequence ((ti, xi))i∈N converging
to (t, x) such that

lim
i→∞

(∂t,∇)f(ti, xi) = (a, p).(3.6)

Due to our choice of (s0, y0), we can see that for sufficiently large j there is i(j) ∈ N such
that

(ti, xi) ⩽ (t0,j , x0,j), ∀i ⩾ i(j).(3.7)

Indeed, since (s0, y0) is strictly positive, there is C > 0 such that

C−1
∣(a′, p′)∣ ⩽ (a′, p′) ⋅ (s0, y0) ⩽ C ∣(a′, p′)∣, ∀(a′, p′) ∈ [0,∞) × SK+ .

By this and (3.5), we have that, for every a ∈ [0,∞) × SK+ ,

a ⋅ ((t0,j , x0,j) − (t, x) −
1

2j
(s0, y0)) ⩾

1

2j
a ⋅ (s0, y0) − j

−2
∣a∣ ⩾ ∣a∣(

1

2Cj
−

1

j2
).

The right-hand side is nonnegative for sufficiently large j. Lemma 3.5 thus implies that

(t0,j , x0,j) − (t, x) ⩾
1

2j
(s0, y0).

On the other hand, similar arguments yield that, for sufficiently large i (in terms of j),

(ti, xi) − (t, x) ⩽
1

2j
(s0, y0).

The two previous displays justify (3.7). Using (3.6), (3.7) and the property (3.3), by first
sending i→∞ and then j →∞, we obtain that

(a, p) ⩽ lim
j→∞

(∂t,∇)f(t0,j , x0,j) = (b, q),

as desired. �
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4. Viscosity solutions

In this section, we study the Hamilton-Jacobi equation (2.1). First, we give the precise
definition of viscosity solutions. Then, we recall the uniqueness and existence of viscosity
solutions ensured by the comparison principle and the fact that the Hopf formula gives
a viscosity solution. We next turn to the main goal of this section, which is to prove
Proposition 4.7. This proposition provides us with a convenient sufficient condition for
checking whether a function is the unique viscosity solution. This is instrumental in our
proof of the convergence of the free energy in Section 5.

Recall that the notion of nondecreasing functions was introduced in Definition 3.7.

Definition 4.1 (Viscosity solutions).

(1) A nondecreasing Lipschitz function f ∶ [0,∞) × SK+ → R is a viscosity subsolution
to (2.1) if for every (t, h) ∈ (0,∞) × SK+ and every smooth φ ∶ (0,∞) × SK+ → R
such that f − φ has a local maximum at (t, h), we have

⎧⎪⎪
⎨
⎪⎪⎩

(∂tφ −H(∇φ))(t, h) ⩽ 0, if h ∈ SK++,

∇φ(t, h) ∈ SK+ , if h ∈ SK+ ∖ SK++.

(2) A nondecreasing Lipschitz function f ∶ [0,∞)×SK+ → R is a viscosity supersolution
to (2.1) if for every (t, h) ∈ (0,∞) × SK+ and every smooth φ ∶ (0,∞) × SK+ → R
such that f − φ has a local minimum at (t, h), we have

⎧⎪⎪
⎨
⎪⎪⎩

(∂tφ −H(∇φ))(t, h) ⩾ 0, if h ∈ SK++,

∂tφ(t, h) − inf H(q) ⩾ 0, , if h ∈ SK+ ∖ SK++,

where the infimum is taken over all q ∈ (∇φ(t, h) + SK+ ) ∩ SK+ and ∣q∣ ⩽ ∥f∥Lip.

(3) A nondecreasing Lipschitz function f ∶ [0,∞) × SK+ → R is a viscosity solution
to (2.1) if f is both a viscosity subsolution and supersolution.

Remarks 4.3 and 4.4 below aim to provide a somewhat more intuitive understanding
of Definition 4.1. Before doing so, we record the following observation.

Lemma 4.2. The function H ∶ SK+ → R given in (1.4) is nondecreasing.

Proof. Let a, b ∈ SK+ be such that a ⩽ b. Recalling that the tensor product of two positive
semidefinite matrices is positive definite, see for instance [27, Theorem 7.20], one can
show by induction on p that a⊗p ⩽ b⊗p. Since AA⊺ ∈ SK

p

+ , we can use Lemma 3.5 to obtain
that H(a) ⩽ H(b), as desired. �

Remark 4.3. Given a nondecreasing Lipschitz function f , define the extension of H by

H(p) ∶= inf {H(q) ∶ q ⩾ p, q ∈ SK+ , ∣q∣ ⩽ ∥f∥Lip}, ∀p ∈ SK .(4.1)

As usual, the infimum over an empty set is understood to be ∞. Note that H ∶ SK →
R ∪ {∞} is lower semi-continuous and agrees with H on SK+ due to Lemma 4.2. Then,
Definition 4.1 (2) can be reformulated as follows: f is viscosity supersolution if for every
(t, h) ∈ (0,∞)×SK+ and every smooth φ ∶ (0,∞)×SK+ such that f −φ has a local minimum
at (t, h), we have

(∂tφ −H(∇φ))(t, h) ⩾ 0.

Note that, in this formulation, we do not need to distinguish between h ∈ SK++ and
h ∈ SK+ ∖ SK++.
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Remark 4.4. Equation 2.1 is probably best thought of as the vanishing-viscosity limit
of the equation with the nonlinearity H replaced by H and with a Neumann boundary
condition. For such equations, it would be more standard to write the condition in the
definition of subsolution as

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(∂tφ −H(∇φ))(t, h) ⩽ 0, if h ∈ SK++,

min
⎛

⎝
(∂tφ −H(∇φ))(t, h), inf

ν∈n
SK
+

(h)
ν ⋅ ∇φ(t, h)

⎞

⎠
⩽ 0, if h ∈ SK+ ∖ SK++,

and the condition in the definition of supersolution as

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(∂tφ −H(∇φ))(t, h) ⩾ 0, if h ∈ SK++,

max
⎛
⎜
⎝
(∂tφ −H(∇φ))(t, h), sup

ν∈n
SK
+

(h)
ν ⋅ ∇φ(t, h)

⎞
⎟
⎠
⩾ 0, if h ∈ SK+ ∖ SK++.

Using Lemma 3.6, one can verify that Definition 4.1 is more stringent than the one alluded
to in this remark. In principle, adopting a more stringent definition should complicate
the argument for the existence of solutions. But in our context, we can rely on the Hopf
formula to obtain without much additional difficulties that the solution to (2.1) indeed
satisfies this more stringent (and somewhat simpler) definition.

We turn to the well-posedness of equation (2.1). We first state a comparison principle,
which ensures in particular that there is at most one viscosity solution with a given initial
condition.

Proposition 4.5 (Comparison principle). If u is a supersolution and v is a subsolution
to (2.1), then

sup
[0,∞)×SK

+

(u − v) = sup
{0}×SK

+

(u − v).

For suitable initial conditions, the viscosity solution admits the following variational
representation.

Proposition 4.6 (Hopf formula). Let ψ ∶ SK+ → R be convex, Lipschitz and nondecreasing,
and let f be given by

f(t, h) ∶= sup
h′′∈SK

+

inf
h′∈SK

+

{h′′ ⋅ (h − h′) + ψ(h′) + tH(h′′)}, ∀(t, h) ∈ [0,∞) × SK+ .

Then, the function f is a viscosity solution to (2.1) with initial condition f(0, ⋅) = ψ.

For the proofs of these two propositions, we refer to [8, Section 6].

In the remaining of this section, for convenience, we will use x, y as spatial variables in
place of h, which should not be confused with the notation for random variables under
the Gibbs measure ⟨ ⋅ ⟩ in Section 2.

4.1. Identification criterion. The following result gives a convenient criterion for a
function to be a viscosity solution.

Proposition 4.7. Let f ∶ [0,∞)×SK+ → R be nondecreasing, Lipschitz, convex, and have
nondecreasing gradients. Suppose that ψ = f(0, ⋅) is C1 and that f satisfies (2.1) on a
dense subset. Then, f is a viscosity solution to (2.1) with initial condition ψ.

For the reader’s convenience, the idea for the proof of this proposition is also presented
in the simpler setting of Hamilton-Jacobi equations on [0,∞) ×Rd in Appendix A. Two
essential ingredients for this argument are the C1 assumption of the initial condition
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and the convexity of f . At least in the simpler context explored in Appendix A, both
assumptions are necessary; see in particular Remark A.3 there.

Compared with the Euclidean setting discussed in Appendix A, the existence of the
boundary of SK+ complicates the arguments. Indeed, in view of Lemma 3.1, on the
boundary, the subdifferential contains an additional component from the outer normal
cone. Therefore, if p ∈ ∂ψ(y) for a boundary point y, we cannot identify p with ∇ψ(y).
The identity p = ∇ψ(y) is important in Step 2 of the proof of Proposition A.2. It turns
out that for Proposition 4.7, a work-around is available by exploiting the assumption that
the function f has nondecreasing gradients.

As preparation for this, we use Proposition 3.9 to prove the following lemma. This
lemma can be interpreted as stating that we can always “lift” a subdifferential p ∈ ∂ψ(y) to
a subdifferential (b, p) ∈ ∂f(0, y) which is dominated by some (b, p′) ∈ ∂f(0, y) satisfying
the Hamilton-Jacobi equation. This lemma is needed due to the presence of boundary.
Indeed, on [0,∞) ×Rd, the existence of such a “lift” is automatic, which can be seen in
Step 2 of the proof of Proposition A.2.

Lemma 4.8. Under the assumptions in Proposition 4.7, for every y ∈ SK+ and every
p ∈ ∂ψ(y), there is (b, p′) ∈ [0,∞)×SK+ such that (b, p) ∈ ∂f(0, y), p′ ⩾ p, ∣(b, p′)∣ ⩽ ∥f∥Lip
and b −H(p′) = 0.

Proof. Since ψ ∶ SK+ → R is C1, by Lemma 3.1 and setting p′ = ∇ψ(y), we have

∂ψ(y) = {p′} + nSK
+

(y).

This implies that

p = p′ + n(4.2)

for some

n ∈ nSK
+

(y).(4.3)

Due to Lemma 3.6, we have −n ∈ SK+ , that is,

p ⩽ p′.(4.4)

The same argument also yields that,

for every q′ ∈ ∂ψ(y), q′ ⩽ p′.(4.5)

Since f is nondecreasing, we have that, for all (t′, x′) ∈ [0,∞) × SK+ ,

f(t′, x′) − f(0, y) ⩾ f(0, x′) − f(0, y) = ψ(x′) − ψ(y),

which implies that (0, p′) ∈ ∂f(0, y). Let

(b, q) ∈ ∂f(0, y)(4.6)

be as described in Proposition 3.9, for f at the point (0, y). Then, the following properties
hold

(0, p′) ⩽ (b, q),(4.7)

∣(b, q)∣ ⩽ ∥f∥Lip, b −H(q) = 0.(4.8)

Since f(0, ⋅) = ψ, we must have q ∈ ∂ψ(y). Combining (4.5) and (4.7), we see that

p′ = q.(4.9)

We are now ready to conclude. By (4.3) and the definition of the outer normal in (3.2),
we can verify that

(0, n) ∈ n[0,∞)×SK
+

(0, y).
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This along with Lemma 3.1, (4.6) and (4.9) implies

(b, p′ + n) ∈ ∂f(0, y).

The lemma then follows from this display, (4.2), (4.4), (4.8) and (4.9). �

We are now ready to prove our criterion for the identification of solutions.

Proof of Proposition 4.7. We check that f must be a subsolution to (2.1). Let φ ∈

C∞((0,∞) × SK+ ), and (t, x) ∈ (0,∞) × SK+ be such that f − φ has a local maximum at
(t, x). If x ∈ SK+ ∖ SK++, since, for each a ∈ SK+ and sufficiently small ε > 0,

0 ⩽ f(t, x + εa) − f(t, x) ⩽ φ(t, x + εa) − φ(t, x),

we must have a ⋅∇φ(t, x) ⩾ 0 for all a ∈ SK+ . By Lemma 3.5, this implies that ∇φ(t, x) ∈ SK+ .
If x ∈ SK++, then we have,

f(t′, x′) − f(t, x) ⩽ (t′ − t)∂tφ(t, x) + (x′ − x) ⋅ ∇φ(t, x) + o(∣t′ − t∣ + ∣x′ − x∣).

This implies that the subdifferential ∂f(t, x) is the singleton {(∂t,∇)φ(t, x)}, and thus
that f is differentiable at (t, x), with (∂t,∇)f(t, x) = (∂t,∇)φ(t, x). Using also Re-
mark 3.10, we deduce that

(∂tφ −H(∇φ))(t, x) = (∂tf −H(∇f))(t, x) = 0,

as desired.

Now we want to show that f is a supersolution to (2.1). Fix any (t, x), and any

(a, p) ∈ ∂f(t, x).(4.10)

Recall Remark 4.3 and the extension H defined there. By Lemma 3.3, it suffices to show

a −H(p) ⩾ 0.(4.11)

We proceed in four steps.

Step 1. We claim that, for every ε > 0, the following infimum

(4.12) inf
y∈SK

+

(fε(0, y) − y ⋅ p)

is achieved, where, for every (s, y) ∈ [0,∞) × SK+ , we have set

fε(s, y) ∶= f(s, y) + ε
√

1 + ∣y∣2.

One can verify that y ↦
√

1 + ∣y∣2 is convex, and thus so is fε. By the definition of
subdifferentials, we have

f(0, y) − f(t, x) ⩾ (a, p) ⋅ (−t, y − x), ∀y ∈ SK+ ,

which implies that

fε(0, y) − y ⋅ p ⩾ ε
√

1 + ∣y∣2 + f(t, x) − (a, p) ⋅ (t, x), ∀y ∈ SK+ .

Hence, the left-hand side of the inequality above is bounded below and tends to infinity
as ∣y∣ tends to infinity. Therefore, a minimizer exists and we denote it by yε ∈ SK+ .

Step 2. We show

(4.13) lim
ε→0

ε
√

1 + ∣yε∣2 = 0.

We first observe that

(4.14) lim sup
ε→0

inf
y∈SK

+

(f(0, y) + ε
√

1 + ∣y∣2 − y ⋅ p) = inf
y∈SK

+

(f(0, y) − y ⋅ p) .
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Indeed, for any δ > 0, there is y ∈ SK+ such that

f(0, y) − y ⋅ p ⩽ inf(f(0, y) − y ⋅ p) + δ/2,

and we can choose ε > 0 small enough such that, for every ε ∈ (0, ε),

f(0, y) + ε
√

1 + ∣y∣2 − y ⋅ p ⩽ inf(f(0, y) − y ⋅ p) + δ.

This implies that

lim sup
ε→0

inf
y∈SK

+

(f(0, y) + ε
√

1 + ∣y∣2 − y ⋅ p) ⩽ inf
y∈SK

+

(f(0, y) − y ⋅ p) ,

and the other direction of the inequality in (4.14) is obvious. Since yε achieves the
infimum on the left-hand side of (4.14) and also satisfies

f(0, yε) − yε ⋅ p ⩾ inf
y∈SK

+

(f(0, y) − y ⋅ p) ,

we conclude that (4.13) holds.

Step 3. Let ψε ∶= fε(0, ⋅), so that ψε = ψ + ε
√

1 + ∣ ⋅ ∣2. Since yε achieves the infimum
in (4.12), we have that p ∈ ∂ψε(yε). Lemma 3.2 implies that

p = pε +
εyε

√
1 + ∣yε∣2

for some pε ∈ ∂ψ(yε). In particular, we have

∣p − pε∣ ⩽ ε.(4.15)

By Lemma 4.8 applied to pε, there exists (bε, p
′
ε) ∈ [0,∞) × SK+ such that

(bε, pε) ∈ ∂f(0, y),(4.16)

pε ⩽ p
′
ε, p′ε ∈ SK+ , ∣p′ε∣ ⩽ ∥f∥Lip(4.17)

bε −H(p′ε) = 0.(4.18)

Step 4. We are now ready to prove (4.11). Define h ∶ λ ↦ f (λ(t, x) + (1 − λ)(0, yε))
on [0,1]. Clearly, h is convex. By (4.16), the right derivative of h at 0 satisfies

h′+(0) ⩾ bεt + pε ⋅ (x − yε).

On the other hand, due to (4.10), the left derivative at 1 satisfies

h′−(1) ⩽ at + p ⋅ (x − yε).

By convexity of h, we must have h′+(0) ⩽ h
′
−(1). This along with (4.15) and (4.13) implies

that, as ε tends to zero,

a ⩾ bε + o(1).

By (4.18), the definition of H in (4.1), and (4.17), we have that

bε = H(p′ε) ⩾ H(pε).

Using that H is lower semi-continuous and (4.15) together with the two previous displays
yields that

a ⩾ H(p) + o(1),

and (4.11) follows by letting ε tend to zero. �
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In the corollary below, we rephrase our criterion for identifying solutions in the following
way: instead of asking for the equation to be valid on a dense subset, we ask that it
be valid at any point at which the candidate function can be touched from above by
a smooth function. As will be seen in the next section, the main advantage to this
formulation is that, by convexity, we automatically benefit from a control on the Hessian
of the candidate function at the contact point.

Corollary 4.9. Let f ∶ [0,∞) × SK+ → R be nondecreasing, Lipschitz, convex, and have
nondecreasing gradients. Suppose that ψ = f(0, ⋅) is C1, and that the following property
holds: for every φ ∈ C∞((0,∞)×SK+ ) and (t, x) ∈ (0,∞)×SK++ such that f − φ achieves a
strict local maximum at (t, x), we have

(∂tφ −H(∇φ))(t, x) = 0.

Then f is a viscosity solution to (2.1).

Proof. Let φ and (t, x) be as in the statement of the corollary. Since f is convex, we have
that, for any (a, p) ∈ ∂f(t, x) and (t′, x′) ∈ (0,∞) × SK+ ,

a(t′ − t) + p ⋅ (x′ − x) ⩽ f(t′, x′) − f(t, x)

⩽ ∂tφ(t, x)(t
′
− t) + ∇φ(t, x) ⋅ (x′ − x) + o(∣t′ − t∣ + ∣x′ − x∣).

It then follows that f is differentiable at (t, x) and the derivatives of f at (t, x) coincide
with those of φ. By Proposition 4.7, it suffices to show that the set
(4.19)

{(t, x) ∈ (0,∞) × SK++ ∶ ∃φ ∈ C
∞
((0,∞) × SK++) s.t. (t, x) is a local maximum of f − φ}

is dense. (The additional restriction that the local maximum be strict is easily addressed
a posteriori.) We fix any (t, x) ∈ (0,∞) × SK++, and for every α ⩾ 1, we define

φα ∶ (t′, x′) ↦
α

2
(t′ − t)2 +

α

2
∣x′ − x∣2.

Since f is Lipschitz, we can verify that f − φα achieves a global maximum at some point
(tα, xα). Using the Lipschitzness of f and that (f − φα)(tα, xα) ⩾ (f − φα)(t, x), we can
show that there is a constant C < ∞ such that for every α ⩾ 1,

∣tα − t∣ + ∣xα − x∣ ⩽
C

α
.

This implies that limα→∞(tα, xα) = (t, x). Also, since (t, x) ∈ (0,∞) × SK++, we have that
(tα, xα) ∈ (0,∞) × SK++ for every sufficiently large α. Hence (tα, xα) belongs to the set
in (4.19), and we conclude that the set in (4.19) is a dense subset of [0,∞) × SK+ . �

5. Convergence and application

The main goal of this section is to prove Theorem 1.1, using the tools developed in the
previous section. For illustration, we also apply the theorem to a specific model.

5.1. Convergence. In view of Proposition 4.6, Theorem 1.1 follows from the next
theorem.

Theorem 5.1. Under the conditions of Theorem 1.1, the function FN converges pointwise
to the unique viscosity solution to (2.1) with initial condition ψ.

In order to prove this result, we start by recalling from [8, Proposition 3.1] (cf.
also [19, Proposition 1.2]) that the function FN satisfies an approximate form of the
equation. In (5.1), we implicitly understand that the relevant functions are evaluated at
(t, h) ∈ [0,∞) × SK+ .
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Proposition 5.2 (Approximate Hamilton-Jacobi equation). There exists C < ∞ such
that for every N ⩾ 1 and uniformly over [0,∞) × SK+ ,

(5.1) ∣∂tFN −H(∇FN)∣
2
⩽ Cκ(h)N− 1

4 (∆FN + ∣h−1∣)
1
4 +CE [∣∇FN −∇FN ∣

2
] ,

where κ is the condition number of h ∈ SK+ given by

κ(h) ∶= {
∣h∣∣h−1∣, if h ∈ SK++,
+∞ otherwise.

Proof of Theorem 5.1. Since FN is Lipschitz uniformly in N by Lemma 2.1, the Arzelá-
Ascoli theorem implies that, for every subsequence of (FN)n∈N, there is a further subse-
quence converging to some function f in the local uniform topology. It suffices to show
that f is a viscosity solution to (2.1) and the uniqueness is ensured by Proposition 4.5.
For convenience, we assume that the whole sequence (FN)N∈N converges to f .

Lemmas 2.1 and 2.3 ensure that f is nondecreasing, Lipschitz and convex. Since FN
and f are convex, we have

lim
N→∞

(∂t,∇)FN(t, h) = (∂t,∇)f(t, h)

at every differentiable point (t, h) of f (indeed, any limit point of (∂t,∇)FN(t, h) must
belong to the subdifferential of f at (t, h), which is a singleton if f is differentiable
at (t, h)). This along with Lemma 2.2 yields that f has nondecreasing gradients. Let
(t, h) ∈ (0,∞) × SK++ and φ ∈ C∞((0,∞) × SK+ ) be such that f − φ has a strict local
maximum at (t, h). By Corollary 4.9, it suffices to show that

(5.2) (∂tφ −H(∇φ))(t, h) = 0.

Since FN converges locally uniformly to f , there exists (tN , hN) ∈ [0,∞) × SK+ such that
FN −φ has a local maximum at (tN , hN), and (tN , hN) converges to (t, h) as N tends to
infinity. Since (t, h) ∈ (0,∞)×SK++, each (tN , hN) also ultimately belongs to (0,∞)×SK++,
and without loss of generality, we can assume that every (tN , hN) remains a positive
distance away from the boundary of [0,∞) × SK+ , uniformly over N . Notice that

(5.3) (∂tFN − ∂tφ)(tN , hN) = 0 and (∇FN −∇φ)(tN , hN) = 0.

Throughout the rest of the proof, we use the letter C < ∞ to denote a constant whose
value may change from one occurrence to the next, and is allowed to depend on (t, h)
and φ. We decompose the argument into three steps.

Step 1. We show that for every h′ ∈ SK+ with ∣h′∣ ⩽ C−1, we have

(5.4) 0 ⩽ FN(tN , hN + h′) − FN(tN , hN) − h′ ⋅ ∇FN(tN , hN) ⩽ C ∣h′∣2.

The first inequality follows from the convexity of FN . To derive the second inequality, we
start by writing Taylor’s formula:

(5.5) FN(tN , hN + h′) − FN(tN , hN)

= h′ ⋅ ∇FN(tN , hN) + ∫

1

0
(1 − s)h′ ⋅ ∇ (h′ ⋅ ∇FN) (tN , hN + sh′)ds.

The same formula also holds if we substitute FN by φ throughout. Since FN − φ has a
local maximum at (tN , hN), we have for every ∣h′∣ ⩽ C−1 that

FN(tN , hN + h′) − FN(tN , hN) ⩽ φ(tN , hN + h′) − φ(tN , hN).

Using also (5.3), we obtain that

∫

1

0
(1 − s)h′ ⋅ ∇ (h′ ⋅ ∇FN) (tN , hN + sh′)ds ⩽ ∫

1

0
(1 − s)h′ ⋅ ∇ (h′ ⋅ ∇φ) (tN , hN + sh′)ds.
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Since the function φ is smooth, the right side of this inequality is bounded by C ∣h′∣2.
Using (5.5) once more, we obtain (5.4).

Step 2. Let

D ∶= {(t′, h′) ∈ [0,∞) × SK+ ∶ ∣t′ − t∣ ⩽ C−1 and ∣h′ − h∣ ⩽ C−1} .

In this step, we show that

(5.6) E [∣∇FN −∇FN ∣
2
(tN , hN)] ⩽ C (E [sup

D
∣FN − FN ∣

2
])

1
2

.

We recall from [8, (3.13)] that, for every a ∈ SK and (t′, h′) ∈ [0,∞) × SK+ such that
∣h′ − h∣ ⩽ C−1, we have

a ⋅ ∇(a ⋅ ∇FN)(t′, h′) ⩾ −C ∣a∣2
∣Z ∣
√
N
,

and that Z is an N -by-K matrix of independent standard Gaussians. As a consequence,
for every ∣h′∣ ⩽ C−1, we have

FN(tN , hN + h′) ⩾ FN(tN , hN) + h′ ⋅ ∇FN(tN , hN) −C ∣h′∣2
∣Z ∣
√
N
.

Combining this with (5.4), we obtain that, for every ∣h′∣ ⩽ C−1,

h′ ⋅ (∇FN −∇FN) (tN , hN) ⩽ 2 sup
D

∣FN − FN ∣ +C ∣h′∣2 (1 +
∣Z ∣
√
N

) .

For some deterministic λ ∈ [0,C−1] to be determined, we fix

h′ ∶= λ
(∇FN −∇FN) (tN , hN)

∣ (∇FN −∇FN) (tN , hN)∣
,

so that

λ∣∇FN −∇FN ∣(tN , hN) ⩽ 2 sup
D

∣FN − FN ∣ +Cλ2 (1 +
∣Z ∣
√
N

) .

Squaring this expression and taking the expectation yields

λ2E [∣∇FN −∇FN ∣
2
(tN , hN)] ⩽ 8E [sup

D
∣FN − FN ∣

2
] +Cλ4E

⎡
⎢
⎢
⎢
⎢
⎣

(1 +
∣Z ∣
√
N

)

2⎤
⎥
⎥
⎥
⎥
⎦

.

Since E[∣Z ∣2] = NK, choosing λ4 = E [supD ∣FN − FN ∣2] yields (5.6).

Step 3. Recall that we assume that E [supD ∣FN − FN ∣2] tends to zero as N tends to
infinity. By Proposition 5.2, (5.4), and (5.6), we obtain that

lim
N→∞

(∂tFN −H(∇FN)) (tN , hN) = 0.

Using also (5.3) and the fact that the function φ is smooth, this yields (5.2), and thus
completes the proof. �

5.2. Application. We study the model considered in [14], which corresponds to (1.1)
with L = 1, p ∈ N, and A ∈ RKp×1 given by Aj = 1 if j1 = j2 = ⋯ = jp and zero otherwise.
Here, we used the multi-index notation j = (j1, j2, . . . , jp) ∈ {1, . . . ,K}p. Explicitly, this
model can be expressed as

Yi =

√
2t

Np−1

K

∑
j=1

p

∏
n=1

Xin,j +Wi, i ∈ {1,⋯,N}
p,(5.7)
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where X ∈ RN×K is assumed to have i.i.d. row vectors. For even p, the limit of the free
energy associated with this model has been proved to satisfy a variational formula in [14].
When p is odd, the situation is more difficult; in [8], it was only proven that the limit is
bounded above by a variational formula. Here, we will apply Theorem 1.1 to treat both
even and odd values of p.

Recall the definition of H in (1.4). In this case, the nonlinearity H is given by

H(q) =
K

∑
k,k′=1

(qk,k′)
p, ∀q ∈ SK+ .(5.8)

Since row vectors of X are i.i.d., we have FN(0, ⋅) = F 1(0, ⋅) for all N ∈ N. Setting
ψ ∶= F 1(0, ⋅) and using the formula for FN in (1.3), we have

ψ(h) = E log∫
R1×K

exp(2h ⋅ (x⊺X1,⋅) +
√

2h ⋅ (x⊺Z) − h ⋅ (x⊺x))dP (x), ∀h ∈ SK+ ,(5.9)

where P is the law of the first row vector X1,⋅ = (X1,k)1⩽k⩽K . By Lemma 2.1, ψ is C1. The

concentration condition limN→∞E∥FN −FN∥2L∞(D)
= 0 for each compact D ⊆ [0,∞)×SK+

is proved in [8, Lemma C.1]. Hence, the next result follows from Theorem 1.1.

Corollary 5.3. Under the assumption (1.2), in the model described above with p ∈ N, it
holds that, for every (t, h) ∈ [0,∞) × SK+ ,

lim
N→∞

FN(t, h) = sup
h′′∈SK

+

inf
h′∈SK

+

{h′′ ⋅ (h − h′) + ψ(h′) + tH(h′′)},

for H and ψ given in (5.8) and (5.9), respectively.

Appendix A. On convex viscosity solutions

The goal of this section is to demonstrate the workings of a convenient uniqueness
criterion for Hamilton-Jacobi equations, in the simpler context of equations posed on
[0,∞)×Rd. This criterion states that, if the function under consideration is convex, then
we can assert that it is the viscosity solution of some Hamilton-Jacobi equation as soon
as it satisfies the equation on a dense subset and the initial condition is of class C1. This
criterion is generalized to equations posed on [0,∞) × SK+ in Proposition 4.7.

Let H ∶ Rd → R be a smooth function. We start by recalling the notion of viscosity
solutions to

(A.1) ∂tf −H(∇f) = 0 on [0,∞) ×Rd.

Definition A.1.

(1) A continuous function f ∶ [0,∞) ×Rd → R is a viscosity subsolution to (2.1) if for
every (t, h) ∈ (0,∞) ×Rd and every smooth φ ∶ (0,∞) ×Rd → R such that f − φ
has a local maximum at (t, h), we have

(∂tφ −H(∇φ))(t, h) ⩽ 0.

(2) A continuous function f ∶ [0,∞) ×Rd → R is a viscosity supersolution to (2.1) if
for every (t, h) ∈ (0,∞)×Rd and every smooth φ ∶ (0,∞)×Rd → R such that f −φ
has a local minimum at (t, h), we have

(∂tφ −H(∇φ))(t, h) ⩾ 0.

(3) A continuous function f ∶ [0,∞) ×Rd → R is a viscosity solution to (2.1) if f is
both a viscosity subsolution and supersolution.
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The main goal of this section is to prove the following proposition.

Proposition A.2. Let f ∶ [0,∞) × Rd → R be Lipschitz and convex. Suppose that f
satisfies (A.1) on a dense subset of (0,∞) × Rd, and that the initial condition f(0, ⋅)
is C1. Under these conditions, the function f is a viscosity solution to (A.1) with initial
condition f(0, ⋅).

Remark A.3. In Proposition A.2, the assumption that f(0, ⋅) be C1 is necessary. Indeed,
notice for instance that

f(t, x) ∶= ∣x∣ − t

is convex and satisfies

∂tf + ∣∇f ∣2 = 0

at every point of differentiability of f . However, since the null function is clearly a
solution, the statement that f is also a solution would contradict the maximum principle.
Instead, the viscosity solution to this equation with same initial condition is given by the
Hopf-Lax formula

(t, x) ↦ inf
y∈R

(∣y∣ +
∣y − x∣2

4t
) = {

∣x∣2

4t if ∣x∣ ⩽ 2t,
∣x∣ − t if ∣x∣ > 2t.

Proof of Proposition A.2. Recall the definition of subdifferential in (3.1). We decompose
the proof into three steps.

Step 1. We check that f must be a subsolution to (A.1). Let φ ∈ C∞((0,∞)×Rd), and
(t, x) ∈ (0,∞) ×Rd be such that f − φ has a local maximum at (t, x). We then have

f(t′, x′) − f(t, x) ⩽ (t′ − t)∂tφ(t, x) + (x′ − x) ⋅ ∇φ(t, x) + o(∣t′ − t∣ + ∣x′ − x∣).

This implies that the subdifferential ∂f(t, x) is the singleton {(∂tφ,∇φ)(t, x)}, and thus
that f is differentiable at (t, x), with (∂tf,∇f)(t, x) = (∂tφ,∇φ)(t, x). Using similar
arguments as in Remark 3.10, we deduce that

(∂tφ −H(∇φ)) (t, x) = (∂tf −H(∇f)) (t, x) = 0,

as desired.

Step 2. In the next two steps, we show that f is a supersolution to (A.1). Let
(a, p) ∈ ∂f(t, x). In view of Lemma 3.3, it is sufficient to show that

(A.2) a −H(p) ⩾ 0.

Since (a, p) ∈ ∂f(t, x), we have for every (t′, x′) ∈ [0,∞) ×Rd that

f(t′, x′) ⩾ f(t, x) + (t′ − t)a + (x′ − x) ⋅ p.

In particular, the mapping y ↦ f(0, y) − y ⋅ p is bounded from below. In this step, we
assume that the infimum

(A.3) inf
y∈Rd

(f(0, y) − y ⋅ p)

is achieved, and we denote by y a point realizing the infimum. By arguing as in
Remark 3.10, we see that there exists (b, p′) ∈ ∂f(0, y) such that b − H(p′) = 0. Since
f(0, ⋅) is C1 and y realizes (A.3), we must have p′ = ∂yf(0, y) = p, and thus (b, p) ∈ ∂f(0, y)
with b −H(p) = 0.

We next observe that the mapping g ∶ λ ↦ f (λ(t, x) + (1 − λ)(0, y)) is convex over
[0,1]. Since (b, p) ∈ ∂f(0, y), the right derivative of g at 0 satisfies

g′+(0) ⩾ bt + p ⋅ (x − y),
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while the left derivative at 1 satisfies

g′−(1) ⩽ at + p ⋅ (x − y).

By convexity of g, we must have g′+(0) ⩽ g
′
−(1), and thus a ⩾ b. Recalling that b−H(p) = 0,

we obtain (A.2), as desired.

Step 3. To conclude, there remains to consider the case when the infimum in (A.3) is
not achieved. For every ε > 0, we consider

inf
y∈Rd

(f(0, y) + ε∣y∣ − y ⋅ p) .

This infimum is achieved at a point yε ∈ Rd, and

(A.4) ∣∇f(0, yε) − p∣ ⩽ ε.

Moreover,

lim sup
ε→0

inf
y∈Rd

(f(0, y) + ε∣y∣ − y ⋅ p) = inf
y∈Rd

(f(0, y) − y ⋅ p) ,

and

f(0, yε) − yε ⋅ p ⩾ inf
y∈Rd

(f(0, y) − y ⋅ p) ,

so that

(A.5) lim
ε→0

ε∣yε∣ = 0.

Following the argument in Step 2, we can find bε ∈ R such that (bε,∇f(0, yε)) ∈ ∂f(0, yε)
and bε −H(∇f(0, yε)) = 0. Continuing as in Step 2, we then obtain that

bεt +∇f(0, yε) ⋅ (x − yε) ⩽ at + p ⋅ (x − yε).

Using (A.4) and (A.5), we deduce that, as ε tends to zero,

a ⩾ bε + o(1).

Recalling that bε −H(∇f(0, yε)) = 0, and using again (A.4) and the continuity of H, we
obtain (A.2). �
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phase transitions in spiked tensor estimation. In 2017 IEEE International Symposium on Information
Theory (ISIT), pages 511–515. IEEE, 2017.

[14] C. Luneau, J. Barbier, and N. Macris. Mutual information for low-rank even-order symmetric tensor
estimation. Information and Inference: A Journal of the IMA, iaaa022, 2020.

[15] C. Luneau, N. Macris, and J. Barbier. High-dimensional rank-one nonsymmetric matrix decomposition:
the spherical case. arXiv preprint arXiv:2004.06975, 2020.

[16] V. Mayya and G. Reeves. Mutual information in community detection with covariate information
and correlated networks. In 2019 57th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 602–607. IEEE, 2019.

[17] L. Miolane. Fundamental limits of low-rank matrix estimation: the non-symmetric case. arXiv
preprint arXiv:1702.00473, 2017.

[18] J.-C. Mourrat. Hamilton-Jacobi equations for mean-field disordered systems. Annales Henri Lebesgue,
to appear.

[19] J.-C. Mourrat. Hamilton-Jacobi equations for finite-rank matrix inference. Annals of Applied Proba-
babaility, to appear.

[20] J.-C. Mourrat. Parisi’s formula is a Hamilton-Jacobi equation in Wasserstein space. Canadian Journal
of Mathematics, to appear.

[21] J.-C. Mourrat. Nonconvex interactions in mean-field spin glasses. Probability and Mathematical
Physics, to appear.

[22] J.-C. Mourrat. Free energy upper bound for mean-field vector spin glasses. arXiv preprint
arXiv:2010.09114, 2020.

[23] J.-C. Mourrat and D. Panchenko. Extending the Parisi formula along a Hamilton-Jacobi equation.
Electronic Journal of Probability, 25:Paper No. 23, 17, 2020.

[24] G. Reeves. Information-theoretic limits for the matrix tensor product. IEEE Journal on Selected
Areas in Information Theory, 1(3):777–798, 2020.

[25] G. Reeves, V. Mayya, and A. Volfovsky. The geometry of community detection via the mmse matrix.
In 2019 IEEE International Symposium on Information Theory (ISIT), pages 400–404. IEEE, 2019.

[26] R. T. Rockafellar. Convex Analysis, volume 36. Princeton university press, 1970.
[27] F. Zhang. Matrix theory. Universitext. Springer, New York, second edition, 2011.

(H.-B. Chen) Courant Institute of Mathematical Sciences, New York University, New
York, New York, USA

E-mail address: hbchen@cims.nyu.edu

(J.-C. Mourrat) Courant Institute of Mathematical Sciences, New York University, New
York, New York, USA; CNRS, France

E-mail address: jcm777@nyu.edu

(J. Xia) Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsyl-
vania, USA

E-mail address: xiajiam@sas.upenn.edu


	1. Introduction
	1.1. Setting
	1.2. Related works
	Acknowledgements

	2. Properties of the free energy
	2.1. Derivatives of free energy
	2.2. Convexity

	3. Some results of convex analysis
	3.1. Preliminaries
	3.2. Nondecreasing gradients

	4. Viscosity solutions
	4.1. Identification criterion

	5. Convergence and application
	5.1. Convergence
	5.2. Application

	Appendix A. On convex viscosity solutions
	References

