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Let Z 4 be the ring of integers modulo 4. This paper studies mixed alphabets Z 4 Z 4 [u 3 ]-additive cyclic and λ-constacyclic codes for units λ = 1 + 2u 2 , 3 + 2u 2 . First, we obtain the generator polynomials and minimal generating set of additive cyclic codes. Then we extend our study to determine the structure of additive constacyclic codes. Further, we dene some Gray maps and obtain Z 4 -images of such codes. Finally, we present numerical examples that include six new and two best-known quaternary linear codes.

Introduction

Cyclic codes are one of the oldest and most studied classes of linear block codes due to strong algebraic properties which lead to ecient encoding and decoding algorithms. It also gained serious attention through several generalized classes like quasi-cyclic, constacyclic, skew cyclic, etc over the last few decades. Recall that a linear code is dened to be a subspace (resp. submodule) of a vector space (resp. module) over a nite eld (resp. ring). Classically, a cyclic code is dened as a linear code invariant under the circular shift of coordinates. Therefore, it can be classied as an ideal of a quotient polynomial ring by identifying its codewords with polynomials. This leads to characterizing them algebraically over nite elds or rings. Recently, the linearity condition has been relaxed, and a new class of codes has been dened, namely, additive codes in [START_REF] Delsarte | Association schemes and coding theory[END_REF]. In fact, an additive code has a group structure rather than a linear structure like a linear code. To be more specic, we can say that over a nite eld F q , a linear code C is a subspace of F n q whereas an additive code is a subgroup of F n q . Therefore, every linear code is additive but not conversely. After the introduction of additive codes in [START_REF] Bierbrauer | The theory of cyclic codes and a generalization to additive codes[END_REF], these codes were studied in both directions of single and mixed alphabets [START_REF] Borges | Z 2 Z 4 -linear codes: geneartor matrices and duality[END_REF][START_REF] Martínez-Moro | Additive semisimple multivariable codes over F 4[END_REF][START_REF] Martínez-Moro | Additive cyclic codes over nite commutative chain rings[END_REF][START_REF] Human | Additive cyclic codes over F 4[END_REF]. One important application of such codes in steganography is shown in [START_REF] Rifa-Pous | Z 2 Z 4 -additive perfect codes in steganography[END_REF]. In 2010, Borges et al. [START_REF] Borges | Z 2 Z 4 -linear codes: geneartor matrices and duality[END_REF] studied Z 2 Z 4 -additive codes to discuss their generator polynomials and dual codes while on the other hand, their rank and kernel are classied in [START_REF] Fernández-Córdoba | Z 2 Z 4 -linear codes: Rank and kernel[END_REF]. Later, Abualrub et al. [START_REF] Abualrub | Z 2 Z 4 Additive cyclic codes[END_REF] studied Z 2 Z 4 -additive cyclic codes by identifying them as Z 4 [x]-submodules of Z 2 [x]/ x r -1 ×Z 4 [x]/ x s -1 for the length (r, s). Further, Borges et al. [START_REF] Borges | Z 2 Z 4 -additive cyclic codes, generator polynomials and dual codes[END_REF] revisited Z 2 Z 4 -additive cyclic codes and obtained their generator polynomials and dual codes. Later on, the study was extended to more general mixed alphabets like Z 2 Z 2 s in [START_REF] Aydogdu | The structure of Z 2 Z 2 s -additive codes: Bounds on the minimum distance[END_REF], Z p Z p s in [START_REF] Shi | On ZpZ p k -additive codes and their duality[END_REF][START_REF] Yao | ZpZ p s -additive cyclic codes are asymptotically good[END_REF], Z p r Z p s in [START_REF] Aydogdu | On Z p r Z p s -additive codes[END_REF][START_REF] Yao | Asymptotically good Z p r Z p s -additive cyclic codes[END_REF] subsequently. Also, a new alphabet, namely, Z 2 Z 2 [u] where u 2 = 0 is considered in [START_REF] Aydogdu | On Z 2 Z 2 [u]-additive codes[END_REF][START_REF] Aydogdu | The Z 2 Z 2 [u]-cyclic and constacyclic codes[END_REF][START_REF] Borges | A characterization of Z 2 Z 2 [u]-linear codes[END_REF][START_REF] Srinivasulu | The Z 2 (Z 2 + uZ 2 )-additive cyclic codes and their duals[END_REF]. Note that [START_REF] Aydogdu | The Z 2 Z 2 [u]-cyclic and constacyclic codes[END_REF] is the rst paper to study additive constacyclic codes in mixed alphabets setting and dened Z 2 Z 2 [u]-additive (1 + u)-cyclic codes for a unit 1 + u as

Z 2 [u][x]-submodules of Z 2 [x]/ x r -1 × Z 2 [u][x]/ x s -(1 + u) .
Further, mixed alphabets additive constacyclic codes are extensively studied in [START_REF] Islam | On ZpZp[u, v]-additive cyclic and constacyclic codes[END_REF][START_REF] Li | 1 + u)-additive constacyclic[END_REF][START_REF] Islam | Z 4 Z 4 [u]-Additive cyclic and constacyclic codes[END_REF]. Again, towards the generalization of these codes over mixed alphabets Z 2 r Z 2 s [u] where u 2 = 0, the reference [START_REF] Islam | Z 4 Z 4 [u]-Additive cyclic and constacyclic codes[END_REF] studied Z 4 Z 4 [u]-additive cyclic and constacyclic codes for s = r = 2. Therefore, it is still open and interesting to study these codes for s, r ≥ 3. Besides these all, another set of alphabets Z 2 Z 2 [u 3 ] appeared in [START_REF] Aydogdu | On the structure of Z 2 Z 2 [u 3 ]-linear and cyclic codes[END_REF], where they determined the generator polynomials and dual codes of Z 2 Z 2 [u 3 ]-additive cyclic codes. As a computational result, they have also explored some binary optimal codes from the Gray images of such codes. Again, Aydogdu in [START_REF] Aydogdu | Codes over Zp[u]/ u r × Zp[u]/ u s[END_REF] 

generalized Z 2 Z 2 [u]-linear codes over Z p [u]/ u r × Z p [u]/ u s
where p is a prime number. Along with their generator and parity check matrices, he presented binary Gray images for p = 2. Therefore, one may logically attempt to extend the alphabets of [START_REF] Aydogdu | On the structure of Z 2 Z 2 [u 3 ]-linear and cyclic codes[END_REF] to

Z 2 r Z 2 s [u 3 ], or more generally Z p r Z p s [u 3 ] where u 3 = 0.
To address this problem, we particularly consider s = r = 2 and study Z 4 Z 4 [u 3 ]additive cyclic and constacyclic codes. The cases for r, s ≥ 3 and prime p > 2 are still open for investigation. Here, we rst determine the generator polynomials and minimal spanning set for an additive cyclic code. Then we extend our study to additive λ-constacyclic codes for units λ = 1 + 2u 2 and λ = 3 + 2u 2 , respectively. In addition, we dene some Gray maps and obtain quaternary cyclic, quasi-cyclic, and generalized quasi-cyclic (GQC) codes from their Gray images. Finally, we calculate their Z 4 -parameters, among them some are new and some are as good as the bestknown codes. Note that along with the algebraic structure of these codes our dened Gray maps play a key role to obtain new and better Z 4 -parameters. There might exist some other Gray maps too, which would be capable to produce more new parameters. One can further investigate this direction, it would be interesting for future scope.

This paper is organized as follows: Section 2 contains some basic denitions and results for additive codes. Section 3 provides the generator polynomials and minimal generating sets of Z 4 Z 4 [u 3 ]-additive cyclic codes. In Section 4, we obtain generator polynomials of Z 4 Z 4 [u 3 ]-additive constacyclic codes. In Section 5, we dene some Gray maps and obtain the Gray images of additive constacyclic codes. In Section 6, we provide several examples to validate our results. Section 7 concludes the paper.

Preliminary

Let Z 4 be the ring of integers modulo 4. A linear code C of length n over Z 4 is dened as a Z 4 -submodule of the module Z n 4 . For a = (a 0 , . . . , a n-1 ) and (mod 4). The Euclidean dual of a linear code C over Z 4 is denoted by C ⊥ and dened as

b = (b 0 , . . . , b n-1 ) ∈ Z n 4 , the Euclidean inner product is dened as a • b = a 0 b 0 + a 1 b 1 + • • • + a n-1 b n-1
C ⊥ = {v ∈ Z n 4 : v • c = 0 for all c ∈ C}. We recall that the Lee weight of a ∈ Z 4 is w L (a) = min{a, |4 -a|}, i.e., w L (0) = 0, w L (1) = 1, w L (2) = 2, w L (3) = 1.
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4 [u 3 ] = {a + bu + cu 2 : a, b, c ∈ Z 4 } where u 3 = 0, Z 4 Z 4 [u 3 ] = {(a, b) : a ∈ Z 4 , b ∈ Z 4 [u 3 ]}.
Let γ, δ be odd positive integers. We dene a projection map σ :

Z 4 [u 3 ] → Z 4 by σ(a + bu + cu 2 ) = a and a scalar multiplication * : Z 4 [u 3 ] × Z 4 Z 4 [u 3 ] → Z 4 Z 4 [u 3 ] by r * (a, b) = (σ(r)a, rb), for r ∈ Z 4 [u 3 ]. The above multiplication can be extended to Z γ 4 × Z 4 [u 3 ] δ as r * (a 0 , a 1 , . . . , a γ-1 , b 0 , b 1 , .
. . , b δ-1 ) = (σ(r)a 0 , . . . , σ(r)a γ-1 , rb 0 , . . . , rb δ-1 ).

Then Z γ 4 × Z 4 [u 3 ] δ forms a Z 4 [u 3
]-module with respect to the usual addition and the scalar multiplication * dened above.

Denition 2.1. A nonempty subset

C of Z γ 4 × Z 4 [u 3 ] δ is said to be a Z 4 Z 4 [u 3 ]- additive code of length (γ, δ) if it is a Z 4 [u 3 ]-submodule of Z γ 4 × Z 4 [u 3 ] δ . Denition 2.2. A Z 4 Z 4 [u 3 ]-additive code C of length (γ, δ) is said to be a Z 4 Z 4 [u 3 ]- additive cyclic code if (a, b) = (a 0 , a 1 , . . . , a γ-1 , b 0 , b 1 , . . . , b δ-1 ) ∈ C implies that τ γ,δ (a, b) = (a γ-1 , a 0 , . . . , a γ-2 , b δ-1 , b 0 , . . . , b δ-2 ) ∈ C.

Now, we extend the projection map

σ from Z 4 [u 3 ][x] to Z 4 [x] by σ i d i x i = i σ(d i )x i . Let R γ = Z 4 [x]/ x γ -1 and S δ = Z 4 [u 3 ][x]/ x δ -1 . Then R γ × S δ is a Z 4 [u 3 ][x]
module under the usual addition and scalar multiplication dened by

r(x) * (a(x), b(x)) = (σ(r(x))a(x), r(x)b(x)).
For a Z 4 Z 4 [u 3 ]-additive code C of length (γ, δ), we identify its codeword c = (a 0 , a 1 , . . . , a γ-1 , b 0 , b 1 , . . . , b δ-1 ) to the pair of polynomials

(a(x), b(x)) ∈ R γ × S δ where a(x) = γ-1 i=0 a i x i ∈ R γ , b(x) = δ-1 i=0 b i x i ∈ S δ . Then C is a Z 4 Z 4 [u 3 ]-additive cyclic code if and only if C is a Z 4 [u 3 ][x]-submodule of R γ × S δ .
Now, by following [START_REF] Aydogdu | On the structure of Z 2 Z 2 [u 3 ]-linear and cyclic codes[END_REF], we consider an inner product for any two elements r = (a 0 , . . . , a γ-1 , b 0 , . . . , b δ-1 ) and s = (c 0 , . . . , c γ-1 , d 0 , . . . ,

d δ-1 ) in Z γ 4 × Z 4 [u 3 ] δ as r • s = u 2 γ-1 i=0 a i c i + δ-1 j=0 b j d j . Denition 2.3. Let C be a Z 4 Z 4 [u 3 ]-additive code. Then the dual C ⊥ of C is dened as C ⊥ = {s ∈ Z γ 4 × Z 4 [u 3 ] δ : s • r = 0, for all r ∈ C}. Theorem 2.4. Let C be a Z 4 Z 4 [u 3 ]-additive cyclic code of length (γ, δ). Then C ⊥ is also a Z 4 Z 4 [u 3 ]-additive cyclic code of length (γ, δ).
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Proof. If r = (a 0 , . . . , a γ-1 , b 0 , . . . , b δ-1 ) ∈ C ⊥ , then r•s = 0, for all s = (c 0 , . . . , c γ-1 , d 0 , . . . , d δ-1 ) ∈ C. As C is an additive cyclic code, we have

τ t-1 γ,δ (s) = (c 1 , c 2 , . . . , c γ-1 , c 0 , d 1 , d 2 , . . . , d δ-1 , d 0 ) ∈ C where t = lcm(γ, δ). Now, in Z γ 4 × Z 4 [u 3 ] δ , we have 0 = r • τ t-1 γ,δ (s) = u 2 (a 0 c 1 + a 1 c 2 + • • • + a γ-2 c γ-1 + a γ-1 c 0 ) + (b 0 d 1 + b 1 d 2 + • • • + b δ-2 d δ-1 + b δ-1 d 0 ) = τ γ,δ (r) • s.
Therefore, τ γ,δ (r) ∈ C ⊥ and hence C ⊥ is an additive cyclic code.

Denition 2.5. Let C be a linear code of length n = lm over Z 4 . Then C is said to be a quasi-cyclic code of index l, if for each s = (a 0,0 , a 0,1 , . . . , a 0,m-1 , a 1,0 , . . . , a 1,m-1 , . . . , a l-1,0 , . . . , a l-1,m-1 ) ∈ C, its quasi-cyclic shift given by

π l (s) =(a 0,m-1 , a 0,0 , . . . , a 0,m-2 , a 1,m-1 , a 1,0 , . . . , a 1,m-2 , . . . , a l-1,m-1 , a l-1,0 , . . . , a l-1,m-2 )
is also in C. Moreover, if l = 1, then C is a cyclic code of length n.

Additive cyclic codes

In this section, we are interested to determine the algebraic structure of Z 4 Z 4 [u 3 ]additive cyclic codes in terms of their generator polynomials and minimal spanning sets for these codes. The two main results of the present section are Theorem 3.2 and Theorem 3.4. In this direction, we rst state a result from [START_REF] Islam | A class of constacyclic codes over Z 4 [u]/ u k[END_REF] which presents the structure of cyclic code and will be used to obtain the structure of Z 4 Z 4 [u 3 ]additive cyclic codes. Theorem 3.1. [START_REF] Islam | A class of constacyclic codes over Z 4 [u]/ u k[END_REF]Theorem 11] Let C k be a cyclic code of odd length n over Z 4 +

uZ 4 + • • • + u k-1 Z 4 , where u k = 0. Then C k = g 1 (x) + 2a 1 (x) + up 1 (x) + u 2 p 2 (x) + • • •+u k-1 p k-1 (x), u(g 2 (x)+2a 2 (x))+u 2 q 1 (x)+• • •+u k-1 q k-2 (x), . . . , u k-1 (g k (x)+ 2a k (x)) , a i |g i (x)|(x n -1) (mod 4). Let C be a Z 4 Z 4 [u 3 ]-additive cyclic code of length (γ, δ). Dene Γ : R γ × S δ → S δ by Γ(p(x), q(x)) = q(x). Then ker(Γ) = (p(x), 0). Since L = {p(x) ∈ R γ : p(x) ∈ ker(Γ| C )} is an ideal of R γ , it can be written as L = g(x) + 2a(x) . Hence, ker(Γ| C ) = (g(x) + 2a(x), 0) , where a(x)|g(x). Also, Γ(C) is an ideal in S δ .
Therefore, by [START_REF] Islam | A class of constacyclic codes over Z 4 [u]/ u k[END_REF]Theorem 11] we get

Γ(C) = g 1 (x) + 2a 1 (x) + up 1 (x) + u 2 p 2 (x), u(g 2 (x) + 2a 2 (x)) + u 2 q 1 (x), u 2 (g 3 (x)+ 2a 3 (x))
where a i |g i (x)|x δ -1 (mod 4). Hence,

C = (g(x) + 2a(x), 0), (f 1 (x), g 1 (x) + 2a 1 (x) + up 1 (x) + u 2 p 2 (x)), (f 2 (x), u(g 2 (x)+ 2a 2 (x)) + u 2 q 1 (x)), (f 3 (x), u 2 (g 3 (x) + 2a 3 (x))
where p 1 (x), p 2 (x), q 1 (x) and f i (x) ∈ Z 4 [x] for i = 1, 2, 3. For simplicity, we write g for g(x), a for a(x), a i for a i (x) and so on. From the above discussion, we have the following theorem.
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1 + 2a 1 + up 1 + u 2 p 2 ), (f 2 , u(g 2 + 2a 2 ) + u 2 q 1 ), (f 3 , u 2 (g 3 + 2a 3 )) , where a|g|(x γ -1), a i |g i |(x δ -1) and f i (x) ∈ Z 4 [x] for i = 1, 2, 3.
To prepare the proof of the next theorem we require a technical lemma.

Lemma 3.3. Let C be a Z 4 Z 4 [u 3 ]-additive cyclic code given in the above theorem.

Let

h i = x δ -1 ai , for i = 1, 2, l 1 = gcd(h 1 p 1 + uh 1 p 2 , x δ -1), l 2 = gcd(h 2 q 1 , x δ -1), m i = x δ -1 li for i = 1, 2. Then (g + 2a)| x δ -1 a3 f 3 and (g + 2a)|m j h j f j , for j = 1, 2. Proof. Since Γ[ x δ -1 a3 (f 3 , u 2 (g 3 + 2a 3 ))] = Γ[ x δ -1 a3 f 3 , 0] = 0, which implies that x δ -1 a3 f 3 ∈ ker(Γ| C ), i.e., (g + 2a)| x δ -1 a3 f 3 . Now, Γ[m 1 h 1 (f 1 , g 1 + 2a 1 + up 1 + u 2 p 2 )] = Γ(m 1 h 1 f 1 , m 1 h 1 (up 1 + u 2 p 2 )) = Γ[m 1 h 1 f 1 , 0] = 0 . Therefore, (m 1 h 1 f 1 , 0) ∈ ker(Γ| C ), i.e., (g + 2a)|m 1 h 1 f 1 . Similarly, Γ[m 2 h 2 (f 2 , u(g 2 + 2a 2 ))] = 0, which implies that (g + 2a)|m 2 h 2 f 2 .
The following theorem gives a minimal spanning set for an additive cyclic code C. By using the linear combination of elements in B, one can easily obtain all its codewords. In addition, the spanning set B helps to form its generator matrix which is useful to obtain its Z 4 -parameters under Gray image. Theorem 3.4. Let C be a Z 4 Z 4 [u 3 ]-additive code of length (γ, δ) given in the above theorem. Take

B 1 = γ-deg(a)-1 i=0 {x i * (g + 2a, 0)}, B 2 = δ-deg(a1)-1 i=0 {x i * (f 1 , g 1 + 2a 1 + up 1 + u 2 p 2 )}, B 3 = δ-deg(a2)-1 i=0 {x i * (f 2 , u(g 2 + 2a 2 ) + u 2 q 1 )}, B 4 = δ-deg(a3)-1 i=0 {x i * (f 3 , u 2 (g 3 + 2a 3 )}, B 5 = δ-deg(l1)-1 i=0 {x i * (h 1 f 1 , h 1 (up 1 + u 2 p 2 ))}, B 6 = δ-deg(l2)-1 i=0 {x i * (h 2 f 2 , u 2 h 2 q 1 ))}. Then B = B 1 ∪ B 2 ∪ B 3 ∪ B 4 ∪ B 5 ∪ B 6 is a minimal spanning set for C as a Z 4 [u 3 ]- module. Moreover, |C| = 4 γ+9δ-deg(a)-3 deg(a1)-2 deg(a2)-deg(a3)-2 deg(l1)-deg(l2) .
Proof. From Theorem 3.2, any c ∈ C can be written as

c =c 1 * (g + 2a, 0) + c 2 * (f 1 , g 1 + 2a 1 + up 1 + u 2 p 2 ) + c 3 * (f 2 , u(g 2 + 2a 2 ) + u 2 q 1 ) + c 4 * (f 3 , u 2 (g 3 + 2a 3 )), Advances in Mathematics of Communications Volume X, No. X (20xx), XXX where c i ∈ Z 4 [u 3 ][x] for 1 ≤ i ≤ 4. If deg(c 1 ) ≤ γ -deg(a) -1, then c 1 * (g + 2a, 0) ∈ span(B 1 ). Otherwise, by division algorithm, c 1 = x γ -1 a r 0 + s 0 , for some r 0 , s 0 ∈ Z 4 [u 3 ][x] where deg(s 0 ) ≤ γ -deg(a) -1. Now, c 1 * (g + 2a, 0) = x γ -1 a r 0 + s 0 * (g + 2a, 0) = x γ -1 a r 0 * (g + 2a, 0) + s 0 * (g + 2a, 0) =s 0 * (g + 2a, 0) ∈ span(B 1 ). Also, if deg(c 2 ) ≤ δ -deg(a 1 ) -1, then c 2 * (f 1 , g 1 + 2a 1 + up 1 + u 2 p 2 ) ∈ span(B 2 ).
Otherwise, by division algorithm,

c 2 = x δ -1 a1 r 1 + s 1 , for some r 1 , s 1 ∈ Z 4 [u 3 ][x] where deg(s 1 ) ≤ δ -deg(a 1 ) -1. Again, c 2 * (f 1 , g 1 + 2a 1 + up 1 + u 2 p 2 ) = x δ -1 a 1 r 1 + s 1 * (f 1 , g 1 + 2a 1 + up 1 + u 2 p 2 ) = r 1 * (h 1 f 1 , h 1 (up 1 + u 2 p 2 )) + s 1 * (f 1 , g 1 + 2a 1 + up 1 + u 2 p 2 )
where

s 1 * (f 1 , g 1 + 2a 1 + up 1 + u 2 p 2 ) ∈ span(B 2 ). If deg(r 1 ) ≤ δ -deg(l 1 ) -1, then r 1 * (h 1 f 1 , h 1 (up 1 + u 2 p 2 )) ∈ span(B 5 ).
Otherwise, by division algorithm,

r 1 = x δ -1 l1 r 2 + s 2 for some r 2 , s 2 ∈ Z 4 [u 3 ][x] where deg(s 2 ) ≤ δ -deg(l 1 ) -1. Therefore, r 1 * (h 1 f 1 , uh 1 (p 1 + up 2 )) = x δ -1 l 1 r 2 * (h 1 f 1 , h 1 (up 1 + u 2 p 2 )) + s 2 * (h 1 f 1 , h 1 (up 1 + u 2 p 2 )) = r 2 * (m 1 h 1 f 1 , m 1 h 1 (up 1 + u 2 p 2 )) + s 2 * (h 1 f 1 , h 1 (up 1 + u 2 p 2 )).
Since

l 1 |(h 1 p 1 + uh 1 p 2 ), we have (h 1 p 1 + uh 1 p 2 ) = l 1 m 3 for some m 3 ∈ Z 4 [u 3 ][x]
and m 1 (h

1 p 1 + uh 1 p 2 ) = m 1 l 1 m 3 = 0. Also, (g + 2a)|m 1 h 1 f 1 . Therefore, r 1 * (h 1 f 1 , uh 1 (p 1 + up 2 )) =r 2 * (m 1 h 1 f 1 , 0) + s 2 * (h 1 f 1 , h 1 (up 1 + u 2 p 2 )) ∈ span(B 1 ∪ B 5 ). Again, if deg(c 3 ) ≤ δ -deg(a 2 ) -1, then c 3 * (f 2 , u(g 2 + 2a 2 ) + u 2 q 1 ) ∈ span(B 3 ).
Otherwise, by division algorithm,

c 3 = x δ -1 a2 r 3 + s 3 , for some r 3 , s 3 ∈ Z 4 [u 3 ][x] where deg(s 3 ) ≤ δ -deg(a 2 ) -1. Therefore, c 3 * (f 2 , u(g 2 + 2a 2 ) + u 2 q 1 ) = x δ -1 a 2 r 3 + s 3 * (f 2 , u(g 2 + 2a 2 ) + u 2 q 1 ) = r 3 * (h 2 f 2 , u 2 h 2 q 1 )) + s 3 * (f 2 , u(g 2 + 2a 2 ) + u 2 q 1 )
where

s 3 * (f 2 , u(g 2 + 2a 2 ) + u 2 q 1 ) ∈ span(B 3 ). If deg(r 3 ) ≤ δ -deg(l 2 ) -1, then r 3 * (h 2 f 2 , u 2 h 2 q 1 ) ∈ span(B 6 ).
Otherwise, by division algorithm,

r 3 = x δ -1 l2 r 4 + s 4
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4 ∈ Z 4 [u 3 ][x] where deg(s 4 ) ≤ δ -deg(l 2 ) -1. Now, r 3 * (h 2 f 2 , u 2 h 2 q 1 ) = x δ -1 l 2 r 4 * (h 2 f 2 , u 2 h 2 q 1 ) + s 4 * (h 2 f 2 , u 2 h 2 q 1 ) = r 4 * (m 2 h 2 f 2 , u 2 m 2 h 2 q 1 ) + s 4 * (h 2 f 2 , u 2 h 2 q 1 ).
Since l 2 |h 2 q 1 , we have

h 2 q 1 = l 2 m 4 , for some m 4 ∈ Z 4 [u 3 ][x]
and m 2 h 2 q 1 = m 2 l 2 m 4 = 0. Also, by Lemma 3.3, we have (g + 2a)|m 2 h 2 f 2 . Therefore,

r 3 * (h 2 f 2 , u 2 h 2 q 1 ) = r 4 * (m 2 h 2 f 2 , 0) + s 4 * (h 2 f 2 , u 2 h 2 q 1 ) ∈ span(B 1 ∪ B 6 ). Again, if deg(c 4 ) ≤ δ -deg(a 3 ) -1, then c 4 * (f 3 , u 2 (g 3 + 2a 3 )) ∈ span(B 4 ). Oth- erwise, division algorithm gives c 4 = x δ -1 a3 r 5 + s 5 , for some r 5 , s 5 ∈ Z 4 [u 3 ][x] where deg(s 5 ) ≤ δ -deg(a 3 ) -1. Now, c 4 * (f 3 , u 2 (g 3 + 2a 3 )) = x δ -1 a 3 r 5 + s 5 * (f 3 , u 2 (g 3 + 2a 3 )) = r 5 * x δ -1 a 3 f 3 , 0 + s 5 * (f 3 , u 2 (g 3 + 2a 3 )
where s 5 * (f 3 , u 2 (g 3 + 2a 3 ) ∈ span(B 4 ). Also, by Lemma 3.3 we have

(g + 2a)| x δ -1 a3 f 3 . Therefore, c 4 * (f 3 , u 2 (g 3 + 2a 3 )) ∈ span(B 1 ∪ B 4
) and we conclude that B spans C. Also, none of the elements of B are in the span of the remaining elements of B. Hence, we get the desired result.

Additive constacyclic codes

In this section, we extend our study to the algebraic structure of Z 4 Z 4 [u 3 ]additive λ-constacyclic codes. Here, we assume that λ be a unit in Z 4 [u 3 ]. We rst recall the denition of such codes as below. Denition 4.1. Let C be a

Z 4 Z 4 [u 3 ]-additive code of length (γ, δ). Then C is said to be a Z 4 Z 4 [u 3 ]-additive constacyclic code if (a, b) = (a 0 , a 1 . . . , a γ-1 , b 0 , b 1 , . . . , b δ-1 ) ∈ C implies ρ λ (a, b) = (a γ-1 , a 0 , . . . , a γ-2 , λb δ-1 , b 0 , . . . , b δ-2 ) ∈ C.
In particular, for λ = 1, it is an additive cyclic code.

We consider R γ × S δ,λ = Z 4 [x]/ x γ -1 × Z 4 [u 3 ][x]/ x δ -λ and consider the scalar multiplication * : Z 4 [u 3 ][x] × (R γ × S δ,λ ) → R γ × S δ,λ dened by r(x) * (a(x), b(x)) = (σ(r(x))a(x), r(x)b(x)), for r(x) ∈ Z 4 [u 3 ][x].
In this way R γ × S δ,λ forms a Z 4 [u 3 ][x]-module with respect to the scalar multiplication * and the usual addition. Now, identifying a vector c = (a 0 , a 1 , . . . , a γ-1 , b 0 , b 1 , . . . , b δ-1 )
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Theorem 5.1. Let C be a (1+2u 2 )-constacyclic code of length δ over Z 4 [u 3 ]. Then ψ 1 (C) is a quasi-cyclic code of index 3 and length 3δ over Z 4 .

Proof. In order to demonstrate ψ 1 (C) is a quasi-cyclic code it is sucient to show that ψ 1 ρ (1+2u 2 ) (s) = π 3 ψ 1 (s) for all s ∈ C, where π 3 , ρ (1+2u 2 ) are the quasi-cyclic and constacyclic shifts, respectively. Let s = (s 0 , s 1 , . . . , s δ-1 ) ∈ C, where

s i = a i + ub i + u 2 c i for 0 ≤ i ≤ δ -1. Now, ψ 1 ρ (1+2u 2 ) (s) =ψ 1 ((1 + 2u 2 )s δ-1 , s 0 , s 1 , . . . , s δ-2 ) =(a δ-1 , a 0 , a 1 , . . . , a δ-2 , 2b δ-1 , 2b 0 , 2b 1 , . . . , 2b δ-2 , 2c δ-1 , 2c 0 , . . . , 2c δ-2 ),
and

π 3 ψ 1 (s) =π 3 (a 0 , a 1 , . . . , a δ-1 , 2b 0 , 2b 1 , . . . , 2b δ-1 , 2c 0 , . . . , 2c δ-1 ) =(a δ-1 , a 0 , a 1 , . . . , a δ-2 , 2b δ-1 , 2b 0 , 2b 1 , . . . , 2b δ-2 , 2c δ-1 , 2c 0 , . . . , 2c δ-2 ).
Therefore, ψ 1 ρ (1+2u 2 ) = π 3 ψ 1 and we get the desired result. Now, we dene

ψ 2 : Z 4 [u 3 ] → Z 3 4 by ψ 2 (a + bu + cu 2 ) = (2a, 2b, 2c)
which can be naturally extended as

ψ 2 : Z 4 [u 3 ] δ → Z 3δ 4 by ψ 2 (s 0 , s 1 , . . . , s δ-1 ) = (2a 0 , 2a 1 , . . . , 2a δ-1 , 2b 0 , 2b 1 , . . . , 2b δ-1 , 2c 0 , . . . , 2c δ-1 ),
where

s i = a i + ub i + u 2 c i for 0 ≤ i ≤ δ -1.
It is worth noting that we dene two Gray maps ψ 1 , ψ 2 in such a way that we can classify λ-constacyclic codes (λ = 1 + 2u 2 , 3 + 2u 2 ) into a well-known class of quaternary quasi-cyclic codes. Also, we will see in Section 6 that these Gray maps eventually help to obtain new Z 4 -parameters. The way of dening Gray maps completely depends on the choice of λ, in other words, if we chose dierent λ, we need to dene Grap maps suitably so that results corresponding to Theorem 5.1 and Theorem 5.2 are true.

Remark 1. From the denition, we must say that ψ 2 is a linear map which carries quaternary linear (or additive) codes to a specic class of linear codes of type 2C where C is a binary code. In other words, codes induced from Gray images under ψ 2 are copies of binary codes. Proof. In order to prove ψ 2 (C) is a quasi-cyclic code, it is sucient to show that ψ 2 ρ (3+2u 2 ) (s) = π 3 ψ 2 (s) for all s ∈ C where π 3 , ρ (3+2u 2 ) are the quasi-cyclic and Advances in Mathematics of Communications Volume X, No. X (20xx), XXX constacyclic shifts, respectively. Let s = (s 0 , s 1 , . . . , s δ-1 ) ∈ C, where

s i = a i + ub i + u 2 c i for 0 ≤ i ≤ δ -1. Now, ψ 2 ρ (3+2u 2 ) (s) = ψ 2 ((3 + 2u 2 )s δ-1 , s 0 , s 1 , . . . , s δ-2 ) =(2a δ-1 , 2a 0 , 2a 1 , . . . , 2a δ-2 , 2b δ-1 , 2b 0 , 2b 1 , . . . , 2b δ-2 , 2c δ-1 , 2c 0 , . . . , 2c δ-2 ),
and

π 3 ψ 2 (s) =π 3 (2a 0 , 2a 1 , . . . , 2a δ-1 , 2b 0 , 2b 1 , . . . , 2b δ-1 , 2c 0 , . . . , 2c δ-1 ) =(2a δ-1 , 2a 0 , 2a 1 , . . . , 2a δ-2 , 2b δ-1 , 2b 0 , 2b 1 , . . . , 2b δ-2 , 2c δ-1 , 2c 0 , . . . , 2c δ-2 ).
Therefore, ψ 2 ρ (3+2u 2 ) = π 3 ψ 2 and hence we get the desired result.

Denition 5.3. [16, Denition 1] Let n 1 , n 2 , . . . , n r be positive integers and

R i = Z 4 [x]/ x ni -1 for 1 ≤ i ≤ r. Then a generalized quasi-cyclic (GQC) code of block length (n 1 , n 2 , . . . , n r ) is dened as a Z 4 [x]-submodule of the Z 4 [x]-module R = R 1 × R 2 • • • × R r . If n 1 = n 2 = • • • = n r , then a GQC code is a quasi-cyclic (QC) code. Moreover, if r = 1, then it is a cyclic code of length n 1 .
For j ∈ {1, 2}, we dene Ψ j in terms of ψ j given as

Ψ j : Z 4 × Z 4 [u 3 ] → Z 4 4
dened by

Ψ j (d, a + bu + cu 2 ) = (d, ψ j (a + bu + cu 2 ))
which can be naturally extended to

Ψ j : Z γ 4 × Z 4 [u 3 ] δ → Z γ+3δ 4 by Ψ j (d 0 , d 1 , . . . , d γ-1 , s 0 , s 1 , . . . , s δ-1 ) = (d 0 , d 1 , . . . , d γ-1 , ψ j (s 0 , s 1 , . . . , s δ-1 )),
where

s i = a i + ub i + u 2 c i for 0 ≤ i ≤ δ -1. Theorem 5.4. Let C be a Z 4 Z 4 [u 3 ]-additive (1 + 2u 2 )-constacyclic code of length (γ, δ). Then Ψ 1 (C) is a GQC code of block length (γ, δ, δ, δ) over Z 4 . Proof. Let (d 0 , d 1 , . . . , d γ-1 , a 0 , a 1 , . . . , a δ-1 , 2b 0 , 2b 1 , . . . , 2b δ-1 , 2c 0 , . . . , 2c δ-1 ) = Ψ 1 (c) ∈ Ψ 1 (C), where c = (d 0 , d 1 , . . . , d γ-1 , s 0 , s 1 , . . . , s δ-1 ) ∈ C. As C is a Z 4 Z 4 [u 3 ]-additive constacyclic code, we have that ρ (1+2u 2 ),δ (c) = (d γ-1 , d 0 , . . . , d γ-2 , (1 + 2u 2 )s δ-1 , s 0 , . . . , s δ-2 ) ∈ C. Now, Ψ 1 ρ (1+2u 2 ),δ (c) = (d γ-1 , d 0 , . . . , d γ-2 , a δ-1 , a 0 , a 1 , . . . , a δ-2 , 2b δ-1 , 2b 0 , 2b 1 , . . . , 2b δ-2 , 2c δ-1 , 2c 0 , . . . , 2c δ-2 ) ∈ Ψ 1 (C).
This implies that Ψ 1 (C) is a GQC code of block length (γ, δ, δ, δ) over Z 4 .

Using the above procedure, we get the following result.

Theorem 5.5. Let C be a

Z 4 Z 4 [u 3 ]-additive (3 + 2u 2 )-constacyclic code of length (γ, δ). Then Ψ 2 (C) is a GQC code of block length (γ, δ, δ, δ) over Z 4 .
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We dene a new map

ψ1 : Z 4 [u 3 ] → Z 2 4 by ψ1 (a + bu + cu 2 ) = (3a + b + c, a + b + c)
whose natural extension is

ψ1 : Z 4 [u 3 ] δ → Z 2δ 4 by ψ1 (s 0 , s 1 , . . . , s δ-1 ) = (3a 0 + b 0 + c 0 , 3a 1 + b 1 + c 1 , . . . , 3a δ-1 + b δ-1 + c δ-1 , a 0 + b 0 + c 0 , a 1 + b 1 + c 1 , . . . , a δ-1 + b δ-1 + c δ-1 ),
where

s i = a i + ub i + u 2 c i for 0 ≤ i ≤ δ -1.
Then ψ1 is a distance preserving linear map and we have the following result.

Theorem 5.6. Let C be a (1+2u

2 )-constacyclic code of length δ over Z 4 [u 3 ]. Then ψ1 (C) is a cyclic code of length 2δ over Z 4 .
Proof. Let C be a (1 + 2u 2 )-constacyclic code of length δ over Z 4 [u 3 ] and s = (s 0 , s 1 , . . . , s δ-1 ) ∈ C, where

s i = a i + ub i + u 2 c i for 0 ≤ i ≤ δ -1. Then ψ1 ρ (1+2u 2 ) (s) = ψ1 ((1 + 2u 2 )s δ-1 , s 0 , s 1 , . . . , s δ-2 ) =(a δ-1 + b δ-1 + c δ-1 , 3a 0 + b 0 + c 0 , . . . , 3a δ-2 + b δ-2 + c δ-2 , 3a δ-1 + b δ-1 + c δ-1 , a 0 + b 0 + c 0 , . . . , a δ-2 + b δ-2 + c δ-2 ).
Also,

π 1 ψ1 (s) =π 1 (3a 0 + b 0 + c 0 , 3a 1 + b 1 + c 1 , . . . , 3a δ-1 + b δ-1 + c δ-1 , a 0 + b 0 + c 0 , a 1 + b 1 + c 1 , . . . , a δ-1 + b δ-1 + c δ-1 ) =(a δ-1 + b δ-1 + c δ-1 , 3a 0 + b 0 + c 0 , . . . , 3a δ-1 + b δ-1 + c δ-1 , a 0 + b 0 + c 0 , a 1 + b 1 + c 1 , . . . , a δ-2 + b δ-2 + c δ-2 )
Therefore, ψ1 ρ (1+2u 2 ) = π 1 ψ1 , and hence ψ1 (C) is a cyclic code of length 2δ over Z 4 . Now, we consider another new map

ψ2 : Z 4 [u 3 ] → Z 2 4 by ψ2 (a + bu + cu 2 ) = (2a + b + 2c, 2a + 3b + 2c)
whose extension is

ψ2 : Z 4 [u 3 ] δ → Z 2δ 4
dened by ψ2 (s 0 , s 1 , . . . , s δ-1 )

= (2a 0 + b 0 + 2c 0 , 2a 1 + b 1 + 2c 1 , . . . , 2a δ-1 + b δ-1 + 2c δ-1 , 2a 0 + 3b 0 + 2c 0 , 2a 1 + 3b 1 + 2c 1 , . . . , 2a δ-1 + 3b δ-1 + 2c δ-1 ),
where

s i = a i + ub i + u 2 c i for 0 ≤ i ≤ δ -1.
Theorem 5.7. Let C be a (3+2u ] and s = (s 0 , s 1 , . . . , s δ-1 ) ∈ C, where

s i = a i + ub i + u 2 c i for 0 ≤ i ≤ δ -1. Then ψ2 ρ (3+2u 2 ) (s) = ψ2 ((3 + 2u 2 )s δ-1 , s 0 , s 1 , . . . , s δ-2 ) =(2a δ-1 + 3b δ-1 + 2c δ-1 , 2a 0 + b 0 + 2c 0 , . . . , 2a δ-1 + b δ-1 + 2c δ-1 , 2a 0 + 3b 0 + 2c 0 , 2a 1 + 3b 1 + 2c 1 , . . . , 2a δ-2 + 3b δ-2 + 2c δ-2 ).
Also,

π 1 ψ2 (s) =π 1 (2a 0 + b 0 + 2c 0 , 2a 1 + b 1 + 2c 1 , . . . , 2a δ-1 + b δ-1 + 2c δ-1 , 2a 0 + 3b 0 + 2c 0 , 2a 1 + 3b 1 + 2c 1 , . . . , 2a δ-1 + 3b δ-1 + 2c δ-1 ) =(2a δ-1 + 3b δ-1 + 2c δ-1 , 2a 0 + b 0 + 2c 0 , . . . , 2a δ-1 + b δ-1 + 2c δ-1 , 2a 0 + 3b 0 + 2c 0 , 2a 1 + 3b 1 + 2c 1 , . . . , 2a δ-1 + 3b δ-1 + 2c δ-1 ).
Therefore, we get ψ2 ρ (3+2u 2 ) = π 1 ψ2 and hence (C) is a cyclic code of length 2δ over Z 4 .

For j ∈ {1, 2}, we dene Ψj in terms of ψj given by

Ψj : Z 4 × Z 4 [u 3 ] → Z 3 4 dened as Ψj (d, a + bu + cu 2 ) = (d, ψj (a + bu + cu 2 ))
whose natural extension is where

Ψj : Z γ 4 × Z 4 [u 3 ] δ → Z γ+2δ
s i = a i + ub i + u 2 c i for 0 ≤ i ≤ δ -1.
Theorem 5.8. Let C be a Z 4 Z 4 [u 3 ]-additive (1 + 2u 2 )-constacyclic code of length (γ, δ). Then Ψ1 (C) is a GQC code of block length (γ, 2δ) over Z 4 .

Proof. Let (d 0 , d 1 , . . . , d γ-1 , 3a 0 +b 0 +c 0 , . . . , 3a δ-1 +b δ-1 +c δ-1 , a 0 +b 0 +c 0 , . . . , a δ-1

+ b δ-1 + c δ-1 ) = Ψ1 (c) ∈ Ψ1 (C), where c = (d 0 , d 1 , . . . , d γ-1 , s 0 , s 1 , . . . , s δ-1 ) ∈ C. As C is a Z 4 Z 4 [u 3 ]-additive constacyclic code, we have ρ (1+2u 2 ),δ (c) = (d γ-1 , d 0 , . . . , d γ-2 , (1 + 2u 2 )s δ-1 , s 0 , . . . , s δ-2 ) ∈ C. Now, Ψ1 ρ (1+2u 2 ),δ (c) =(d γ-1 , d 0 , . . . , d γ-2 , a δ-1 + b δ-1 + c δ-1 , 3a 0 + b 0 + c 0 , 3a 1 + b 1 + c 1 , . . . , 3a δ-2 + b δ-2 + c δ-2 , 3a δ-1 + b δ-1 + c δ-1 , a 0 + b 0 + c 0 , a 1 + b 1 + c 1 , . . . , a δ-2 + b δ-2 + c δ-2 ) ∈ Ψ1 (C).
Therefore, we can conclude that Ψ1 (C) is a GQC code of block length (γ, 2δ) over Z 4 .

Using the same procedure, we get the following result.

Theorem 5.9. Let C be a Z 4 Z 4 [u 3 ]-additive (3 + 2u 2 )-constacyclic code of length (γ, δ). Then Ψ2 (C) is a GQC code of block length (γ, 2δ) over Z 4 .
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Examples

In this section, we present three examples in support of our obtained results. By applying Gray maps, we obtain 6 new and 2 best-known quaternary codes. The computations involved here are carried out by the Magma computation system [START_REF] Bosma | Handbook of Magma Functions[END_REF][START_REF]Magma Online Calculator[END_REF]. Example 6.1. Let δ = 7 and C be a (1 + 2u 2 )-constacyclic code of length 7 over

Z 4 [u 3 ]. Then C = g 1 (x) + 2a 1 (x) + up 1 (x) + u 2 p 2 (x), u(g 2 (x) + 2a 2 (x)) + u 2 q 1 (x), u 2 (g 3 (x)+ 2a 3 (x)) ,
where a i (x)|g i (x)|x 7 -1 (mod 4) and x = (1 + 2u 2 )x. Now,

x 7 -1 = (x + 3)(x 3 + 2x 2 + x + 3)(x 3 + 3x 2 + 2x + 3) ∈ Z 4 [x]. Let g 1 (x) = (x + 3)(x 3 + 2x 2 + x + 3) = x 4 + x 3 + 3x 2 + 2x + 1, g 2 (x) = (x + 3)(x 3 + 3x 2 + 2x + 3) = x 4 + 2x 3 + 3x 2 + x + 1, g 3 (x) = (x + 3)(x 3 + 2x 2 + x + 3) = x 4 + x 3 + 3x 2 + 2x + 1, and a 1 (x) = a 2 (x) = a 3 (x) = x + 3, p 1 (x) = p 2 = 1, q 1 (x) = 0. Then C = G 1 (x), G 2 (x), G 3 (x) where G 1 (x) = x 4 + (1 + 2u 2 )x 3 + 3x 2 + 3 + u + u 2 , G 2 (x) = ux 4 + 2ux 3 + 3ux 2 + 3ux + 3u, G 3 (x) = u 2 x 4 + u 2 x 3 + 3u 2 x 2 + 3u 2 .
Now, by Theorem 5.1, we have ψ 1 (C) is a quasi-cyclic code of index 3 with parameters (21, 4 3 2 12 , 4) over Z 4 . Moreover, by Theorem 5.6, ψ1 (C) is a cyclic code with parameters (14, 4 7 2 3 , 4) over Z 4 . As per the database [START_REF] Asamov | Table of Z 4 codes[END_REF], both obtained codes are best-known. Example 6.2. Let δ = 9 and C be a

(3 + 2u 2 )-constacyclic code of length 9. Then C = g 1 (x) + 2a 1 (x) + up 1 (x) + u 2 p 2 (x), u(g 2 (x) + 2a 2 (x)) + u 2 q 1 (x), u 2 (g 3 (x)+ 2a 3 (x)) ,
where a i (x)|g i (x)|x 9 -1 (mod 4) and x = (3 + 2u 2 )x. Now,

x 9 -1 = (x + 3)(x 2 + x + 1)(x 6 + x 3 + 1) ∈ Z 4 [x]. Let g 1 (x) =(x 2 + x + 1)(x 6 + x 3 + 1) =x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x + 1, g 2 (x) =(x + 3)(x 2 + x + 1) = x 3 + 3, g 3 (x) =x 2 + x + 1 Advances in Mathematics of Communications Volume X, No. X (20xx), XXX and a 1 (x) = x 2 + x + 1, a 2 (x) = x + 3, a 3 (x) = 1, p 1 (x) = p 2 (x) = q 1 (x) = 1. Therefore, C = G 1 (x), G 2 (x), G 3 (x)
where

G 1 (x) =x 8 + (3 + 2u 2 )x 7 + x 6 + (3 + 2u 2 )x 5 + x 4 + (3 + 2u 2 )x 3 + 3x 2 + (1 + 2u 2 )x + 3 + u + u 2 , G 2 (x) =3ux 3 + 2ux + u + u 2 , G 3 (x) =u 2 x 2 + 3u 2 x + 3u 2 .
Hence, by Theorem 5. ]-additive cyclic code of length [START_REF] Aydogdu | Codes over Zp[u]/ u r × Zp[u]/ u s[END_REF][START_REF] Aydogdu | On Z p r Z p s -additive codes[END_REF]. Then by Theorem 3.2, we have C = (g + 2a, 0), (f 1 , g 1 + 2a 1 + up 1 + u 2 p 2 ), (f 2 , u(g 2 + 2a 2 ) + u 2 q 1 ), (f 3 , u 2 (g 3 + 2a 3 )) ,

where a|g|(x 7 -1) and a i |g i |(x 9 -1) for i = 1, 2, 3. Now,

x 7 -1 = (x + 3)(x 3 + 2x 2 + x + 3)(x 3 + 3x 2 + 2x + 3) ∈ Z 4 [x]

x 9 -1 = (x + 3)(x 2 + x + 1)(x 6 + x 3 + 1) ∈ Z 4 [x].

Let g = x 4 + x 3 + 3x 2 + 2x + 1, a = x + 3, g 1 = (x 2 + x + 1)(x 6 + x 3 + 1) = x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x + 1, a 1 = x 2 + x + 1, g 2 = (x + 3)(x 6 + x 3 + 1) = x 7 + 3x 6 + x 4 + 3x 3 + x + 3, a 1 = x + 3,

g 3 = x 2 + x + 1, a 3 = 1, p 1 = p 2 = q 1 = 1, f 1 = x 3 + x 2 + x + 1, f 2 = x 2 + 2x + 3, f 3 = x + 1.
Then h 1 = x 9 -1

x 2 +x+1 = g 2 = l 1 , h 2 = 

Conclusion and open problems

In this paper, we have studied Z 4 Z 4 [u 3 ]-additive cyclic and constacyclic codes and determined their algebraic structure. By applying Gray maps, we have obtained some good Z 4 -codes, some of them improve the best-known codes as per the table [START_REF] Asamov | Table of Z 4 codes[END_REF]. As far as we know, the mixed alphabets (Z 4 , Z 4 [u 3 ]) is new in the literature. Therefore, it would be a worthy study to discuss other aspects, like dual codes of such mixed alphabet codes. Another important and interesting direction could be to obtain distance bounds on the Gray images of these codes. In addition, as mentioned in the introduction, the discussion of Z 2 r Z 2 s [u 3 ]-additive codes is a meaningful open direction.

Theorem 5 . 2 .

 52 Let C be a (3+2u 2 )-constacyclic code of length δ over Z 4 [u 3 ]. Then ψ 2 (C) is a quasi-cyclic code of index 3 and length 3δ over Z 4 .

  0 , d 1 , . . . , d γ-1 , s 0 , s 1 , . . . , s δ-1 ) = (d 0 , d 1 , . . . , d γ-1 , ψj (s 0 , s 1 , . . . , s δ-1 )),

x 9 - 1 x+3 = g 1 = l 2 . 1 = 5 i=0

 11215 Therefore, by Theorem 3.4,B = B 1 ∪ B 2 ∪ • • • ∪ B 6 is a minimal spanning set of C where B {x i * (x 4 + x 3 + 3x 2 + 3, 0)}, B 2 = 6 i=0 {x i * (x 3 + x 2 + x + 1, x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + 3x

  2 )-constacyclic code of length δ over Z 4 [u 3 ]. Then ψ2 (C) is a cyclic code of length 2δ over Z 4 . . Let C be a (3 + 2u 2 )-constacyclic code of length δ over Z 4 [u 3
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Proof

  2, ψ 2 (C) is a quasi-cyclic code with parameters (27, 4 0 2 12 , 4). Further, by Theorem 5.7, ψ2 (C) is a cyclic code with parameters (18, 4 5 2 4 , 3). It is worth mentioning that both obtained codes are new linear codes over Z 4 as per the database [2]. Example 6.3. Let (γ, δ) = (7, 9) and C be a Z 4 Z 4 [u 3

  2 + 3x + 3 + u+ u 2 )}, * (x 2 + 2x + 3, ux 7 + 3ux6 + ux 4 + 3ux 3 + 3ux + u + u 2 )}, * (x + 1, u 2 x 2 + u 2 x + 3u 2 )}, (3x 6 + x 4 , (u + u 2 )(x 7 + 3x 6 + x 4 + 3x 3 + x + 3))}, B 6 ={(2x 6 + 2x 5 + 2x 4 + 3x 3 + x 2 + 3x + 1, u 2 x 8 + u 2 x 7 + u 2 x 6 + u 2 x 5 + u 2 x 4 + u 2 x 3 + u 2 x 2 + u 2 x + u 2 )}.Hence, Ψ 1 (C) has parameters (34, 4 11 2 15 , 5) and Ψ 2 (C) has parameters (34, 4 8 2 18 , 3), respectively. Again, Ψ1 (C) is (25, 4 14 2 2 , 4) and Ψ2 (C) is a (25, 4 10 2 6 , 3) linear codes over Z 4 , respectively. It is worth mentioning that all these four codes are new Z 4 codes as per the database[START_REF] Asamov | Table of Z 4 codes[END_REF].
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b i x i ∈ S δ,λ , we notice that ρ λ (c) corresponds to the scalar multiplication

Then, by the similar arguments as given for cyclic codes, we have ker(Γ 1 | C ) = (g(x) + 2a(x), 0) , where a(x)|g(x)|(x γ -1). Also, Γ 1 (C) is an ideal in S δ,λ , therefore, by [START_REF] Islam | A class of constacyclic codes over Z 4 [u]/ u k[END_REF]Theorem 13], we get Γ 1 (C) = g 1 (x) + 2a 1 (x) + up 1 (x) + u 2 p 2 (x), u(g 2 (x) + 2a 2 (x)) + u 2 q 1 (x), u 2 (g 3 (x) + 2a 3 (x)) , where a i (x)|g i (x)|(x δ -λ) (mod 4) and x = λx. From the above discussion, we have the following theorem. Theorem 4.3. A Z 4 Z 4 [u 3 ]-additive constacyclic code C of length (γ, δ) for odd positive integers γ, δ is given by C = (g(x) + 2a(x), 0), (f 1 (x), g 1 (x) + 2a 1 (x) + up 1 (x) + u 2 p 2 (x)), (f 2 (x), u(g 2 (x) + 2a 2 (x)) + u 2 q 1 (x)), (f 3 (x), u 2 (g 3 (x) + 2a 3 (x))) , where x = λx, a(x)|g(x)|(x γ -1), a i (x)|g i (x)|(x δ -λ) and f i (x), p 1 (x), p 2 (x), q 1 (x) ∈ Z 4 [x], for i = 1, 2, 3.

Gray maps and Z 4 -images of constacyclic codes

In this section, we dene some Gray maps and obtain the Gray images of Z 4 Z 4 [u 3 ]-additive λ-constacyclic codes for two dierent values λ = 1 + 2u 2 and 3 + 2u 2 . For this, we rst dene

which can be naturally extended as

where

For the map ψ 1 : Z 4 [u 3 ] δ → Z 3δ 4 and v ∈ Z 4 [u 3 ] δ , the Gray weight is dened by w G (v) = w L (ψ 1 (v)) and the Gray distance between v and w is dened as d G (v, w) =
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