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Abstract. Let Z4 be the ring of integers modulo 4. This paper studies
mixed alphabets Z4Z4[u3]-additive cyclic and λ-constacyclic codes for units
λ = 1+ 2u2, 3+ 2u2. First, we obtain the generator polynomials and minimal
generating set of additive cyclic codes. Then we extend our study to deter-
mine the structure of additive constacyclic codes. Further, we de�ne some
Gray maps and obtain Z4-images of such codes. Finally, we present numerical
examples that include six new and two best-known quaternary linear codes.

1. Introduction

Cyclic codes are one of the oldest and most studied classes of linear block codes
due to strong algebraic properties which lead to e�cient encoding and decoding
algorithms. It also gained serious attention through several generalized classes like
quasi-cyclic, constacyclic, skew cyclic, etc over the last few decades. Recall that a
linear code is de�ned to be a subspace (resp. submodule) of a vector space (resp.
module) over a �nite �eld (resp. ring). Classically, a cyclic code is de�ned as a
linear code invariant under the circular shift of coordinates. Therefore, it can be
classi�ed as an ideal of a quotient polynomial ring by identifying its codewords
with polynomials. This leads to characterizing them algebraically over �nite �elds
or rings. Recently, the linearity condition has been relaxed, and a new class of
codes has been de�ned, namely, additive codes in [15]. In fact, an additive code
has a group structure rather than a linear structure like a linear code. To be more
speci�c, we can say that over a �nite �eld Fq, a linear code C is a subspace of
Fnq whereas an additive code is a subgroup of Fnq . Therefore, every linear code is
additive but not conversely. After the introduction of additive codes in [10], these
codes were studied in both directions of single and mixed alphabets [11, 22, 23, 29].
One important application of such codes in steganography is shown in [24]. In
2010, Borges et al. [11] studied Z2Z4-additive codes to discuss their generator
polynomials and dual codes while on the other hand, their rank and kernel are
classi�ed in [17]. Later, Abualrub et al. [1] studied Z2Z4-additive cyclic codes by
identifying them as Z4[x]-submodules of Z2[x]/〈xr−1〉×Z4[x]/〈xs−1〉 for the length
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(r, s). Further, Borges et al. [12] revisited Z2Z4-additive cyclic codes and obtained
their generator polynomials and dual codes. Later on, the study was extended to
more general mixed alphabets like Z2Z2s in [8], ZpZps in [27, 30], ZprZps in [9, 31]
subsequently. Also, a new alphabet, namely, Z2Z2[u] where u2 = 0 is considered in
[4, 5, 13, 28]. Note that [5] is the �rst paper to study additive constacyclic codes
in mixed alphabets setting and de�ned Z2Z2[u]-additive (1 + u)-cyclic codes for
a unit 1 + u as Z2[u][x]-submodules of Z2[x]/〈xr − 1〉 × Z2[u][x]/〈xs − (1 + u)〉.
Further, mixed alphabets additive constacyclic codes are extensively studied in
[20, 21, 18]. Again, towards the generalization of these codes over mixed alphabets
Z2rZ2s [u] where u2 = 0, the reference [18] studied Z4Z4[u]-additive cyclic and
constacyclic codes for s = r = 2. Therefore, it is still open and interesting to
study these codes for s, r ≥ 3. Besides these all, another set of alphabets Z2Z2[u3]
appeared in [6], where they determined the generator polynomials and dual codes of
Z2Z2[u3]-additive cyclic codes. As a computational result, they have also explored
some binary optimal codes from the Gray images of such codes. Again, Aydogdu
in [7] generalized Z2Z2[u]-linear codes over Zp[u]/〈ur〉 × Zp[u]/〈us〉 where p is a
prime number. Along with their generator and parity check matrices, he presented
binary Gray images for p = 2. Therefore, one may logically attempt to extend
the alphabets of [6] to Z2rZ2s [u

3], or more generally ZprZps [u3] where u3 = 0.
To address this problem, we particularly consider s = r = 2 and study Z4Z4[u3]-
additive cyclic and constacyclic codes. The cases for r, s ≥ 3 and prime p > 2 are
still open for investigation. Here, we �rst determine the generator polynomials and
minimal spanning set for an additive cyclic code. Then we extend our study to
additive λ-constacyclic codes for units λ = 1+2u2 and λ = 3+2u2, respectively. In
addition, we de�ne some Gray maps and obtain quaternary cyclic, quasi-cyclic, and
generalized quasi-cyclic (GQC) codes from their Gray images. Finally, we calculate
their Z4-parameters, among them some are new and some are as good as the best-
known codes. Note that along with the algebraic structure of these codes our
de�ned Gray maps play a key role to obtain new and better Z4-parameters. There
might exist some other Gray maps too, which would be capable to produce more
new parameters. One can further investigate this direction, it would be interesting
for future scope.

This paper is organized as follows: Section 2 contains some basic de�nitions and
results for additive codes. Section 3 provides the generator polynomials and minimal
generating sets of Z4Z4[u3]-additive cyclic codes. In Section 4, we obtain generator
polynomials of Z4Z4[u3]-additive constacyclic codes. In Section 5, we de�ne some
Gray maps and obtain the Gray images of additive constacyclic codes. In Section 6,
we provide several examples to validate our results. Section 7 concludes the paper.

2. Preliminary

Let Z4 be the ring of integers modulo 4. A linear code C of length n over
Z4 is de�ned as a Z4-submodule of the module Zn4 . For a = (a0, . . . , an−1) and
b = (b0, . . . , bn−1) ∈ Zn4 , the Euclidean inner product is de�ned as a · b = a0b0 +
a1b1 + · · · + an−1bn−1 (mod 4). The Euclidean dual of a linear code C over Z4 is
denoted by C⊥ and de�ned as C⊥ = {v ∈ Zn4 : v · c = 0 for all c ∈ C}. We recall
that the Lee weight of a ∈ Z4 is wL(a) = min{a, |4 − a|}, i.e., wL(0) = 0, wL(1) =
1, wL(2) = 2, wL(3) = 1.
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Throughout this paper, we consider the ring Z4[u3] = {a+bu+cu2 : a, b, c ∈ Z4}
where u3 = 0, Z4Z4[u3] = {(a, b) : a ∈ Z4, b ∈ Z4[u3]}. Let γ, δ be odd positive
integers. We de�ne a projection map σ : Z4[u3]→ Z4 by

σ(a+ bu+ cu2) = a

and a scalar multiplication

∗ : Z4[u3]× Z4Z4[u3]→ Z4Z4[u3]

by

r ∗ (a, b) = (σ(r)a, rb), for r ∈ Z4[u3].

The above multiplication can be extended to Zγ4 × Z4[u3]δ as

r ∗ (a0, a1, . . . , aγ−1, b0, b1, . . . , bδ−1) = (σ(r)a0, . . . , σ(r)aγ−1, rb0, . . . , rbδ−1).

Then Zγ4 × Z4[u3]δ forms a Z4[u3]-module with respect to the usual addition and
the scalar multiplication ′∗′ de�ned above.

De�nition 2.1. A nonempty subset C of Zγ4 × Z4[u3]δ is said to be a Z4Z4[u3]-
additive code of length (γ, δ) if it is a Z4[u3]-submodule of Zγ4 × Z4[u3]δ.

De�nition 2.2. A Z4Z4[u3]-additive code C of length (γ, δ) is said to be a Z4Z4[u3]-
additive cyclic code if (a, b) = (a0, a1, . . . , aγ−1, b0, b1, . . . , bδ−1) ∈ C implies that
τγ,δ(a, b) = (aγ−1, a0, . . . , aγ−2, bδ−1, b0, . . . , bδ−2) ∈ C.

Now, we extend the projection map σ from Z4[u3][x] to Z4[x] by

σ
(∑

i

dix
i
)

=
∑
i

σ(di)x
i.

Let Rγ = Z4[x]/〈xγ − 1〉 and Sδ = Z4[u3][x]/〈xδ − 1〉. Then Rγ ×Sδ is a Z4[u3][x]-
module under the usual addition and scalar multiplication de�ned by

r(x) ∗ (a(x), b(x)) = (σ(r(x))a(x), r(x)b(x)).

For a Z4Z4[u3]-additive code C of length (γ, δ), we identify its codeword c =
(a0, a1, . . . , aγ−1, b0, b1, . . . , bδ−1) to the pair of polynomials (a(x), b(x)) ∈ Rγ × Sδ

where a(x) =
γ−1∑
i=0

aix
i ∈ Rγ , b(x) =

δ−1∑
i=0

bix
i ∈ Sδ. Then C is a Z4Z4[u3]-additive

cyclic code if and only if C is a Z4[u3][x]-submodule of Rγ × Sδ.
Now, by following [6], we consider an inner product for any two elements r =

(a0, . . . , aγ−1, b0, . . . , bδ−1) and s = (c0, . . . , cγ−1, d0, . . . , dδ−1) in Zγ4 × Z4[u3]δ as

r · s = u2
( γ−1∑
i=0

aici

)
+
( δ−1∑
j=0

bjdj

)
.

De�nition 2.3. Let C be a Z4Z4[u3]-additive code. Then the dual C⊥ of C is
de�ned as

C⊥ = {s ∈ Zγ4 × Z4[u3]δ : s · r = 0, for all r ∈ C}.

Theorem 2.4. Let C be a Z4Z4[u3]-additive cyclic code of length (γ, δ). Then C⊥

is also a Z4Z4[u3]-additive cyclic code of length (γ, δ).

Advances in Mathematics of Communications Volume X, No. X (20xx), X�XX
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Proof. If r = (a0, . . . , aγ−1, b0, . . . , bδ−1) ∈ C⊥, then r·s = 0, for all s = (c0, . . . , cγ−1,

d0, . . . , dδ−1) ∈ C. As C is an additive cyclic code, we have τ t−1γ,δ (s) = (c1, c2, . . . , cγ−1,

c0, d1, d2, . . . , dδ−1, d0) ∈ C where t = lcm(γ, δ). Now, in Zγ4 × Z4[u3]δ, we have

0 = r · τ t−1γ,δ (s) = u2(a0c1 + a1c2 + · · ·+ aγ−2cγ−1 + aγ−1c0)

+ (b0d1 + b1d2 + · · ·+ bδ−2dδ−1 + bδ−1d0)

= τγ,δ(r) · s.

Therefore, τγ,δ(r) ∈ C⊥ and hence C⊥ is an additive cyclic code.

De�nition 2.5. Let C be a linear code of length n = lm over Z4. Then C is said
to be a quasi-cyclic code of index l, if for each

s = (a0,0, a0,1, . . . , a0,m−1, a1,0, . . . , a1,m−1, . . . , al−1,0, . . . , al−1,m−1) ∈ C,
its quasi-cyclic shift given by

πl(s) =(a0,m−1, a0,0, . . . , a0,m−2, a1,m−1, a1,0, . . . , a1,m−2, . . . , al−1,m−1, al−1,0,

. . . , al−1,m−2)

is also in C. Moreover, if l = 1, then C is a cyclic code of length n.

3. Additive cyclic codes

In this section, we are interested to determine the algebraic structure of Z4Z4[u3]-
additive cyclic codes in terms of their generator polynomials and minimal spanning
sets for these codes. The two main results of the present section are Theorem 3.2
and Theorem 3.4. In this direction, we �rst state a result from [19] which presents
the structure of cyclic code and will be used to obtain the structure of Z4Z4[u3]-
additive cyclic codes.

Theorem 3.1. [19, Theorem 11] Let Ck be a cyclic code of odd length n over Z4 +
uZ4 + · · ·+uk−1Z4, where u

k = 0. Then Ck = 〈g1(x)+2a1(x)+up1(x)+u2p2(x)+
· · ·+uk−1pk−1(x), u(g2(x)+2a2(x))+u2q1(x)+ · · ·+uk−1qk−2(x), . . . , uk−1(gk(x)+
2ak(x))〉, ai|gi(x)|(xn − 1) (mod 4).

Let C be a Z4Z4[u3]-additive cyclic code of length (γ, δ). De�ne

Γ : Rγ × Sδ → Sδ

by Γ(p(x), q(x)) = q(x). Then ker(Γ) = (p(x), 0). Since L = {p(x) ∈ Rγ : p(x) ∈
ker(Γ|C)} is an ideal of Rγ , it can be written as L = 〈g(x) + 2a(x)〉. Hence,
ker(Γ|C) = 〈(g(x) + 2a(x), 0)〉, where a(x)|g(x). Also, Γ(C) is an ideal in Sδ.
Therefore, by [19, Theorem 11] we get

Γ(C) =〈g1(x) + 2a1(x) + up1(x) + u2p2(x), u(g2(x) + 2a2(x)) + u2q1(x), u2(g3(x)+

2a3(x))〉

where ai|gi(x)|xδ − 1 (mod 4). Hence,

C =〈(g(x) + 2a(x), 0), (f1(x), g1(x) + 2a1(x) + up1(x) + u2p2(x)), (f2(x), u(g2(x)+

2a2(x)) + u2q1(x)), (f3(x), u2(g3(x) + 2a3(x))〉

where p1(x), p2(x), q1(x) and fi(x) ∈ Z4[x] for i = 1, 2, 3. For simplicity, we write
g for g(x), a for a(x), ai for ai(x) and so on. From the above discussion, we have
the following theorem.

Advances in Mathematics of Communications Volume X, No. X (20xx), X�XX
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Theorem 3.2. A Z4Z4[u3]-additive cyclic code C of length (γ, δ) for odd positive

integers γ and δ is given by C = 〈(g+ 2a, 0), (f1, g1 + 2a1 +up1 +u2p2), (f2, u(g2 +
2a2) +u2q1), (f3, u

2(g3 + 2a3))〉, where a|g|(xγ − 1), ai|gi|(xδ − 1) and fi(x) ∈ Z4[x]
for i = 1, 2, 3.

To prepare the proof of the next theorem we require a technical lemma.

Lemma 3.3. Let C be a Z4Z4[u3]-additive cyclic code given in the above theorem.

Let hi = xδ−1
ai

, for i = 1, 2, l1 = gcd(h1p1 + uh1p2, x
δ − 1), l2 = gcd(h2q1, x

δ − 1),

mi = xδ−1
li

for i = 1, 2. Then (g + 2a)|x
δ−1
a3

f3 and (g + 2a)|mjhjfj, for j = 1, 2.

Proof. Since Γ[x
δ−1
a3

(f3, u
2(g3 + 2a3))] = Γ[x

δ−1
a3

f3, 0] = 0, which implies that
xδ−1
a3

f3 ∈ ker(Γ|C), i.e., (g+2a)|x
δ−1
a3

f3. Now, Γ[m1h1(f1, g1+2a1+up1+u2p2)] =

Γ(m1h1f1,m1h1(up1 + u2p2)) = Γ[m1h1f1, 0] = 0 . Therefore, (m1h1f1, 0) ∈
ker(Γ|C), i.e., (g + 2a)|m1h1f1. Similarly, Γ[m2h2(f2, u(g2 + 2a2))] = 0, which
implies that (g + 2a)|m2h2f2.

The following theorem gives a minimal spanning set for an additive cyclic code
C. By using the linear combination of elements in B, one can easily obtain all
its codewords. In addition, the spanning set B helps to form its generator matrix
which is useful to obtain its Z4-parameters under Gray image.

Theorem 3.4. Let C be a Z4Z4[u3]-additive code of length (γ, δ) given in the above

theorem. Take

B1 =

γ−deg(a)−1⋃
i=0

{xi ∗ (g + 2a, 0)},

B2 =

δ−deg(a1)−1⋃
i=0

{xi ∗ (f1, g1 + 2a1 + up1 + u2p2)},

B3 =

δ−deg(a2)−1⋃
i=0

{xi ∗ (f2, u(g2 + 2a2) + u2q1)},

B4 =

δ−deg(a3)−1⋃
i=0

{xi ∗ (f3, u
2(g3 + 2a3)},

B5 =

δ−deg(l1)−1⋃
i=0

{xi ∗ (h1f1, h1(up1 + u2p2))},

B6 =

δ−deg(l2)−1⋃
i=0

{xi ∗ (h2f2, u
2h2q1))}.

Then B = B1∪B2∪B3∪B4∪B5∪B6 is a minimal spanning set for C as a Z4[u3]-
module. Moreover, |C| = 4γ+9δ−deg(a)−3 deg(a1)−2 deg(a2)−deg(a3)−2 deg(l1)−deg(l2).

Proof. From Theorem 3.2, any c ∈ C can be written as

c =c1 ∗ (g + 2a, 0) + c2 ∗ (f1, g1 + 2a1 + up1 + u2p2) + c3 ∗ (f2, u(g2 + 2a2) + u2q1)

+ c4 ∗ (f3, u
2(g3 + 2a3)),

Advances in Mathematics of Communications Volume X, No. X (20xx), X�XX
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where ci ∈ Z4[u3][x] for 1 ≤ i ≤ 4. If deg(c1) ≤ γ − deg(a) − 1, then c1 ∗ (g +

2a, 0) ∈ span(B1). Otherwise, by division algorithm, c1 = xγ−1
a r0 + s0, for some

r0, s0 ∈ Z4[u3][x] where deg(s0) ≤ γ − deg(a)− 1. Now,

c1 ∗ (g + 2a, 0) =

(
xγ − 1

a
r0 + s0

)
∗ (g + 2a, 0)

=

(
xγ − 1

a
r0

)
∗ (g + 2a, 0) + s0 ∗ (g + 2a, 0)

=s0 ∗ (g + 2a, 0) ∈ span(B1).

Also, if deg(c2) ≤ δ− deg(a1)− 1, then c2 ∗ (f1, g1 + 2a1 + up1 + u2p2) ∈ span(B2).

Otherwise, by division algorithm, c2 = xδ−1
a1

r1 + s1, for some r1, s1 ∈ Z4[u3][x]

where deg(s1) ≤ δ − deg(a1)− 1. Again,

c2 ∗ (f1, g1 + 2a1 + up1 + u2p2)

=

(
xδ − 1

a1
r1 + s1

)
∗ (f1, g1 + 2a1 + up1 + u2p2)

= r1 ∗ (h1f1, h1(up1 + u2p2)) + s1 ∗ (f1, g1 + 2a1 + up1 + u2p2)

where s1 ∗ (f1, g1 + 2a1 + up1 + u2p2) ∈ span(B2). If deg(r1) ≤ δ − deg(l1) − 1,
then r1 ∗ (h1f1, h1(up1 + u2p2)) ∈ span(B5). Otherwise, by division algorithm,

r1 = xδ−1
l1

r2 + s2 for some r2, s2 ∈ Z4[u3][x] where deg(s2) ≤ δ − deg(l1) − 1.
Therefore,

r1 ∗ (h1f1, uh1(p1 + up2))

=
xδ − 1

l1
r2 ∗ (h1f1, h1(up1 + u2p2)) + s2 ∗ (h1f1, h1(up1 + u2p2))

= r2 ∗ (m1h1f1,m1h1(up1 + u2p2)) + s2 ∗ (h1f1, h1(up1 + u2p2)).

Since l1|(h1p1 + uh1p2), we have (h1p1 + uh1p2) = l1m3 for some m3 ∈ Z4[u3][x]
and m1(h1p1 + uh1p2) = m1l1m3 = 0. Also, (g + 2a)|m1h1f1. Therefore,

r1 ∗ (h1f1, uh1(p1 + up2)) =r2 ∗ (m1h1f1, 0) + s2 ∗ (h1f1, h1(up1 + u2p2))

∈ span(B1 ∪B5).

Again, if deg(c3) ≤ δ − deg(a2)− 1, then c3 ∗ (f2, u(g2 + 2a2) + u2q1) ∈ span(B3).

Otherwise, by division algorithm, c3 = xδ−1
a2

r3 + s3, for some r3, s3 ∈ Z4[u3][x]

where deg(s3) ≤ δ − deg(a2)− 1. Therefore,

c3 ∗ (f2, u(g2 + 2a2) + u2q1)

=

(
xδ − 1

a2
r3 + s3

)
∗ (f2, u(g2 + 2a2) + u2q1)

= r3 ∗ (h2f2, u
2h2q1)) + s3 ∗ (f2, u(g2 + 2a2) + u2q1)

where s3 ∗ (f2, u(g2 + 2a2) + u2q1) ∈ span(B3). If deg(r3) ≤ δ − deg(l2) − 1, then

r3 ∗ (h2f2, u
2h2q1) ∈ span(B6). Otherwise, by division algorithm, r3 = xδ−1

l2
r4 + s4

Advances in Mathematics of Communications Volume X, No. X (20xx), X�XX
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for some r4, s4 ∈ Z4[u3][x] where deg(s4) ≤ δ − deg(l2)− 1. Now,

r3 ∗ (h2f2, u
2h2q1) =

xδ − 1

l2
r4 ∗ (h2f2, u

2h2q1) + s4 ∗ (h2f2, u
2h2q1)

= r4 ∗ (m2h2f2, u
2m2h2q1) + s4 ∗ (h2f2, u

2h2q1).

Since l2|h2q1, we have h2q1 = l2m4, for some m4 ∈ Z4[u3][x] and m2h2q1 =
m2l2m4 = 0. Also, by Lemma 3.3, we have (g + 2a)|m2h2f2. Therefore,

r3 ∗ (h2f2, u
2h2q1) = r4 ∗ (m2h2f2, 0) + s4 ∗ (h2f2, u

2h2q1)

∈ span(B1 ∪B6).

Again, if deg(c4) ≤ δ − deg(a3) − 1, then c4 ∗ (f3, u
2(g3 + 2a3)) ∈ span(B4). Oth-

erwise, division algorithm gives c4 = xδ−1
a3

r5 + s5, for some r5, s5 ∈ Z4[u3][x] where

deg(s5) ≤ δ − deg(a3)− 1. Now,

c4 ∗ (f3, u
2(g3 + 2a3)) =

(
xδ − 1

a3
r5 + s5

)
∗ (f3, u

2(g3 + 2a3))

= r5 ∗
(
xδ − 1

a3
f3, 0

)
+ s5 ∗ (f3, u

2(g3 + 2a3)

where s5 ∗ (f3, u
2(g3 + 2a3) ∈ span(B4). Also, by Lemma 3.3 we have (g +

2a)|
(
xδ−1
a3

)
f3. Therefore, c4 ∗ (f3, u

2(g3 + 2a3)) ∈ span(B1 ∪ B4) and we con-

clude that B spans C. Also, none of the elements of B are in the span of the
remaining elements of B. Hence, we get the desired result.

4. Additive constacyclic codes

In this section, we extend our study to the algebraic structure of Z4Z4[u3]-
additive λ-constacyclic codes. Here, we assume that λ be a unit in Z4[u3]. We �rst
recall the de�nition of such codes as below.

De�nition 4.1. Let C be a Z4Z4[u3]-additive code of length (γ, δ). Then C is said
to be a Z4Z4[u3]-additive constacyclic code if

(a, b) = (a0, a1 . . . , aγ−1, b0, b1, . . . , bδ−1) ∈ C

implies

ρλ(a, b) = (aγ−1, a0, . . . , aγ−2, λbδ−1, b0, . . . , bδ−2) ∈ C.
In particular, for λ = 1, it is an additive cyclic code.

We consider Rγ × Sδ,λ = Z4[x]/〈xγ − 1〉 × Z4[u3][x]/〈xδ − λ〉 and consider the
scalar multiplication

∗ : Z4[u3][x]× (Rγ × Sδ,λ)→ Rγ × Sδ,λ
de�ned by

r(x) ∗ (a(x), b(x)) = (σ(r(x))a(x), r(x)b(x)), for r(x) ∈ Z4[u3][x].

In this way Rγ × Sδ,λ forms a Z4[u3][x]-module with respect to the scalar multipli-
cation ′∗′ and the usual addition. Now, identifying a vector

c = (a0, a1, . . . , aγ−1, b0, b1, . . . , bδ−1)
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in Zγ4 × Z4[u3]δ to the polynomial c(x) = (a(x), b(x)) ∈ Rγ × Sδ,λ where a(x) =
γ−1∑
i=0

aix
i ∈ Rγ , b(x) =

δ−1∑
i=0

bix
i ∈ Sδ,λ, we notice that ρλ(c) corresponds to the scalar

multiplication x ∗ (a(x), b(x)).

Lemma 4.2. Let C be a Z4Z4[u3]-additive code of length (γ, δ). Then C is a

Z4Z4[u3]-additive constacyclic code if and only if C is a Z4[u3][x]-submodule of

Rγ × Sδ,λ.

Proof. If C is a Z4Z4[u3]-additive constacyclic code, then xi ∗ (p(x), q(x)) ∈ C,
for c(x) = (p(x), q(x)) ∈ C. This implies that b(x) ∗ (p(x), q(x)) ∈ C, for b(x) ∈
Z4[u3][x]. Therefore, C is a Z4[u3][x]-submodule of Rγ × Sδ,λ.

Conversely, let C be a Z4[u3][x]-submodule of Rγ×Sδ,λ and c = (p(x), q(x)) ∈ C.
Then x ∗ (p(x), q(x)) = ρλ(c) ∈ C. Therefore, C is a Z4Z4[u3]-additive constacyclic
code.

Let C be a Z4Z4[u3]-additive constacyclic code of length (γ, δ). De�ne a module
homomorphism

Γ1 : Z4[x]/〈xγ − 1〉 × Z4[u3][x]/〈xδ − λ〉 → Z4[u3][x]/〈xδ − λ〉
by Γ1(p(x), q(x)) = q(x). Then, by the similar arguments as given for cyclic
codes, we have ker(Γ1|C) = 〈(g(x) + 2a(x), 0)〉, where a(x)|g(x)|(xγ − 1). Also,
Γ1(C) is an ideal in Sδ,λ, therefore, by [19, Theorem 13], we get Γ1(C) = 〈g1(x̂) +
2a1(x̂) + up1(x̂) + u2p2(x̂), u(g2(x̂) + 2a2(x̂)) + u2q1(x̂), u2(g3(x̂) + 2a3(x̂))〉, where
ai(x)|gi(x)|(xδ − λ) (mod 4) and x̂ = λx. From the above discussion, we have the
following theorem.

Theorem 4.3. A Z4Z4[u3]-additive constacyclic code C of length (γ, δ) for odd

positive integers γ, δ is given by C = 〈(g(x) + 2a(x), 0), (f1(x), g1(x̂) + 2a1(x̂) +
up1(x̂)+u2p2(x̂)), (f2(x), u(g2(x̂)+2a2(x̂))+u2q1(x̂)), (f3(x), u2(g3(x̂)+2a3(x̂)))〉,
where x̂ = λx, a(x)|g(x)|(xγ−1), ai(x)|gi(x)|(xδ−λ) and fi(x), p1(x), p2(x), q1(x) ∈
Z4[x], for i = 1, 2, 3.

5. Gray maps and Z4-images of constacyclic codes

In this section, we de�ne some Gray maps and obtain the Gray images of
Z4Z4[u3]-additive λ-constacyclic codes for two di�erent values λ = 1 + 2u2 and
3 + 2u2. For this, we �rst de�ne

ψ1 : Z4[u3]→ Z3
4

by

ψ1(a+ bu+ cu2) = (a, 2b, 2c),

which can be naturally extended as

ψ1 : Z4[u3]δ → Z3δ
4

de�ned by

ψ1(s0, s1, . . . , sδ−1) = (a0, a1, . . . , aδ−1, 2b0, 2b1, . . . , 2bδ−1, 2c0, . . . , 2cδ−1),(1)

where si = ai + ubi + u2ci for 0 ≤ i ≤ δ − 1.

For the map ψ1 : Z4[u3]δ → Z3δ
4 and v ∈ Z4[u3]δ, the Gray weight is de�ned by

wG(v) = wL(ψ1(v)) and the Gray distance between v and w is de�ned as dG(v, w) =
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dL(ψ1(v), ψ1(w)), where wL is the Lee weight and dL is the Lee distance over Z4.
Then it can be easily seen that ψ1 is a distance preserving linear bijective map from
Z4[u3]δ (Gray distance) to Z3δ

4 (Lee distance).

Theorem 5.1. Let C be a (1+2u2)-constacyclic code of length δ over Z4[u3]. Then
ψ1(C) is a quasi-cyclic code of index 3 and length 3δ over Z4.

Proof. In order to demonstrate ψ1(C) is a quasi-cyclic code it is su�cient to show
that ψ1ρ(1+2u2)(s) = π3ψ1(s) for all s ∈ C, where π3, ρ(1+2u2) are the quasi-cyclic
and constacyclic shifts, respectively. Let s = (s0, s1, . . . , sδ−1) ∈ C, where si =
ai + ubi + u2ci for 0 ≤ i ≤ δ − 1. Now,

ψ1ρ(1+2u2)(s) =ψ1((1 + 2u2)sδ−1, s0, s1, . . . , sδ−2)

=(aδ−1, a0, a1, . . . , aδ−2, 2bδ−1, 2b0, 2b1, . . . , 2bδ−2, 2cδ−1,

2c0, . . . , 2cδ−2),

and

π3ψ1(s) =π3(a0, a1, . . . , aδ−1, 2b0, 2b1, . . . , 2bδ−1, 2c0, . . . , 2cδ−1)

=(aδ−1, a0, a1, . . . , aδ−2, 2bδ−1, 2b0, 2b1, . . . , 2bδ−2, 2cδ−1, 2c0, . . . , 2cδ−2).

Therefore, ψ1ρ(1+2u2) = π3ψ1 and we get the desired result.

Now, we de�ne

ψ2 : Z4[u3]→ Z3
4

by

ψ2(a+ bu+ cu2) = (2a, 2b, 2c)

which can be naturally extended as

ψ2 : Z4[u3]δ → Z3δ
4

by

ψ2(s0, s1, . . . , sδ−1) = (2a0, 2a1, . . . , 2aδ−1, 2b0, 2b1, . . . , 2bδ−1, 2c0, . . . , 2cδ−1),

where si = ai + ubi + u2ci for 0 ≤ i ≤ δ − 1. It is worth noting that we de�ne
two Gray maps ψ1, ψ2 in such a way that we can classify λ-constacyclic codes
(λ = 1 + 2u2, 3 + 2u2) into a well-known class of quaternary quasi-cyclic codes.
Also, we will see in Section 6 that these Gray maps eventually help to obtain new
Z4-parameters. The way of de�ning Gray maps completely depends on the choice
of λ, in other words, if we chose di�erent λ, we need to de�ne Grap maps suitably
so that results corresponding to Theorem 5.1 and Theorem 5.2 are true.

Remark 1. From the de�nition, we must say that ψ2 is a linear map which carries
quaternary linear (or additive) codes to a speci�c class of linear codes of type 2C
where C is a binary code. In other words, codes induced from Gray images under
ψ2 are copies of binary codes.

Theorem 5.2. Let C be a (3+2u2)-constacyclic code of length δ over Z4[u3]. Then
ψ2(C) is a quasi-cyclic code of index 3 and length 3δ over Z4.

Proof. In order to prove ψ2(C) is a quasi-cyclic code, it is su�cient to show that
ψ2ρ(3+2u2)(s) = π3ψ2(s) for all s ∈ C where π3, ρ(3+2u2) are the quasi-cyclic and
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constacyclic shifts, respectively. Let s = (s0, s1, . . . , sδ−1) ∈ C, where si = ai +
ubi + u2ci for 0 ≤ i ≤ δ − 1. Now,

ψ2ρ(3+2u2)(s) = ψ2((3 + 2u2)sδ−1, s0, s1, . . . , sδ−2)

=(2aδ−1, 2a0, 2a1, . . . , 2aδ−2, 2bδ−1, 2b0, 2b1, . . . , 2bδ−2, 2cδ−1, 2c0, . . . , 2cδ−2),

and

π3ψ2(s) =π3(2a0, 2a1, . . . , 2aδ−1, 2b0, 2b1, . . . , 2bδ−1, 2c0, . . . , 2cδ−1)

=(2aδ−1, 2a0, 2a1, . . . , 2aδ−2, 2bδ−1, 2b0, 2b1, . . . , 2bδ−2, 2cδ−1,

2c0, . . . , 2cδ−2).

Therefore, ψ2ρ(3+2u2) = π3ψ2 and hence we get the desired result.

De�nition 5.3. [16, De�nition 1] Let n1, n2, . . . , nr be positive integers and Ri =
Z4[x]/〈xni − 1〉 for 1 ≤ i ≤ r. Then a generalized quasi-cyclic (GQC) code of
block length (n1, n2, . . . , nr) is de�ned as a Z4[x]-submodule of the Z4[x]-module
R = R1 × R2 · · · × Rr. If n1 = n2 = · · · = nr, then a GQC code is a quasi-cyclic
(QC) code. Moreover, if r = 1, then it is a cyclic code of length n1.

For j ∈ {1, 2}, we de�ne Ψj in terms of ψj given as

Ψj : Z4 × Z4[u3]→ Z4
4

de�ned by

Ψj(d, a+ bu+ cu2) = (d, ψj(a+ bu+ cu2))

which can be naturally extended to

Ψj : Zγ4 × Z4[u3]δ → Zγ+3δ
4

by

Ψj(d0, d1, . . . , dγ−1, s0, s1, . . . , sδ−1) = (d0, d1, . . . , dγ−1, ψj(s0, s1, . . . , sδ−1)),

where si = ai + ubi + u2ci for 0 ≤ i ≤ δ − 1.

Theorem 5.4. Let C be a Z4Z4[u3]-additive (1 + 2u2)-constacyclic code of length

(γ, δ). Then Ψ1(C) is a GQC code of block length (γ, δ, δ, δ) over Z4.

Proof. Let (d0, d1, . . . , dγ−1, a0, a1, . . . , aδ−1, 2b0, 2b1, . . . , 2bδ−1, 2c0, . . . , 2cδ−1) =
Ψ1(c) ∈ Ψ1(C), where c = (d0, d1, . . . , dγ−1, s0, s1, . . . , sδ−1) ∈ C. As C is a
Z4Z4[u3]-additive constacyclic code, we have that ρ(1+2u2),δ(c) = (dγ−1, d0, . . . , dγ−2,

(1 + 2u2)sδ−1, s0, . . . , sδ−2) ∈ C. Now,

Ψ1ρ(1+2u2),δ(c) = (dγ−1, d0, . . . , dγ−2, aδ−1, a0, a1, . . . , aδ−2, 2bδ−1, 2b0, 2b1, . . . , 2bδ−2,

2cδ−1, 2c0, . . . , 2cδ−2)

∈ Ψ1(C).

This implies that Ψ1(C) is a GQC code of block length (γ, δ, δ, δ) over Z4.

Using the above procedure, we get the following result.

Theorem 5.5. Let C be a Z4Z4[u3]-additive (3 + 2u2)-constacyclic code of length

(γ, δ). Then Ψ2(C) is a GQC code of block length (γ, δ, δ, δ) over Z4.
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We de�ne a new map

ψ̂1 : Z4[u3]→ Z2
4

by

ψ̂1(a+ bu+ cu2) = (3a+ b+ c, a+ b+ c)

whose natural extension is

ψ̂1 : Z4[u3]δ → Z2δ
4

by

ψ̂1(s0, s1, . . . , sδ−1) = (3a0 + b0 + c0, 3a1 + b1 + c1, . . . , 3aδ−1 + bδ−1 + cδ−1,

a0 + b0 + c0, a1 + b1 + c1, . . . , aδ−1 + bδ−1 + cδ−1),

where si = ai+ubi+u2ci for 0 ≤ i ≤ δ−1. Then ψ̂1 is a distance preserving linear
map and we have the following result.

Theorem 5.6. Let C be a (1+2u2)-constacyclic code of length δ over Z4[u3]. Then

ψ̂1(C) is a cyclic code of length 2δ over Z4.

Proof. Let C be a (1 + 2u2)-constacyclic code of length δ over Z4[u3] and s =
(s0, s1, . . . , sδ−1) ∈ C, where si = ai + ubi + u2ci for 0 ≤ i ≤ δ − 1. Then

ψ̂1ρ(1+2u2)(s) =ψ̂1((1 + 2u2)sδ−1, s0, s1, . . . , sδ−2)

=(aδ−1 + bδ−1 + cδ−1, 3a0 + b0 + c0, . . . , 3aδ−2 + bδ−2 + cδ−2,

3aδ−1 + bδ−1 + cδ−1, a0 + b0 + c0, . . . , aδ−2 + bδ−2 + cδ−2).

Also,

π1ψ̂1(s) =π1(3a0 + b0 + c0, 3a1 + b1 + c1, . . . , 3aδ−1 + bδ−1 + cδ−1, a0 + b0 + c0,

a1 + b1 + c1, . . . , aδ−1 + bδ−1 + cδ−1)

=(aδ−1 + bδ−1 + cδ−1, 3a0 + b0 + c0, . . . , 3aδ−1 + bδ−1 + cδ−1, a0 + b0+

c0, a1 + b1 + c1, . . . , aδ−2 + bδ−2 + cδ−2)

Therefore, ψ̂1ρ(1+2u2) = π1ψ̂1, and hence ψ̂1(C) is a cyclic code of length 2δ over
Z4.

Now, we consider another new map

ψ̂2 : Z4[u3]→ Z2
4

by

ψ̂2(a+ bu+ cu2) = (2a+ b+ 2c, 2a+ 3b+ 2c)

whose extension is

ψ̂2 : Z4[u3]δ → Z2δ
4

de�ned by

ψ̂2(s0, s1, . . . , sδ−1)

= (2a0 + b0 + 2c0, 2a1 + b1 + 2c1, . . . , 2aδ−1 + bδ−1 + 2cδ−1,

2a0 + 3b0 + 2c0, 2a1 + 3b1 + 2c1, . . . , 2aδ−1 + 3bδ−1 + 2cδ−1),

where si = ai + ubi + u2ci for 0 ≤ i ≤ δ − 1.

Theorem 5.7. Let C be a (3+2u2)-constacyclic code of length δ over Z4[u3]. Then

ψ̂2(C) is a cyclic code of length 2δ over Z4.
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Proof. Let C be a (3 + 2u2)-constacyclic code of length δ over Z4[u3] and s =
(s0, s1, . . . , sδ−1) ∈ C, where si = ai + ubi + u2ci for 0 ≤ i ≤ δ − 1. Then

ψ̂2ρ(3+2u2)(s) =ψ̂2((3 + 2u2)sδ−1, s0, s1, . . . , sδ−2)

=(2aδ−1 + 3bδ−1 + 2cδ−1, 2a0 + b0 + 2c0, . . . , 2aδ−1 + bδ−1 + 2cδ−1,

2a0 + 3b0 + 2c0, 2a1 + 3b1 + 2c1, . . . , 2aδ−2 + 3bδ−2 + 2cδ−2).

Also,

π1ψ̂2(s) =π1(2a0 + b0 + 2c0, 2a1 + b1 + 2c1, . . . , 2aδ−1 + bδ−1 + 2cδ−1,

2a0 + 3b0 + 2c0, 2a1 + 3b1 + 2c1, . . . , 2aδ−1 + 3bδ−1 + 2cδ−1)

=(2aδ−1 + 3bδ−1 + 2cδ−1, 2a0 + b0 + 2c0, . . . , 2aδ−1 + bδ−1 + 2cδ−1,

2a0 + 3b0 + 2c0, 2a1 + 3b1 + 2c1, . . . , 2aδ−1 + 3bδ−1 + 2cδ−1).

Therefore, we get ψ̂2ρ(3+2u2) = π1ψ̂2 and hence ψ̂2(C) is a cyclic code of length 2δ
over Z4.

For j ∈ {1, 2}, we de�ne Ψ̂j in terms of ψ̂j given by

Ψ̂j : Z4 × Z4[u3]→ Z3
4

de�ned as

Ψ̂j(d, a+ bu+ cu2) = (d, ψ̂j(a+ bu+ cu2))

whose natural extension is

Ψ̂j : Zγ4 × Z4[u3]δ → Zγ+2δ
4

de�ned by

Ψ̂j(d0, d1, . . . , dγ−1, s0, s1, . . . , sδ−1) = (d0, d1, . . . , dγ−1, ψ̂j(s0, s1, . . . , sδ−1)),

where si = ai + ubi + u2ci for 0 ≤ i ≤ δ − 1.

Theorem 5.8. Let C be a Z4Z4[u3]-additive (1 + 2u2)-constacyclic code of length

(γ, δ). Then Ψ̂1(C) is a GQC code of block length (γ, 2δ) over Z4.

Proof. Let (d0, d1, . . . , dγ−1, 3a0+b0+c0, . . . , 3aδ−1+bδ−1+cδ−1, a0+b0+c0, . . . , aδ−1
+ bδ−1 + cδ−1) = Ψ̂1(c) ∈ Ψ̂1(C), where c = (d0, d1, . . . , dγ−1, s0, s1, . . . , sδ−1) ∈ C.
As C is a Z4Z4[u3]-additive constacyclic code, we have ρ(1+2u2),δ(c) = (dγ−1, d0, . . . ,

dγ−2, (1 + 2u2)sδ−1, s0, . . . , sδ−2) ∈ C. Now,

Ψ̂1ρ(1+2u2),δ(c) =(dγ−1, d0, . . . , dγ−2, aδ−1 + bδ−1 + cδ−1, 3a0 + b0 + c0, 3a1 + b1

+ c1, . . . , 3aδ−2 + bδ−2 + cδ−2, 3aδ−1 + bδ−1 + cδ−1, a0 + b0+

c0, a1 + b1 + c1, . . . , aδ−2 + bδ−2 + cδ−2)

∈ Ψ̂1(C).

Therefore, we can conclude that Ψ̂1(C) is a GQC code of block length (γ, 2δ) over
Z4.

Using the same procedure, we get the following result.

Theorem 5.9. Let C be a Z4Z4[u3]-additive (3 + 2u2)-constacyclic code of length

(γ, δ). Then Ψ̂2(C) is a GQC code of block length (γ, 2δ) over Z4.
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6. Examples

In this section, we present three examples in support of our obtained results. By
applying Gray maps, we obtain 6 new and 2 best-known quaternary codes. The
computations involved here are carried out by the Magma computation system
[14, 32].

Example 6.1. Let δ = 7 and C be a (1 + 2u2)-constacyclic code of length 7 over
Z4[u3]. Then

C =〈g1(x̂) + 2a1(x̂) + up1(x̂) + u2p2(x̂), u(g2(x̂) + 2a2(x̂)) + u2q1(x̂), u2(g3(x̂)+

2a3(x̂))〉,

where ai(x)|gi(x)|x7 − 1 (mod 4) and x̂ = (1 + 2u2)x. Now,

x7 − 1 = (x+ 3)(x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3) ∈ Z4[x].

Let

g1(x) = (x+ 3)(x3 + 2x2 + x+ 3)

= x4 + x3 + 3x2 + 2x+ 1,

g2(x) = (x+ 3)(x3 + 3x2 + 2x+ 3)

= x4 + 2x3 + 3x2 + x+ 1,

g3(x) = (x+ 3)(x3 + 2x2 + x+ 3)

= x4 + x3 + 3x2 + 2x+ 1,

and a1(x) = a2(x) = a3(x) = x + 3, p1(x) = p2 = 1, q1(x) = 0. Then C =
〈G1(x), G2(x), G3(x)〉 where

G1(x) = x4 + (1 + 2u2)x3 + 3x2 + 3 + u+ u2,

G2(x) = ux4 + 2ux3 + 3ux2 + 3ux+ 3u,

G3(x) = u2x4 + u2x3 + 3u2x2 + 3u2.

Now, by Theorem 5.1, we have ψ1(C) is a quasi-cyclic code of index 3 with param-

eters (21, 43212, 4) over Z4. Moreover, by Theorem 5.6, ψ̂1(C) is a cyclic code with
parameters (14, 4723, 4) over Z4. As per the database [2], both obtained codes are
best-known.

Example 6.2. Let δ = 9 and C be a (3 + 2u2)-constacyclic code of length 9. Then

C =〈g1(x̂) + 2a1(x̂) + up1(x̂) + u2p2(x̂), u(g2(x̂) + 2a2(x̂)) + u2q1(x̂), u2(g3(x̂)+

2a3(x̂))〉,

where ai(x)|gi(x)|x9 − 1 (mod 4) and x̂ = (3 + 2u2)x. Now,

x9 − 1 = (x+ 3)(x2 + x+ 1)(x6 + x3 + 1) ∈ Z4[x].

Let

g1(x) =(x2 + x+ 1)(x6 + x3 + 1)

=x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1,

g2(x) =(x+ 3)(x2 + x+ 1) = x3 + 3,

g3(x) =x2 + x+ 1

Advances in Mathematics of Communications Volume X, No. X (20xx), X�XX



14 Om Prakash, Shikha Yadav, Habibul Islam, Patrick Solé

and a1(x) = x2 + x + 1, a2(x) = x + 3, a3(x) = 1, p1(x) = p2(x) = q1(x) = 1.
Therefore, C = 〈G1(x), G2(x), G3(x)〉 where

G1(x) =x8 + (3 + 2u2)x7 + x6 + (3 + 2u2)x5 + x4 + (3 + 2u2)x3 + 3x2 + (1 + 2u2)x

+ 3 + u+ u2,

G2(x) =3ux3 + 2ux+ u+ u2,

G3(x) =u2x2 + 3u2x+ 3u2.

Hence, by Theorem 5.2, ψ2(C) is a quasi-cyclic code with parameters (27, 40212, 4).

Further, by Theorem 5.7, ψ̂2(C) is a cyclic code with parameters (18, 4524, 3). It
is worth mentioning that both obtained codes are new linear codes over Z4 as per
the database [2].

Example 6.3. Let (γ, δ) = (7, 9) and C be a Z4Z4[u3]-additive cyclic code of
length (7, 9). Then by Theorem 3.2, we have

C =〈(g + 2a, 0), (f1, g1 + 2a1 + up1 + u2p2), (f2, u(g2 + 2a2) + u2q1), (f3, u
2(g3+

2a3))〉,

where a|g|(x7 − 1) and ai|gi|(x9 − 1) for i = 1, 2, 3. Now,

x7 − 1 = (x+ 3)(x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3) ∈ Z4[x]

x9 − 1 = (x+ 3)(x2 + x+ 1)(x6 + x3 + 1) ∈ Z4[x].

Let

g = x4 + x3 + 3x2 + 2x+ 1, a = x+ 3,

g1 = (x2 + x+ 1)(x6 + x3 + 1)

= x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1, a1 = x2 + x+ 1,

g2 = (x+ 3)(x6 + x3 + 1)

= x7 + 3x6 + x4 + 3x3 + x+ 3, a1 = x+ 3,

g3 = x2 + x+ 1, a3 = 1,

p1 = p2 = q1 = 1, f1 = x3 + x2 + x+ 1, f2 = x2 + 2x+ 3, f3 = x+ 1.

Then h1 = x9−1
x2+x+1 = g2 = l1, h2 = x9−1

x+3 = g1 = l2. Therefore, by Theorem 3.4,
B = B1 ∪B2 ∪ · · · ∪B6 is a minimal spanning set of C where

B1 =

5⋃
i=0

{xi ∗ (x4 + x3 + 3x2 + 3, 0)},

B2 =

6⋃
i=0

{xi ∗ (x3 + x2 + x+ 1, x8 + x7 + x6 + x5 + x4 + x3 + 3x2 + 3x+ 3 + u+

u2)},
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B3 =

7⋃
i=0

{xi ∗ (x2 + 2x+ 3, ux7 + 3ux6 + ux4 + 3ux3 + 3ux+ u+ u2)},

B4 =

8⋃
i=0

{xi ∗ (x+ 1, u2x2 + u2x+ 3u2)},

B5 =

1⋃
i=0

{xi ∗ (3x6 + x4, (u+ u2)(x7 + 3x6 + x4 + 3x3 + x+ 3))},

B6 ={(2x6 + 2x5 + 2x4 + 3x3 + x2 + 3x+ 1, u2x8 + u2x7 + u2x6 + u2x5 + u2x4+

u2x3 + u2x2 + u2x+ u2)}.

Hence, Ψ1(C) has parameters (34, 411215, 5) and Ψ2(C) has parameters (34, 48218, 3),

respectively. Again, Ψ̂1(C) is (25, 41422, 4) and Ψ̂2(C) is a (25, 41026, 3) linear codes
over Z4, respectively. It is worth mentioning that all these four codes are new Z4

codes as per the database [2].

7. Conclusion and open problems

In this paper, we have studied Z4Z4[u3]-additive cyclic and constacyclic codes
and determined their algebraic structure. By applying Gray maps, we have obtained
some good Z4-codes, some of them improve the best-known codes as per the table
[2]. As far as we know, the mixed alphabets (Z4,Z4[u3]) is new in the literature.
Therefore, it would be a worthy study to discuss other aspects, like dual codes
of such mixed alphabet codes. Another important and interesting direction could
be to obtain distance bounds on the Gray images of these codes. In addition,
as mentioned in the introduction, the discussion of Z2rZ2s [u

3]-additive codes is a
meaningful open direction.
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