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BROWNIAN CONTINUUM RANDOM TREES CONDITIONED TO BE
LARGE

ROMAIN ABRAHAM, JEAN-FRANCOIS DELMAS, AND HUI HE

ABSTRACT. We consider a Feller diffusion (Zs,s > 0) (with diffusion coefficient /28 and drift
0 € R) that we condition on {Zt = at}7 where a; is a deterministic function, and we study the
limit in distribution of the conditioned process and of its genealogical tree as t — 4+00. When
at does not increase too rapidly, we recover the standard size-biased process (and the associated
genealogical tree given by the Kesten’s tree). When a; behaves as af?t? when 6 = 0 or as
ae?P?* when 6 # 0, we obtain a new diffusion, as already proved by Overbeck in 1994 in the
case § = 0. We give a new representation of this diffusion using an elementary SDE with a
Poisson immigration. The corresponding genealogical tree is described by an infinite discrete
skeleton (which does not satisfy the branching property) decorated with Brownian continuum
random trees given by a Poisson point measure.

As a by-product of this study, we introduce several sets of trees endowed with a Gromov-
type distance which are of independent interest and which allow here to define in a formal and
measurable way the decoration of a backbone with a family of continuum random trees.

1. INTRODUCTION

1.1. The discrete case motivation. In [1], for the geometric reproduction law, and in [5], for
general super-critical reproduction laws with finite mean and some special sub-critical reproduc-
tion laws, the authors consider the limit of a Galton-Watson (GW) process (Z,,n € N) started at
Zy = 1 conditionally on Z,, = a,, as n goes to infinity, provided the event {Z,, = a,,} has positive
probability. They also consider more generally the local limit of the GW tree, which in particular
allows to study condensation phenomenon (on this latter subject, see [27, 26, 4]). According to
the different growth rate of a,, as n goes to infinity, they observe different regimes for the limiting
random tree: if a,, = 0 for n large, the limiting tree corresponds to the GW tree conditioned on
the extinction event; if a,, is strictly positive but grows slowly (including the case a, bounded),
then the limit is the so-called Kesten tree, which consists in an infinite spine decorated with
independent GW trees with the initial reproduction law; if a,, grows at a moderate speed (given
in the super-critical case of finite variance by a, ~ am™ with o > 0 and m the mean of the
reproduction law), then the limit is a skeleton given by an immigration process decorated again
with independent GW trees with the initial reproduction law; if a,, grows faster than m™ (that is
lim,, oo m™"a, = o0) then results are known only for the geometric reproduction law (the limit
exhibits a condensation at the root, that is, the root has an infinite number of children, and then
those children generate independent trees) and for bounded reproduction laws (the limit is the
regular b-ary tree, with b the possible maximum number of children).

We mention that the local limit distributions of the GW tree with geometric reproduction
also appear when considering the local limit of trees having n vertices with a Gibbs distribution
where the energy is the height of the tree, see [20].
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This work is a first step to extend those results to random real trees called Lévy trees introduced
by Duquesne and Le Gall in [17, 18] which are scaling limits of (sub)critical GW trees and can
be seen as genealogical trees for (sub)critical continuous state branching processes (CSBP); see
also [3, 19] for the extension of this latter representation to the super-critical case. We shall only
consider Feller diffusions, which correspond to CSBPs with quadratic branching mechanism and
whose genealogy can be described using the Brownian continuum random tree introduced by
Aldous [8]. Our results belong also to the family of works dedicated to the description of limits
of conditioned random real trees, in this direction, see [31, 30, 16, 2].

1.2. Feller diffusion with Poisson immigration. We consider a quadratic CSBP Z = (Z;,t >
0) associated with the branching mechanism:

Yo(N) = BA? + 280,
with > 0 and 0 € R. The process Z is a solution to the stochastic differential equation (SDE):

dZt =/ 2,BZt dBt - 2502tdt, for ¢ > 0,

where (By,t > 0) is some standard Brownian motion. The CSBP is sub-critical (resp. super-
critical) if # > 0 (resp. 6 < 0). The time scaling parameter S will be fixed, but we shall stress
in the notations the size scaling parameter 6, and denote by P? the distribution of Z starting at
Z(] = XT.

Let a = (a¢,t > 0) be a non-negative function. We shall consider the local limit of the process
Z conditionally on {Z; = a;} as t goes to infinity, that is the possible limiting distribution of
Z10,5) = (Zr,r €0, 5]), with s fixed, conditionally on {Z; = a;} as t goes to infinity. We recall
that this question is related to the description of the Martin boundary of Markov processes and
extremal time-space harmonic functions, see [21]. We have for t > s > 0 and H, a bounded
o(Zjp,¢))-measurable random variable:

EZ [Hs | Zy = (lt] = EZ [Hs K(S, Zs; t, (It)] )

where K is the so-called Martin kernel. Then, all the extremal time-space harmonic functions h
appear as the limit of:

(1) h(s,z) = lim K(s,z;t,a;) for all s,z € Ry

t—4o00

for some non-negative function a = (a¢,t > 0). Overbeck [33] gives all the extremal time-space
harmonic functions h for the critical Feller diffusion (that is § = 0), and gives also the SDE solved
by the Doob h-transform of the process Z, see Lemma 2.7 for the extremal harmonic functions
and Corollary 4.2 for the SDE below for § € R which includes the sub-critical and super-critical
cases. For keeping the introduction as simple as possible, we shall stick to the critical case 8 =0
considered in [33], and choose =1 (the general case can be deduced using a deterministic time

change or a Girsanov transformation of Z). In this case, the extremal harmonic functions h are,
with By defined in (15):

e Extinction case a; = 0 for ¢ large: h¥(s,z) = 1;
e Low regime a; > 0 and a; = o(t?): h0(s,z) = x;
e Moderate regime a; ~ at? with a € (0,4+00): h%(s,z) = e~ 2 Bg(ax).
For a € [0,+00), the Doob h-transform of the process Z using the harmonic function h?,
denoted by Z¢ = (Z{*,t > 0), satisfies the following SDE according to [33, Theorem 3]:

dZ® = \/2Z8 dB, + 29(Z&)dt, t >0,
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where, with H*(s,y) = e~** yBp(ay), the function g is equal to:

9(y) =y Oylog(H*(-,y)) =1+ aygggzz;.

Motivated by the backbone decomposition of the corresponding genealogical tree given in the
next section, we provide a new representation of the process Z¢ using a Poisson immigration
given in Corollary 4.2 which is stated for the general case 6 € R.

Proposition 1.1 (Representation using a Poisson immigration, case § = 0). Let a > 0 and
(S¢*,t > 0) be a Poisson process with intensity adt, independent of the Brownian motion (By,t >
0). The process Z“ starting at Z§ = 0 is distributed as the solution Y = (Y,*,t > 0) of:

(2) AV = /2Y2dB; + 2 (5S¢ + 1)dt  with Y& =0,

When the process Z¢ starts at Z§ = = > 0, the constant 1 in the drift term of (2) must
be replaced by a random constant independent of B and S¢, see the beginning of the proof of
Corollary 4.2 in Section 4.3. The proof of this result, given in Section 4.2, uses a result from
Rogers and Pitman [35] for a transformation of a Markov process to still be a Markov process.

1.3. Decomposition of the Brownian CRT with respect to n leaves taken at random
at a given height. We denote by N? the canonical o-finite measure associated with the CSBP
Z under P?. Intuitively, under N’ the population starts with an infinitesimal individual at
time t = 0. Let 7 denote under N? the genealogical tree of the process Z, it is the so-called
Brownian continuum random tree (CRT) introduced by Aldous. In this context, the random
tree 7 can be easily built from a Brownian excursion, and the measure N can then be identified
with the excursion measure of the reflected Brownian motion. We write ¢ for the root of 7.
In [18, Theorem 4.5], Duquesne and Le Gall give a decomposition of the critical or sub-critical
Brownian tree 7 by taking a leaf uniformly at random at level ¢ > 0 and decorating the branch
from the root to this leaf with independent Brownian CRTs. There is no difficulty to extend this
result to the supercritical case, see Corollary 5.9. We then extend this representation by giving
a decomposition of the Brownian CRT when taking n leaves uniformly at random at level ¢ > 0
and decorating the discrete tree spanned by the n leaves and the root with independent Brownian
CRTs, see Theorem 5.8. This result completes the description of [19] where one chooses theses
vertices at random without condition on their level.

Stating and proving this result relies on a lengthy study of various spaces of trees and the
measurability of various maps defined on those sets of trees, which are detailed in Section 6. We
shall present informally the mathematical objects and state the theorem in the critical case § = 0
with 8 = 1 for simplicity; we also write N for N°. Let A; denote the local time at level ¢ associated
with the Brownian tree 7 (its total mass is equal to Z; the size of the population at level ¢): this
measure allows to sample random individual “uniformly” at level ¢; the measure A; is supported
by the leaves of 7 at level . Under N[d7] AP"(dv*) we can sample the Brownian CRT 7 with
n leaves v* = (v1,...,v,) € T" at level t. To those n distinguish vertices, we shall add the
root o of 7 and set v = (p,v*), and shall see (7,v) as an element of the Polish metric space of

the locally compact of n + 1-pointed trees, ']I‘l(gc)_K, equipped with the local Gromov-Hausdorff
distance (and where all n + 1-pointed trees which are isomorphic are identified), see Section 6 for
precise details. We describe the rooted tree spanned by the root and the distinguished v* vertices
using a combinatorial construction on growing discrete planar trees with fixed height ¢ defined in
Section 5.4.1 where starting from one branch of height ¢, we graft uniformly successively branches
with their leaf at height ¢t. Let us stress that we use the planar structure of the trees in this
section only, and that the grafting of the new branch is uniformly done on the right or on the left.
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After n such steps, we obtain the random n + 1-pointed tree (Tznif, vy, ), where the distinguished
vertices v, are first the root, and then the leaves ranked in their arrival order (and not in the
planar order). Then, very informally, on this discrete tree, for all ¢ € I a countable set of indices,
we graft at z; € T a subtree T;, where M(dx, dT) = > ic1 0z, 1y)(dz, dT) is a Poisson point
measure with intensity 2 d.Z(dz) N[dT], where d.Z is the length measure on T, This grafting
procedure is rigorously defined in Section 7.2.2 based on the technical material from Section 6.
So we are now able to state Theorem 5.8 for § = 0 and 8 = 1. Recall v = (p,v*) € 7", with
o the root of T.

Theorem 1.2 (Generalized n-leaves decomposition, case § = 0). Let t > 0 and n € N*. For

every non-negative measurable function F defined on ']I'I(ZLC)_K, we have:

N’ [/T;/Xi@"(dv*) F(T, V):| =nlt"'E [F(Graftn((szf,Vn),./\/())] .

Let us mention here that there have been several works on skeletal /backbone decompositions
for (spatial) branching processes and their corresponding genealogical trees, for example see
(2,9, 11, 19, 24, 25, 29] and the references therein. In particular, in [24], coupled systems of SDEs
were established to represent the skeletal decompositions for continuous-state branching processes
(conditioned on survival), where the skeletons are determined by continuous-time Galton-Watson
processes. And we refer to [19] for the reconstruction of a Lévy tree from a backbone tree, which
could be formed by leaves taken at random in a Poissonnian way from the Lévy tree according
to the so-called mass measure; see Remark 5.4 there and [17]. For representations of branching
processes (with immigrations) via SDEs, we also refer to [14] and references therein.

1.4. Local limit of conditioned Brownian CRT. The Brownian CRT 7T gives the genealog-
ical structure of the CSBP Z. We shall give a description of the genealogical structure of the
CSBP associated with the Doob h-transform and prove that it appears naturally as local limit
of the Brownian CRT 7 conditioned to be large. We stress that the local limits obtained here
are different from the one obtained by conditioning on the non extinction at large time, see [2] in

this direction. We denote by Tjoc_k = Tl(gg—K the set (of equivalence classes) of locally compact
rooted real trees, see Section 6 for more details.

Recall that in the critical case 8 = 0 the Brownian CRT 7 is compact. In the introduction,
we simply denote by t; the real tree t truncated at level t. We denote by G; the o-field generated
by T; for t > 0; in particular the process Z is adapted to the filtration (G;,t > 0). Let F' be any

bounded continuous function defined on Tio._k.

e Extinction case: a, = 0 for ¢t large. We have:
Jim N[F(T:) 1z,0y] = N[F(T)].

The result is obvious for the critical case as the tree 7 is compact N-a.e., that is 7, = 7T
for t large enough. We obtain the same result in the sub-critical case § > 0. In the super-
critical case 6, using the Girsanov transformation from [3] to define the super-critical
Lévy tree, see also (43), we get that:

lim N [F(T5) 1{z,—ayy] = N [F(T)].

t—o00
Those results hold also in general for any compact Lévy trees.

e Low regime: a is positive and a; = o(t?). We recall that the Kesten tree 7* is informally
obtained by grafting the trees (73,7 € I) respectively at levels (h;,7 € I) on an infinite
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spine, where the point measure ) ,; 05, 1,(dh,dT) is a Poisson point measure with in-
tensity measure 21,-0ydh N[dT]. See Lemma 7.2 for a more formal definition of the
Kesten tree. The Kesten tree appears already as the local limit of general compact Lévy
trees when conditioning instead by {Z; > 0}, see [2]. The next result is Theorem 5.14
restricted to the critical case § = 0 with 7%¢ = 7 (notice therein the difference of the
limit between the super-critical case and the sub-critical one).

Theorem 1.3. We have in the low regime, a; = o(t?) and a; > 0, that:

e Moderate regime: a; ~ at?, where o € (0,4+00). We first consider a backbone tree
T*0 representing in some sense the genealogy associated with a Poisson immigration with
rate «, see Section 5.6 for a more precise description. Secondly, let the point measure
> ic1 0z,,1,(dz,dT) be, conditionally given T*0 4 Poisson point measure with intensity
rate 2.7 (dr) N9[dT] with .Z(dx) the length measure on T*Y. Then, the random tree
TV is obtained by grafting, for i € I, the tree T} at vertex x; on the backbone tree T0,
(As, for a = 0, T?Y can be seen as an infinite spine, the Kesten tree is indeed distributed
as T%Y.) The next result is Theorem 5.13 restricted to the critical case 6 = 0.

Theorem 1.4. We have in the moderate regime, a; ~ at? with o € (0, +00), that:
Jim N[F(T,) | Zy = a,] =E [F (T°)].

Let us stress that the backbone tree does not enjoy the branching property, as already
observed by [1, 5] in a discrete setting. In a forthcoming paper, we shall recover the
branching structure in the backbone by considering a weighted tree.

e High regime: lim; .t 2a; = +o00 (or lim;_uo e 2Bl g, — 400 if O £ 0). The descrip-
tion of the possible limit in this regime is still an open question. As in the discrete setting
studied in [1], one could ask if there is a condensation phenomenon at the root. However,
to study such local limits, which would not be locally compact (at least at or near the
root), one would require a non trivial extension of the current topology developed for
locally compact trees.

1.5. Outline of the paper. Section 2 is devoted to some notations and elementary facts for
the quadratic CSBP, the transition kernel under the canonical measure N?, and the Martin
boundary for the process Z (under P? and the excursion measure N’). We then present families
of martingales for the process Z and then the local limits of the process Z conditionally on Z; = a;
for ¢ large and some deterministic function (a;,* > 0) (under P% and the excursion measure N?) in
Section 3. We prove Proposition 1.1 on the representation of the Dood-h transform of the process
Z with h harmonic extremal using a Poisson immigration in the general case § € R in Section 4,
see Corollary 4.2. We provide the backbone decomposition in Section 5, with the decomposition
with respect to n leaves from Theorem 1.2 in Section 5.5 and the local limit of Brownian CRT
conditioned to Z; = a; from Theorems 1.3 and 1.4 in Section 5.6. We have made the choice to use
some intuitive (but abusive) definition in Section 5, in particular considering the Graft, map in
order to state the result without burdening the reader with too much technicalities; we clarify all
the definitions in Section 7 using the lengthy technical Section 6. We also believe that Section 6
helps clarifying some previous work on random trees and could be useful also for further works
on grafting, splitting, and decorating for trees.

Let us mention that the introduction is written with the time scale parameter § = 1 and for
the critical case § = 0. The general cases § > 0 and 6§ € R could be deduced in finite time
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from the particular case by scaling or using Girsanov transformation on CSBP. However, if those
computations are not that complicated, they are lengthy and treacherous; so we decided to treat
the general cases but for the introduction.

An index of all the (numerous) relevant notations is provided at the end of the document.

2. GENERAL QUADRATIC CSBP

2.1. Notations. We set Ry = [0, +00), R} = (0, +00), N={0,1,2,--- } and N* = {1,2,--- }.

For x € R, we set x4y = max(0,z) and z_ = max(0, —x), so that x = x4y —z_. We write J,
for the Dirac mass at x.

Let (E,d) be a metric space. We denote by M, (E) the space of non-negative measures on
E endowed with the vague topology. For € M, (F) and A a Borel subset of E, we denote by
pya(dz) the measure 1 (z)u(dz). We write u(f) = (f, ) = [ fdu = (f, ) for the integral of
the measurable real-valued function f with respect to the measure p, whenever it is meaningful.

We say that a function from a measurable space to a measurable space is bi-measurable if it
is measurable and the image of any measurable set is a measurable set (when the function is
one-to-one this is equivalent to the function and its inverse being measurable).

2.2. Quadratic CSBP. Most results in this section can be found in [17, 15, 3, 19]. Let 8 > 0
be fixed. Let # € R. We consider the quadratic branching mechanism vy given for A € R by:

(3) Yo(\) = BA2 + 286

The corresponding CSBP Z = (Z;,t > 0) is the unique strong solution to the following stochastic
differential equation (SDE):

(4) dZt = vV ZﬁZt dBt — 25921/(115 for t > 0,

where B = (By,t > 0) is a standard Brownian motion and Zy = z > 0. For ¢ > 0, let F; be the
o-field generated by (Zs,t € [0,t]). We write P? to stress the value of the parameter 0, and the
initial value of the process Z, Zy = z. We denote by N? the canonical measure of the process Z,
normalized in such a way that for A > 0:

N [1— e | = o5 ),

where o = fooo Z, dt is the total size of the population under the canonical measure N’ and (0 1()\)
is the only solution t to 1y(t) = A such that ¢ > 20_. In particular, the process (Z;,t > 0)

under P? is distributed as the process (ZZE 7 Zt(i),t > O> where ), ;0,0 is a Poisson point

measure with intensity N’(dZ). We refer to [17] for # > 0 (critical and sub-critical case) and to
[15, 3, 19] for 6 < O (super-critical case) for a detailed presentation of the CSBP process Z and
the corresponding continuum Brownian random tree 7T .

With a slight abuse, we say that two random variables or functionals Y/ and Y have the same
distribution under N if the pushed forward measures of N’ by Y’ and Y” are equal.

In order to recall the Laplace transform of Z;, we introduce the following positive functions
@ and &@ defined for t € (0, +00) by:

20 20
0 _ =0 _
(5) ¢ = 2P0 ] and ¢ = T
with the convention ¢ = & = 1/4t. The functions ¢ and & are decreasing with:
(6) lim ¢ = lim & = 400, lim ¢/ =20_ and lim & =26,.
t—0+ t—0+ t—+00 t—+-00
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We also have for ¢t > 0:
(7) & =c0=c+20.

Remark 2.1 (Scaling property of Z). In this remark, we write Z!#% for Z under N’ or P? in
order to stress the dependence in 5 > 0 and # € R. Let Y = (Y5, s > 0) be a Feller diffusion
that is, Y = Z[L0l. Under Py, it is given as the unique strong solution to the SDE, with initial
condition Yy = x:

(8) dY, = \/2Y,dB,, for s> 0.

We denote by (Q¢,t > 0) the semi-group of the diffusion Y and recall that it is a Feller semi-group
with the so-called following branching property:

(9) Qi(x+2',) = Quz,") »Qu(a’,-) forall t>0 and xz,2" € Ry.

We shall denote by N the canonical measure of Y.
For > 0 and 0 € R, the process Z%9 under N? (resp. Pg) is distributed as the process:

(10) (e—%"t Y00t > 0)

under N (resp. P,). Notice that the range of 1/c/ as t runs in R, is [0,1/(26_)). Even though,
using this scaling and time change, it is (almost) enough to state the forthcoming results for the
particular case § = 1 and 0 = 0, we shall keep general values for the parameters in order to
better understand their role.

We define for t > 0 and A > —&:

A & &
11 0 )\,t — t o0t 7
1D wA1) S SR N
and set u?(\,0) = A for t = 0. This gives that for ¢ > 0 and A\ > —&:
20
if § #0
W) = (201 AP\ 70,
A (1 + Apt), it =0.

For » > 0 and t > 0, we have that:
0,0 0
u’(cp,t) = cipp

We recall from the above mentioned references ([17, 15, 3, 19]) for A > 0 and by analytic
continuation for A < 0, that for ¢ > 0 and x > 0:

(12) N’ [1 - e_AZt} —u(\¢t) and E? [e—AZt] — e’ forall A > .
We denote by ¢ = inf{t > 0; Z; = 0} the lifetime of the process Z. We recall that for all ¢ > 0:
NI[¢ > ] = lim (N t) = I (t).
A—00
By considering the series in A in (11) and (12), we deduce that for all ¢ > 0 and n € N*:
(13) N’ [(d’zt) "} = nlcd.

We now give a martingales related to the CSBP Z. Since u?(\,t) = u=%(\ + 20,t) — 20 for
A > ¢? —260, we deduce that the process (e%Z’f, tel ) is a martingale with respect to the filtration
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(Fi,t > 0) under N? with I = R% and under IP’g, with I = R;. Furthermore, according to [3,
Section 4], we have that for # € R, t > 0 and z > 0:

(14) N~[dZ) 5 = N[dZ)5, and E;°[dZ]F =) EJ[dZ] 7.

Recall that & is decreasing in ¢, and thus —,, > —&. The next lemma is an easy consequence

of (12) and the following elementary equality:
u(—Eerr,t) = —& forallt>0andr>0.

Lemma 2.2. Let 0 € R, x € Ry, r > 0 and the quadratic CSBP (Z;,t > 0) solution of (4). The
process (eéfﬂz’f, tel > is a martingale with respect to the filtration (Fy,t > 0) under N? with
I =R% and under P9 with I =R,

2.3. Transition densities and Martin Kernel. We first provide the densities of the entrance
law ¢¢(dz) and the transition kernel ¢! (z,dy) of the CSBP Z under its excursion measure, where
fort,s >0,z >0 and y > 0:

q)(dz) =dN’[Z, =2, ¢ > ] and ¢f (., dy) = AN?[Zyys = y| Z, = 2].
We shall consider the function By and B on R, defined by:

IL‘k
(15) Bo(z) = Z AT and B(z) = 2Bo(z) = Vo I, (2Vx),
keN

where I1(z) = Y, o (2/2)% 1 /il(i 4 1)! is the Bessel function. Notice that By(0) = 1.

Lemma 2.3 (Entrance law and transition densities of Z). Let § € R. Let t,s > 0, x > 0 and
y > 0. We have qf’s(O,dy) = do(dy) and:

¢/(dz) = ¢ (x)de  and qf (x,dy) = = So(dy) + qf (x,y) dy,

where:
(16) ¢l (x) = & ect,
(17) ol (v,y) = ol & T2V By (ayclel )

Proof. We omit the parameter 6 in the proof. On one hand, from the definition of ¢;(dx), we get
that for A > 0:

“+oo
/ e Mg(dz) =N [e_AZt 1{<>t}] =-—-N [1 - e_)‘Zt] +NI[( > t] = c(t) — u(A ).
0
On the other hand, using (11), we get:
o0 ~
/ 6y e CFNT Q= (t) — u(A,t).
0
Then use that finite positive measures on R are characterized by their Laplace transform to

obtain that ¢;(dx) = ¢;(z) da with ¢; given by (16).
From the definition of ¢(x,dy), we get that for A > 0:

+o0
[ atnan) = [
0

ZS = :1;‘:| _= e_xu()‘vt) = e_%—‘rﬁ
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where, thanks to (11), a = z¢;¢, and b = ¢&. Notice that:

=1 =1 —by=AY .
+%(k+l)! <b+)\> “‘Z/ k'k+1 ¢ y

keN

Using (5), we deduce that ¢ (z,dy) = e % do(dy) + q(z,y) dy, with ¢, (x,y) given by (17). O

Let us notice that qf’s(a;, dy) is also the transition kernel of the CSBP Z under ]P’fc0 for every
g > 0. The Martin kernel is defined for ¢ > s > 0 and z,y € R4 by:

Qt ss(‘r dy)
qt,O(l dy)

2.4. Martin boundary. According to Overbeck [33], see also [21, Section 10], all extremal
(non-negative) time-space harmonic functions for the CSBP Z appear as the limit of the Martin
kernel K (s,z;t,a;), see (18), as ¢t goes to infinity and (as, ¢ > 0) is a non-negative function. To
study the possible limits as ¢ goes to infinity of:

(19) lim K (s,z;t,a),

t—o00

(18) K(s,x;t,y) =

we shall consider the functions on R%r:

B 230s
(20) H(s,2) =z 2% and HY(s,z) = oo/l %,

for @ > 0 and with B defined in (15). Notice that lim,_,q H*? = H0?.
We consider the following intermediary result.

Lemma 2.4. Let s > 0 and x > 0. If (as,t > 0) is positive and lim;_, oo a; 2&? = a € [0, 4+00),
then we have:

o
(21) lim $=2®00) 2 H*(s, ).

t—o00 qf (at)

Proof. We omit the super-script 6 in the proof. We get from (17) and (7) that for ¢t > s > 0 and
y > 0:

0 ~
s, _ _ oy Ct—sCo .
& Z( _y) = pe Tot—s g Ulct—s—er) TTSHTS Bo (zyci—sCi—s) -
a;/(y) CtCy
Recall from (6) that lim; 4o ¢; = 20_ so that:
(22) lim e *¢t—s = ¢~ 20-7
t—o0
It is elementary to check that:
2810|s -1 1
1 C ~:2B|0‘S 1 — ~:76 = —
tllglo Ct—sCt—s/CtCt € and tllglo(ct—s Ct)/CtCt 2’9‘ c‘selj
where the latter limit is simply 8s if 6 = 0. The result is then immediate. U

The result below for § = 0 appears in [33, Section 5], and the proof for general € is similar.

Lemma 2.5 (Martin boundary). Let s > 0 and > 0. The limit (19) exists only in the following
cases:

(i) Extinction case. If ax = 0 for t large enough, then the limit (19) exists and is equal to:
h@,@(s’:p) _ h@ﬂ(:p) _ e—2€,(m—1) )
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(i) Low and moderate regimes. If the sequence (as,t > 0) is positive and limy_, 4o as /&) =
€ [0,400), then the limit (19) exists and is equal to:

H>l(s, )
a,f _ 10,0 )
h*%(s,z) = h""(x) 7a"9|(07 N

(iii) High regime. If lim;_, o a; 2&? = +o0, then the limit (19) exists and is equal to:
hoo(ij) = 1{8:0,5021}'

Remark 2.6 (Equivalent condition for the moderate regime). The moderate regime condition
limy o0 a; /& = a € (0,+0c), which appears in Lemma 2.5 (ii), is in fact equivalent to:

{a62t2 if 6 =0,
agy ~

23
(23) a(20)2 28101t if g £ 0.

Proof. We omit the super-script 6 in the proof. The low and moderate regimes are a direct
consequence of Lemma 2.4. In the extinction case, use that K(s,z;t,0) = e~ *=s%¢ and (22) to
get the result. For the high regime, using that for y > 0:

0 ifx =0,
. _—xCi_st -
K(S,ﬂj, tvy) =e X B(xy ct—SNCt—S) e—y(c,sfs—ct) if @ > 0,
B(y c1ét)
Equation (15), the asymptotics of the Bessel function I1(z) ~ e* /v/2mz as z goes to infinity
and (22), we deduce that limy o K(s,7;t,a;) = 130 z=13- O

Using similar arguments as in [33, Section 5] stated for § = 0, Girsanov transform (14) to
reduce the cases # < 0 to 8 > 0 and then Remark 2.1 to reduce those latter cases to the case
0 = 0, we get the following result.

Lemma 2.7 (Extremal harmonic functions). Let > 0 be fized. Let 0 € R. The extremal time-
space harmonic functions of ZP9 are the functions h®? for a € A where A = {0} [0, +00).

Proof. Notice that h* is not an harmonic function. According to [21, Section 10], the functions
h*? with o € A are the only possible extremal harmonic functions. Thanks to (14) it is enough
to consider the case # > 0. Thanks to Remark 2.1, for # > 0, we have that:

76 (0% 76 — S e} —
o [F(Z[[gﬂ])h O, 7l ])} —E [F(e 250 Y, 0,5 € [0,8]) B (8,62 Y, /C?)}

=CLE [F(e_zﬁes Yy, €[0,]) e/l B(QYUC?)] ,

where for o = 0, C,B(ax) is simply replaced by Cpz, and C, is a finite positive constant.
Then use that 1, (Y, s > 0) and (e~ B(aYs),s > 0) for a € (0, +00) are extremal martingales,
see [33], to conclude when 6 > 0. O

3. LOCAL LIMITS FOR THE PROCESS Z

3.1. Some martingales. We present in this section two martingales which will naturally appear
in the local limits for the Brownian continuum random tree (CRT). Let o € R. Define:

(24) HYs,y) =e * yBo(ay), s>0,y >0,
where By is defined in (15). Recall § € R. Let M9 = (Mta’@,t > 0) be the process defined by:
(25) MM =11/, 20 7).
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For # = 0 and « € [0,4+00), this formula corresponds to [33, Eq. (19)] up to a normalizing
constant.
Using Theorem 3 of [33] and Remark 2.1, we get the following result.

Proposition 3.1. Leto,0 € R, x € Ry. The process (Mf’e, te I> s a non-negative martingale
under N? with I = (0,400) and under P? with I = R,..

Proof. We first consider the case § = 0. For a € [0, +00), under P, this result is in [33, Section 5].
Using | M} ’6\ < e2lal/ o Mt‘al’e to get the integrability for # = 0 and that By is analytic to get the

martingale property, we deduce that the result holds also for @ < 0 under P,. For 6 # 0, use
Remark 2.1 to get the result under P, for all o, 0 € R.

Moreover, for all ¢+ > 0, we have, using (13) and & /¢ = ¢2%%| and thus that for a,6 € R:
N[ = 1.
Then use the Markov property under the excursion measure to conclude the result also holds
under N?. O
We introduce an other family of related martingales. For o, § € R, we set M*? = (Mf"e, t>0)
with:
(26) Mta,@ — e29Zt Mta,—e — Ha(l/éf, e—2ﬁ€t Zt) e29Zt’
using (25) and ¢, o — 5? for the second equality. We then deduce from Proposition 3.1 the
following corollary.

Corollary 3.2. Let 0, € R. The process M*? is a martingale under N?, and for t > 0 and
any non-negative Fi-measurable random variable H;, we have:

(27) N°[H, NI = N~° [Ht M;‘"G] .
Remark 3.3 (The case § =0 and v = 0). Let ¢t > 0. For § = 0, we have:
M = M = (Bt Zy)-
For a = 0, we have:
(28) M = 7,2 and MY = 7, 2045
Then for a = 0 = 0, we have:
~0,0 0,0
MO0 = MO0 = 7,

3.2. Local limit. We first consider the Poisson regime, whose name is inherited from the rep-
resentation given in Proposition 4.1 based on a Poisson immigration. Let a = (a;,t > 0) be a
positive function.

Proposition 3.4 (Poisson regime). Let 6 € R, s > 0 and Hs be a bounded non-negative Fg-
measurable random variable. Let o € (0,400). Assume the function a is such that as t — oo
large:

e {aﬁ2t2 if 0 =0,
a(20)=2 2P0l f 9 £ 0.
Then we have:
NO[H, M) if6 >0,

2 lim N?[H,| Z; = a;) = NI | H, Mool = Ny
(29) Jim NUHs | 2 = ai] [ s ] NO[H, MY if 6 < 0.
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Proof. Let s > 0 and Hj be fixed. For t > 0, thanks to (16) and (17), we have:

N HS Zg,CL s
NQ[HS|Zt+s:at+s] — [ qt( t+ )]

Qevs(airs)

Then use Lemma 2.4 to get the existence of the limit of ¢;(Zs, at+s)/qt+s(ar+s) and Proposition 3.1
to get the convergence in L'. To conclude, notice that Lemma 2.4 gives:
0 .
i 9 Zsares) _ {Mf" if 6> 0,

totoo quis(arys) | MO if 0 <0.

The same proof can be used for the Kesten regime.

Proposition 3.5 (Kesten regime). Let § € R, s > 0 and Hs be a bounded non-negative Fs-
measurable random variable. Assume the function a is positive (a; > 0) and such that ast — oco:

~o(t?) if =0,
T o(e2B0ly g £ 0.

Then we have:

N[H, MO?) if 0 >0,

SN o] =N 28101s] _ .
o vz o) ] <[ 02

For completeness, we add the well known extinction case, that is the function a; = 0 for large
t, which is a direct consequence of (14). Since the event {Z; = 0} has infinite measure under N?,
we consider the restriction instead of the conditioning.

Proposition 3.6 (Extinction regime). Let § € R, s > 0 and Hs be a bounded non-negative
Fs-measurable random variable. Then we have:

(31) lim N’ [H,1(5,—;] = NVI[H,] =

t—o00

N[H,] if6>0,
N=9[H,] if6<0.

4. h-TRANSFORM

We give a representation of the distribution of the process Z under the A-transform given by
the martingale M®? using a Poisson immigration; and we identify it with the solution of the SDE
from [33, Theorem 3]. Even if Proposition 4.1 and Corollary 4.2 below are a direct consequence
of Proposition 5.11 and Theorem 5.13 (see Remarks 5.12 and 5.15), we provide an independent
proof which is interesting by itself. The proof will be done for § =1 and € = 0, and then use a
time-change, see Remark 2.1, to get 6 € R.

4.1. SDE representation. Let > 0 and 6 € R. Let B = (By,t > 0) be a standard Brownian
motion. Let @ > 0 and Sa’e(dt) be a Poisson point measure on Ry with intensity o/ e2%% dt,
independent of the Brownian motion B. We set S}" = §0([0,1]) for t € R,. We define the

process Z® = (Z&,t > 0) under PY as the unique strong solution (conditionally on S) of the
following SDE:

(32) dZ® = \/2BZ& dB; — 28028dt + 28 (S™" +1)dt for t >0, and Z§ = 0.
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Proposition 4.1 (An SDE with Poisson drift). Let o > 0, # € R and ty > 0. The process
(Zy,t € ]0,t0]) under N? [o Mtao’e] (resp. under N° [o Mg’e]) is distributed as the process (Z{,t €
[0,20]) under P? (resp. P=9).

The proof of this proposition is detailed in Section 4.2. The process (Z*,t > 0) appears also

in [33, Theorem 3] when 3 = 1 and # = 0 (the function h therein is given by y~'H%(s,vy)
up to a multiplicative constant). As Jylog(H(t,y)) does not depend on ¢, we simply write

9y log(H* (-, y))-

Corollary 4.2 (The SDE with Poisson drift is a diffusion). Let o > 0 and 6 > 0. The process
(Zy,t > 0) satisfies the stochastic differential equation:

(33) Az = \/2BZ7 AB, — 26077 dt + 28 e*P% Z2 0, log(H (-, % Z{))dt, t > 0.

The proof of this corollary is detailed in Section 4.3.

4.2. Proof of Proposition 4.1. Following Remark 2.1, we first use a scaling argument to
remove the parameters 5 and 6.

Let a > 0. Let S* = (S*,t > 0) be a Poisson process with parameter @ independent of the
Brownian motion B. Let Y = (Y, ¢ > 0) be the unique strong solution (conditionally on S) of
the following SDE:

(34) dY = /2Y*dBy + 2 (S +1)dt fort >0, and Yy =0.

Let B,a > 0 and 0 € R, and write ZI5%9 for the process Z® under N’ or P? to stress the
dependence in 3 and 6. Define the process (Y'*,5') = ((Y/*,5/%),s € [0,1/(26_))) by:

(35) Y/ = 2P0 Zt[ﬁ’e’a] and S =8 with s=

S —

Then, it is elementary that this deterministic time change yields the following result.

Lemma 4.3. Let 3, > 0 and 6 € R. The process (Y'®,S'®) under P? (whose law depends on
(8,0) and «) is distributed as ((Y;‘J‘,Sfj),s € [0, 1/(29_))).

Let (P, t > 0) be the transition semi-group on R4 x N of the Markov process (Y, S%).

Lemma 4.4. The semi-group (P, t > 0) is Feller, that is for allt > 0 and all bounded continuous
function f defined on Ry x N, the function P,(f) is also bounded and continuous.

Proof. Let ((Yf’(x’s),S?’(x’S)),t > O> denote the solution of the SDE (34) starting from (z, s).
Let (X7,t > 0) be a Feller process starting from z (it is distributed as a solution to the SDE

(8)), independent of the (Y;a’(x’s), Sf"(x’s))tzo. By the branching property, see (9), we have the
equality in distribution for the processes:

((Y;a’(m,s)’ S;l,(ac,s))’t > 0) (:) <(Yta,(0,s) +XT, S?’(O’s)),t > 0) .
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Recall ); denote the semi-group of the process X7, see Remark 2.1. Then for every ¢t > 0,
z,y € Ry, s € N and every bounded continuous function f defined on R x N, we have:

Pif(z,s) = Pif(y,s) =E f <Yta’(x’s), Sf"(m’s)) —f (Yt%(yﬁ)’ S;Jz,(y,s))]
=E f (Y‘{%(QS) + Xf,S?’(O’S)) _f (tha,(o,s) n Xf,S?’(O’S))]

=E Qtf(namo,s)’sg,(o,s)) (z) = Qtfma,(o,s)ﬁg,(o,s)) (y)]

where f(, ) is the continuous map x + f (y + z,s). By the Feller property of the semi-group Q;
and the dominated convergence theorem, we deduce that lim,_,, P;f(z,s) — P;f(y,s) = 0. This
gives the Feller property of the kernel P;. O

We now give the density of (Y%, S5). Recall that Yj* = S§ = 0. Let N be the counting
measure on N.

Lemma 4.5. Let t > 0. The random variable (Y,*, S§*) has a density f on Ry x N with respect
to dy ® N(dk) given by:

ko, k+1

1 oy —(atat—1
(36) f(y7k):t—2me(t+t y), yZO,kGN

Proof. Conditionally on S, by (34), we can see Y as a quadratic CSBP (with f = 1) with
immigration whose rate is 2(S + 1)d¢. This implies that, conditionally on S¢, the process
Y@ is distributed as (zig 1ip,<t) Zt(l_)hi,t > O>, where 3, ; 5(hi7Z(¢))(dt,dZ) is a Poisson point
measure on Ry x C[0,Ry) with intensity 2(S{* + 1)d¢ N[dZ] and N is the excursion measure of a
CSBP with branching mechanism () = \2.

We deduce that for A, u > 0:

E [e—)\Yf‘—uS?] —E {e—usg—fg 2(53+1)N[1—0*A2H]dr] —E {e—uS?—2 Jo (8241 Ty dr
where we used (12) for the last equality (with § = 1 and § = 0). Denote by (&;,i € N*) the

increasing sequence of the jumping times of the Poisson process S¢, and set £y = 0. Then, we
have on {S{* = k}:

t N A k ' Eir1 Nt Y
/O(ST, +1)71+(t_r))\dr:;(z+l)/& eyl
k i1t
== (i+1)log(l+ (t—7)A)
i=0 &i
k
= log(1+(t—&)N).
=0

Conditionally on {S§* = k}, the random set {{i,...,&} is distributed as {tUy,...,tUx} (no-
tice the order is unimportant and is not preserved), where Uy, ..., Uy are independent random



BROWNIAN CONTINUUM RANDOM TREES CONDITIONED TO BE LARGE 15

variables uniformly distributed on [0, 1]. We deduce that:

k
[T+t —u)N) 2] (1 +t0)72

i=1

E oot = 3 fat)fe ot :;at_uk E

where for the last equality, we used the definition of f given in (36). This finishes the proof. [

Let ¢; be the distribution of ¥;* for ¢ € Ry. We have ¢ = dp the Dirac mass at 0, and for
t > 0, we deduce from Lemma 4.5 that ¢;(dy) has a density, also denoted by ¢;, on R} with
respect to the Lebesgue measure given by:
G(y) =t e VI H (L y), t>0,y>0,

where H® is defined in (24). We now give some properties of the conditional law of S; given Y;.
Recall By defined in (15).

Lemma 4.6. Lety € Ry. The law of S conditionally on {Y;* = y} does not depend on t. More
precisely, we get for allt >0, k € N and y > 0:

_ 1 (ay)*

- Bo(ay) k!l(k+1)!

Proof. Using Lemma 4.5, we directly have (37) for ¢ > 0. Notice that for y = 0, we have
Bo(0) =1 and

(37) P(S; = kY = y)

1 ()t
Bo(ay) kl(k+1)!  ~H=0r
As Yy, S5) = (0,0), we deduce that (37) also holds for ¢ = 0. O

We can now prove the Markov property of the process Y = (Y;,¢ > 0).

Lemma 4.7. The process Y is Markov, and its transition semi-group (Q,t € Ry) is the unique
Feller semi-group such that q; = q\Q; for t € Ry, with q; the distribution of Y;*.

Proof. We say a probability kernel K is continuous if for all continuous and bounded function f,
K f is also continuous (and bounded). We shall check hypothesis from [35, Lemma 1]. With the
notation therein (X = (Y¢, %) and ¢(y, s) = y), the semi-group (P, t > 0) is Feller, see Lemma
4.4. The probability kernel A(y; dz,dk) = P(Sf* = k| Y,* = y) 6,(dz) N(dk) is clearly continuous
and does not depend on t. The probability kernel ®(y, k; dz) = 6,/(dz) is also clearly continuous.
Lemma 4.6 gives exactly condition (i) in [35, Lemma 1]. We now check condition (ii) in [35,
Lemma 1], that is the one-dimensional marginal distributions of Y%, (¢;,t € R ), are determining,
that is if » and ¢ are bounded continuous functions defined on Ry, then E[h(Y)] = Elg(Y®)]
for all t € Ry implies h = g. To prove this, notice that:

et BnY] = [ o HE,
Ry

where H(y) = h(y)yBo(ay). As the Laplace transform characterizes the bounded continuous
function, we deduce that if E[h(Y,")] = E[g(Y®)] for all t € R, then H = G (with G(y) =
9(y)y Bo(ay)) and thus h = g on (0, +00) and by continuity on R.
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As the assumption of [35, Lemma 1] are satisfied, we deduce that Y is a Markov process, and
that its transition semi-group (Q,t € Ry) is the unique Feller semi-group such that ¢; = ¢,Q;
for t € Ry, with ¢, the distribution of Y. O

We now compare the distribution of Y¢ and the distribution of the Feller diffusion Y defined
in Remark 2.1, which is a CSBP with parameter 5 = 1 and § = 0. Following (25), we set for
t>0:

MY =H*(t, Zs) = e ™ Z;Bo(aZy).

Let N denote the canonical measure of Y.

Lemma 4.8. Let a > 0. Let tg > 0. The process (Y;*,t € [0,to]) has the same distribution as
the process (Yy,t € [0,t0]) under N [ M ].

Proof. We first check the two processes have the same one-dimensional marginals. Clearly Yj* =
Yo = 0. Let t > 0. According to Lemma 2.3, the entrance law of Y; under N has density
Y t=2 e~ Y/, We deduce that for \ > 0:

N [e_)‘Yt Mf‘} = / e M HY(t,y)t 2 eVt dy = /
R4

eV gi(y)dy = E [e_”ﬂ :
R

Since the Laplace transform characterizes the probability distribution on R, we obtain that Y,*
has the same distribution as Y; under N [e M{].

Using Doob’s h-transform, we get that the process (Y;,t € [0,to]) under N [o Mf‘o] is Markov.
Using that M® is a martingale under N (see Proposition 3.1 and use that Y is distributed as
Z when =1, 0§ = 0), that M is a function of Y;, and that Y is Feller under N, we get that
(Yy,t € ]0,t0]) under N [o Mtao] is also Feller. We deduce from the uniqueness property of Lemma
4.7 and the identification of the one-dimensional marginals from the first step of the proof, that
(Y*,t € [0,t0]) has the same distribution as (Y;,¢ € [0,%o]) under N [e M]. O

We can now give the proof of Proposition 4.1. Let 8,a > 0, 8 € R and tg > 0. Using the time
changes given by Remark 2.1 and (35), we deduce that the process (Z§,t € [0,t0]) under P? is

distributed as the process (Z;,t € [0,]) under N? [o M,f)’e] Then, using Corollary 3.2, we also
deduce that the process (Z&,t € [0,to]) under P~? is distributed as the process (Z;,t € [0,%o])
under N? [o Mg’e] . This finishes the proof of Proposition 4.1.

4.3. Proof of Corollary 4.2.

Proof. Since Y satisfies (34) for Y§* = 0, then by Lemma 4.6 and the property of Poisson point
process, the process (Y,*),s, starting from Y* = y satisfies:

AV, = \/2Y 2 dB, + 2(S¢ + ¢¥)dt, t >0,
where S and &Y are independent and (since S§ = 0) for k € N:
1 (o)
Bo(ay) kl(k+1)!
By conditioning on (5%,&Y) and applying It6’s formula, one has for any y > 0:
t£%1+ e ‘Yoat: doe

P&V =k+1) =

= —2\E[¢Y]e ™ +X2e My

- 1 — ()" 5
— _2)\e ¥ A Y.
Y By 2 G T
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Since Y is a diffusion process by Lemma 4.7, the above computation implies that for ¢ > 0:

AYS = /27T dB, 4+ — f: (@Y 4
t t Bo(aY;a) — (k‘!)2

= +/2Y,* dB; + 2Y,* 0, log(H“(-, Y;*)) dt,
where 0, log(H*(t,y)) does not depend on ¢ as:

2 (o)t
y Oy log(H*(-,y)) = :

o4 (1) = 5,0 2 o
We deduce Y is a solution to the equation established in [33, Theorem 3|. Recall from (35) that
7 = e 2P0y, with s = 1/ = (e2#% —1)/26. With this deterministic time-change, we deduce
that the process Z also satisfies (33). O

5. BACKBONE DECOMPOSITION

We introduce basic facts on the space of real trees in Section 5.1. We recall some properties
of the Brownian CRT in Section 5.2. We give in Section 5.4 a recursive construction of some
discrete random trees using a grafting procedure defined in Section 5.3. Let us stress that the
measurable and topological properties of the grafting procedure, as well as its formal definition,
are discussed in detail in Section 6.3. In Section 5.5, we provide a decomposition of a (sub)critical
Brownian CRT according to n leaves at a given distance from the root and uniformly chosen at
random, this is a generalization of the case n = 1 from [18, Theorem 4.5]. We prove our main
results in Section 5.6 on the local convergence of the Brownian CRT conditioned to have a large
population at time ¢, as t goes to infinity.

5.1. Notations for trees.

5.1.1. Real trees. We use the framework of real trees to encode the genealogy of a continuous
state branching process. We refer to [22] for a detailed introduction to real trees.

A real tree (or simply a tree in the rest of the text) is a metric space (T, d) that satisfies the
two following properties for every u,v € T"

(i) There is a unique isometric map f,, from [0, d(u,v)] into T" such that:

foo® =u  and  fuu(d(u,0)) = 0.

(ii) If ¢ is a continuous injective map from [0, 1] into 7" such that ¢(0) = v and ¢(1) = v,
then the range of ¢ is also the range of f ,.
The range of the map f,, is denoted by [u,v]. It is the unique continuous path that links u
to v in the tree. We will write [u,v[ (resp. Ju,v], Ju,v]) for [u,v] \ {v} (resp. [u,v] \ {u},
[, o]\ {u,0}).

A rooted tree is a tree (T, d) with a distinguished vertex denoted by ¢ and called the root. We
always consider rooted trees in this work. For an element x of a rooted tree (7', d, ), we denote
by H(z) = d(o, x) its height, and we set H(T) = sup,c7 H(x) the height of the tree T

An element z of T'\ {p} is a leaf if T"\ {z} has only one connected component; by convention
the root is a leaf if and only if 7" is reduced to the root. We denote by Lf(7T") the (non-empty) set
of leaves of T'. The skeleton of the tree is the set Sk(7") = T'\ Lf(T"). The set of branching points
(or vertices) Br(T') is the set of = € T' such that T\ {x} has at least 3 connected components if
T # o or at least 2 components if z = g.
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For a vertex x € T', we define the subtree T, “above” x as:

T, = {yET: T € [[g,y]]}.
The real tree T} is endowed with the distance induced by 7" and will be rooted at z. If u,v € T,
we denote by u A v the most recent common ancestor of v and v, i.e. the unique vertex of T'
such that:

[o,u] N [o,v] = [o,u A v].
If (T,d, o) is a rooted real tree and «a is a positive real number, we define the scaled tree aT as:

(38) aT = (T, ad, )

where all the distances in the tree T are multiplied by the factor a.
The trace of the Borel o-field of T" on Sk(T') is generated by the sets [s, '], s,s’ € Sk(T) (see
[23]). Hence, there exists a o-finite Borel measure .27 on T, such that:

XT(Lf(T)) =0 and .,Q”T([[s,s/]]) =d(s,s').

This measure Z7 is called the length measure on 7. When there is no ambiguity, we simply
write & for £7T.

5.1.2. Gromov-Hausdorff distance and sets of trees. We endow the set of (isometry equivalence
classes) of rooted real tree with the classical Gromov-Hausdorff distance whose definition (with
the notion of correspondances) is described below. We refer to [28] for general results on Gromov-
Hausdorff metrics.

Let (T, d, o) and (T",d’, ¢') be two rooted compact real trees. A correspondence R between T
and T is a subset of T' x T" such that:

(i) for all z € T, there exists 2’ € T” such that (z,2’) € R,
(ii) for all 2’ € T”, there exists x € T such that (x,2’) € R

(iii) (o,0") € R.
The distortion of such a correspondence R is defined as:
dist(R) = sup {|d(z,y) — d'(«,y")|; (z,2),(y,y) € R}.

For two compact rooted trees (7', d, o) and (T”,d', o') we set:

I

1
dGH (T, T/) = inf §diSt(R),

where the infimum is taken over all the correspodences between (T',d, ) and (T7,d’, o). The
function dgy is the so-called Gromov-Hausdorff pseudo-distance, see [32]. Furthermore, we have
that dgu(7,7") = 0 if and only if there exists an isometric bijection from (7, d) to (1”,d’) which
preserves the root. The relation dgp(7,7”) = 0 defines an equivalence relation between compact
rooted trees. The set Tk of equivalence classes of compact rooted trees endowed with dgy is then
a metric Polish space, see [32, Proposition 9]. We shall consider below the trivial tree Ty € Tk
reduced to its root.

We can generalize this definition to compact n-pointed rooted trees where a n-pointed rooted
tree is a triplet (T,d,v) where (T,d) is a rooted real tree and v = (vg,v1,...,v,) with that
vg = o is the root of T and vy,...,v, are n distinguished (possibly equal) vertices. A cor-
respondence between two n-pointed rooted trees (T,d,v) and (T”,d’,v’) is a correspondance
between (T',d, o) and (1”,d’, ') which satisfies moreover (v;,v}) € R for all i € {1,...,n}, where

v = (v)),v],...,v),) with v = ¢/, the root of T". The distance dgll){ on the space T%) of equiva-

e n
lence classes of compact n-pointed rooted trees is then defined in the same way as dgg on Tk,

and the metric space (']TE? ), dg%) is Polish; and notice that (Tk,dgn) = (']I'%? ), dg%).
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For a rooted n-pointed tree (1',d,v) and t > t7 = max;cq,.. 5} d(0,vi), we define the rooted
n-pointed tree T truncated at level ¢ as (r.(T,v),d,v) with:

(39) r(T,v) ={zeT: H(z) <t},

and the distance on (7, v) is given by the restriction of the distance d. We shall simply write
ri(T,v) for (ry(T,v),d,v). A rooted n-pointed tree (T,d,v) is locally compact if r(T,v) is
a compact rooted tree for all ¢ > tp. The locally compact trees (T,d,v) and (T”,d’,v') are
equivalent if and only if there exists an isometric one-to-one map from (7,d) to (7”,d’) which

preserves the distinguished vertices. This defined indeed an equivalence relation. The set ']Tlgc)_K

of equivalence classes of locally compact rooted trees is then endowed with a distance dggH in the
spirit of [6], see Section 6.2 below and more precisely Proposition 6.4, so that it is a metric Polish

space and ']I‘%" ) is an open dense subset of ngg_K. For n = 0, we simply write T),._x and drcng

for Tl(:)_K and dggH We shall consider below the infinite spine tree Ty = (R4, |- [,0) € Tioe—xk,

C
where | - | is the usual Euclidean distance.

5.1.3. Grafting operation. We recall the grafting operation of [2]. Let (T,d, (o, z)) be a locally
compact rooted 1-pointed tree and (77, d’, ¢’) be locally compact rooted trees. We define the tree
T ®, T" as the tree obtained by grafting 7”7 on the tree T' at vertex x. We set:

(40) T@, T'=TU (T \{d}),
d(y,y') ify,y €T,
(41) Yy, € T @, T', d*(y,y') =< d'(y,y) ify,y/ €T,

dy,z) +d'(d,y) ifyeT, yeT,

where LI denotes the disjoint union of two sets. By construction (T &, T",d¥, o) is a locally
compact rooted tree. It is easy to see that the equivalence class of T'®, 1" does not depend of
the choice of the representatives in the equivalence classes of T and T" and hence the grafting
operation is well-defined on T,._k; it is even continuous, see Lemma 7.1. We also refer to
Section 6.3 for a more general grafting procedure and its topological properties.

Let (T,v) € Tl(:c)—K be either the infinite spine tree T; (and n = 0) or a discrete tree, that
is, a compact rooted real tree with all its leaves being distinguished (see (81) for a more formal
definition) and then n € N*. Let M = zig 5(1,2.,TZ.) be a point measure on the T' X Tio._x. We

define intuitively the tree Graft, ((T,v), M) € ']I'I(ZC)_K as the tree:
(42) Graft, (T, v), M) = (T ®q,ies (T3,i € 1),v)

obtained by grafting each locally compact rooted tree 7; on 7' at point z; (and keeping the n

distinguished elements v of T'). It is not clear that the resulting tree belongs to Tl(:c)—K (some
assumptions must be added to M) nor that this infinite grafting procedure can be proceeded in
a measurable way (so that we get indeed a random tree when the tree 7" and the point measure
M are random). We give a formal definition of this procedure in Section 7.2 and check that it
is well defined (after some lengthy topological preliminaries) with good measurable property in
ngg_K, where M is a particular Poisson point measure considered in the context of the backbone
decomposition from Section 5.5. Even if the presentation (42) is abusive, we stick to this informal
definition for simplicity.
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5.2. Brownian CRTs and Kesten trees. Brownian CRTs are random trees in T),._k that
code for the genealogy of continuous-state branching processes.

Before recalling the definition of such trees, we give some additional notation. For a locally
compact rooted tree t, we define the population at level a as the sub-set:

Zy(a) = {u € t, H(u) = a}.

We denote by (t(?*,i € I) the connected components of the open set t \ 74(t). For every i € I,
let o; be the MRCA of t()* which is equlvalently characterized by [o, 0;] = Nc¢00).+ [0, u]; notice
that 0; € Z¢(a). We then set t@ =t U {p;} so that t(?) is a locally compact rooted tree with
root g;, and we consider the point measure on Z¢(a) X Tioe_k:

Ng = Z UPRICIE
el
We then recall the definition of the excursion measure N? for 5 > 0 and 6 > 0 associated with
a Brownian CRT from [18]. The underlying parameter f is fixed, and will be omitted from the
notation. There exists a measure N’ on Tk (and hence on Tyy._k) such that:

(i) Existence of a local time. For every a > 0 and for N’[d7]-a.e. T, there exists a finite
measure A, on 7 such that
(a) Ag =0 and, for every a > 0, A, is supported on Zr(a).
(b) For every a > 0, N?[dT]-a.e., we have {A, # 0} = {H(T) > a}.
(c) For every a > 0, N°[dT]-a.e., we have for every continuous function ¢ on 7

_ T
(o) = lim 5 [ AT (@ 0T o)Ly

= lim —/NT du dT) ( )l{H(T’)ZE}'

(i) Branching property. For every a > 0, the conditional distribution of the point measure
N7 (du,dT"), under the probability measure N®[d7 | H(T) > a] and given 74(7), is that
of a Poisson point measure on Z7(a) x Tioe_x with intensity A, (du)N?[dT7].

(iii) Regularity of the local time process. We can choose a modification of the process
(Ag,a > 0) in such a way that the mapping a — A, is N?[d7]-a.e. continuous for the
weak topology of finite measures on 7.

(iv) Link with CSBP. Under N?[dT], the process ((A4,1),a > 0) is distributed as a CSBP

under its canonical measure with branching mechanism:

P(N) = BAT+2B0A, X > 0.

We now extend the definition of the measure N? (only on Ti._k) for § < 0 by a Girsanov
transformation, following [7]. For ¢ > 0, set G; = o(r¢(7T)) and Z; = A(T), the latter notation
is consistent with Section 2.2. The CSBP process Z = (Z;,t > 0) is Markov with respect to the
filtration (Gy,t > 0). For § < 0 and ¢t > 0, we set:

(43) “dT]g, = e N°[dT]g,.

Then properties (i) to (iv) still hold for every § € R. This Girsanov transformation is consistent
with the Girsanov transformation of CSBP given by (14). Let us stress that the measure N’ on
Tioc—k depends also on the parameter 5 > 0.

The so-called Kesten tree with parameters (3,6) € R xR, can be defined as the genealogical
tree associated with the continuous-state branching process with the same parameters, con-
ditioned on non-extinction (see for instance [30]). This latter process can also be defined by
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adding to the initial process a particular immigration. We use this second approach to extend
the definition of the Kesten tree for 6 < 0.

Using our framework, the Kesten tree with parameters (3,6) € R% x R is built as a countable
family of trees defined by a Poisson point measure grafted on the infinite spine tree T;:

(44) T* = Grafto(T1, M),

with M(dh, dT) a Poisson point measure on Ry x Tjoc_k with intensity 281~ dh N?[dT]. We
refer to Section 7.2 for a more formal presentation which in particular implies that the Kesten
tree is a Tjo._k-valued random variable, see Lemma 7.2.

5.3. The set of (planar) discrete trees. A discrete tree is a compact rooted tree with a

finite number of leaves. We denote by ']I‘é?s) the subset of n-pointed discrete tree whose leaves

are distinguished (see (81) for a formal definition): for (t,v) € T((i?s) with v = (v = 0,...,Un),

we have that Lf(t) C {vg,...,v,}. According to Lemma 6.11, the set Tgils) is closed. We can
consider a discrete tree with a planar structure by enumerating its leaves, or more precisely
its distinguished vertices, “from the left to the right”. This will allow us to define on oriented
grafting; this will be used in the next section. Intuitively a discrete tree (t,v) € ']I‘é?s) is a planar
tree if for all « € t, there exists 0 < iy < iqg < n such that v; € t, if and only if i € {i4,...,iq};
(n)  — p(n)

we check in Section 7.3 that the set of (equivalence classes of) n-pointed planar tree Tplan dis

is also closed.

FIGURE 1. A tree (t,v) € TS with v = (g,1,3,2)

We now define an oriented grafting of a discrete tree t’ on a discrete tree t at point = € t; we
shall use later on this construction for planar trees; this is similar to the first grafting defined
in Section 5.1.3 but for the ordering of the distinguished vertices. Formally, if (t,v) be an
n-pointed discrete tree with v = (vg = 0,v1,...,v,), (t',v') an m-pointed discrete tree with

v = (v)=0,v],...,v),) and = € t, we define for ¢ € {g,d}:

(45) (t,v) @5 (t',v) = (t @, t', v e v/) e TE™
with t ®, t’ defined in (40) and:

(46) V@V = (V0,. ., Vigm 1, U5 oo oy Uy Vi -, Un)s
(47) vaely = (V0 + s Vigy Vs e oy Ups Vi1 -+ + 5 Un),s

where:

(48) i =min{i € {0,...,n}: v; €t} and iqg =max{i € {0,...,n}: v; € t.},



22 ROMAIN ABRAHAM, JEAN-FRANCOIS DELMAS, AND HUI HE

and the convention that if i, = 0 (that is, = ), then v ®& v/ = (vo,v},...,v},,v1,...,v,), and
if iq = n, then v@dv’' = (vg,...,v,,v},...,v),). Let us stress that iy and iq are well deﬁned as all
the leaf are distinguished. Notice also that if (t,v) and (t/,v’) are planar, so is (t,v) & (t/,v’).

Furthermore, for i € {1,...,n} and h < H(v;), we shall consider the grafting of t’ at z; € t

the point of [o,v;] at height h:
(49) (t,v) ®;, (¢, V) = (t,v) &, , (t', V).

Notice this latter grafting is well defined on the equlvalent classes of discrete trees, and it is
measurable thanks to Lemma 7.3.

5.4. A discrete random tree constructed by successive grafts.

5.4.1. A random tree. In this section, for a > 0, we denote by ([O, al, (0, a)) € ']I‘élig the (equivalent
class of the) tree [0, a] endowed with the usual distance on R, rooted at o = 0 and pointed at a;
and when there is no possible confusion we simply denote it by [0, a].

Let ¢t > 0 and let v be a probability measure on [0,¢]. Let £ = ({, k € N*) be a sequence
of independent random variables with distribution v and let ((Kk,sk), k€ N*) be a sequence
of independent random variables independent of the sequence &, with K uniformly distributed
on {1,...,k} independent of & uniformly distributed on {g,d}. For every integer n > 2, we

set (£§n), . ,ﬁ,gn_)l) the increasing order statistic of (£1,...,&,—1). Then we define the family of
pointed planar trees ((Tg"),vgn)), el (T,({‘Kvﬁl"))), with (T(n) (n)) IS ’]T( ) ,» recursively by:

o T = [0,4], that is, (T, v\™) = ([0,4],(0,)) € T'}/

plan”

(k)

plan’

e For every k € {1,...,n—1}, conditionally given the random variable (T ,in), (n)) inT

we define the ']Tl(f:_ 1I)<-valued random variable (T ,(:21, v,(;jr)l) by grafting a branch of length

t— ﬁgj_)l uniformly on the left or on the right of a uniformly chosen vertex among the &

(n)

vertices of T, at level 518217 and the new leaf (which is, as all the other leaves, at level t)

is added to the vector recording the distinguished vertices. Formally, using the grafting
procedure (49) we set:

(50) ) = (0 )y e o - g
Kk75k+1

FIGURE 2. The trees T§4), Tgl), Tgl) and Tff) obtained from the sequences (K; =
1, Ky = 1 K3 = 2) and (7 = g,e9 = d,e3 = d). The dashed lines represent the

levelsf 52 , 3 .
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k)

By construction, we get that (T,(Cn),vlgn)) belongs to T;lan for all k € {1,...,n}. To simplify

the notations, we set T, = (TSL"),V%")).

Recall that for a rooted tree T, T denotes its length measure; and we simply write % when
there is no ambiguity. The next lemma relates the distributions of T,, and of T,,11; its proof is

n) (n)

given in the next section. Recall that ']I‘I(Jlan is a subset of T

Lemma 5.1. Let t > 0. Assume that the probability distribution v has a positive density fyens
with respect to the Lebesgue measure on [0,t]. Forn € N*, G a measurable non-negative function

defined on Tfﬁ:l), and £ a random variable uniformly distributed on {g,d} and independent of
T,,, we have:

oy E [ . Z(d2) faens (H(2)) G(T, 5 [0t~ H(m)})} _nxl

2

E [G(Tnt1)] -

Remark 5.2. We comment on the left-hand side of (51). First notice the grafting on T, is
oriented, which justify to build the discrete tree T,, as a planar tree. Second, we check that the
integral Z = [ Z(dx) faens(H (2)) G(T, ®: [0,t — H(z)]) is a non-negative random variable.

Recall that T,, = (TSL"),V%")). Then, we can write 7 as follows:
nooet
1= dh faens(h) G(Ty ®% 4, [0, — h]),
;_j/g“ Saens(h) G (T &5, 10, ~ 1)

with the convention that 5(]") = 0. Therefore, using the continuity of the grafting function,
see Lemma 7.3, we obtain that Z is a non-negative real-valued random variable, and thus its
expectation is well defined.

5.4.2. Proof of Lemma 5.1. The proof is based on two technical lemmas. We first consider the
case t = 1 and v the uniform distribution on [0,1]. Let us denote by T for T,, when v is the
uniform distribution on [0, 1].

Lemma 5.3. For n € N*, G a measurable non-negative functional defined on ’]T((ﬁ:l), and € a

{g, d}-valued uniform random variable independent of T, we have:

(52) E[ | g(dz)G(T;;nif ®° [O,t—H(m)])] _ntlg [G(T;ﬁ)} .
Tynif

2

Remark 5.4. From (52), we see L is just the mean length of TUMF,

Proof. To simplify notation, we write T,, for T2, We give a proof by induction. For n = 1, this
is a direct consequence of the construction of Ty = ng) from T§2) =T = [0, 1] given by (50).

Let n € N* and assume that (52) holds for n replaced by any k € {1,...,n —1}. We will use
for the proof a special representation of planar binary trees. Let T' be a compact planar binary
tree rooted at o, with all leaves at height 1; in particular the tree T has a finite number of leaves.
If T has at least two leaves, since it is compact with a finite number of leaves, there exists a
lowest branching vertex, say . We set h = H(x) and T% (resp. T9) the left (resp. right) subtree
above x. In our settings, we have:

h=H() and T = ([o,x] ®, T¥) 82 T = ([0, 2] @, T%) @5 %,

where, with a slight abuse of language (see Lemma 6.6 for formal justification), one has removed
the vertex = from the distinguished vertices after the graftings. For convenience, we consider the
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scaled left and right trees T8 = (1 —h)~'7% and T4 = (1 — h) =179 (recall (38) for the definition
of a scaled tree), so that 7' and T4 are rooted bounded binary planar trees with all their leaves
at height 1. We call (h, 7%, T%) the decomposition of T" according to its lowest branching vertex.

Let ({YLH), T 1 Tg +1) be the decomposition of T, according to its lowest branching vertex

(which is indeed at height f%nﬂ) by construction). Denote by I, the number of leaves of T% i1
Using a Pdlya urn starting with two balls of color g and d, we get that, by construction, I,
is the number of balls of color g in the urn after n draws. Thus I,,41 is uniform on {1,...,n}
and independent of §§"+1). Notice that if U is a uniform random variable on [0, 1], for every
h € (0,1), conditionally given {U > h}, the random variable (1 — h)~!(U — h) is still uniformly
distributed on [0, 1]. This gives that, conditionally on {£§n+1) = h} and {I,+1 = i}, the two trees

Ti 41 and Tfl 41 are independent and distributed respectively as T; and T, 1.

We consider a measurable non-negative functional G defined on the space of rooted compact
binary planar trees with a finite number of leaves, all of them at height 1 of the form:

(53) G(T) = gi(h) g2(T®) g3(T7),
where the g;’s are measurable non-negative functionals and (h,Tg,Td) is the decomposition of

T according to its lowest branching vertex. Setting f;(i) = E[g;(T;)] for j € {2,3}, we have

since £§n+1) is distributed according to a 3(1,n) distribution (as the maximum of n independent
uniform random variables):

1 n
E[G(Tos1)] = ( /0 g (hyn(l — By dh) %;fz(i)fs(n 1)
1 n
(54) = (/0 gi(h) (1 —h)"! dh> ;fg(i)fg(n +1—1).

On the other hand, let (51"),T;%,T;§) be the decomposition of T, according to its lowest
branching vertex. Let z € T, and set h = H(x).

o Ifh < 51"), the decomposition of T, ®% [0, 1 — h] according to its lowest branching vertex
is given by (h,[0,1], (1 — h)~'T’) where T/, is as the tree T,, but for its lowest branch

whose length is £§n) — h instead of 5%"). Notice that the shapes of the tree T/, and T,
are the same. Then using again the property of conditioned uniform random variables,

we deduce that conditionally on {én) > h}, the tree (1 — h)~'T/, is distributed as T,.
Thus, we get:

- (n) -
1

5 B[ [ 1 2@ 6@ sz -m)] =5 | [T a0 LA,

By symmetry, we have:

(56) E [/T 11y <ty 2 (d2) G(Ty @ (0,1 - h])} =E| | a®dh| fmfs0)

e For z € T}, the decomposition of T,, ®: [0, 1 — h] according to its lowest branching vertex
is given by (én), (1 —h)~'77,TY), where 77 = T% ®2 [0,1 — h]. Notice that the length
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measure on the tree T% is obtained by scaling by (1 — §§N))—1 the length measure on T,
restricted to T%. We deduce that:

5 T, T € _
E UT“ 1{IE_T%}.$ (dz) G(T, @3 [0,1 h])}
= E {1 (") gs(T) /T ey 2T (de) g (1 - )7 (TE @5 [0,1 - H(x)]))]

n

=8 (€T [ (1= )2 @ (7595 0.1 - 1))

- 1 n—1
=E (1 - &) —=5 > foln—IE [ /T LT (ay) g5 (T 5 [0.1 - H(y)) )] .
i=1 i

where we used the distribution of (T4, T%) conditionally on £1n) and [, for the last
equality. Using that, by induction, (52) holds for n = i, we get:

(57) E UT” 1i,eqy Z(de) G(T, ®Z (0,1~ h])}

n—1 .
=F [(1 — én))gl(&n))] ﬁ Z ! —; ! f2(i+1) f3(n — i)

1=1
= E[(1 - &)gu(€)] = 37 5 h2li) foln— i +1).
=2

e By symmetry, for z € 'i‘g, we get:
(58) E [/ 1{m€,i,d}.,§f(da:) G(T, ®, 0,1 — h])]
T, "

=E[(1 - €M) 2 3L s(0) faln— i+ 1)
=2

n—1 .
—E|(1-&")aE")] - ! D L @) faln— i+ 1),
i=1

Summing (55) times P(e = g) = 1/2, (56) times P(¢ = d) = 1/2, (57) and (58), and using that
£§n) has distribution 5(1,n — 1) so that:

J

we deduce that:

e 1

1
£ 91<h>dh] - [0 -] = [ a0 -nan

E { . Z(dx) G(Tn ®; (0,1 — H(:v)})]

n

1
= </0 g1(h)(1 — h)n_l dh) Z n;_ 1 Fo(@) f3(n +1 — ).

1=1
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Thanks to (54), we deduce that (52) holds for G given by (53). Then use a monotone class
argument to conclude that (52) holds for any measurable non-negative G. This concludes the
proof by induction. O

We now consider ¢ > 0 and assume that the probability distribution v has a positive density
fdens With respect to the Lebesgue measure on [0,t]. Let F' denote the cumulative distribution
function of v. By the assumptions on fqens, F' is a bijection from [0,¢] onto [0, 1] and its inverse
F~!is continuous. For a compact rooted real tree (T, d, o), we define:

Ve e T, Hlers (z) = F~Y(H (z)),
vx7 Y c CZ—'7 dfdcns (.Z', y) — Hfdcns (x) + Hfdcns (y) _ 2Hfdcns (:1; A y)

The scaling map Rfdens : (T, d, o) — (T, dfae»s | g) is then well-defined from {T' € Tk : H(T) < 1}
to Tk. We shall now prove it is continuous.

Lemma 5.5. The map Rfders from {T € Tk, H(T) < 1} to Tk is continuous.
Proof. Let € > 0. As F~! is uniformly continuous with our assumptions, there exists § > 0 such
that, for every x,y € [0,1]:

w—yl <6 = |F (@) - F' ()| < 5
Let 7,7 € Tk with H(T) < 1 and H(T') < 1 such that dgu(7,T’) < 6/8. Then, there
exists a correspondence R between (elements in the equivalence classes) T' and 7" such that

dist (R) < 2dau (T, T') + 6/4 < 6/2.
For every (z,2'), (y,y') € R, we have:

|dfdcns (‘Tay) _ d/fdcns(x/7 y/)| — ‘Hfdcns(x) + Hfdcns (y) _ 2Hfdcns (:1; A y) . Hfdcns ([]}‘/)
_ Hfdens (y,) + 2Hfdens (:1;/ A y/)|

< [P (@) - FH(HE) |+ [F (H() - F (H)

+2‘F_1(H(3:/\y)) - F_I(H(aj//\y/))‘.

As (z,2') € R, we have |H(z) — H(2/)| < dist (R) < 0 and consequently, |F~'(H(z)) —
F1 (H(x’))‘ < g/2. Similarly, we have ‘F‘l (H(y)) — F_l(H(y’))‘ < /2. We also have:

|H(xAy) — H(z Ny)| = %!H(w) + H(y) —d(x,y) — H(z') — H(y') + d'(«',¢/)]

< S| (@) — B+ 3 [H() — HQ|+ 5ldw0) - a6y
< gdist (R)
< 0.

This gives ‘F_l(H(:E Ay)) — FHH(@ AyY))| <e/2.

To conclude, we have dist/dens(R) < 2¢ which implies that dédﬁ“S(T, T') < e. This gives the
continuity of the map Rfdens, O

We now prove Lemma 5.1. Recall that T, denotes the trees constructed with the probabil-
ity measure v(dz) = faens(x) dz and T the trees constructed with the uniform distribution
on [0,1] as studied in the first step. By construction, for all n € N* the random variables
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Rfdens (T and T,, have the same distribution. Notice also that, for every T' € Tk and every
non-negative measurable function g on Ry x Tjo._k, we have:

/ LT (dy) g(H(y),T) = / LRI (A2 foons (HIes () g(HI9ens (), RI4ens (T)).
T Rfdens(T)

Let G be a measurable non-negative functional defined on the space of rooted compact binary
planar trees with a finite number of leaves, all of them at height . We first have:

B[ [ 27 0) fun(0) 6 (T, 52 0. - 10|

=E

/ ngdcnS(T%“if)(dx) Faons (Has () G<Rfd°“S(T‘,;nif) ®; [0, — Hfdcns(x)])]
Rfdens (Tunif)

=E

T%nlf

LT () G o Rl (Tgnif ® [0,1-H (zﬂ])] :

Applying Lemma 5.1, and then that Rfde“S(Tzrjrig) and T, 11 have the same distribution, we get
the result.

5.4.3. An infinite tree with no leaves. Let fin be a positive locally integrable function on [0, +
Let S be a Poisson point measure on Ry with intensity fint(t) dt. We denote by (&;,i > 1)
increasing sequence of the atoms of S and by N the process (Nt =5 ([0, t]), t> 0).

Let (en,m > 1) be independent random variables uniformly distributed on {g,d} and let
(K,,n > 1) be independent random variables uniformly distributed on {1,2,...,n} respectively,
all these variables being independent and independent of S.

We define a tree-valued process (T;,t > 0) where, for every ¢ > 0, the random tree T; has
height t and N; + 1 leaves, all of them at height t. Before going into this construction, we first
define a growing procedure on rooted n-pointed trees for n € N*:

00).
the

(59) Growth, (T, v),h) € T with (T,v) € T{ and heRy,

S

as the tree obtained by grafting on all the distinguished vertices of T, but the root (that is, on
v* = (v1,...,v,)) a branch of length h, distinguishing the new leaves with the order naturally
induced by v* and removing the vertices v* from the list of distinguished vertices. This function

is formally defined in Section 7.5, see also Lemma 7.4 for its measurability.

We can now construct the process (%y,¢ > 0) inductively. For 0 < t < &, we set Ty =
([0,],(0,t)) and N; = 0.

Let n € N* and assume that (T, ,v,) is a tree of height &, with n leaves, all of them at height
&n and distinguished (i.e. the vector v,, is composed of the root of T¢, and all its leaves). Then,
we define the process on (§,,,&,+1] by setting, for every t € (&, &nt1):

Ty = Growth, (Tg, .t — &) ®F ¢ [0,t —&] and Ny =n.
Standard properties of Poisson processes give the following result.

Lemma 5.6. For every n > 1 and every t > 0, conditionally given N; = n — 1, the tree Ty is
distributed as the tree T, of Section 5.4.1 associated with the density faens on [0,t] given by:

(60) fdens(u) = fl}rjlst((t,L)L)

t
o) with PO = [ fuomu)
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We now view the tree T; as a real-tree of Tj,._k (we forget about the distinguished leaves which
is a continuous operation thanks to Lemma 6.6). It is easy to see that the process (Ty,¢ > 0)
satisfies the Cauchy property in Tio._x as rs(T) = rs(Ty) for every s < t < /. Thus this
sequence converges a.s. in Tiy._k, and we write:
(61) TR = lim T,

t——+o00

The tree T is a Tjoc_k-valued random variable which has no leaves. The tree T5¢ will serve
as a backbone for the description of the genealogical tree of the conditioned CSBP.

We present now an ancillary result which is interesting by itself; it is a consequence of
Lemma 5.1 on two tree-valued processes that have the same one-dimensional marginal.

We first consider the process (T;,t > 0) associated with the intensity fin, = 1, that is, fin(¢) =
1 for all ¢ > 0. Then we construct a sequence t = (t,,n > 1) of increasing real trees, with

t, € ']TE(") for every n > 1, all of them of height 1. Let (g4,k > 1) be independent random
variables uniformly distributed on {g,d}. We define the sequence t by induction by setting first

t1 = ([0,1],(0,1)). Let n > 1 and assume that (t,,vy) is a tree of T%) with height 1 and with
n leaves all of them at height 1. Conditionally given t,, let V,,11 be a random element on t,,
uniformly chosen according to the length measure; that is V,,+1 is distributed according to the
measure ¢, .Z, with .Z the length measure on t,, and the normalization ¢, = 1/.£(t,,). Notice
that Vj, 41 is a.s. not a leaf nor the root of t,,. Then we set:

top1 =t ®7 (0,1 — H(Vypa)].

Vit1
In particular, for every measurable nonnegative function G, we have:

(62) E[G(tni1)|t1, s tn,enia] = /t 'ﬁ((ff)) G(tn @ [0,1 — H(m)]).

Recall the measurable function Ny from Definition (82) which records the number of vertices
at level t of a tree without leaves: Ny(T) = Card ({x eT: Hx) = t}) Let us consider the

continuous (see Lemma 6.6) canonical projection II7 : ’]I‘%? N Tk defined by II; (t,v) = t.

Proposition 5.7. Let n > 1 and finy = 1. For all measurable non-negative functional G defined

on ']I‘((i?s), we have, with £ the length measure on t,:
2n—1 n—1
(63) E [G(zl) ‘ N :n—1] = —E |G(t.) []2®0)] .
k=1

and for all measurable non-negative functional G defined on Tk (or on Tipe—_k):

(64) E [G(sike) ( Ny (F%) = n} —E [G o TI°(T)) ‘ Ny=n— 1] .

Proof. By construction, we have that the process ((Sﬁke, Nt(SSkC)),t > 0) is distributed as the
process ((H‘]’VtJrl(St), Ny + 1),t > 0). This gives (64).

We now prove (63) by induction. Thanks to Lemma 5.6, conditionally given N; = n — 1, the
tree Ty is distributed as T For n = 1, we have T = t; = ([0,1],(0,1)) hence Equation
(63) holds. Let us suppose that (63) holds for some n > 1. Applying Lemma 5.1, one gets:

T'lranif

unif _
E[G( n—l—l)] - n_|_1E Tunif ng“if(T%nif)

G(T‘,;nif @2 [0,1— H(m)])] .
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Now we apply the induction assumption for the right-hand side of the previous equation to get:

: 2 9! Lt (da) =
E[G(TW™H] = ——— tn (g, = G t, @ (01— H tn (g
GT] = = |27 ) | Gy O ®5 01— H@)) IR
2n .
= ——FE |G(ty Lt
by definition of the tree t,,+1 and by (62). This gives that (63) holds with n replaced by n + 1.
This concludes the proof by induction. O

5.5. The n-leaves decomposition of the Brownian CRT. The decomposition of a (sub)critical
Brownian CRT 7 according to a spine [(), z], where = € T is a leaf picked at random at level
t > 0, that is according to the local time A;(dx), is given in Theorem 4.5 in [18]. In our setting, it
can be rephrased in the next theorem. Notice that, for ¢t > 0, the (planar discrete) 1-pointed tree

[0,t] € ']I'l(;g_K denotes the segment [0,¢] endowed with the Euclidean distance, with the root 0
and the distinguished vertex ¢. Recall that the grafting operation Graft,, on a n-pointed discrete
tree of trees formalized by atoms of a Poisson point measure M has been intuitively presented
in (42) (or (114)) and formally defined in Section 7.2.2, see (115) therein, using the theoretical

background of Section 6.8, so that Graft;([0,¢], M) in (65) below is a well defined Tl(;g_K—Valued

random variable.

Theorem 5.8 ([18]). Let >0, 0 > 0 and t > 0. Let M be under E a Poisson measure with
intensity 23 1[07t}(8)d8N0[d7—]. For every non-negative measurable functional F on ']I'l(;g_K (or
']I'%l)), we have, with o the root of T :

(65) N? [/7' Ay(dv) (T, (0,v)) | = e 2R [F(Grafty ([0,t], M))] .

We extend this result to the super-critical case 6 < 0.

Corollary 5.9 (One-leaf decomposition). Let 8 > 0, 6 € R and t > 0. Let M be under
E a Poisson measure with intensity 2 1[0,t](s)dsN9[d7']. For every non-negative measurable

functional F on Tl(g():—K’ Equation (65) holds.

Proof. Let (T,v) € ng_K with v = (p,v). We denote by (77,7 € I) the connected components
of the set T'\ [0, v]. For every x € T, there exists a unique z; € T' such that Nzere[o, z] = [0, zi]

and we set T; = T U {z;} viewed as a real tree rooted at ;. Then we define the point measure
M(T,v) on Ry X Tk by:
M(T, V) = Z 6H(xz)7Tz
el
This application is well defined according to Corollary 6.34. Even if we shall not use it as such, let
us mention that a.s. M(Graft;([0,¢], M)) = M, this can be easily deduced from Proposition 6.33.
We first prove (65) for functionals F' of the form:

(66) F(T,v) = e (&M(TV))

where (T,v) € Tl(i():—Kv ® is a continuous non-negative function with bounded support defined
on Ry x T .« (with T} . = Tioc—x \ {To} where Ty € Tjpe—x is the tree reduced to its root,
see Section 6.9).
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For simplicity, we write (7,v) for the 1-pointed tree (7, (o,v)). Let 8 > 0. Using (43), we
have for every s > t that:

N~ [/ Ay (dv) e(@,M(rs(T,v))):| - N? [/ Ay(dv) 02025 (2, M(rs(T v)))
T T

We apply then (65) to get:

N0 [/ Ay(do) e—<q>,M(r5(T,u))>]
T

— e 20 E [ezeZS F(rs(Grafty ([0, ¢], M))}
= exp {—25(% —2B /t da N’ [1 — e_¢(“”"5*“(7’))+2925*a} }
0
= exp {—2591& — 2B /Ot da <N‘9 [1 _ e—é(a,rsfa(T))} + N [1 _ e20257a] )}

¢
= exp {2502& — 25/ da N~ [1 _ e—‘i’(a#sfa(T))} } ’
0

where we used standard property of Poisson point measures for the second equality, (43) again
for the third one, and that N [1 — e?/%a] = w(—20,a) = —26, see (7) and (11), for the last one.
As ® has bounded support, we get taking s large enough:

t
I\ [ / Ay(dv) e (& MT ’v>>} :exp{259t— 28 / daN~9 [1 _e—<1><a,T>}},
T 0

Then the result follows from the definition of Graft([0,¢], M), that is (65) holds for F' given
by (66).

As (T,v) is a measurable function of M(T,v), see Section 7.6, we then conclude by the
monotone class theorem that Equation (65) holds for any non-negative measurable function F'

defined on Tl(:c)—K' O

Let 3>0,0 € Randt > 0. Recall & = (20)/(1 — e=2%%) defined in (5). We consider the
probability measure on [0, ¢]:

230 ¢2P0s

(67) v(ds) = 280 1 1o, (s)ds = B () e~ 200(t=9) 1jo,¢(s) ds.

Let (T,,,vy,) be, under P%*, the planar tree, element of ']I‘((ﬁs), defined in Section 5.4.1 associated
with the measure v and ¢ > 0 (recall that all the distinguished vertices from v, but the root
are at distance ¢ from the root). The following theorem is a generalization of Theorem 5.8 when
picking n leaves uniformly at random at level t.

Theorem 5.10 (Generalized n-leaves decomposition). Let >0, 0 € R, t > 0 and n € N*. For

(n)

every non-negative measurable function F' defined on T} .., we have:

(68) N? [ 7mA,‘?"(dv*)F(’T, v)] =nl! (E?)l_n R [F(Graftn((Tn,vn),M))} ,

where v = (0,v*) € T™L, with o the root of T, and, under E%t, conditionally given (Ty,v,),
M(dz,dT) is a Poisson point measure on Ty, x Tioe_k with intensity 23 d.Z T (dx)N?[dT].
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We stress again that measurability of the grafting map Graft,, on a discrete tree is formally
stated in Section 7.2.2, so that Graftn((Tn, V), ./\/l)) is indeed a TI(ZC)_K—valued random variable

(see in particular (114) and (115) therein). The proof of this theorem is postponed to Section 8
as it heavily relies on the topological setting developed in Section 6.

5.6. Local limit of conditioned Brownian CRT. Let 8 > 0, §,a € R, and let S*? be a
Poisson point measure on [0, 00) with intensity measure fin(t) dt, where:

(69) fint(t) = af e t>0.

We first consider the case o« > 0. Denote by (&;,7 € N*) the increasing sequence of jumping times
of the inhomogeneous Poisson process (N} = 520([0,¢]),¢ > 0). We consider the ']I'é?s)-valued
random variable T, of Section 5.4.3 for n > 1 associated with fi,;. In particular, recall that, for
every n > 1, T¢ is a discrete tree with n distinguished leaves, where all of them are at height
&,. Recall the construction of the infinite backbone ¢ in Section 5.4.3 from the sequence of
trees T¢, . Notice its distribution depends on o and ¢ (and also 3 which is fixed). We informally
define 7% as the tree obtained by grafting on T%¢ (whose distribution depends on « and ) a
tree 7; at point 2; where, conditionally given T, the family ((x;,7;),i € I) is the atoms of a
Poisson point measure on T x Tj,._g with intensity 25 .% T'Skc(dx)Ne(dT).

For a = 0, the infinite backbone rooted tree T*¢ has only one branch and is identified with
(Ry,0), and the tree 77 is then identified with the Kesten tree with parameter (3,6) defined
in Section 5.2 and formally in Section 7.2.1.

Since we are considering equivalence class of trees, it is ambiguous to present T as a subtree
of 7% This motivate the introduction of marked trees in Section 6.4; and to avoid confusion,
we shall denote T the subtree of 7: it is in the same equivalent class as T in Tjpe_x. We
refer to Section 7.7 for a formal and more rigorous definition of the trees (7%, T%%). We then

define the random process (7;0"6, t > 0) by setting:
7;04,9 _ Tt(Ta’e)-

Recall that the Tjo_k-valued function 7 is under N? a Lévy tree; and we write Ty = r4(7). We
now give the main result of this section.

Proposition 5.11 (Representation of an h-transform of the CRT). Let 5 € R%, 6, € Ry and
t > 0. For every non-negative measurable functional F on Tioc—x (or Tk ), we have:

3 (7)) =8¢ [ ).

Remark 5.12 (On the h transform of Z). By considering the size population at level t of 7%, the
above proposition gives a representation of the process (Z;,t > 0) under NG[- M a,g] as a quadratic
CSBP with a Poisson immigration given by T and the grafting intensity 23 .2 (dz)N?(dT).
As (Ny(T%), ¢ > 0) is distributed as (N7 +1,¢ > 0), that is, as (S™ + 1,¢ > 0), this provides
another proof of Proposition 4.1.

Proof of Proposition 5.11. We first consider the case o« > 0. Let us fix t > 0, and write V; for
Ny Y Recall Nt(T) is the number of vertices of T at level ¢. Since T5¢ = T%¢ in Tie_k, we
get that N;(T*?) = N,(T%¢) is distributed as N; + 1. The fact that (7;0"9,]\715(50"9)) is a well
defined random variable is detailed at the end of Section 7.7. We shall also consider the truncated
backbone T?’e = 7(TY) for t > 0, and see T?’e as a subtree of 7;0"6.
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Let (T),,n > 0) be the sequence of trees defined in Section 5.4.1 associated with the function:
(70) Faens(5) = B 2(0) =) 10 (5).

Recall the continuous canonical projection II7 : ']T%? N Tk defined by II7(t,v) = t. Set
Grafty, = II o Graft;,. Then we have,

IEP(ﬁ“%]:E:EiF(ﬁw>‘NﬂTw)zn+l}MN?9:n)
neN

(/) emo/et

— B [F(r(Grafts. o (570, M0) ) | N2 =]

n!
neN
- B 0\n n—a/cd
= ZE F(rt(Graf‘chH(TnH,Mt)))] %,
neN ’

where we used that N;(T%?) is distributed as N;* # 11 for the first equality, that conditionally on
Ny (%) = n+1, the random tree 7;0"6 is distributed as ry (Graftzﬂ(fta’e, ./\/lt)> conditionally on

Ny b —n where, conditionally given T;, M; (resp. Mt) is a Poisson point measure on ;' 0 Tk
(resp. Tp41 x Tk) with intensity 25 P (dz)N?(d#) (resp. 28.LTr+1(dx)N?(dF)), and that
Ny ¥ is distributed as a Poisson process with intensity  at time 1/¢{ (see Lemma 4.3) for the

second one, and that Tf‘ 0 conditionally on Nf‘ ¥ — 1 is distributed as T,11 with fine and fqens
in (60) given by (69) and (70) (see Lemma 5.6) for the last one. Using Theorem 5.10 and that
v(ds) in (67) is exactly fgens($)ds with fgens given by (70), we have:

E [F <7"t <Graftfl+1(Tn+1,./\;lt)))] — MNG [/7_ A?(”-l-l)(dV*) F(T‘t(T))]

n+ 1) .
_(@)ne ®(n+1) (1%
-S| [ A rem)
0\ 2661

as Zy = N¢(1) is the total local time of T at level t. Thus, using the definition of Mf’e in (25),
we obtain:

( 59) " o260t

B[F (1)) = 3 S V14 )
neN

The simpler case a = 0, which is left to the reader, can also be handled in a similar way. [

(afedyre=o/et

e [ )

As a conclusion, we deduce the following result for a > 0.

Theorem 5.13 (Local limit of CRT in the Poisson regime). Let o, 3 > 0, § € R. Assume that
the function a is such that ast — oo :

“ aB?t?, if 0 = 0;
) a20)"2 28101t if g £ 0.

For every non-negative measurable function F' on Tk and s > 0, we have:

Jim N (F(Ty) | Zo = a] = [F (T20)].
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Proof. Clearly, Proposition 3.4 still holds if Hs is Gs = o(rs(7)) measurable, that is Hy =
F(Ts) with F non-negative defined on T)o._x, and Z; is the total local time of 7 at level ¢, see
Section 5.2. We deduce that:

Jim N[F(T,)| Z; = ay] = NI?! [F(Ts)Mﬁ"‘gq _E |:F(7;a,\6|)} 7
where we used Proposition 5.11 for the last equality. 0

Similarly, we also get the following result for v = 0. Recall that 7% is a Kesten tree with
parameter (3,0).

Theorem 5.14 (Local limit of CRT in the Kesten regime). Let 5 > 0, 8 € R. Assume that the
function a is positive such that as t — oo:

B o(t?), if 0 = 0;
T 02801y g £ 0.

For every non-negative measurable function F' on Tk and s > 0, we have:
lim N [F(T3) | Zs = ar] = E [F (7;049‘)] .
t—o00

Remark 5.15. Using [33], Corollary 4.2 on the SDE for the size-population process Z, is a direct
consequence of Theorems 5.13 (for a € (0, +00)) and 5.14 (for a = 0) and Remark 5.12.

6. SET OF TREES, TOPOLOGY AND MEASURABILITY

In a nutshell, the main objective of this section is to define the grafting and splitting functions,
as well as the decorating and de-decorating functions in a measurable way on the set of locally
compact rooted real trees, so that we can properly define in Section 7 the random variables used
the in the previous sections. An index of all the (numerous) relevant notations of this section is
provided at the end of the document.

We keep the basic definitions and notations for rooted real trees from Section 5.1. In Section 6.1
we consider the regularity of the spanning of subtrees. In Section 6.2, we study the Polish spaces
of equivalent classes of compact (resp. locally compact) rooted trees with distinguished vertices
endowed with the Gromov-Hausdorff distance. We define various grafting measurable operations
(denoted by ®7) of a tree on an another tree in Section 6.3. Motivated by the fact that some
random trees are obtained as decorated backbone trees, we introduce in Section 6.4 the space of
marked trees, that is of trees with a distinguished subtree (or backbone tree). We also establish
in this section the measurability of various truncation maps. The short Section 6.5 is devoted
to special case of the backbone tree being reduced to an infinite spine (this is the case for the
Kesten tree). In Section 6.6, we consider specifically discrete trees which are spanned by n
distinguished vertices, and describe them as a set of branches indexed by all the possible subsets
of the n distinguished vertices. This description is then used in Section 6.7 to split (with a
function Split,,) a locally compact tree with n distinguished vertices as subtrees supported by
the different branches of the discrete tree spanned by the distinguished vertices. Then, we provide
in a sense the inverse construction in Section 6.8 where (with a function Graft,) we decorate the
branches of a discrete trees with subtrees. In Section 6.9, we describe a measurable procedure to
decorate a branch with a family of subtrees given by the atoms of a point measure on the set of
trees (the function Tree) and a measurable procedure to describe the decoration of a distinguished
branch of a tree (the function M) through a point measure on the set of trees.

We shall use many times Lusin’s theorem from [34] or [10, Exercise 6.10.54 p.60] which states
that, if f is a measurable function defined on a Borel subset A of a Polish space to a Polish



34 ROMAIN ABRAHAM, JEAN-FRANCOIS DELMAS, AND HUI HE

space, then f(B) is a Borel set for all Borel subsets B C A if and only if the set of all values y,
such that f~({y}) is uncountable, is at most countable.

6.1. Continuity of the map Span. Recall the definition of the set T&" ) of n-pointed compact

n

rooted tree in Subsection 5.1.2, endowed with the distance dél){ Recall also the definition of the
tree spanned by n vertices. For a rooted n-pointed tree (T',d,v), with v = (g,v1...,v,), we
denote the corresponding spanned tree Span°®(7,v) as:

(71) Span®(T,v) = U lo, vi]-
k=1

The tree (Span®(T,v),d, o) will be simply denoted by Span®(T,v), whereas we will denote by
Span(T,v) the rooted n-pointed tree (Span°(T,v),d,v). For y € T, we also define py(y), the
projection of y on Span®(7,v), as the only point of Span®(T, v) such that:

(72) [o,y] N Span®(T,v) = [o,pv(y)]-
Let us state a technical result which will be used several times in what follows.

Lemma 6.1. Let n € N. Let (T,d,v) and (T",d’,v') be two compact rooted n-pointed trees and
let R be a correspondence between them. For every (z,z') € R with 2’ € Span®(T",v'), we have:

d(z, py(x)) < gdist (R).
Proof. Let (z,2') € R with 2’ € Span®(T”,v’). First remark that there exist k,¢ € {0,...,n}
such that py(z) € [vg, ve] and 2’ € [vy, vy]. Indeed, let us set:

A= {uv: py() € [o,vr]} and A = {v: 2’ € [d,v,]}.

Notice that A # () and A" # (). If there exists k > 1 such that v € A and v}, € A’, then one can
take £ = 0 so that vy = p and v}, = ¢’. Otherwise, take k and ¢ with k # ¢ such that v, € A and
vy, € A’ . In this case, we get vy ¢ A. Clearly we have py(z) € [vg, v/] and by a similar argument,
z' € vy, v)]. Therefore, we have:

2d(z,pyv(z)) = d(z,v;) + d(z,vp) — d(vg, ve) < d'(2',0,) + d' (2, v)) — d' (v, vp) + 3dist (R).
Then, use that d'(2/,v},) + d'(2/,v)) — d' (v}, v)) =0, as &’ € v}, v;], to conclude. O

If (T,v) and (7”,v’) belong to the same equivalence class in ']TE("), then so do Span(7’,v) and
Span(7”,v') in ']I'gl). Therefore, the function (7,v) — Span(7,v) is well defined from ']I'gl) to

T&" ) A first consequence of Lemma 6.1 is that this function is Lipschitz continuous; this result
will be completed in Lemma 6.7.

Lemma 6.2 (Continuity of the map Span). Let n € N. The map (T,v) — Span(T,v) is
4-Lipschitz continuous from ']TE(" ) to ']I'%? ).

Proof. Let (T,v),(T’,v") be two compact rooted n-pointed trees and let R be a correspondence
between them. Let us set with obvious notations:

(73) R= {(x,pi,,(x/)): (z,2') € R, x € Span®(T, V)}

U {(pv(x),a:’) : (z,2)) eR, 2 € Spano(T',v')}.
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Clearly, R is a correspondence between Span(T,v) and Span(7”,v’). We now compute its dis-
tortion. We consider the case x € Span(7,v), y' € Span(T",v') and (z,2'), (y,y') € R, so that
(x,pl,(2")) and (pv(y),y’) belong to R. We have:

(d(w,pv(y)) —d'(py(2),y/)

B ‘d(fﬂvy) —d(y,pv(y)) —d' (@, ) + d (2/, pv (2’

)
<|d(z,y) = d'(@,y)| + d(y,pv(v)) + d' (2/, pu (')
< 4dist (R),

where we used Lemma 6.1 for the last inequality. The other cases can be treated similarly. This
implies that dist (R) < 4dist (R) and thus, by definition of dgll){:

43} (Span(T,v), Span(T",v) < 4d (T, v), (T',¥)).
]

6.2. Set of (equivalence classes of) rooted n-pointed locally compact trees. Recall the
definition of the height H(z) = d(p,x) of a vertex z in a rooted tree (T,d,p). For a rooted
n-pointed tree (T',d,v) and ¢t > 0, we define the rooted n-pointed tree T' truncated at level ¢ as
(re(T,v),d,v) with:

(74) r(T,v) ={z €T : H(z) <t} U{Span®(T,v)},
and the distance on r4(7T,v) is given by the restriction of the distance d. We shall simply

write r¢(T,v) for (r4(T,v),d,v). (Notice that for t > t7 = max;cqo, . n) d(0,v;) the truncated
operations defined by (74) and (39) coincide.)
If (T,v) and (T',v') are in the same equivalence class of ']T%? ), so are r4(T,v) and r4(T",v').

n)

Thus the function r; can be seen as a map from 'Ifé( to itself. When n = 0, we shall simply write
r¢(T") for r,(T, o). The next lemma is about the continuity of r;.

Lemma 6.3 (Continuity of r). Let n € N. For s,t >0 and (T,v),(T",V') € Tg), we have:
(75) dg?{ (re(T,v), regs (T, V') < 4dg?{((T, v), (T, v") + s.
The map (t,(T,v)) = r(T,v) is continuous from Ry x ']I'gl) to ']I'gl).

Proof. Let (T,d,v),(T",d',v') be two compact rooted m-pointed trees. Firstly, notice that
dgll){ (T’H_s (T,v),r(T, V)) < s. Secondly, recall Definition (72) of the projection py on Span®(7T,v).
For y € T, we also define the projection p;(y) of y on r(T,v) as the only point of r4(7,v) such
that:

[o,y] N (T, v) = [o, pe(y)]-
We first prove the analogue of Lemma 6.1. Let R be a correspondence between (7',v) and
(T",v"). Let (z,2') € R with 2’ € r,(T',v’). By construction, we have p;(z) € [py(z),z]. If 2’ €
Span(7”,v’), then we deduce from Lemma 6.1 that d(z, p,(z)) < d(z,py(2)) < 3dist (R). If 2/
r¢(T',v")\ Span(71”,v’), then we have H(z') <t and thus H(z) = d(o,z) < d'(¢',2") +dist (R)
t + dist (R), which implies that d(z,p;(z)) < dist (R). In conclusion, we get d(z,p(z))
3dist (R). Now, arguing as in the proof of Lemma 6.2, we deduce that d( ) L (re(T,v), (T, v))
4dgll){((T,v), (T',v'")). This gives the result.

O IA IANIA M
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A rooted n-pointed tree (T, d,v) is locally compact if r(T,v) is a compact rooted tree for all
t > 0. Following [6], we set for two locally compact rooted n-pointed trees (T, v) and (177, v’):

(@) () = [t (LG T ().

0
Furthermore, we have that dI(JTgH((T,V), (T",v")) = 0 if and only if there exists an isometric

bijection from (7', d) to (T”,d') which preserves the distinguished vertices (this can easily be

n)

proved with similar arguments as for [6, Proposition 5.3]). The relation déGH (T, v),(T",v")) =0

defines an equivalence relation. Arguing as in [6] where n = 0, we get the following result.

Following the notations in [6], for n = 0, we simply write Tjo._x and dpgy for Tl(:c)—K and dI(ng

Proposition 6.4 (']I‘l(glg_K is Polish). The set Tl(:)_K of equivalence classes of locally compact

C
rooted n-pointed trees endowed with dggH is a metric Polish space. Furthermore, the set T&" ) of

(n)

equivalence classes of compact rooted n-pointed trees is an open dense subset of T) | .

We first provide a short proof for the following inequalities.

Lemma 6.5 (Inequalities for dg% and d(LTgH) Let n € N. For (T,v),(T",Vv') € ’]T%?), we have:

(76) A" ((T,), (T V') < 1A 4d% ((T,v), (T, v)).
For (T,v),(T",Vv') € ']I‘l(glg_K and s,t > 0, we have:

(77) A (re (T, ), 7o (T' V') < 4d{0y ((T,v), (T/ V) + 5,
(78) A% (r(T,v), (T, V') < et d0 (T, v), (T' V'),

The map (t, (T, V)) — 1(T,v) is continuous from R, x ']I'I(ZLC)_K to ']I'(n)_K (and to ']I'gl)).

loc

Proof. Equation (76) is a direct consequence of (75) with s = 0 and the definition of dI(ng
Equation (77) follows from similar arguments, using also that ry o r, = ry o1y = Tppy. For
t < s, we have 471 dg% (re(T,v),re(T",v")) < dg% (rs(T,v),rs(T",v")). Integrating with respect
to €% ds gives (78). The continuity of the map (¢,(7T,v)) — r(T) is a direct consequence
of (77). O

We deduce from (76) and (78) that all the measurable sets of (']I'%? ), dg%) are measurable sets of
(']Tl(:c)_K, dggH), and that a converging sequence in (']I'%? ), dg?{) is also converging in (’]I‘l(glg_K, dggH)
We also we deduce from (76) that the restriction to ’]I‘%? ) of a continuous function defined on
(Tl(:c)—Kv d(LTgH) is also continuous on (']I‘%? ), dgl ) ).

Removing from v some of the distinguished vertices (but the root) is continuous, see the next
lemma. For (T,v = (vo =0,...,v,)) € Tl(:c)—K and 0 € A C {0,...,n}, we set:

(79) (T, v) = (T,va) with va=(v;,i€ A).

For simplicity, we shall write II; for I when A is reduced to {0}, so that II) corresponds to
removing all the distinguished vertices but the root.

Lemma 6.6 (Removing some distinguished vertices is continuous). Let n € N and 0 € A C
{0,...,n}. The map ibo from Tl(:c)—K to ']I'l(fC)_K, with k the cardinal of A, is 1-Lipschitz con-
tinuous.
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Proof. First, notice that the equivalence class of (T, v4) in ']I‘l(fg_K does not depend of the choice
of (T,v) in its equivalence class in Tl(gg—K' Thus the map H,O;A is well defined from TI(ZLC)_K to
']I‘l(fc)_K. It is clearly 1-Lipschitz continuous since a correspondence between the trees (7', v) and

(T',v') is also a correspondence between (T',v4) and (T, v/,). O
We give an immediate consequence on the continuity of the maps Span and Span®.

Lemma 6.7 (Continuity of the maps Span and Span®). Letn € N. The map (T,v) — Span(T,v)
and (T,v) + Span®(T,v) are 4-Lipschitz continuous from TI(ZLC)_K to TI(ZLC)_K and to Tige_x Te-
spectively.

Proof. Notice that d({gH (Span(T, v), Span(T”, v)) = dgll){ (Span(T, v), Span(T”, v)), and thus the
map Span from ’]I‘l(:c)—K to ’]I‘l(:c)—K is 4-Lipschitz continuous, thanks to Lemma 6.2. Then use

Lemma 6.6 on the continuity of II¢ and the fact that Span® = II° o Span to conclude. O
n mn

Next, we check that rerooting or reordering the distinguished vertices is a continuous operation.
For a vector v = (vo, ..., v,) and a permutation 7 of {0,...,n}, we set v = (vr(0),- -, Vr(n))-

)

Remark 6.8. One can see that the map (7, v) — (T, v™) is an isometry on ']I‘%? . The next lemma

is an extension to locally compact case.

Lemma 6.9 (Permuting the distinguished vertices is continuous). Let n € N and let m be a
permutation on {0,...,n}. The map (T,v) — (T,v™) defined on Tlgc)—K is continuous.

Proof. First notice that if (T,v) and (7”,v’) are rooted n-pointed trees belonging to the same
equivalence class of ']I'I(ZLC)_K, sodo (T,v™) and (T’,v'™). Thus, the map (T, v) — (T, v™) is indeed

well-defined on ']I‘l(gg_K. We shall use the following notation: we denote by r; the truncation r;
when one forgets about the distinguished vertices (but the root): ry = II; o r;. (Take care that

ITY oy # 1y o 115 .) To prove the continuity of the map, we consider two cases.
(n)

Ist case: No rerooting, m(0) = 0. In that case, for every ¢ > 0 and every (7, v) € T [, we

have that r{ (7', v) = r{(T,v™) and thus we get that:
dggH ((T7 Vﬂ)7 (Tl? V”r)) = dggH ((T7 V)7 (T/7 V,)) .

This trivially implies the continuity of the map.
2nd case: With rerooting, 7(ko) = 0 for some ko # 0. Let (T,v), (T",V') € ']I‘l(:g_K, with
v=_(v=0,...,0,) and v/ = (v, = ¢,...,v),), such that dgLG)H((T,V),(T/,V/)) < 1/2. As vy,

rrn
and Ufm are always in correspondence as well as ¢ and ¢, we have, for every ¢t > 0 that:

|H (ko) — H(v},)| < 2dg% (re(T,v), 7 (T, v")).
Multiplying by e~! and integrating yields:
LA [H (o) — H(vly)| < 240, ((T,v), (T',¥)) < 1,

and hence:
H(vy,) < H(vg,) + 1.
We set hg = H(vg,) + 1. Then, for every ¢t > 0, we have:

i (T,v™) Criyp,(T,v) and thus  ry(T,v") =1 (r;f)-i-ho (T,v),v”),
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and the same holds for 7. Consequently, applying Lemma 6.3, we have:
(n) r oo t (n) N
A (T, (T V') < 4/0 ate™ (1A (7, (1), V7), (110, (T, V),9') ))

+o0o
= 4/ dte™ (1 A dgll){ (Pt (T, V), Pegen (T V’)))
0

< aeh d" (T, v),(T' V),

where we used for the second inequality that d(n) w(T, V), (T V') = dgll){((f,v), (T,v")) for
(T,v),(T",v') € T%? ). The continuity of the map follows. O

We shall also consider the set of trees whose root is not a branching vertex:

(80) T = {(T,v) € T+ 0 ¢ Br(T)}.

n),0

We shall simply write Tl ve_ for ’]T( oo When n = 0.

Lemma 6.10. The set T( ) "k s a Borel subset of ’]Tloc K-

Proof. For a rooted tree T', we define its diameter by diam (7") = sup{d(x,y) : =,y € T'}. Notice
that H(T') < diam (T) < 2H(T). Clearly the function diam is constant on all equivalent classes
of T%) and thus of Tl(:c)—K' If diam (T) = 2H(T) < 400, then we deduce that the root is a
branching vertex. Recall ITY, for (79). More generally, we get that:
(0% = U Dy with Dy = {T € T+ diam (r, o T(T)) = 2t1.
neN*
Since the functions diam , 7, and II; are continuous, we deduce that Dy is closed, and hence

Tl(:g_oK is a Borel subset of Ty._k. O

We now define the set of discrete trees. We say that a rooted n-pointed tree (T,d,v) is a
discrete tree if T is equal to the tree spanned by its distinguished vertices: T'= Span®(T,v). We
define the set of (equivalence classes of) discrete trees with at most n leaves as:

(81) T = {(T,v) e T, : (T,v) = Span(T,v)}.
As a direct consequence of the continuity of the map Span we get the following result.
Lemma 6.11. Letn € N. The set of discrete trees ']I'((i?s) is a closed subset of ']I'& and of ']TIOC K-

We end this section with partial measurability result on the number of vertices at a given
height of a tree.

Remark 6.12. Tt is immediate to check that the map (7,v) — (d(vi,vj), i,j € {0,...,n}) is
injective 1/2-Lipschitz continuous from (']I'I(ZLC)_K, dggH) to R(+)x(n+1) endowed with the supre-
mum norm (z.e. the maximum of the distances between coordinates). It is also bi-measurable
thanks to Lusin’s theorem.

Let ']Tf*oocl_e?(f be the set of trees with no leaves:
Tﬁ)oclfaf(f - {T € P]I‘loc K- Lf = @}
For T € Tpolaf and ¢ > 0, let Ny(T') denotes the number of vertices at height ¢ of 7"

(82) N(T) = Card ({e € T: H(z) = t}),
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It is easy to prove (and left as an exercise to the reader) that Ny(T) is finite using that 7" is
locally compact without leaves. We have the following result.

Lemma 6.13 (Measurability of Nt) The set ']I““Oleaf is a Borel subset of Tioc_k and the map

loc—
(t,T) — N¢(T) is measurable from R, x Tholeal 15 N,

Proof. Let t > 0 and let ©,(t) be the set of discrete trees such that all the distinguished vertices
(but the root) are leaves at height t:

On(t)={T ¢ ']I'é?s) . d(o,v;) =t and d(v;,v;) > 0 for all 4,5 € {1,...,n}}.
Thanks to Remark 6.12, ©,,(¢) is a Borel set of ']I'( ) C ']T(") C ']I‘l(:) k- For T' € Tyoe_x, we get

c—

that {T’ € ']I‘é?s) D I(77) = T} is finite. We deduce from Lusin’s theorem that II; restricted

to ']I‘é?s) is bi-measurable. This implies that the set II7 (©,(t)) is a Borel subset of Tjo.—x. We
deduce that the set of trees with no leaves, Tﬁfclf}f , which is formally defined by:

T = () U i (W (0n(k).

keN* neN

is a Borel subset of Tjo._k. We also get that {T IS Tn‘)loaf Nt( = n} = rt_l <H;’L (@n(t))>; this

loc—
implies that the map N; is measurable. Since ¢t — N;(T) is non-decreasing and left-continuous,
we deduce that the map (¢, 7)) + N¢(T') is measurable from R x Toleal to N. O

6.3. Grafting a discrete tree on another one. We define, in a slightly more general context
than Section 5.1.3, the grafting of a locally compact rooted tree at a distinguished vertex of an
another locally compact rooted tree. For (T,v) € ']I‘l(glg_K and (T",V') € ']I‘l(fg_K and 7 € {0,...,n},
with n,k >0, v=(vg=0,...,v,) and v/ = (v, = ¢,...,v}), we define the tree T'®; T" by (40)
and the distance d® by (41) with x replaced by v;, and consider the distinguished vertices
vev =(vp=0,...,0,0],...,0).

Lemma 6.14 (Continuity of the grafting map). Let n,k € N and i € {0,...,n}. The map

(T, v),(T',v")) = (T ®; T',v ® V'), is continuous from Tl(:c)—K X ']Tl(fc)_K to ']Tl(gjk)

Proof. Let (T1,v1),(T},v}) € T and (Tp,v2), (T4, vh) € TV . Set T = Ty @; Tp, T' =
T ®; Ty, v=v1 ® vy, and v/ = v| ® V).

First suppose that the trees are compact, that is (71, v1), (17, v}) € ']I‘%") and (Ty, va), (T4, vh) €

']I‘%f ). Let R1 be a correspondence between (elements of the classes) (T1,vy) and (77,v}) and

let Ro be a correspondence between (elements of the classes) (Tb,v2) and (73,v5). We set
R = R1 U Ry with g and ), replaced respectively by v; and v}. It defines a correspondence
between (7', v) and (T”,v’). For every (z,2), (y,y’) € R, we have:

/ < : / /
|d®(az,y) _ d’®(x/,y’)‘ _ |d1($7y d/ ! 'Y )‘ > dlSt Rl) lf (l‘,l‘/), (yyy/) € Rq,
|d2(33,y d .Z' y)‘ < ISt RQ) if (x,x),(y,y) €R27
and if (z,2') € Ry and (y,y’) € Ra, we have:
|d®($7y) _d/®($/7y/)‘ = |d1(x7vi)+d2(p27 ) _d/ (10/27 /)_d, (ﬂj‘l,Ug)‘
< |dy(z,v;) — di (&', 0))| + |da(02,y) — dy(0h,9/)|
< dist (Rq) + dist (Rg)
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This gives:
(83) A5 (T, %), (T V) < dSL((Ty,va), (T, V) + dS) (Ta, va), (T3, vh)).

Now consider (T1,v1),(T7,v}) € T k and (Ty,va), (Ty,vh) € ']I‘l(fc)_K. Without loss of

loc—

generality we assume that H(v)) > H(v;). Remark that, for every ¢t > 0, we have, with a; =
max(a,0):

(T, v) = re(T1, V1) ®i " (u)). (T2, V2).

Therefore, we have:

di%ﬁf (< V), (T',v"))

dte ! 1/\dg§—k (re(T,v), (T, V)))

dte t <1 (n—l—k <7"t Tl,Vl) ®; T(t—H(v;))+ (T2,V2),7‘t(T1/7V/1) ®; T(t—H(vg))+(T2/7V/2))>
/ dte™ t( dE;H Tt (T1,v1), Tt(Tle)))
teo (k) -
+ ; dte™ (1/\dGH <7"(t H(vi))+ (T27V2)7T(t—H(v§))+(T27V2))>
_H(v) ok
< d ((T1,v1), (T1,vh)) + 460D g8 (T, va), (T35, vh)) + H(v}) — H(v;)
k
< 3d{0 (Ty,v1), (T}, V) + 4d ((Ta, va), (T3, vh)),

where we used Equation (83) for the first inequality and Lemma 6.3 for the second one. This
completes the proof. O

We shall use a version of the grafting procedure where, instead of grafting on v;, we shall graft
on the branch [, v;] at height h provided that H(v;) > h. Let n € Nand ¢ € {0,...,n} be given.

For h € Ry and (T,v) € ']I‘%?), we denote by z; 5, the unique vertex of T' that satisfies z; 5, € [0, vi]
and H(z; ) = H(v;) A h. Then, the map (h,(T,v)) — (T, (v,z;p)) is clearly continuous from

R, x ']I‘l(glg_K to ']I‘("+1) We then define the grafting map ®; 5 by:

loc—
(84) (h7 (T7 V)v (T/7 V/)) =T ®i,h T = (T @i, Tl, v ® V/),

as the composition of
[adding the vertex z;;]: (h,(T,v)) — (T,v) with v. = (vo = o,...,v,) and v =
(Vaxi,h) - (60 - 97 L) 7?771 - Uny'ﬁn—i-l - xi,h)7
[grafting]: ((T,¥),(T",v')) = (T ®p41 T',Vv ® V') and
[removing the (n + 1)-th distinguished vertex|: (7" =T ®, 11 T, v® V') = (T",v® V).

Since all those maps are continuous, we get the following result.

Lemma 6.15 (Continuity of the grafting map ®; ). Let n,k € N, i € {0,...,n}. The map
(R, (T,v),(T",v)) = T @®;, T' is continuous from Ry x ’]T(n)_K x T K to ']I‘("+k)

loc loc— loc—



BROWNIAN CONTINUUM RANDOM TREES CONDITIONED TO BE LARGE 41

6.4. Set of (equivalence classes of) marked trees. We shall consider trees with a marked
infinite branch; for this reason we introduce the notion of marked trees. In this part, we do not
record an order on the marked vertices as in the n-pointed trees.

We say that (7', 5, d, o) is a marked rooted tree if (7', d, o) is a rooted tree and the set of marks
S is a subtree of T" with the same root (that is ¢ € S) endowed with the restriction of the distance
d. A correspondence between two compact marked rooted trees (T, S,d, 90) and (T",5",d’, ¢') is a
set R C T x T" such that R is a correspondence between (T, d, ¢) and (T”,d’, ¢') and RN (S x S’)
is also a correspondence between (S, d, 9) and (S, d’, ¢'). Then, we set:

A2, ((T,8),(1",5")) = int % dist (R),

where the infimum is taken over all the correspondences R between (7', S,d, ¢) and (T77,d', 5, o).
An easy extension of [6] gives that d[é]H is a pseudo-distance, and that d[é}H(T ,T") = 0 if and

only if there exists an isometric one-to-one map ¢ from (T,d) to (T’,d’) which preserves the

root and which is also one-to-one from S to S’. The relation d[é]H((T, S),(T",5")) = 0 defines an
]

equivalence relation. The set TE of equivalence classes of compact marked rooted trees (7', S, d, )

endowed with d[é}H is then a metric Polish space. We simply write (7', S) for (T, S, d, o), and unless
specified otherwise, we shall denote also by (7', 5) its equivalence class. Since

(85) dau(T, T') V da(S, §') < dok (T, S), (T, ")),

we deduce that the map (7, S) — (T, S) from ']I'E] to (Tk)? (endowed with the maximum distance

on the coordinates) is continuous. For ¢ > 0, we define the truncation function TE] of a marked

rooted tree (T, S,d, p) as the marked rooted tree 7’?} (T,S) = (r(T),r(S), d, o), where we recall
that r(T) ={x € T: H(z) <t}. If (T,S) and (7", 5’) are in the same equivalence class of T2,

so are 7’?} (T,S) and TF] (T",5"); thus the function TF] can be seen as a map from TE} to itself.

Similarly to (75), we have for ¢t,s > 0 and (T, S), (1",5") € ']I‘E]:

(86) a8 (P9, (17,8)) < 443, ((1,9),(T,8) +

This implies that the map (¢, (T, 5)) — 7’?} (T, S) is continuous from Ry x TE} to TE}.

A marked rooted tree (7,5,d, o) is locally compact if TF] (T, S) is a compact marked rooted

tree for all ¢ > 0. Following [6], we consider for two locally compact marked rooted trees (T, S)
and (77,5"):

(87) A (T 8), (1", 8") = /0 e~tat (1ndd, (T 9). 1, 9)))

Furthermore, we have that dEéH((T, S),(T7,57)) = 0 if and only if there exists an isometric one-

to-one map ¢ from (7,d) to (17”,d’) which is one-to-one from S to S’ and preserves the roots.
Thus the relation dEéH((T, S),(T",8")) = 0 defines an equivalence relation, see [7, Proposition

5.3]. The set ']Tl[?c_K of equivalence classes of locally compact marked rooted trees (7', S,d, )
endowed with d[féH is then a metric Polish space. Furthermore, TE] is an open dense subset of

']I‘l[z]c_K. Combining (85) and the definition of dEéH, we get the elementary following result.

[2

Lemma 6.16 (Regularity of the projection). The map P : (T,S) — T from ']I'IO]C_K to Tige—K 18

1-Lipschitz.
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Similar equations to (76), (77) and (78) holds with dI(JTgH and d. I){ replaced by d£éH and d[z]
For future use, let us give the equations corresponding to (77) and (78). For (T,S), (1", S’ ) €
T and s,¢ > 0, we have:

loc—K Y= :

(88) d[L?]GH ( [2}(T S)v EAS(T/’ S/)) é 4dEéH((T7 5)7 (T/7 Sl)) + 87
(89) 2, ( 27, 5), 1 (T',s')) < et d2, ((T,9), (T, 5")).
We also we have the following result consequences of (86) and (88).

Lemma 6.17 (Continuity of the truncation map). Let n € N. The map (t,(T,S)) 7’?} (T,S)

is continuous from Ry x TE] to TE} and from R4 x Tl[?)]c—K to Tl[?c—K (and to TE}).

We give in the next lemma an example of a TE} and Tl[i}c—K valued function.

Lemma 6.18 (Continuity of Span®). Let n € N. The map (T,d,v) — (II;,(T), Span® (T, v),d, o)

from ']I‘l(glg_K to T[OC k (resp. from T( ™ o T[ ) is injective, bi-measurable and 16-Lipschitz (resp.
4-Lipschitz) continuous.

Proof. We first consider the compact case. Let (T,v) and (T”,v’') be rooted n-pointed compact
trees and let R be a correspondence between them. Recall the definition of py in (72) as the
projection on Span®(T,v) and the correspondence R from (73). We set R = R UR. By
construction R[? is a correspondence between (T, Span®(T,v)) and (1”,Span°®(T",v’)). From
the proof of Lemma 6.2, we get that dist (R(?) < 4dist (R). This directly implies that:
(90) 2 ((T, Span®(T,v)), (T’, Span®(T", v’))> < 4d%) (T, v), (T',v)).
This gives that the map (7, d,v) — (T, Span®(7,v), d, g) from Tg) to TE} is 4-Lipschitz contin-
uous.
We now consider the locally compact case. Let (T',v) and (77, v') belong to ']Tl[?c_K. We have:
d[féH((T, Span®(T,v)), (T, Span°(T", v')))

:/ ot dt (Mdu ( (T, Span®(T, v)) , ri? (77, Span® (T’ V/))>>

0

=1 /ooo e~ dt (1A gy ((re(T,v), Span®(T,v)), (13(T", V'), Span®(T",v)) ) )

< 16/ e tdt (1 A dgll){ (r(T, v),rt(T’,v')))
0

= 16 dggH ((T7 V)v (Tlvvl)) )

where we used (86) (with 7" and S replaced respectively by (7, v) and Span®(7, v) and similarly
for 7" and ) for the first inequality, and (90) (with (7', v) replaced by r(T,v)) as well as the
relation Span®(ry(7,v)) = Span®(T,v) for the second. This gives that the map (7,d,v) —
(T, Span®(T,v),d, o) from Tl(:c)—K to Tl[i}c—K is 16-Lipschitz continuous.

Clearly those maps are injective and thus bi-measurable thanks to Lusin’s theorem. O
Remark 6.19. Let us stress that for (7,v) a rooted n-pointed compact tree, the rooted tree
7’?} (T,Span®(T,v)) = (rt(T),rt (Span®(T, V))) and the rooted tree (rt(T),Spano(rt(T, v))> =
(rt(T), Span® (T, v)) differ if and only if ¢ is smaller than the height of Span®(7T,v).
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Let (T, S,d, o) be a marked locally compact rooted tree. To simplify, we shall only write (7', S)
for (T, S,d, o). We define the projection of z € T on S, pg(z) € S, as the element of S uniquely
defined by:

[[vas(z)]] = [[Q) Z]] a S
Now, we consider the truncation of a marked tree at a given height, say ¢, of the marked subtree.
For t > 0 and € € {—, +}, we set:

(91) P, 8) = (rEAT8)m(S))
with:

A s) = {reT: Hps@) <t}U{res: H@)=1}.

(2]

See Figure 3 for an instance of r; (T, S), where S is an infinite branch. For e € {+, —}, we also

denote by rt[z]’E(T ,S) the marked rooted tree (rtp]’E(T, 9),d, g) endowed with the restriction of the
distance d and the root g. Furthermore, if (7', S) and (7", S") belong to the same equivalence class

of TI[O}C K OF ']I‘y, then so do r?}’a(T, S) and rt[z]’E(T’, S’). Thus the map (¢, (T, S)) — 7’?} (T,S)

is a well defined map from R X T!? _x to ']I‘l[i]C_K for e € {+,—}.

loc

NN
N PN

(T, S) (T, ) (T, 8)

FIGURE 3. Example of restrictions of a tree T' with a marked spine S (in bold).

Remark 6.20 (Examples). We give elementary examples. For ¢ € {4, —} and ¢t > 0, we have

that 7’ (T {g}) (T {g}) and 7’ (T {g}) ({g},{g}) as well as r([)Z}’JF(T,{g}) = (T, {g})
We also have for ¢ € R that 7’[2} (T,T) = (re(T), m(T)).

Remark 6.21 (The map rl 1€ is not continuous). Let ¢ € {+,—} and t > 0. The function
7"1[/2}’5 is not continuous from ']I'l[i]C_K to itself. Indeed take ¢ = 1 without loss of generality and

consider T' = [0,2] and Ss = [0,4], with § € [0,2], o = 0 and the Euclidean distance. Notice
that ([0,1],[0,1]) = (S1,51) # (T,S1). Then we have that lims_,; d[é]H((T, Ss),(T,51)) = 0,
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P51, 85) = (T, 85) for 6 < 1, r5(T, S5) = (S4,81) for 6 > 1, v (T, 81) = (541, ;) and
P sy = (T, 9).

We have the following measurability result.

Lemma 6.22 (Measurability of some truncation maps). Let e € {+,—}. The map (¢, (T, S))

7’?} (T, S) is measurable from R x ']I‘l[i]C_K to ']I‘l[i]C_K.

Proof. Let a > 0. For a marked tree (T,S) = (T,5,d,p), we define its partial dilatation
R.(T,S) = (T,S,dq, 0) as the marked tree with do(z,y) = ad(z,ps(z)) + d(ps(z),ps(y)) +

ad(y,pg(y)) if ps(z) # ps(y) and dy(z,y) = ad(z,y) if ps(z) = ps(y). Intuitively the distances
]

c—

on T are multiplied by a outside S. The equivalence class of R, (T, S) in ']Tl[i k does not depend

of the choice of (7, 5) in its equivalence class in Tl[?c_K; so the map R, is well defined on Tl[?c—K

to itself. Notice that the map R, is continuous and one-to-one with inverse Ry /q. It is immediate
to check that, for ¢t > 0:

2],— .
T‘E b= = al_1>H01+R1/a or, oR,
This and Lemma 6.17 imply the measurability of the map (t, (1,8 )) — TF]’_(T ,S). Then, notice
that limg ri2h = 7’£2}’+ to get the measurability of the map (¢, (7, 5)) — TF]’JF(T, S). O

We end this section by proving (in a very similar way) that the map r,[?} below, which consists

in cleaning the root, that is, in erasing the bushes at the root of a marked tree is measurable.
For (T,S5) = (T, S,d, o) a marked locally compact rooted tree, we set:

920  rPms) = ((Ems).s) with BT, 8) = {zeT: ps(@) £ o} U o).

We also denote by TE] (T, S) the marked rooted tree (TE] (T,S),d, g) endowed with the restriction
of the distance d and the root p. Furthermore, if (T, S) and (7", S”) belong to the same equivalence

class of Tl[?c—Kv then so do 7\ (T,S) and ri2 (T",S"). Thus the map r is well-defined from Tl[?c—K
to Tl[i}c—K‘
Lemma 6.23 (Measurability of the root cleaning map). The map TE] s measurable from Tl[?c—K
to Tl[i}c—K

Proof. Let a > 0. For a marked tree (T,S) = (T,5,d,p), we define its partial dilatation
R/ (T,S) = (T,S,d,, o) as the marked tree with d,,(z,y) = F,(t)d(x,y) if ps(z) = ps(y) with ¢t =
H (ps(z)), and otherwise d,(z,y) = F,(t)d(z,ps(z)) + ad(ps(z), ps(y)) + Fu(s)d(y, ps(y)) with
t=H(ps(z)), s = H(ps(y)), and the function F, defined for ¢ > 0 by F,(t) = tAa+a™?(a—t)y if
a <1, and F,(t) = 1/F/,(at) if a > 1. Notice that for z € T'\ {0}, we have, as a goes down to 0,
that: d (z,0) ~ ad(x, p) as well as d’l/a(:n, 0) ~ a~td(x, p) if ps(x) # o; and d,(z, 0) ~ a~d(x, p)
as well as d,(z, 0) ~ ad(z, p) if ps(z) = o.

The equivalence class of R.(T,S) in Tl[?c—K does not depend of the choice of (T,5) in its

equivalence class in ']Tl[i}C_K; so the map R/, is well defined on ']I'E]C_K to itself. Notice that the
map R, is continuous and one-to-one with inverse R Jq 1t is immediate to check that for ¢ > 0:

71[3} = lim Ry, 0 rtm o R,.

a—0+

This and Lemma 6.17 imply the measurability of the map T‘E]. U
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6.5. Set of (equivalence classes of) trees with one infinite marked branch. Let us

denote by Ty = (o, {0}) the rooted tree reduced to its root. Notice that 7’[2} (T,S) = {(To,To)}
if and only if [o, 2] NS = {p} implies © = p. Let T} = (]0,0),d,0) be the tree consisting of only
one infinite branch. We consider the set (of equivalence classes) of locally compact rooted trees
with one infinite marked branch and its subset of trees whose root is not a branching vertex:

(93) TR = {(T,8) € T+ S = T in Toexc
(94) T = {(1.8) e TR 0 ¢ Br(T) }.
Lemma 6.24. The sets ']I‘lsgérieK and ']I‘SpmeKO are Borel subsets of Tloc K-

Proof. Consider the projection II : (T,S) — S from ']Tl[i}c_K to Tioec—K, which is by construction
1-Lipschitz and thus continuous. As T{?™ =TI~ ({T1}), we get that T;? is Borel.

loc

Notice that for (7,S) € Tfp;neK, then, by definition of TF]’JF, we get that the root is not a

branching vertex of (7', 5) if and only if r[z}’+(T S) = (To, Tp). Then, the set nggfﬁf = ']I'fgérleK N

(ré2]’+)_1 ({(To, To)}> is Borel as the map ré I is measurable according to Lemma 6.22. O

We shall be mainly consider elements of TSpmeKO in what follows. For simplicity, we shall

write 7% = (T,5) for an element of ']I'lsgériCKO . Fort > 0 and T* = (7,5) in nggfof(o , we have

r?}’JF(T*) = (rﬂ (T),¢(S)) where the rooted tree r¢(S) is given by ([o,x],0) with z € S

uniquely characterized by d(o,x) = t. We shall consider a slight modification of Tt[2},+ nggnig ,

say ri b+ , where one keeps track only of (g, z) instead of r(.5):

(95) P = (r (D), (0. 2)).

It is left to the reader to check that 7 ~[2}

Lemma 6.22, we get the following result

is defined on Tifcmo Y and T(ig k-valued. Similarly to

Lemma 6.25. The function (t,T*) 7"?} (T*) from Ry x TP 4o )

oo loe_k 18 measurable.

6.6. Another representation for discrete trees. Let n € N be fixed. Let (T,v), with
v = (vg = 0,...,v,), be a locally compact rooted n-pointed tree. We will decompose the tree
Span(T,v) as a sequence of edges. To do so, we introduce some notations. Let A C {0,...,n}
be non-empty. We set v4 = (v, € A). We denote by v4 the most recent common ancestor of
v 4, which is the only element of T" such that:

(96) [o,va] = (1) L2, vi].
keA

Notice that vy = U Recall that for x € T, T, is the subtree of T above z and rooted
at . Let Pl be the set of all subsets A C {1,...,n} such that A # (. For A € P}, if
Ty, NSpan®(T,vae) # 0 with A° = {0,1,2,--- ,n} \ A, we set wq = v4, otherwise we define
wa € [o,va] as the only element of T" such that:

(97) lo, wa] = Span®(T, v 4c) N Span® (T, (o, VA)).

Equivalently w4 is the only element in [o,v4] such that wa = vy, for some kg € A° and for
all k € A, we have vy € [0, wa]. Notice that wy; . 3 = 0. We also record the lengths of all
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the branches [wa,va]:

(98) L,(T,v) = (KA(T, v),A € 77;[) with  £A(T,v) = d(wa,va).

FIGURE 4. A discrete trees spanned by the leaves {1,2,3}.

TABLE 1. Quantities of interest for the discrete tree from Figure 4.

AcP ] {13 | {22 | {3 [{n2}[{1,3}] {2,3} [{1,2,3}]

vA 1 2 3 a a b a
WA a b b a a a 0
l4 d(a,1) | d(b,2) | d(b,3) 0 0 d(a,b) | d(p,a)

For instance, we record the quantity of interest in Table 1 for the discrete tree spanned by the
leaves {1, 2,3} from Figure 4. We can see that each branch of the discrete tree appears (through
their length) once and only once in L3(T,v).

Set v = (Vo = o, (va, A € P)) € T?", so that (T,7) is a locally compact rooted (2" — 1)-
pointed tree with the same root ¢ as T'. Notice that all the vertices in v appear in v (possibly
more than once), and that w4 also appears in v for all A € P;F. Recall the set of discrete
trees defined at the end of Section 6.2. The next lemma states that L,, encodes discrete trees

continuously. Set Im (L,,) C Rf’t (with Ri’j = ]R?:_l) for the image of L.

Lemma 6.26 (Regularity of the branch lengths as a function of the tree). Let n € N*. The map
(T,v) — (T,v) is well defined from ']I'I(ZLC)_K to ']Tl(g:__é), and it is continuous. The function L, is
well defined from Tl(:c)—K to Im (L,,) C Ri'f and is continuous. Furthermore, Im (L,,) is closed

and L, is a one-to-one bi-measurable map from ']T((i?s) to Im (Ly,).

Proof. Tf (T, v) and (T’,v’) belong to the same equivalence class in ']I'I(ZLC)_K, then we deduce from

(96) and (97) that (7,v) and (7”,¥') belong also to the same equivalence class. This implies
that the function (T,v) — (T, V) is well defined from ']I‘l(glg_K to ’]Tl(fz__é). We deduce from (96)

and (97) that this function is in fact continuous on ']I‘I(ZLC)_K. We also get that the function L, is
well defined from Tl(:c)—K to Ri’f.

We shall now precise the image of the function L, and prove its continuity. Recall z, =

max(z,0) denotes the positive part of z € R. We define the function L from RS:LH)XWH) to
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Rfﬁ by, for d = (d;;,0 < 4,7 <n) and A € P
1. .. g
LA(d) = Z lnf{(dw + dij/ + dji/ + djj/ — 2dij — Qdi/j/)+ 11,) € A and Z/,j/ S Ac} s

where A° = {0,...,n} \ A. We also define the function D from Rfﬁ to ]RS:LH)X("H) by, for
0= (y,AePl)andi,je€{0,...,n}:

(99) D;j(€) = Z Ca (Lieajgay + Liga jeay) -
AeP;t

of ]RS:LH)X("H) satisfying

The functions L and D are continuous. Consider the closed subset Q™
the so-called four-point condition, that is the set of all (d;;,0 < i,j < n) € ]RS:LH)X("H) such
that:
dij + di/jf < max(diir + djj/, dij/ + djif) for all 4,7, i,,j/ S {O, . ,n}.

Notice that the four-point condition is also used to characterize metric spaces which are real
trees, see [22]. Then, one can check that the function L is one-to-one from Q™ to L(Q™)
with inverse D. We also get that L(Q™) is closed (indeed if (¢¥ = L(d*),k € N) is a sequence
of elements of L(Q(")) converging to a limit, say ¢, then it is bounded and thus the sequence
(d*, k € N) is also bounded. Hence there is a converging sub-sequence, and denote by d its limit
which belongs to Q™) as this set is closed. Since L is continuous, we get that L(d) = ¢ and thus

¢ belongs to L(Q™), which gives that L(Q™) is closed). Since for (T,v) € Tl(:c)—K7 we have that

L,(T,v) = L(d(vi, vj), 0<4,5< n), we deduce that the function L, is continuous from TI(ZC)_K
to L(Q™).

We now prove that Im (L,) = L(Q™) and that L, is one-to-one from ']T((i?s) to L(Q™). Let
¢ = (bs, A € PF) € L(QM™). Thus, there exists a sequence d = (d;;,0 < i,j < n) € QW
which satisfies the four-point condition and such that L(d) = £. Since d satisfies the four-point
condition, we get that there exists a discrete tree (T,d,v) € ']Tgfs) such that d(v;,vj) = d;; for all
i,j € {0,...,n}. This proves that Im (L,) = L(Q™). Then use that L is one-to-one from Q™
to L(Q™) with inverse D and that two discrete trees (T, d,v) and (T”,d’,v') are equal in ']Tgils)
if and only if d(v;,vj) = d'(vj,v}) for all i,5 € {0,...,n} to deduce that Ly, is one-to-one from

']I'((i?s) to L(Q™) and thus bi-measurable thanks to Lusin’s theorem. O

6.7. The splitting operator for a pointed tree. We want now to decompose the pointed
tree (T, v) along the branches of Span®(7,v). We keep notations from Section 6.6.

Let (T,v), with v.= (vg = 0,...,v,), be a locally compact rooted n-pointed tree. Recall
Definition (72) of the projection py, on Span(7T,v). For A € P}, consider the rooted 1-pointed
tree:

(100) Ta(T,v) = (Ta(T,v), (04,v4)) € T )
with root p4 = w4 and
TA(T,v) ={z €T : py(x) Elwa,va]} U{wa}.
By construction, we have that £4(T,v) = d(0a,v4)-
Notice that £4(T',v) = 0 if and only if TA(T, v) is reduced to its root, that is, ({QA}, (04, QA)).

Notice also that £4(7,v) > 0 implies that T '4 belongs to ']Tl(;gf)K, the set of trees in ']I‘SZ_K such
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that the root is not a branching point (see Definition (80)). We also define the rooted 1-pointed
tree Tyoy (T, v) € ’]Tl(;g_K = (Tyoy(T,v), (0, 0)) by:
Ty} (T,v) = {x € T : Jo,z] N Span®(T,v) = 0},

with root ¢ and distinguished vertex also . If (T, v) and (7", v’) belong to the same equivalence

class in ']I'l(glg_K, then we get that 7' 'A(T,v) and T 'A(T",v") belong also to the same equivalent class

in ']I‘SZ_K for A € P, = P;f U{{0}}. Thus, the map Split,, defined on Tl(glg_K by:

(101) Split, (T, v) = (TA(T, v),A ¢ Pn>

2”
takes values in <']I'82_K) . We give an instance of the function Split,, in Figure 5.

T{3} (T7 V) T{g} (T, V)
1 3 Ty(Tv) Tia5 (T, V)

i “
p T{pl,m} (T,v)
p

M T{O} (T, V)

e

FIGURE 5. The splitting of the left hand tree with respect to v = {p,1,2,3}. In
this instance, T 9y and TY; 3y are reduced to their own root.

Lemma 6.27 (Measurability of the splitting map). Let n € N*. The map Split,, from ']I'I(ZLC)_K to
2”
(Tl(ig—K) 1s measurable.

Proof. The proof is divided into three steps.
Step 1: The map T{O} is measurable. Let (T,v) € ']I‘l(gg_K. By construction, we have that
T([)z},+ (T, Span"(T,v)) = (T{O} (T,v), TO). We deduce from Lemma 6.22 on the measurability of

],€

7’? , that the map (T, v) — T{O} = (T{O} (T,v), (o, g)) is measurable.
Step 2: A measurable truncation function. Let n > 1. Let (7, v) be a rooted n-pointed tree.

Recall the definition of TA(T, v) from (100). We set ¢(T,v) = T{1,2,...,n}(T7 v) so that ¢ is a map
from Tl(:c)—K to ']I‘SZ_K. Recall the measurable truncation functions Tt[2]7+ and TE] from (95) and

(92), respectively.
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We set:

q(T,v) = rZ o r[[12(}’+

Qw(1,....b}) (T, Span®(T,v)).

Thanks to Lemma 6.18, the map (7, v) (T, Span® (T, v)) is continuous from T\") K to Tl[?c_K.

loc—

Thanks to Lemma 6.26 and Remark 6.12, we get that the map (T, v) + d(o,wy,.. py) is contin-

uous from ']I‘l(glg_K to R4. Then, use Lemmas 6.22 and 6.23 on the measurability of 7’?} “ and TE]

to conclude that the map ¢’ from T to T

loc—K loc—

the map (T, (o, v)) > (T, lo, v]]) from ’]I‘l(;z_K to Tl[i}c—K' According to Lemma 6.18 (with n = 1),
this latter map is injective and measurable. Hence the map ¢, which is the composition of ¢’ and

this latter map, is measurable.

k 1s measurable and it has the same image as

Step 3: Conclusion. Let A C {1,...,n} be non-empty. Notice that T4 is the image of (T, v)
by: the expansion procedure (T,v) + (T,v) from the first part of Lemma 6.26, the rerooting
at wy from Lemma 6.9, the reducing procedure from Lemma 6.6 where one forgets about all
wya and vy for A' C A€, and then the function ¢ from Step 2. This implies that the function

(T,v) — Ta(T,v) is measurable from T K to Tfig_K- -

loc—

6.8. The grafting procedure. Let n € N*. Let £ = ({4,A € P;J) € Im(L,). According to

Lemma 6.26, there exists a unique (up to the equivalence in T&" )) rooted n-pointed discrete tree
(S,v) (that is S = Span®(S, v)) such that L, (S,v) = £. Recall v4 and w4 defined in Section 6.6
for A € P so that:

(102) S=J [wa,val,
AeP;t

where the sets (Jwa,va[, A € P;l) are pairwise disjoint.
Recall that nggrﬁ’? denotes the set (of equivalence classes) of locally compact rooted trees with
one infinite marked branch such that the root is not a branching vertex. Let T* = (T}, A € P;})

be a family of elements of equivalence classes in ']I'lsgérf}f . Then, we define the tree (T,v) =
Graft, (¢,T*), where T is the tree S with that the branches Jwa,v4] are replaced by the trees

given by the first component of 7‘2}*(T ") (where the second component has been identified to

[wa,val).
We now provide a more formal construction of Graft, (¢,7%). Let ¢ € Im (L,), and consider
the rooted n-pointed discrete tree (S,v) = L, 1({) € ']T((i?) and v = (vg = @,...,0,). Set v =

S
(Vo = 0, (va, A € PT)) € T?", with v, the most recent common ancestor of (v;,i € A) defined in

(96). Thus, we get that (S,v) € T((fi:_l) is a rooted (2" — 1)-pointed discrete tree with the same
root ¢ as S.

In a first step, we build by a backward induction an “increasing” sequence of discrete trees
((Sk,vk),k; € {0,...,2" — 1}) such that (Sg,vg) € ’]I‘gfs) with root o. We set (Son_1,von_1) =
(S,v). Recall that x is a leaf of a tree T with root g if z € [o,y] C T implies y = x. Assume
that (Sky1,Vgs1) is defined for some k > 0. We consider the lexicographical order on the non-
empty sets of N defined recursively as follow: for A, B C N non empty, we write A < B: if
min A < min B; or if min A = min B and A is a singleton but not B; or if min A = min B, A
and B are not singletons and A’ < B" where A’ = A\ {min A} and similarly for B’. Notice this
order is total. We set:

Apy1 = max{A € Plva € vy and vy is a leaf of (Sk+1,vk+1)}.
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Then, we define v, as the sequence vy, where v4, ., has been removed (notice that the first

element of vy, is still the root p), and we set (Sk, vy) = Span(S,vy) € ']I‘gfs). We also set By, =
max{B € P, : vp = wAkH}. By construction, vg, = wa,,, belongs to the sequence v and is
therefore an element of v for some index, and, with a slight abuse of notation, we simply denote
this index by Bi. We have, using the grafting operation from Section 6.3 that:

(103) (Skt1, Vier1) = (Sk, Vi) ®B, (0,04, ],

where the equality holds in Tl(fj_l& (and in ']Tgig: 1)) and by convention [0,t] denotes the discrete

1-pointed tree ([O,t], (O,t)) with root 0. Notice that 4, , = 0 if and only if Span®(S,vy) =
Span®(S,vi41). Eventually, notice that (Sp,vg) = ({g},g) is the rooted tree reduced to its
root ¢ = vy and By = {0}. Let us stress, that in Section 6.3, the vector vy, is obtained by
adding the distinguished vertex £, ,, of [0,£4, ] to vi. However here we identify [0, 44, ] with
[ve, = wa, ,,v4,,,] and add the distinguished vertex v, , to vj in order to obtain v 1.

For instance, we give in Table 2 the sequences (Ag,1 < k <2" —1) and (By,0 < k < 2" —2)
for the tree of Figure 4.

TABLE 2. The sequences (Ay41,0 <k <6), (Bg,0<k <6)and ({4, ,,0<k<
6) for the tree of Figure 4.

k 0 1 2 3 4 5 6
Aper || 1,2} | {1,2,3) ({13} | {1} | {23} | {2} | {3}

By, {0} {173} {172} {17273} {17273} {273} {273}
Ca,., || dlo,a) 0 0 d(1,a) | d(a,b) |d(2,b)|d(3,b)

Remark 6.28. The family {Ak, ke {1,2"— 1}} is exactly equal to P;". Furthermore the sequence
¢eIm(L,) C ]R?:_l provides implicitly two unique ordered sequences A(¢) = (Ak, ke {1,2"—
1}) (of all elements of P;7) and B(¢) = (By, k € {0,2" — 2}) (of elements of P" = P, U {{0}}),
and an “increasing” way to built L, }(¢) recursively by adding at step k € {0, 2" — 2} a branch of
length £4, , (and graft it on vp, chosen among vy). It is obvious from the construction that if
¢ and ¢ are two sequences in Im (L,,) with the same zeros (that is, £4 = 0 if and only if ¢/; = 0),
then we have A(¢) = A(¢') and B(¢) = B(¢'). Thus, the sets A(¢) and B(¢) are implicitly coded
by the zeros of £.

In a second step, given A(¢) and B({) from Remark 6.28 and a sequence T* = (7%;, A € PY})

spine,0
mn TIOC—K ’

trees ((Tk,vk),k‘ e {0,...,2" — 1}) such that (T, vy) belongs to ']Tl(fc)_K, has root o, and the
components of the vector v, can be ranked as the root ¢ = vy and (v4,,1 <4 < k). Recall also

the truncation function 72" given in (95). We set (To,vo) = ({0}, 0) and for k € {0,2" — 2}:

we build by a forward induction an “increasing” sequence of marked locally compact

(104) (Thg1, Vir1) = Tk, Vi) ® By, At (TZkJrl)’

T
ZAk+1

(2], +

where the distinguished vertex of 7, "" (T7 ) is identified with v, ,, (and its root with vp, ).
k+1

Then, we set:

(105) Graft, (¢, T") = (Ten—1,v) with v = (v(,0 <k <n).
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FIGURE 6. Example of a replacement of the branch Jwyy .y, v11,. 03]
Upper left: The tree S with the branch Jw; .y, v41,. 1] in bold.

Upper right: The branch ]]w{17...,n},v{1’...7n}]] replaced by the first component of
the marked tree 7‘2] ol (T{*1 n}).
Lower: The tree T{17 " n} with its marked infinite branch.

It is easy to check that the equivalence class of (Ton_1,Vv) in ']I‘l( C) k does not depend on the
choice of T* = (T}, A € P;f) in their own equivalence class. Thus, the map Graft,, defined by:

(6, T*) — Graft, (¢,T7)

'P+
is well defined from Im (L,) x (TlsgéneKO ) to Tl(:c)—K' The main result of this section is the

measurability of the map Graft,.

Lemma 6.29 (Measurability of the grafting map). Let n € N*. The map Graft,, from Im (L,,) x
. P

(nggrﬁ?) to TI(ZC)_K 1s measurable.

Proof. For J C P, we write I; = {E € Im(L,): ¢4 = 0if and only if A € J} Thus, the

closed set Im (L) of R P+ can be written as the union of I g over all the subsets J of P!.
Furthermore, the sets (IJ,J C P}) are Borel sets (as Im(L,,) is a Borel set), and they are
pairwise disjoint. Thanks to Remark 6.28, the maps ¢ — A(¢) and ¢ — B(¥) are constant over
I;. We deduce from Equation (105) and recursion (104), Lemma 6.14 on the continuity of the

grafting procedure and Lemma 6.25 on the measurability of (¢,7") — 7‘1?] (T that the function

P
Graft,, from I; x (nggnig ) to ']I‘l(og k s measurable (as long as I is not empty). Since there is

. Pl
a finite number of such sets I;, we deduce that the function Graft, from Im (L,,) x <’]I‘lsgfief<0 )
to Tl(:c)—K is measurable. O
Remark 6.30. Since the map L,, is continuous one-to-one from ']I'( ) to Im (L,,), we deduce that

the map:
(T, T*) — Grafty, (L, (T), T*)
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. Pit
from ']I‘é?s) X (Tlsgérief(o ) to TI(ZC)_K is measurable. Without ambiguity, we shall simply write

Graft, (T, T*) for Graft, (L, (T),T*).

Remark 6.31. Intuitively, the maps Graft,, and Split,, should be the inverse one of the other. More
precisely, we have the following result. For every (T, (o,v)) € ']I'l(;z_K, we define the tree Sp(7T') =
(T",8") € TP by T = TI5 (T @ [0,00)) with the marked spine S = I3 ([0, v] ®1 [0, 00)).

Then then we have, for every (T,v) € ']I'I(ZLC)_OK (that is, the root of T' is not a branching vertex,

see Definition (80)), that the following equality hold in Tl(:c)—K:
(106) Graft, (Spann(T,v), Sp(Split,, (T, V))) =(T,v),
where Sp(Ta, A € P,) = (Sp(Ta), A € P;).

6.9. A measure associated with trees in ’]I‘lsgcirielf or ']I‘l(;z_K. Recall Ty = ({0}, 0) € Tioe—k

is the tree reduced to its root. We define

(107) Tioe—x = Tioe—x \ {To}

endowed with the distance:
di u(T,T") = drau(T,T') + |H(T)™" — H(T')™'|.

Clearly (T} . k,dfqy) is Polish with the topology induced by the topology on Tio.—x (as H
is continuous on Tjoc—k), and for all € > 0, the sets Br:  (¢) = {T' € Ty, : H(T) > ¢}
are closed and bounded. Furthermore, every bounded set is a subset of Brr  (g) for e > 0
small enough. Set £ = Ry x T} _ endowed with the distance dg((u,T), (v, T")) = |u —
| + df oy (T,T"), so that (E,dg) is a Polish space. Every bounded set of E is a subset of
Bg(e) = [0, x Br: () for € > 0 small enough. We define M(E), the set of point measures
on E which are bounded on bounded sets, that is finite on Bg(e) for all ¢ > 0. We say that a
sequence (M,,,n € N) of elements of M(FE) converges to a limit M, if lim, .o M, (f) = M(f)
for all continuous functions on E with bounded support. According to [13, Proposition 9.1.1V]
the space M(F) is Polish and the Borel o-field is the smallest o-field such that the application
M — M(A) is measurable for every Borel set A of E.

We build a tree from a point measure M =}, ;. 1) € M(E) by grafting T; at height h;
on an infinite spine. Recall the infinite spine T} = (R4, 0) endowed with the Euclidean distance
is an element of Tlsgclriefg C Tioe—x- For T € Tyoe_x, let (T',d, o) denote a rooted locally compact

tree in the equivalent class T'. With obvious notation, we define the tree 7" as follow:

T' = Ti Uier (T3 \ {oi}),

di(z, ") ifo,2' eTyiel
Vo, o' € T, d(z,2") = et if x,x’~e T
’ ' ’ di(x, 0;) + |hi — x| ifeeT;, »eT,iel,

di(z, i) +d;(2', 05) + |hi — hj| ifx €Ty, o’ € Ty with i # 4, 4,5 €1,
where U denotes the disjoint union. By construction T” is a tree rooted at o = gy, the root of T;.

Because M is finite on bounded sets of FE, it is not difficult to check that 7" is locally compact. It

is easy to see that the equivalence class of Tree(M) = (17, T;) in ’]I'E]C_K does not depend of the
choice of the representatives in the equivalence classes of Ty and T; for ¢ € 1. Hence, identifying
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Tree(M) with its equivalence class, we get that the map Tree is well defined from M(FE) into
Tiob_x-

Lemma 6.32 (Regularity of the map Tree). The map Tree from M(E) to Tl[?c_K (or TSP ) is
continuous.

Proof. We only give the principal arguments of the proof. Let (M,,,n € N) a sequence of point
measures, elements of M(E), which converges to M. Let € > 0 be fixed such that M(9Bg(e)) =
0. For n large enough, we have M, (Bg(c)) = M(Bg(e)) and the atoms of M, in Bg(e)
converge to the atoms of M in Bg(e). Using correspondence between the representations of
the atoms, and similar arguments as in the proof of Lemma 6.14, we deduce that the distance

between Tree(M,,) and Tree(M) (in ']I‘l[?c_K) is small if € > 0 is small (to prove this statement
in detail, one can use the distance on M(E) given in [12, Equation (A2.6.1)]). This means that

lim,, o0 dEéH (Tree(M,,), Tree(M)) = 0, and thus the map Tree is continuous on Tl[i}c—K' O

We shall now prove that the restriction of the map Tree to a subset of M(F) is injective and
bi-measurable. For this reason, we consider the subset of Tj,._k of (equivalence classes of) trees
not reduced to their root and such that the root is not a branching vertex (recall Definitions (107)
and (80) with n = 0):

(108) T?(;:—K = p]I‘ikoc—K N T?OC—K'

As a direct consequence of Lemma 6.10, ']I‘?C;Z_K is a Borel subset of T,k and thus of T} ..

In particular, the following subset of M(E) is a Borel set (recall £ =Ry x T} _):
(109) M(E) = {M eM(E) : M(Ry x (TS )°) = 0}.

We now introduce a map M from TP to M(E) as follow. Let T = (T, T1) be a rooted
locally compact tree with an infinite marked spine. In particular, we have Ty C T and T is
equivalent to (Ry4,d,0). Let (77,7 € I) be the family of the connected components of 7'\ T;.
For every ¢ € I, let us denote by z; the MRCA of 77, that is, the unique point of T such that
for every xz € T?, [0, 2] N T1 = [o, z;]. We then set T; = T U {z;} viewed as a locally compact
tree rooted at x;. Then, we define the point measure M(T™) on Ry x T} .« C Ry X Tioe—xk by:

(110) M(T*) = (e 1)

el
As M(T*) does not depends on the representatives chosen in the equivalence class of T™ in
T2 ™%, we deduce that M : T* — M(T*) is a map from T;>™ to M(E). We now give the
main result of this section.

Proposition 6.33 (Regularity of the maps Tree and M). The map M is bi-measurable Jrom
T> ™% to M(E) with M(E) = Im(M). The map Tree is bi-measurable from M(E) to T}>"%.
Tspino

Furthermore, the map Treeo M is the identity map on T}, " and M oTree is the identity map

on M(E).

Proof. By construction, the roots of all the trees 7; in the point measure M(T™) are not branch-
ing vertices, so that M(T™*) belongs to M(E) C M(FE). We also get by construction that
Tree(M(T™*)) = T*. This implies that M is injective and thus bi-measurable thanks to Lusin’s
theorem.
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We also have by construction that M o Tree(M) = M for M € M(E). This implies that
Im(M) = M(E) and also that Tree restricted to M(E) is injective and thus bi-measurable thanks
to Lusin’s theorem. O

We extend the map T — M(T™) to Tl(gg—K in the following way. For (T, v = (o, vl)) € Tl(g():—Kv
we graft the infinite spine Ty on vy and consider the rooted locally compact tree with an infinite
marked spine Sp(T') € T)"™, defined in Remark 6.31. Then, we define M(T,v) as M(Sp(T)).
From the continuity of the grafting procedure, see Lemma 6.14 and the continuity of II7, see
Lemma 6.6, and the measurability of the map M, we deduce that the map (T,v) — M(T,v),
which we still denote by M is measurable. In fact, we have the stronger following result. Consider
the set of (equivalent classes of) n-pointed rooted locally compact tree such that the root is not
a branching vertex and the distinguished vertices are not equal to the root:

(111) Tl(gc)_og ={(T,v) Tl(:c)—oK : d(o,v;) >0 foralli e {1,...,n}},

)

where v = (g, v1,...,0,). According to Lemma 6.10 and Remark 6.12, the set ']I‘(")’OK* is a Borel

loc—

subset of Tl(gg—K' Recall from (108) that the Borel set Tloo’z_K is the set of (equivalence class
of) 1-pointed rooted locally compact trees such that the root is not a branching vertex and the

distinguished vertex is not equal to the root.

Corollary 6.34 (Recovering (T,v) from M(T,v)). The following map from Tl(;g_K to Ry x
M(E) defined by:
(T, v) = (d(o,v), M(T,v))

1(;39; is injective and bi-measurable.
Proof. Set M*(E) = {M € M(E): M({0} x T},._x) = 0}. For M € M*(E), we get that
Tree(M) belongs to nggrﬁ’g . Write [0,a] € ']Tl(gg_K for the tree [0,a] with root 0 and distin-
guished vertex a > 0. We define a map g on Ry x M*(E) by g(a, M) = Graft; ([0, a], Tree(M)).
Thanks to the continuity of the grafting procedure, see Lemma 6.29 and of the function Tree,
see Lemma 6.32, we deduce that g is continuous.

Let (T,v) € ’]I‘l(;zf]; As the root of T' is not a branching vertex, we get that M(T,v) belongs
to M*(E), and thus g(d(g,v),M(T, V)), where v = (p,v), is well defined and in fact equal to

(T, v) thanks to (106) with n = 1. This implies that the map (T, v) — (d(o,v), M(T,v)) defined

on ']I‘SZ_OI; is injective, and thus bi-measurable by Lusin’s theorem. O

is measurable and its restriction to T

We extend this result to n-pointed trees. Recall from (101) that, for (T,v) € ']I‘l(:(?_K, we have
Split,, (T, v) = <TA(T,V),A € Pn> and set My[T,v] = M(TA(T,V)) for A e Pr.

Corollary 6.35 (Recovering (7,v) from the My[T,v]). The following map from ']I'I(ZLC)_K to
']I‘é?s) X M(E)P’t defined by:
(T,v) v (Span, (T,v), (Ma[T, V], A € P;f) )

. . _y 0% . . . . .
1s measurable and its restriction to ng_; s injective and bi-measurable.

Proof. Using the measurability of the functions Span from ']I'I(ZLC)_K to Tl(:c)—K (see Lemma 6.7),

C

2n
L, from ’]I‘l(:c)—K to Rf’f (see Lemma 6.26), Split,, from ']Tl(:)_K to <T1(52_K) (see Lemma 6.27)
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and the map (7,v) — M(T,v) from T

loc—

k to M(E) (see Corollary 6.34), we deduce that the

+
following map, say g1, from Tl(glc)—K to Tl(glc)—K X (R+ X I\\/JI(E))P” is measurable:

g1: (T, v) —~ (Span(T, v), ((EA(T, v), Ma[T,v]), A € 73,;"))
Notice that (T,v) € Tl(gc)_og implies that T {0y 1s reduced to its root. Using the measurable
functions Graft,, and the map defined in Corollary 6.34, we easily deduce that g; restricted to

Tl(gg_og is injective and thus bi-measurable by Lusin’s theorem. Since L, (7,v) is also equal

to Ly, (Span(T,v)), we deduce that the following map go, from ']I‘l(glg_K to Tl(:c)—K X M(E)PJ is
measurable:
g2 (T7 V) = (Span(Tv V)7 (MA[T’ V]v Ae P,T)) :

(n),0,%

Furthermore, its restriction to T, "} is also injective and thus bi-measurable. O

7. FORMAL DEFINITIONS OF THE OBJECTS INFORMALLY INTRODUCED IN SECTION 5

In this section we check that the topological and measurability results obtained in the previous
section allows to precisely define the objects which are introduced in Section 5.

7.1. The elementary grafting operation. In Section 5.1.3, we considered the map:
(112) (T, (0,2)), (T, &) = (T ®: T', p).
Lemma 7.1. The map (112) from Tl(gg—K X Tloe—k t0 Tioe—K 18 continuous.

Proof. The map (112) is the composition of the continuous grafting the map from Lemma 6.14
(withm =i =1, k =0 and v; = ) with the map II{ defined in (79) which removes z from the
distinguished vertices, as this latter map is also continuous by Lemma 6.6. g

7.2. The grafting operation (42). In this section we give a precise definition of the grafting
procedure given in (42). Recall Ty is the tree reduced to its root and the infinite spine tree
T1 € Tipec_k is identified as the set Ry with the usual Euclidean distance and root o = 0. We
also recall that T} . = Tioe—k \ {To}, see (107).

Unfortunately, it is not possible to prove in general the regularity property of the grafting
procedure Graft,, defined informally by (42). To stay close to this informal presentation, we
consider the case where n = 0 and (7', v) = T is just the infinite spine and the case where (T, v)
is a discrete tree, element of ’]I‘((i?s) .

7.2.1. The spine case: (T,v) = T. This case appear in the definition of the Kesten tree in (44).
Let M be a point measure on £ = Ry x T} . (or equivalently on Ty x T} ) with the
restriction that M belongs to M(FE), the set of point measures on E which are bounded on
bounded sets introduced in Section 6.9. Then the grafting procedure Grafto(T1, M) is precisely
defined by:

Grafto(T1, M) = P o Tree(M),
where the reconstruction map Tree is continuous, see Lemma 6.32 and the projection map P is also
continuous, see Lemma 6.16. More precisely, seeing T as a distinguished spine of Grafty (T, M),
we also have:
(Grafto(Ty, M), T1) = Tree(M) in ']I‘l[?c_K.
It is then elementary to check that the Kesten tree is well defined.
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Lemma 7.2 (The Kesten tree is well defined). Let M(dh,dT') be a Poisson point measure on
Ry X Tioe—k with intensity 281,-0ydh NP[dT]. Then the Kesten tree T* = Graftg(T1, M) is a
Toe—k-valued random variable.

Proof. Since PoTree is continuous, it is enough to check that a.s. the random variable M belongs
to M(E). Keeping the notations from Section 6.9, we get:

E [M(Bg(e))] = 28 'NY[H(T) > €] = 2B eq(e) < +oo0.
Thus the point measure M is a.s. bounded on bounded sets of E. ]

Let us notice that (7*,T) = Tree(M) is a Tl[?c_K—Valued random variable, which we call the
spine

Kesten tree with its distinguished spine; by definition (93) and (94), it is also a T} " -valued

and a Tlsgcirielf -valued random variable. Let us stress that the Kesten tree has a unique spine
(which is then distinguished) if # > 0 and a countable number of spines if § < 0 with only one of
them being distinguished.

7.2.2. The discrete case: (T,v) € ']I‘gfs). For n > 1, the construction is much more technical
(even though the case n = 1 could be still handled by hand), and we shall only consider grafting
on a discrete tree, using the theoretical background of Section 6.8. First recall the measurable
application M defined in (110) which intuitively from a locally compact rooted tree with a
marked infinite spine (7, Tl) (in the sense of Section 6.4, with T, equivalent to T; and seen as a
subset of T") gives a point measure recording the heights h; and the locally compact trees T; # T
such that (7,T;) is in the same equivalence class as the infinite spine tree T; on which the T;
are grafted at h;. See Proposition 6.33 for the measurable property of the application M. From
the proof of Lemma 7.2, we deduce from Proposition 6.33 that, if M(dh,dT) is a Poisson point
measure on Ry x Tk with intensity 281,-0ydh N?[dT], then:

M(Tree(M)) = M.

For this reason, it is natural to identify M with the nggrﬁ’g -valued random variable (7*,T;) =

Tree(M).
From Lemma 6.29 and Remark 6.30, we get that the map:

(T, T*) — Graft, (T,T*) with Graft, (T, T*) = Graft, (L, (T),T")
£ T(n) Tspine,O Pid t T(n)
rom I g X loc—K 0 Lioe—K>
T with truncated part of locally compact tree with a distinguished spine is measurable. Now
for A € P;7, identifying the locally compact tree with a distinguished spine 7% with the point

measure My = M(T}) allow the following identification:

which consist in replacing the branches of the discrete tree

Grafty, (T, (M) yeps ) = Graf, (T, T7).
We shall consider the case where the random variables (M) y.p+ are independent Poisson
point measure on £ with the same intensity 281, 0ydh N?[dT]. In this case, the locally compact

n-pointed random tree Graft,, (T, (My) AeP,T) is informally obtained by grafting, for all ¢ € I,
on z; € T the tree T; € Tioe—x, where M'(dz, dT) = >7;c; 0, 1,)(dx, dT) is, conditionally on 7,
a Poisson point measure on 7' x Tyo._k with intensity 28 d.Z7 (dz)N[dT]; and we shall write:

(113) Graft, (T, M) for Graft,, (T, (MA)AGW) .
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We shall stress here that the definition of Graft, (T, M') is abusive because the measure M’ is
not clearly defined as T is an equivalent class of trees and that furthermore there is no clear
measurability property in 7', which is mandatory as we want to consider T a random variable in
the n-leaves generalized decomposition from Theorem 5.10. So in conclusion, the notation:

(114) Graft,, (T, M)

where, conditionally on 7', the random measure M’ a Poisson point measure on T' X Tjo._k With
intensity 28 d. 27 (dz)N’[dT] is an abusive shortcut for:

(115) Graft,, (T, 7™)

with 7" = (T}) gep+ independent Kesten trees with their distinguished spine.
Thanks to the measurability property of Graft, in its two arguments given in Lemma 6.29,

the discrete tree T in (115) can be a ']T((i?s) -valued random variable. In the setting of the present

paper the random variables T' and 7* will be independent.

7.3. Planar trees (Section 5.3). Recall ']I'((i?s) c 1™ k is the closed subset of (equivalence

loc—
classes of ) discrete trees, that is, compact trees with all the leaves being distinguished, see (81).

Let (t,v) € ']I‘((i?s) with v = (vg = o,...,v,). (Notice that the tree t has at most n leaves.) For
ke {1,...,n — 1}, let pxy1 denote the projection of vxy1 on Span(t, (vg,...,vx)), that is the
only point on [o, vgy1] such that [o, pr+1] = [, vik+1] N Span(t, (vo,...,vx)). The discrete tree
(t,v) is planar if pgiq € [o,vx] for all k € {1,...,n — 1}. Tt is easy to check this condition is
equivalent to the condition used in Section 5.3: for all x € t, there exists 0 < iz < iq < n such
that v; € t, if and only if i, <@ <iq.

Let Tgﬂin - ']I‘((i?s) be the set of (equivalence classes of) n-pointed planar trees. It is elementary

to check that for a discrete tree (t,v) € ']I'((i?s) there exists a permutation (which is not unique)
7 such that the discrete tree (t,v™) is planar. Arguing as in the proof of Lemma 6.2, on get
that the map (t,v) — (t,vy) with v = (vg, ..., v, pr) is 5/2-Lipschitz from ']I'((i?s) to ']I'gfs). Then,
since the application (t,vy) — d(o,px) + d(pk, vi) — d(o,vg) is clearly continuous and the latter

quantity is zero if and only if py € [o,vr], we deduce that ']I‘é?;n is a closed subset of ']I‘é?s) and

thus a closed subset of T&" ).

7.4. Oriented grafting on discrete trees (Section 5.3). When considering planar trees in
Section 7.3, we shall also be interested in a grafting on the left or on the right of i € {1,...,n},
which is the same as the grafting (84), but for the order of the coordinates of the vector v & v'.
Recall that for h > 0 and (T,v) € Té?s), the vertex x;; the unique vertex of 7" that satisfies
xin € [o,v;] and H(z; ) = H(v;) Ah, see Section 6.3. For € € {g,d}, we define the grafting map

¢p by (45) with © = 2;, and (46), (47) and (48), using the convention stated thereafter when
ig = 0 (that is, z;, = 0) and iq = n. Let us recall that i = min{j € {0,...,n}: v; € Tp;, , }
(resp. iq = max{j € {0,...,n}: v; € Ty, ,}) is the left (vesp; right) most distinguished vertices
being a descendant of z; 5.

Lemma 7.3 (Measurability of the left/right grafting maps). Let n,k € N, i € {0,...,n} and
e € {g,d}. The map (h,(T,v),(T",v')) =T ®; 5, T" is measurable from Ry x ']I‘I(ZLC)_K X Tl(fc)_K to
T,

(n)

Proof. We recall that the map (h, (T, V)) — (T, (v,:ni7h)) is continuous from Ry x T} . to

']I‘l(glctll)(, see Section 6.3, and that the grafting map ®; is continuous, see Lemma 6.15 therein.
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Thanks to the continuity of the permutation of the distinguished vertices (so that i, and iq
play a similar role by considering the permutation 7 on {0,,...,n} such that 7(0) = 0 and
7(j) = n + 1 — j otherwise) and of the removing of distinguished vertices (so that x;; can
be removed from the distinguished vertices of (T ; (V,a:@h))), see Lemmas 6.9 and 6.6, we only
need to prove that the map (7,v) — iy, with @ = n and h = 0 or equivalently z;; = vy,

is a measurable function from ']Tgils) to {0,...,n} for n € N*. This latter result is obvious as
{ig > k} = ﬂ?zo{vj ¢ T,,} and as v; belongs to T,, if and only if d(o,v;) = d(0, vs) + d(vp, v;)
and the map (T,v) — (d(v;,v;),0 < i < j < n) is trivially continuous. O

7.5. The Growth,, function from (59). Let n € N*. We consider the function Growth,, defined
in (59), which formally is written as first attaching successively a branch ([0, ], (0,h)) € ’]I‘((ilig
simply denoted [0, h| to each distinguished vertices v* of (T, v), but the root, (notice that there
is then 2n + 1 distinguished vertices) and then forgetting all the n distinguished vertices v* so

that there are only n + 1 distinguished vertices:
Growthy, (T, v), h) = 54 o Growth!, . ((T,v),h),
where H;’nA" is defined in (79) with A, = (0,n+1,...,2n) and fori =1,...,n:
Growth), ; (T, v), h) = Growth;, ; ;((T,v),h) ®; [0, h],

n,i—1

with the convention Growth’mo ((T, v), h) = (T,v). Using the continuity of the grafting procedure
(see Lemma 6.15) and the continuity of H;’f " (see Lemma 6.6), we get the following result.

Lemma 7.4 (Continuity of the map Growth,,). Let n € N*. The map Growth,, is continuous
from TI(ZC)_K x Ry to Tl(:c)—K'

7.6. A detail of the proof of Corollary 5.9. Recall ’]I‘l(;zf]; defined in (111) is the Borel subset
of Tl(i():—K of the trees such that the root is not a branching vertex and the distinguished vertex
is distinct from the root. The map g : (T,v) — (d(o,v), M(T,v)), with v = (o,v), defined on
710

loc—
function of (d(o,v), M(T, v)) on the image of ng_o; by g.

Furthermore the set ']I'l(i():_o{(k is of full measure with respect to the distribution of (7, v) under

NO[dT] A¢(dv), with v = (p,v), as Nl-a.e. the root of T is not a branching vertex and d(o,v) =
t > 0. Thus, as t > 0 is fixed, we get that (7,v) is a measurable function of M(T,v).

f(k is injective and bi-measurable, see Corollary 6.34. We deduce that (7, v) is a measurable

7.7. Construction of the continuum random tree 7%, Let > 0, 6, € R and let S*?
be a Poisson point measure on [0, c0) with intensity measure fin(¢) dt and fiy given by (69). We
first consider the case a > 0. Denote by (§;,7 € N*) the increasing sequence of jumping times
of the inhomogeneous Poisson process (N} - S%9([0,t]),t > 0). We consider the ']I‘é?s)—valued
random variable T~ of Section 5.4.3 for n > 1 associated to fin;. In particular, recall that, for
every n > 1, T¢ is a discrete tree with n distinguished leaves, where all of them are at height

&n-
For every n > 1, let 7™* = (T4, A € P;) be a family of independent Kesten trees with
parameter (3, «), independent of the tree T¢,. We define the random marked tree:

700 = (105,(7), Span®(7™) ) with T = Graft, (Te,, 7).

Thanks to Lemma 6.18 and Lemma 6.29 on the measurability of the grafting function, we
deduce that 7 is a Tl[?c_K—Valued random variable. The family of the distributions of the
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']I‘l[i]C_K—valued random trees (70, n > 1) is consistent in the sense that, for every n > 1 and
every t < &,, 7"1[/2} (T™) @ 7"1[/2} (T™+1). Tt is in particular a Cauchy sequence in ']Tl[?c_K, and we

denote by (7% T%%) its limit which is thus a Tl[?c_K—Valued random variable. By construction,

T*0 and 9K have the same distribution. This construction is a formal way to define the tree
obtained by grafting on the infinite discrete tree T%5¢ (which serves as a backbone) at x; a tree
T: where ((2;,7;),i € I) are the atoms of a Poisson point measure of intensity 23.%(dz)N%(dT),
where .Z is the length measure on Tk,

For o = 0, we simply define (7'0’9, 799 as the Kesten tree with parameter (3, ).

We then define the ']I‘l[i}C_K—Valued random process <(7;a’9, T ’9), t> 0) by setting:

T = (T and T = r(5),

In particular, thanks to Lemma 6.13, the random variable (’7;0"9, N (T%)) is well defined.

8. PROOF OF THEOREM 5.10

We prove Formula (68) by induction. For n = 1, as Ty = [0,¢] (with root ¢ = 0 and
distinguished vertex vy = t), this is Corollary 5.9.

Let k € N*. Recall the maps Ly, from (98) in Section 6.6, and Split;, from (101) in Section 6.7.
For (T,v) € T® k and A € P, we write M4[T, v](dh,dt) for the measure M(T4(T,v)) on

loc—
E =Ry x T}y, where (Ta(T,v), A € Py) = Split,(T,v) and the measure M(T,v) is defined
at the end of Section 6.9. We also recall the notation (€4(T,v), A € P;") = Lg(T,v), and notice
that £4(T,v) = 0 implies that M4[T,v] = 0. Let n € N* and (®4,A € P;J) be a family of
non-negative measurable functions defined on E. Let f be a bounded non-negative measurable

function defined on Tl(:c)—K (or more simply on ']I'é?s) ). We shall first prove (68) for a non-negative

function F' defined on Tl(:c)

F(T,v) = f(Span(T,v)) exp{— Z <<I>A,MA[T,V]>}.
AePf

Let n > 2 and suppose that (68) holds for n — 1. For k € {1,...,n}, we denote by T!¥ the
tree Span(7T,vy) € T

_k of the form:

IOC)_K, where vi, = (vg = o,v}) and v = (v1,...,v;); and we simply write
ME{:] for M [T, vi] and EE{:] for £4(T, V), so that under N[dT] £2" (dv*):

F(T,vy) = f(T") exp{— Z <(I>A,MEZ]>}.
AeP;t

We also write U,[f] and wj[ff] for v4 and wy from (96) and (97) with (7', v) replaced by (T, v});

and thus we have KET = d(w[j},vyf}).

Similarly, under E%¢, for k > 2, we write also MEE] for the measure M (T?}) restricted to

[0,£4(Tk)] x T} ._k» @I[f} and zi)[j} for v4 and wy from (96) and (97) with (7, v) replaced by

(Tk,vk), and EE{:] = d(lbgf],’f)l[f]) = l4(Ty). For n > 2, simply writing T, for (T, v,), we have:

F(Graft, (T, 7)) = f(T») exp{— Z <<I>A,./\;IEZ]>}.
AeP;t
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Using the definition of the Kesten tree via Poisson point measures and the definition of the
function Graft,, we obtain in particular that:

(116) E% [F(Graftn(Tn, T*))] = E* [F/(T,)]
where
g["]
(117) F'(T,) = f(Ty exp{ -2 Z / da N |1 { e_q’A(“’T)] }
Aepit 0
Recall (72). Set p, = py, ,(v,) for the projection of v, on 7" . Since Nl-a.e. p, #
0, we deduce that there exists N’-a.e. a unique B € 77Jr 1 such that p, E]]wn 1] 1[; 1]]] -

TI=11 " and write h,, = d(pn,wp [n— }) Recall the function Tree, defined in Section 6.9 JUSt before

Lemma 6.32, from M(F) into ']I‘[ ] _k and the projection II from ']I‘[ ] _k to Tioe—k, defined just
before Lemma 6.24, which forgets about the marked subtree deﬁned in Section 6.5. We simply
write Tree’ = IT o Tree. On the one hand, we have:

T = T . [0~ Hp).

(118) O =g ey

M[g—l] _ M[g}u{n} + M[g]( + hp, ) + 5<hn7Treol (MESJ}))?

and, to fix notation, we shall write:

./\/l[n - = Mp[T,vn-1] Z (5h[n 1B n-1,

ZEIB

On the other hand, for A € P | and A # B, we have:

(119) BcA = My =mll o oMY =0, AU =d L and Ay =0,
n—l n n n—1 n n
(120) AnBe {04} — My =l Ml —o, AT = g A <o,
(121)
ANB&{0,B, A} = MU=l = pml =0 and U= =l g
) ) A AU{TL} - A AU{n} o

It is also easy to rebuild (MM A € P) from (MZL 1 ,A€ P ) and vy,.

Set

F, =N’ Un AP (avy) F(T, vn>] .
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Considering that ﬁ[n_l]’B

Fn - Ne / Az?(n Y Vi Z Z / dv" (T7 Vn)]
Tn—1 [n—1],B

BeP+ iclB |

n—1

is a subset of T, we have:

=N’ /T . APV (i)

Z Z FB( 7in—1] H(wl [n— 1]) Mgl;u,H(wg—l])Jrhgn 1,377;71 1], B)

B
Bepl  ieIB |

n—1

X eXP{— Z <1{BcA} @ Au{ny + 1{AanB=0 or A} <I>A,M[n 1}>}] )
AeP;_\{B}

where the measure MB;L’Z_-” is the measure ./\/lgg_ I without its atom at (h[n 1, ,ﬁ[n_l}’B):

M[n 1] M[g—l] _ (5(h£n71],577_i[n71],13),

and, for (T, w) € Tl(gc__ll)(, (T",0") € Tioe—k, v € M(E) and b/ > h > 0:

FB((Ta W)7 hv v, h/vT/) = f(T ®minB,h’ [07t - h/]) exp {_<¢B,h’—h7 V>}

Ay (dv) exp{—<<1>{n}, M(T, (' ,v)) > },

T/

with:

(122) (I)B7h”(37t) = 1{S§h”}q)BU{TL}(S7t) —+ 1{s>h”}<I)B(S — h//,t).

1B fn=11.B), we set for 7 € If_l

K3

For B € P\, using the notation ./\/l Zieff,l 5(}3?*

~n—1 ~n—1
M[Bﬂ; ] = M[B } — 5(}17!”71],3 7”-[n71],B)'

We deduce from the induction assumption (i.e. Equation (68) with n — 1 instead of n) and
the definition of Kesten tree, with F,, = (n — 1)!(&)> " =259 G,, that:

Z Z FB( neb (w[n_l}’B) M[ ! H(w[n 1],B )"‘}Algn_l}’Bvﬁ[n_l]’B)

BeP | iclB |

X eXP{— Z <1{BCA} P aufn} + 1{anB=0 or A} P4, MEZ_”>}] :
AeP_\{B}

Since for A € P, the random measure M (T, 6["_1})(dh’ ,d7T") is conditionally given @EZ_” a
Poisson point measure on [0, £E4 ]] X Tioe—x with intensity 24dh/ N°[dT7], we deduce from Palm
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formula that:

G =B 2ﬁ/ /Na @710 (Tor HE ), MG @) 40 T)

BeP; |

X eXP{— Z <1{Bch} @ Aufn) T 1{anB,=0 or 4} P4, M[" 1 > }]
AeP_ \{B:}

= E/ [25 Z(dr) / N[AT T, (T, H( ), MY, H ), T)

Tnfl,t

X eXP{— Z <1{Bch} @ Aufny + 1{anB,=0 or A} Pa, M[n 1}>}] ;
AP \{Ba}

where B, is the only element B of 77+ 1 such that = belongs to the branch B of T),_1: = €

]]wfg 1 vj[g 1}]] where, as T,,_; is discrete, we recall that Split,_(Tp_1) = ([[w[n 1}, 5l 1}]] Ae
Pp_1) with Pp_q = 73+ LU {{0}}. Using (68) again for n =1 (or Corollary 5.9) gives:

/ NO[T] T (T, ho v, 0, T) = F (Tt ®min g [0, — 1)) e~ (Prnt)
t—h’
X eXp{—259(t —h') - 25/ da N’ [1 — e_q){"}(“’ﬂ} }
0

With 2 chosen according to the length measure £ (dx) on Ty, _1, the tree Ty, —1 ® iy B, H(x) [0, t—
H (a:)] is obtained by grafting a branch of length ¢ — H(x) at  on T, _; and thus will simply
be denoted as Ty, @, [0,t — H(x)] (see also Remark 5.2 for similar notation). Therefore, we
obtain:

G, = E’

203 Z(dx) f(Tn_1 ®g [0, — H(m)]) exp{—Qﬁ(t — H(x))}

Trno1
o1l
—28 Z 1{BzCA} / da N? [1 _ e_¢AU{n}(a7T):| }
A€P;_ \{Bx} 0
sl
—25 Z LeanB,=0 or A} / da N? [1 _e—<I>A(a,T)}}
AeP \{B:} 0

0
[n—1]

_25 H(sz )_H(I) da NG [1 _ e_q)B” (a,T)] }
0

H(z)—H wlin Y
X exp{—Qﬂ ( e ) da N? [1 - e_q’BwU{”}(“’T)} }
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We deduce from Lemma 5.1 with the density:
230 €29+ 0 5 —286(t—
fdens(s) = 20 ] Log(s) =é& B e (=) 1p0,4(s)

that for a non-negative measurable function F defined on ’]I‘l(glg_K (or ’]I‘é?s)):

Ee,t

23 /T Z(da) F"(Tpo1 @, (0.t — H())) e—zﬁ"“—H@”] = (@) nEY [F"(Ty)].

Using similar equations as (118), (119), (120) and (121) stated with T,, instead of (7,v,) as
well as an obvious choice of F”, we obtain that:

Gn = (&) ' nE" [F'(T,)],
where F'(T,,) is given by (117). Then, we deduce from (116) that:
G, = (@)L nEO [F(Graftn(Tn, T*))] .
This gives:

W [ [ A @i FT)] = Fo= - i e,
T?’L

1-n
_p! (5?) o200t Ot [F(Graftn(Tn,T*))]
Thus, Equation (68) holds for the functionals F' we considered.
Recall that ’]Tl(: )’_OI’; is the Borel subset of ']I‘l(glg_K of the trees such that the root is not a

C
branching vertex and the point vertices (but the root) are distinct from the root. The map:

(T,v) — (Span(T, v), (Ma[T,v],A € 7):{))

defined on ']I'I(ZLC)_O; is one-to-one onto its image and bi-measurable, see Corollary 6.35. Fur-
thermore the set ']I'I(ZLC)_O; is of full measure with respect to the distribution of (7,v) under
NO[dT) AL (dv*), with v = (o, v*), as Nl-a.e. the root of T is not a branching vertex. Thus,
(T,v) is a measurable function of (TM, (/\;IEZ}, Ae Pt )) We then conclude by the monotone
class theorem that Equation (68) holds for any non-negative measurable function F' defined on
(n)

TIOC—K'

Acknowledgement. We thank the two referees for their precious work and whose comments al-
lowed to considerably improve the presentation of the results.
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Index of notation

Trees and pointed trees

T, t, T, T: generic notations for trees (or
class of equiv. trees).

d: generic distance on a tree.

0: generic notation for the root of trees.
H(xz) = d(p,x): height of the vertex .
H(T): height of the tree T

T,: subtree of T above the vertex z € T'.
[x,y]: the branch joining the vertices x to y.
Ty: the rooted tree reduced to its root.

Ty: the rooted infinite branch.

£ or ZT: length measure on the tree T.

v = (v9 = 0,v1,...,Vy): generic notation for
distinguished vertices of a tree.

(T,v) a (or a class of equiv. of) rooted n-
pointed tree.

(T,S) = (T,S,d, o) a (or a class of equiv. of)
marked tree with p € S C T.

Grafting a tree on a tree

(T®; T',v®v'), also denoted by T ®; T", is
the tree obtained by grafting 77 on T at the
distinguished vertex v; € T and identifying
the root ¢ of T" with v;. The distinguished
vertices v ® v’ are the concatenation of the
distinguished vertices v of T" and the distin-
guished vertices v/ (but for the root) of 7".

T ®; 5, T', is the tree obtained by grafting 7"
on T at level h on the branch [p, v;].

T @5, T', with € € {g,d}, same as above but
for the distinguished vertices of 7" which are

inserted on the left (if e = g) or on the right
of v; (if e = d).

- Graft,(T", (T, A € P)):

Spanning and truncation

Span® (T, v): the discrete rooted subtree of T
spanned by the distinguished vertices v.

Span(T,v): the rooted tree (Span°(T,v),v)
with the distinguished vertices v.

The map II7 removes the distinguished ver-
tices (but the root) from an n-pointed tree:
I (T,v) = (T, p). Thus:

IT; (Span(7T,v)) = Span® (T, v).
r¢(T,v): the tree T truncated at level ¢ with

the spanned tree Span®(7,v), and the distin-
guished vertices v.

7‘[2] 7‘[2]’+ rm’_ r[z} f[2]’+' various trunca-
t v 't s Tt y Pk g .

tion on marked trees (see Sect. 6.4 and 6.5).

Splitting and grafting
L, (T, v) record the lengths of all the branches
of the subtree Span(7T,v) spanned by the n
distinguished vertices:
L. (T,v) = (L4(T,v),A € Pl),
with P the set of all subsets A C {1,...,n}
such that A # (.

Split,, (T, v) record the subtrees of T' associ-
ated to all the branches of Span(7', bv):

(123)  Split, (T, v) = <TA(T, V), A€ Pn)

with P, = P U {{0}}.

replace the
branches labeled by A, of the discrete n-
pointed tree 7" by the trees 7% with a
marked infinite branch cut at the length
0A(T,v). (The discrete tree (17”,v') can be
coded /replaced by Ly, (17",v’).)

- Intuitively, we have for (7,v) a n-pointed

tree whose root is not a branching vertex

(see (106)):
(T,v) = Graft, (Spann(T, v), Split,, (T, v))



BROWNIAN CONTINUUM RANDOM TREES CONDITIONED TO BE LARGE 65

Set of (equiv. classes of) trees

Tk set of (equiv. classes of) rooted compact
trees.

T&" ) set of (equiv. classes of) rooted n-

pointed compact trees; T\ = Tk.
dgll){ the distance on ']I‘E(”); dg)) = den.

Tioc—k set of (equiv. classes of) rooted loc.
compact trees.

TikOC_K = TIOC—K\{TO } .

']I'?OC_K subset of T,._k of trees whose root is

not a branching vertex.
07* — 0 *
TIOC—K - P]I‘loc—]é( N P]I‘loc—]i('

']I‘l(glg_K set of (equiv. classes of) rooted n-

pointed loc. compact trees; Tl(gg_K = Tioc—K-

dI(JTgH the distance on Tl(:c)—K§ dg)();H = digH-

.H.l(:g_oK subset of ']I'l(glg_K of trees whose root is

not a branching vertex.

']I'l(glc)jK subset of Tl(:c)—K of trees whose all dis-

tinguished vertices (but the root) are distinct
from the root.

Trees with a marked branch and point
measures

- E=R xT}, .

- M(E) set of point measures on E which are

bounded on bounded sets of E.

Tree : M(E) — TP maps the measure
M =31 0n, 1, to the marked tree (T, Ty),
with the rooted tree T obtained by grafting
the trees T; on the rooted infinite branch T4
at level h;.

M TP — M(E) maps the marked
tree (T',T1) to the measure ) ;; dp, 7, where
T;\{o0;} are the connected component of T\ Ty
with root g; € Ty and h; = d(p, 0;), where o
is the common root of 17" and T;.

M is also defined on ']I‘SZ_K.

Reconstruction results
With Id the identity map:

Treeo M =1d on nggfjeK,
Mo Tree =1d on M(E) = Im(M).

(T,v) € Tl(ggi); can be recovered in a measur-
able way from (d(o,v), M(T,v)).

(n),0,+ _ m(n),0 (n),*
Tioc™ i = Thoetk M o k- (T,v) IS ngg_og can be recov-
']I‘((ﬁs) subset of T&" ) ¢ TI(ZLC)_K of discrete trees. ered in a measurable way from

2l (Span,,(T,v), (Ma[T,v],A € Pl)), where
T ._k set of (equiv. classes of) rooted loc. M[T,v] = M(Ta(T,v)), with T4(T,v) €
compact marked trees. ']Tl(ig_K defined by the splitting operation
TP ™« subset of ']Tl[?c_K of marked trees (T,5) | in (123).
such that S = Ty, with Ty the infinite branch.
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