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BROWNIAN CONTINUUM RANDOM TREES CONDITIONED TO BE

LARGE

ROMAIN ABRAHAM, JEAN-FRANÇOIS DELMAS, AND HUI HE

Abstract. We consider a Feller diffusion (Zs, s ≥ 0) (with diffusion coefficient
√
2β and drift

θ ∈ R) that we condition on {Zt = at}, where at is a deterministic function, and we study the
limit in distribution of the conditioned process and of its genealogical tree as t → +∞. When
at does not increase too rapidly, we recover the standard size-biased process (and the associated
genealogical tree given by the Kesten’s tree). When at behaves as αβ2t2 when θ = 0 or as

α e2β|θ|t when θ 6= 0, we obtain a new diffusion, as already proved by Overbeck in 1994 in the
case θ = 0. We give a new representation of this diffusion using an elementary SDE with a
Poisson immigration. The corresponding genealogical tree is described by an infinite discrete
skeleton (which does not satisfy the branching property) decorated with Brownian continuum
random trees given by a Poisson point measure.

As a by-product of this study, we introduce several sets of trees endowed with a Gromov-
type distance which are of independent interest and which allow here to define in a formal and
measurable way the decoration of a backbone with a family of continuum random trees.

1. Introduction

1.1. The discrete case motivation. In [1], for the geometric reproduction law, and in [5], for
general super-critical reproduction laws with finite mean and some special sub-critical reproduc-
tion laws, the authors consider the limit of a Galton-Watson (GW) process (Zn, n ∈ N) started at
Z0 = 1 conditionally on Zn = an as n goes to infinity, provided the event {Zn = an} has positive
probability. They also consider more generally the local limit of the GW tree, which in particular
allows to study condensation phenomenon (on this latter subject, see [27, 26, 4]). According to
the different growth rate of an as n goes to infinity, they observe different regimes for the limiting
random tree: if an = 0 for n large, the limiting tree corresponds to the GW tree conditioned on
the extinction event; if an is strictly positive but grows slowly (including the case an bounded),
then the limit is the so-called Kesten tree, which consists in an infinite spine decorated with
independent GW trees with the initial reproduction law; if an grows at a moderate speed (given
in the super-critical case of finite variance by an ∼ αmn with α > 0 and m the mean of the
reproduction law), then the limit is a skeleton given by an immigration process decorated again
with independent GW trees with the initial reproduction law; if an grows faster than mn (that is
limn→∞m−nan = ∞) then results are known only for the geometric reproduction law (the limit
exhibits a condensation at the root, that is, the root has an infinite number of children, and then
those children generate independent trees) and for bounded reproduction laws (the limit is the
regular b-ary tree, with b the possible maximum number of children).

We mention that the local limit distributions of the GW tree with geometric reproduction
also appear when considering the local limit of trees having n vertices with a Gibbs distribution
where the energy is the height of the tree, see [20].
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This work is a first step to extend those results to random real trees called Lévy trees introduced
by Duquesne and Le Gall in [17, 18] which are scaling limits of (sub)critical GW trees and can
be seen as genealogical trees for (sub)critical continuous state branching processes (CSBP); see
also [3, 19] for the extension of this latter representation to the super-critical case. We shall only
consider Feller diffusions, which correspond to CSBPs with quadratic branching mechanism and
whose genealogy can be described using the Brownian continuum random tree introduced by
Aldous [8]. Our results belong also to the family of works dedicated to the description of limits
of conditioned random real trees, in this direction, see [31, 30, 16, 2].

1.2. Feller diffusion with Poisson immigration. We consider a quadratic CSBP Z = (Zt, t ≥
0) associated with the branching mechanism:

ψθ(λ) = βλ2 + 2βθλ,

with β > 0 and θ ∈ R. The process Z is a solution to the stochastic differential equation (SDE):

dZt =
√

2βZt dBt − 2βθZtdt, for t ≥ 0,

where (Bt, t ≥ 0) is some standard Brownian motion. The CSBP is sub-critical (resp. super-
critical) if θ > 0 (resp. θ < 0). The time scaling parameter β will be fixed, but we shall stress
in the notations the size scaling parameter θ, and denote by P

θ
x the distribution of Z starting at

Z0 = x.
Let a = (at, t ≥ 0) be a non-negative function. We shall consider the local limit of the process

Z conditionally on {Zt = at} as t goes to infinity, that is the possible limiting distribution of
Z[0,s] = (Zr, r ∈ [0, s]), with s fixed, conditionally on {Zt = at} as t goes to infinity. We recall
that this question is related to the description of the Martin boundary of Markov processes and
extremal time-space harmonic functions, see [21]. We have for t ≥ s ≥ 0 and Hs a bounded
σ(Z[0,s])-measurable random variable:

E
θ
x [Hs |Zt = at] = E

θ
x [HsK(s, Zs; t, at)] ,

where K is the so-called Martin kernel. Then, all the extremal time-space harmonic functions h
appear as the limit of:

(1) h(s, x) = lim
t→+∞

K(s, x; t, at) for all s, x ∈ R+

for some non-negative function a = (at, t ≥ 0). Overbeck [33] gives all the extremal time-space
harmonic functions h for the critical Feller diffusion (that is θ = 0), and gives also the SDE solved
by the Doob h-transform of the process Z, see Lemma 2.7 for the extremal harmonic functions
and Corollary 4.2 for the SDE below for θ ∈ R which includes the sub-critical and super-critical
cases. For keeping the introduction as simple as possible, we shall stick to the critical case θ = 0
considered in [33], and choose β = 1 (the general case can be deduced using a deterministic time
change or a Girsanov transformation of Z). In this case, the extremal harmonic functions h are,
with B0 defined in (15):

• Extinction case at = 0 for t large: h∅(s, x) = 1;
• Low regime at > 0 and at = o(t2): h0(s, x) = x;
• Moderate regime at ∼ αt2 with α ∈ (0,+∞): hα(s, x) = e−αs xB0(αx).

For α ∈ [0,+∞), the Doob h-transform of the process Z using the harmonic function hα,
denoted by Zα = (Zα

t , t ≥ 0), satisfies the following SDE according to [33, Theorem 3]:

dZα
t =

√

2Zα
t dBt + 2g(Zα

t ) dt, t ≥ 0,
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where, with Hα(s, y) = e−αs yB0(αy), the function g is equal to:

g(y) = y ∂y log(Hα(·, y)) = 1 + αy
B′
0(αy)

B0(αy)
·

Motivated by the backbone decomposition of the corresponding genealogical tree given in the
next section, we provide a new representation of the process Zα using a Poisson immigration
given in Corollary 4.2 which is stated for the general case θ ∈ R.

Proposition 1.1 (Representation using a Poisson immigration, case θ = 0). Let α ≥ 0 and
(Sα

t , t ≥ 0) be a Poisson process with intensity αdt, independent of the Brownian motion (Bt, t ≥
0). The process Zα starting at Zα

0 = 0 is distributed as the solution Y α = (Y α
t , t ≥ 0) of:

(2) dY α
t =

√

2Y α
t dBt + 2 (Sα

t + 1) dt with Y α
0 = 0.

When the process Zα starts at Zα
0 = x > 0, the constant 1 in the drift term of (2) must

be replaced by a random constant independent of B and Sα, see the beginning of the proof of
Corollary 4.2 in Section 4.3. The proof of this result, given in Section 4.2, uses a result from
Rogers and Pitman [35] for a transformation of a Markov process to still be a Markov process.

1.3. Decomposition of the Brownian CRT with respect to n leaves taken at random
at a given height. We denote by N

θ the canonical σ-finite measure associated with the CSBP
Z under P

θ
· . Intuitively, under N

θ, the population starts with an infinitesimal individual at
time t = 0. Let T denote under N

θ the genealogical tree of the process Z, it is the so-called
Brownian continuum random tree (CRT) introduced by Aldous. In this context, the random
tree T can be easily built from a Brownian excursion, and the measure Nθ can then be identified
with the excursion measure of the reflected Brownian motion. We write ̺ for the root of T .
In [18, Theorem 4.5], Duquesne and Le Gall give a decomposition of the critical or sub-critical
Brownian tree T by taking a leaf uniformly at random at level t ≥ 0 and decorating the branch
from the root to this leaf with independent Brownian CRTs. There is no difficulty to extend this
result to the supercritical case, see Corollary 5.9. We then extend this representation by giving
a decomposition of the Brownian CRT when taking n leaves uniformly at random at level t ≥ 0
and decorating the discrete tree spanned by the n leaves and the root with independent Brownian
CRTs, see Theorem 5.8. This result completes the description of [19] where one chooses theses
vertices at random without condition on their level.

Stating and proving this result relies on a lengthy study of various spaces of trees and the
measurability of various maps defined on those sets of trees, which are detailed in Section 6. We
shall present informally the mathematical objects and state the theorem in the critical case θ = 0
with β = 1 for simplicity; we also write N for N0. Let Λt denote the local time at level t associated
with the Brownian tree T (its total mass is equal to Zt the size of the population at level t): this
measure allows to sample random individual “uniformly” at level t; the measure Λt is supported
by the leaves of T at level t. Under N[dT ] Λ⊗n

t (dv∗) we can sample the Brownian CRT T with
n leaves v∗ = (v1, . . . , vn) ∈ T n at level t. To those n distinguish vertices, we shall add the
root ̺ of T and set v = (̺,v∗), and shall see (T ,v) as an element of the Polish metric space of

the locally compact of n + 1-pointed trees, T
(n)
loc−K, equipped with the local Gromov-Hausdorff

distance (and where all n+1-pointed trees which are isomorphic are identified), see Section 6 for
precise details. We describe the rooted tree spanned by the root and the distinguished v∗ vertices
using a combinatorial construction on growing discrete planar trees with fixed height t defined in
Section 5.4.1 where starting from one branch of height t, we graft uniformly successively branches
with their leaf at height t. Let us stress that we use the planar structure of the trees in this
section only, and that the grafting of the new branch is uniformly done on the right or on the left.
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After n such steps, we obtain the random n+1-pointed tree (Tunif
n ,vn), where the distinguished

vertices vn are first the root, and then the leaves ranked in their arrival order (and not in the
planar order). Then, very informally, on this discrete tree, for all i ∈ I a countable set of indices,
we graft at xi ∈ Tunif

n a subtree Ti, where M(dx, dT ) =
∑

i∈I δ(xi,Ti)(dx, dT ) is a Poisson point

measure with intensity 2 dL (dx)N[dT ], where dL is the length measure on Tunif
n . This grafting

procedure is rigorously defined in Section 7.2.2 based on the technical material from Section 6.
So we are now able to state Theorem 5.8 for θ = 0 and β = 1. Recall v = (̺,v∗) ∈ T n+1, with
̺ the root of T .

Theorem 1.2 (Generalized n-leaves decomposition, case θ = 0). Let t > 0 and n ∈ N
∗. For

every non-negative measurable function F defined on T
(n)
loc−K, we have:

N
θ

[
∫

T n

Λ⊗n
t (dv∗)F (T ,v)

]

= n! tn−1
E

[

F
(

Graftn
(

(Tunif
n ,vn),M

)

)]

.

Let us mention here that there have been several works on skeletal/backbone decompositions
for (spatial) branching processes and their corresponding genealogical trees, for example see
[2, 9, 11, 19, 24, 25, 29] and the references therein. In particular, in [24], coupled systems of SDEs
were established to represent the skeletal decompositions for continuous-state branching processes
(conditioned on survival), where the skeletons are determined by continuous-time Galton-Watson
processes. And we refer to [19] for the reconstruction of a Lévy tree from a backbone tree, which
could be formed by leaves taken at random in a Poissonnian way from the Lévy tree according
to the so-called mass measure; see Remark 5.4 there and [17]. For representations of branching
processes (with immigrations) via SDEs, we also refer to [14] and references therein.

1.4. Local limit of conditioned Brownian CRT. The Brownian CRT T gives the genealog-
ical structure of the CSBP Z. We shall give a description of the genealogical structure of the
CSBP associated with the Doob h-transform and prove that it appears naturally as local limit
of the Brownian CRT T conditioned to be large. We stress that the local limits obtained here
are different from the one obtained by conditioning on the non extinction at large time, see [2] in

this direction. We denote by Tloc−K = T
(0)
loc−K the set (of equivalence classes) of locally compact

rooted real trees, see Section 6 for more details.
Recall that in the critical case θ = 0 the Brownian CRT T is compact. In the introduction,

we simply denote by tt the real tree t truncated at level t. We denote by Gt the σ-field generated
by Tt for t ≥ 0; in particular the process Z is adapted to the filtration (Gt, t ≥ 0). Let F be any
bounded continuous function defined on Tloc−K.

• Extinction case: at = 0 for t large. We have:

lim
t→∞

N
[

F (Ts)1{Zt=at}

]

= N
[

F (Ts)
]

.

The result is obvious for the critical case as the tree T is compact N-a.e., that is Tt = T
for t large enough. We obtain the same result in the sub-critical case θ > 0. In the super-
critical case θ, using the Girsanov transformation from [3] to define the super-critical
Lévy tree, see also (43), we get that:

lim
t→∞

N
θ
[

F (Ts)1{Zt=at}

]

= N
|θ|
[

F (Ts)
]

.

Those results hold also in general for any compact Lévy trees.
• Low regime: a is positive and at = o(t2). We recall that the Kesten tree T ∗ is informally
obtained by grafting the trees (Ti, i ∈ I) respectively at levels (hi, i ∈ I) on an infinite
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spine, where the point measure
∑

i∈I δhi,Ti
(dh,dT ) is a Poisson point measure with in-

tensity measure 21{h>0}dhN[dT ]. See Lemma 7.2 for a more formal definition of the
Kesten tree. The Kesten tree appears already as the local limit of general compact Lévy
trees when conditioning instead by {Zt > 0}, see [2]. The next result is Theorem 5.14
restricted to the critical case θ = 0 with T 0,θ = T ∗ (notice therein the difference of the
limit between the super-critical case and the sub-critical one).

Theorem 1.3. We have in the low regime, at = o(t2) and at > 0, that:

lim
t→∞

N
[

F (Ts)
∣

∣ Zt = at
]

= E [F (T ∗
s )] .

• Moderate regime: at ∼ αt2, where α ∈ (0,+∞). We first consider a backbone tree
Tα,0 representing in some sense the genealogy associated with a Poisson immigration with
rate α, see Section 5.6 for a more precise description. Secondly, let the point measure
∑

i∈I δxi,Ti
(dx,dT ) be, conditionally given Tα,0, a Poisson point measure with intensity

rate 2L (dx)Nq[dT ] with L (dx) the length measure on Tα,0. Then, the random tree
T α,0 is obtained by grafting, for i ∈ I, the tree Ti at vertex xi on the backbone tree Tα,0.
(As, for α = 0, T0,0 can be seen as an infinite spine, the Kesten tree is indeed distributed
as T 0,0.) The next result is Theorem 5.13 restricted to the critical case θ = 0.

Theorem 1.4. We have in the moderate regime, at ∼ αt2 with α ∈ (0,+∞), that:

lim
t→∞

N
[

F (Ts)
∣

∣ Zt = at
]

= E
[

F
(

T α,0
s

)]

.

Let us stress that the backbone tree does not enjoy the branching property, as already
observed by [1, 5] in a discrete setting. In a forthcoming paper, we shall recover the
branching structure in the backbone by considering a weighted tree.

• High regime: limt→∞ t−2at = +∞ (or limt→∞ e−2β|θ|t at = +∞ if θ 6= 0). The descrip-
tion of the possible limit in this regime is still an open question. As in the discrete setting
studied in [1], one could ask if there is a condensation phenomenon at the root. However,
to study such local limits, which would not be locally compact (at least at or near the
root), one would require a non trivial extension of the current topology developed for
locally compact trees.

1.5. Outline of the paper. Section 2 is devoted to some notations and elementary facts for
the quadratic CSBP, the transition kernel under the canonical measure N

θ, and the Martin
boundary for the process Z (under Pθ

x and the excursion measure N
θ). We then present families

of martingales for the process Z and then the local limits of the process Z conditionally on Zt = at
for t large and some deterministic function (at, t > 0) (under Pθ

x and the excursion measure Nθ) in
Section 3. We prove Proposition 1.1 on the representation of the Dood-h transform of the process
Z with h harmonic extremal using a Poisson immigration in the general case θ ∈ R in Section 4,
see Corollary 4.2. We provide the backbone decomposition in Section 5, with the decomposition
with respect to n leaves from Theorem 1.2 in Section 5.5 and the local limit of Brownian CRT
conditioned to Zt = at from Theorems 1.3 and 1.4 in Section 5.6. We have made the choice to use
some intuitive (but abusive) definition in Section 5, in particular considering the Graftn map in
order to state the result without burdening the reader with too much technicalities; we clarify all
the definitions in Section 7 using the lengthy technical Section 6. We also believe that Section 6
helps clarifying some previous work on random trees and could be useful also for further works
on grafting, splitting, and decorating for trees.

Let us mention that the introduction is written with the time scale parameter β = 1 and for
the critical case θ = 0. The general cases β > 0 and θ ∈ R could be deduced in finite time
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from the particular case by scaling or using Girsanov transformation on CSBP. However, if those
computations are not that complicated, they are lengthy and treacherous; so we decided to treat
the general cases but for the introduction.

An index of all the (numerous) relevant notations is provided at the end of the document.

2. General quadratic CSBP

2.1. Notations. We set R+ = [0,+∞), R∗
+ = (0, +∞), N = {0, 1, 2, · · · } and N

∗ = {1, 2, · · · }.
For x ∈ R, we set x+ = max(0, x) and x− = max(0,−x), so that x = x+ − x−. We write δx

for the Dirac mass at x.
Let (E, d) be a metric space. We denote by M+(E) the space of non-negative measures on

E endowed with the vague topology. For µ ∈ M+(E) and A a Borel subset of E, we denote by
µ|A(dx) the measure 1A(x)µ(dx). We write µ(f) = (f, µ) =

∫

f dµ = 〈f, µ〉 for the integral of
the measurable real-valued function f with respect to the measure µ, whenever it is meaningful.

We say that a function from a measurable space to a measurable space is bi-measurable if it
is measurable and the image of any measurable set is a measurable set (when the function is
one-to-one this is equivalent to the function and its inverse being measurable).

2.2. Quadratic CSBP. Most results in this section can be found in [17, 15, 3, 19]. Let β > 0
be fixed. Let θ ∈ R. We consider the quadratic branching mechanism ψθ given for λ ∈ R by:

(3) ψθ(λ) = βλ2 + 2βθλ.

The corresponding CSBP Z = (Zt, t ≥ 0) is the unique strong solution to the following stochastic
differential equation (SDE):

(4) dZt =
√

2βZt dBt − 2βθZtdt for t ≥ 0,

where B = (Bt, t ≥ 0) is a standard Brownian motion and Z0 = x ≥ 0. For t ≥ 0, let Ft be the
σ-field generated by (Zs, t ∈ [0, t]). We write P

θ
x to stress the value of the parameter θ, and the

initial value of the process Z, Z0 = x. We denote by N
θ the canonical measure of the process Z,

normalized in such a way that for λ ≥ 0:

N
θ
[

1− e−λσ
]

= ψ−1
θ (λ),

where σ =
∫∞
0 Zt dt is the total size of the population under the canonical measure Nθ and ψ−1

θ (λ)
is the only solution t to ψθ(t) = λ such that t ≥ 2θ−. In particular, the process (Zt, t ≥ 0)

under P
θ
x is distributed as the process

(

∑

i∈I Z
(i)
t , t ≥ 0

)

where
∑

i∈I δZ(i) is a Poisson point

measure with intensity xNθ(dZ). We refer to [17] for θ ≥ 0 (critical and sub-critical case) and to
[15, 3, 19] for θ < 0 (super-critical case) for a detailed presentation of the CSBP process Z and
the corresponding continuum Brownian random tree T .

With a slight abuse, we say that two random variables or functionals Y ′ and Y ′′ have the same
distribution under Nθ if the pushed forward measures of Nθ by Y ′ and Y ′′ are equal.

In order to recall the Laplace transform of Zt, we introduce the following positive functions
cθ and c̃θ defined for t ∈ (0,+∞) by:

(5) cθt =
2θ

e2βθt −1
and c̃θt =

2θ

1− e−2βθt
,

with the convention c0t = c̃0t = 1/βt. The functions cθ and c̃θ are decreasing with:

(6) lim
t→0+

cθt = lim
t→0+

c̃θt = +∞, lim
t→+∞

cθt = 2θ− and lim
t→+∞

c̃θt = 2θ+.



BROWNIAN CONTINUUM RANDOM TREES CONDITIONED TO BE LARGE 7

We also have for t > 0:

(7) c̃θt = c−θ
t = cθt + 2θ.

Remark 2.1 (Scaling property of Z). In this remark, we write Z [β,θ] for Z under N
θ or P

θ
x in

order to stress the dependence in β > 0 and θ ∈ R. Let Y = (Ys, s ≥ 0) be a Feller diffusion
that is, Y = Z [1,0]. Under Px, it is given as the unique strong solution to the SDE, with initial
condition Y0 = x:

(8) dYs =
√

2Ys dBs, for s ≥ 0.

We denote by (Qt, t ≥ 0) the semi-group of the diffusion Y and recall that it is a Feller semi-group
with the so-called following branching property:

(9) Qt(x+ x′, ·) = Qt(x, ·) ∗Qt(x
′, ·) for all t ≥ 0 and x, x′ ∈ R+.

We shall denote by N the canonical measure of Y .
For β > 0 and θ ∈ R, the process Z [β,θ] under Nθ (resp. Pθ

x) is distributed as the process:

(10)
(

e−2βθt Y1/cθt
, t ≥ 0

)

under N (resp. Px). Notice that the range of 1/cθt as t runs in R+ is [0, 1/(2θ−)). Even though,
using this scaling and time change, it is (almost) enough to state the forthcoming results for the
particular case β = 1 and θ = 0, we shall keep general values for the parameters in order to
better understand their role.

We define for t > 0 and λ > −c̃θt :

(11) uθ(λ, t) =
λcθt
c̃θt + λ

= cθt −
cθt c̃

θ
t

c̃θt + λ
,

and set uθ(λ, 0) = λ for t = 0. This gives that for t > 0 and λ > −c̃θt :

uθ(λ, t) =







2θλ

(2θ + λ) e2βθt −λ, if θ 6= 0,

λ/(1 + λβt), if θ = 0.

For r > 0 and t ≥ 0, we have that:

uθ(cθr , t) = cθt+r.

We recall from the above mentioned references ([17, 15, 3, 19]) for λ ≥ 0 and by analytic
continuation for λ < 0, that for t > 0 and x ≥ 0:

(12) N
θ
[

1− e−λZt

]

= uθ(λ, t) and E
θ
x

[

e−λZt

]

= e−xuθ(λ,t) for all λ > −c̃θt .

We denote by ζ = inf{t > 0; Zt = 0} the lifetime of the process Z. We recall that for all t > 0:

N
θ[ζ > t] = lim

λ→∞
uθ(λ, t) = cθ(t).

By considering the series in λ in (11) and (12), we deduce that for all t > 0 and n ∈ N
∗:

(13) N
θ
[(

c̃θtZt

)n]

= n!cθt .

We now give a martingales related to the CSBP Z. Since uθ(λ, t) = u−θ(λ + 2θ, t) − 2θ for
λ ≥ cθt −2θ, we deduce that the process

(

e2θZt , t ∈ I
)

is a martingale with respect to the filtration
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(Ft, t ≥ 0) under N
θ with I = R

∗
+ and under P

θ
x with I = R+. Furthermore, according to [3,

Section 4], we have that for θ ∈ R, t > 0 and x ≥ 0:

(14) N
−θ[dZ]|Ft

= e2θZt N
θ[dZ]|Ft

and E
−θ
x [dZ]|Ft

= e2θ(Zt−x)
E
θ
x[dZ]|Ft

.

Recall that c̃θt is decreasing in t, and thus −c̃θt+r > −c̃θr. The next lemma is an easy consequence
of (12) and the following elementary equality:

u(−c̃θt+r, t) = −c̃θr for all t ≥ 0 and r > 0.

Lemma 2.2. Let θ ∈ R, x ∈ R+, r > 0 and the quadratic CSBP (Zt, t ≥ 0) solution of (4). The

process
(

ec̃
θ
t+rZt , t ∈ I

)

is a martingale with respect to the filtration (Ft, t ≥ 0) under N
θ with

I = R
∗
+ and under P

θ
x with I = R+.

2.3. Transition densities and Martin Kernel. We first provide the densities of the entrance
law qθt (dx) and the transition kernel qθt (x,dy) of the CSBP Z under its excursion measure, where
for t, s > 0, x > 0 and y ≥ 0:

qθt (dx) = dNθ[Zt = x, ζ > t] and qθt,s(x,dy) = dNθ[Zt+s = y|Zs = x].

We shall consider the function B0 and B on R+ defined by:

(15) B0(x) =
∑

k∈N

xk

k!(k + 1)!
and B(x) = xB0(x) =

√
x I1

(

2
√
x
)

,

where I1(x) =
∑

i∈N(x/2)
2i+1/i!(i + 1)! is the Bessel function. Notice that B0(0) = 1.

Lemma 2.3 (Entrance law and transition densities of Z). Let θ ∈ R. Let t, s > 0, x > 0 and
y ≥ 0. We have qθt,s(0,dy) = δ0(dy) and:

qθt (dx) = qθt (x) dx and qθt,s(x,dy) = e−xcθt δ0(dy) + qθt (x, y) dy,

where:

qθt (x) = cθt c̃
θ
t e

−c̃θtx,(16)

qθt (x, y) = xcθt c̃
θ
t e−(x+y)cθt−2θy B0

(

xycθt c̃
θ
t

)

.(17)

Proof. We omit the parameter θ in the proof. On one hand, from the definition of qt(dx), we get
that for λ ≥ 0:

∫ +∞

0
e−λx qt(dx) = N

[

e−λZt 1{ζ>t}

]

= −N

[

1− e−λZt

]

+ N [ζ > t] = c(t)− u(λ, t).

On the other hand, using (11), we get:
∫ ∞

0
ctc̃t e

−(c̃t+λ)x dx = c(t)− u(λ, t).

Then use that finite positive measures on R+ are characterized by their Laplace transform to
obtain that qt(dx) = qt(x) dx with qt given by (16).

From the definition of qt(x,dy), we get that for λ ≥ 0:
∫ +∞

0
e−λy qt(x,dy) = N

[

e−λZt+s

∣

∣

∣
Zs = x

]

= e−xu(λ,t) = e−
a
b
+ a

b+λ ,
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where, thanks to (11), a = xctc̃t and b = c̃t. Notice that:

e
a

b+λ = 1 +
∑

k∈N

1

(k + 1)!

(

a

b+ λ

)k+1

= 1 + a
∑

k∈N

∫ +∞

0

(ay)k

k!(k + 1)!
e−by−λy dy.

Using (5), we deduce that qt(x,dy) = e−xct δ0(dy) + qt(x, y) dy, with qt(x, y) given by (17). �

Let us notice that qθt,s(x,dy) is also the transition kernel of the CSBP Z under Pθ
x0

for every
x0 ≥ 0. The Martin kernel is defined for t ≥ s ≥ 0 and x, y ∈ R+ by:

(18) K(s, x; t, y) =
qθt−s,s(x,dy)

qθt,0(1,dy)
·

2.4. Martin boundary. According to Overbeck [33], see also [21, Section 10], all extremal
(non-negative) time-space harmonic functions for the CSBP Z appear as the limit of the Martin
kernel K(s, x; t, at), see (18), as t goes to infinity and (at, t ≥ 0) is a non-negative function. To
study the possible limits as t goes to infinity of:

(19) lim
t→∞

K(s, x; t, at),

we shall consider the functions on R
2
+:

(20) H0,θ(s, x) = x e2βθs and Hα,θ(s, x) = e−α/cθs
B
(

αx e2βθs
)

α
,

for α > 0 and with B defined in (15). Notice that limα→0H
α,θ = H0,θ.

We consider the following intermediary result.

Lemma 2.4. Let s ≥ 0 and x ≥ 0. If (at, t ≥ 0) is positive and limt→+∞ at c
θ
t c̃

θ
t = α ∈ [0,+∞),

then we have:

(21) lim
t→∞

qθt−s(x, at)

qθt (at)
= e−2θ−x Hα,|θ|(s, x).

Proof. We omit the super-script θ in the proof. We get from (17) and (7) that for t ≥ s > 0 and
y > 0:

qθt−s(x, y)

qθt (y)
= x e−xct−s e−y(ct−s−ct) ct−sc̃t−s

ctc̃t
B0 (xyct−sc̃t−s) .

Recall from (6) that limt→+∞ ct = 2θ− so that:

(22) lim
t→∞

e−xct−s = e−2θ−x .

It is elementary to check that:

lim
t→∞

ct−sc̃t−s/ctc̃t = e2β|θ|s and lim
t→∞

(ct−s − ct)/ctc̃t =
e2β|θ|s−1

2|θ| =
1

c
|θ|
s

,

where the latter limit is simply βs if θ = 0. The result is then immediate. �

The result below for θ = 0 appears in [33, Section 5], and the proof for general θ is similar.

Lemma 2.5 (Martin boundary). Let s ≥ 0 and x ≥ 0. The limit (19) exists only in the following
cases:

(i) Extinction case. If at = 0 for t large enough, then the limit (19) exists and is equal to:

h∅,θ(s, x) = h∅,θ(x) = e−2θ−(x−1) .
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(ii) Low and moderate regimes. If the sequence (at, t ≥ 0) is positive and limt→+∞ at c
θ
t c̃

θ
t =

α ∈ [0,+∞), then the limit (19) exists and is equal to:

hα,θ(s, x) = h∅,θ(x)
Hα,|θ|(s, x)

Hα,|θ|(0, 1)
·

(iii) High regime. If limt→+∞ at c
θ
t c̃

θ
t = +∞, then the limit (19) exists and is equal to:

h∞(s, x) = 1{s=0, x=1}.

Remark 2.6 (Equivalent condition for the moderate regime). The moderate regime condition
limt→+∞ at c

θ
t c̃

θ
t = α ∈ (0,+∞), which appears in Lemma 2.5 (ii), is in fact equivalent to:

(23) at ∼
{

αβ2t2 if θ = 0,

α(2θ)−2 e2β|θ|t if θ 6= 0.

Proof. We omit the super-script θ in the proof. The low and moderate regimes are a direct
consequence of Lemma 2.4. In the extinction case, use that K(s, x; t, 0) = e−xct−s+ct and (22) to
get the result. For the high regime, using that for y > 0:

K(s, x; t, y) = e−xct−s+ct ×







0 if x = 0,
B(xy ct−sc̃t−s)

B(y ctc̃t)
e−y(ct−s−ct) if x > 0,

Equation (15), the asymptotics of the Bessel function I1(z) ∼ ez /
√
2πz as z goes to infinity

and (22), we deduce that limt→∞K(s, x; t, at) = 1{s=0, x=1}. �

Using similar arguments as in [33, Section 5] stated for θ = 0, Girsanov transform (14) to
reduce the cases θ < 0 to θ > 0 and then Remark 2.1 to reduce those latter cases to the case
θ = 0, we get the following result.

Lemma 2.7 (Extremal harmonic functions). Let β > 0 be fixed. Let θ ∈ R. The extremal time-

space harmonic functions of Z [β,θ] are the functions hα,θ for α ∈ A where A = {∅}⋃[0,+∞).

Proof. Notice that h∞ is not an harmonic function. According to [21, Section 10], the functions
hα,θ with α ∈ A are the only possible extremal harmonic functions. Thanks to (14) it is enough
to consider the case θ ≥ 0. Thanks to Remark 2.1, for θ ≥ 0, we have that:

E
θ
[

F (Z
[β,θ]
[0,t] )h

α,θ(t, Z
[β,θ]
t )

]

= E

[

F (e−2βθs Y1/cθs , s ∈ [0, t])hα,θ(t, e−2βθt Y1/cθt )
]

= Cα E

[

F (e−2βθs Y1/cθs , s ∈ [0, t]) e−α/cθt B(αY1/cθt
)
]

,

where for α = 0, CαB(αx) is simply replaced by C0 x, and Cα is a finite positive constant.
Then use that 1, (Ys, s ≥ 0) and (e−αs B(αYs), s ≥ 0) for α ∈ (0,+∞) are extremal martingales,
see [33], to conclude when θ ≥ 0. �

3. Local limits for the process Z

3.1. Some martingales. We present in this section two martingales which will naturally appear
in the local limits for the Brownian continuum random tree (CRT). Let α ∈ R. Define:

Hα(s, y) = e−αs yB0(αy), s ≥ 0, y ≥ 0,(24)

where B0 is defined in (15). Recall θ ∈ R. Let Mα,θ = (Mα,θ
t , t > 0) be the process defined by:

(25) Mα,θ
t = Hα(1/cθt , e

2βθt Zt).
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For θ = 0 and α ∈ [0,+∞), this formula corresponds to [33, Eq. (19)] up to a normalizing
constant.

Using Theorem 3 of [33] and Remark 2.1, we get the following result.

Proposition 3.1. Let α, θ ∈ R, x ∈ R+. The process
(

Mα,θ
t , t ∈ I

)

is a non-negative martingale

under N
θ with I = (0,+∞) and under P

θ
x with I = R+.

Proof. We first consider the case θ = 0. For α ∈ [0,+∞), under Px this result is in [33, Section 5].

Using |Mα,θ
t | ≤ e2|α|/c

θ
t M

|α|,θ
t to get the integrability for θ = 0 and that B0 is analytic to get the

martingale property, we deduce that the result holds also for α ≤ 0 under Px. For θ 6= 0, use
Remark 2.1 to get the result under Px for all α, θ ∈ R.

Moreover, for all t > 0, we have, using (13) and c̃θt/c
θ
t = e2βθt, and thus that for α, θ ∈ R:

N
θ
[

Mα,θ
t

]

= 1.

Then use the Markov property under the excursion measure to conclude the result also holds
under Nθ. �

We introduce an other family of related martingales. For α, θ ∈ R, we set M̃α,θ = (M̃α,θ
t , t > 0)

with:

(26) M̃α,θ
t = e2θZt Mα,−θ

t = Hα(1/c̃θt , e
−2βθt Zt) e

2θZt ,

using (25) and c−θ
t = c̃θt for the second equality. We then deduce from Proposition 3.1 the

following corollary.

Corollary 3.2. Let θ, α ∈ R. The process M̃α,θ is a martingale under N
θ, and for t > 0 and

any non-negative Ft-measurable random variable Ht, we have:

(27) N
θ[Ht M̃

α,θ
t ] = N

−θ
[

HtM
α,−θ
t

]

.

Remark 3.3 (The case θ = 0 and α = 0). Let t > 0. For θ = 0, we have:

M̃α,0
t =Mα,0

t = Hα(βt, Zt)·
For α = 0, we have:

(28) M0,θ
t = Zt e

2βθt and M̃0,θ
t = Zt e

2θ(Zt−βt) .

Then for α = θ = 0, we have:
M̃0,0

t =M0,0
t = Zt.

3.2. Local limit. We first consider the Poisson regime, whose name is inherited from the rep-
resentation given in Proposition 4.1 based on a Poisson immigration. Let a = (at, t > 0) be a
positive function.

Proposition 3.4 (Poisson regime). Let θ ∈ R, s > 0 and Hs be a bounded non-negative Fs-
measurable random variable. Let α ∈ (0,+∞). Assume the function a is such that as t → ∞
large:

at ∼
{

αβ2t2 if θ = 0,

α(2θ)−2 e2β|θ|t if θ 6= 0.

Then we have:

(29) lim
t→∞

N
θ[Hs|Zt = at] = N

|θ|
[

HsM
α,|θ|
s

]

=

{

N
θ[HsM

α,θ
s ] if θ ≥ 0,

N
θ[Hs M̃

α,θ
s ] if θ ≤ 0.
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Proof. Let s > 0 and Hs be fixed. For t > 0, thanks to (16) and (17), we have:

N
θ[Hs|Zt+s = at+s] =

N [Hsqt(Zs, at+s)]

qt+s(at+s)
·

Then use Lemma 2.4 to get the existence of the limit of qt(Zs, at+s)/qt+s(at+s) and Proposition 3.1
to get the convergence in L1. To conclude, notice that Lemma 2.4 gives:

lim
t→+∞

qt(Zs, at+s)

qt+s(at+s)
=

{

Mα,θ
s if θ ≥ 0,

M̃α,θ
s if θ ≤ 0.

�

The same proof can be used for the Kesten regime.

Proposition 3.5 (Kesten regime). Let θ ∈ R, s > 0 and Hs be a bounded non-negative Fs-
measurable random variable. Assume the function a is positive (at > 0) and such that as t→ ∞:

at =

{

o(t2) if θ = 0,

o(e2β|θ|t) if θ 6= 0.

Then we have:

(30) lim
t→∞

N
θ[Hs|Zt = at] = N

|θ|
[

HsZs e
2β|θ|s

]

=

{

N
θ[HsM

0,θ
s ] if θ ≥ 0,

N
θ[Hs M̃

0,θ
s ] if θ ≤ 0.

For completeness, we add the well known extinction case, that is the function at = 0 for large
t, which is a direct consequence of (14). Since the event {Zt = 0} has infinite measure under Nθ,
we consider the restriction instead of the conditioning.

Proposition 3.6 (Extinction regime). Let θ ∈ R, s > 0 and Hs be a bounded non-negative
Fs-measurable random variable. Then we have:

(31) lim
t→∞

N
θ
[

Hs 1{Zt=0}

]

= N
|θ|[Hs] =

{

N
θ[Hs] if θ ≥ 0,

N
−θ[Hs] if θ ≤ 0.

4. h-transform

We give a representation of the distribution of the process Z under the h-transform given by
the martingaleMα,θ using a Poisson immigration; and we identify it with the solution of the SDE
from [33, Theorem 3]. Even if Proposition 4.1 and Corollary 4.2 below are a direct consequence
of Proposition 5.11 and Theorem 5.13 (see Remarks 5.12 and 5.15), we provide an independent
proof which is interesting by itself. The proof will be done for β = 1 and θ = 0, and then use a
time-change, see Remark 2.1, to get θ ∈ R.

4.1. SDE representation. Let β > 0 and θ ∈ R. Let B = (Bt, t ≥ 0) be a standard Brownian
motion. Let α > 0 and Sα,θ(dt) be a Poisson point measure on R+ with intensity αβ e2βθt dt,

independent of the Brownian motion B. We set Sα,θ
t = Sα,θ([0, t]) for t ∈ R+. We define the

process Zα = (Zα
t , t ≥ 0) under P

θ as the unique strong solution (conditionally on S) of the
following SDE:

(32) dZα
t =

√

2βZα
t dBt − 2βθZα

t dt+ 2β (Sα,θ
t + 1) dt for t ≥ 0, and Zα

0 = 0.



BROWNIAN CONTINUUM RANDOM TREES CONDITIONED TO BE LARGE 13

Proposition 4.1 (An SDE with Poisson drift). Let α > 0, θ ∈ R and t0 > 0. The process

(Zt, t ∈ [0, t0]) under N
θ
[

•Mα,θ
t0

]

(resp. under Nθ
[

• M̃α,θ
t0

]

) is distributed as the process (Zα
t , t ∈

[0, t0]) under P
θ (resp. P

−θ).

The proof of this proposition is detailed in Section 4.2. The process (Zα
t , t ≥ 0) appears also

in [33, Theorem 3] when β = 1 and θ = 0 (the function h therein is given by y−1 Hα(s, y)
up to a multiplicative constant). As ∂y log(Hα(t, y)) does not depend on t, we simply write
∂y log(Hα(·, y)).

Corollary 4.2 (The SDE with Poisson drift is a diffusion). Let α > 0 and θ ≥ 0. The process
(Zα

t , t ≥ 0) satisfies the stochastic differential equation:

(33) dZα
t =

√

2βZα
t dBt − 2βθZα

t dt+ 2β e2βθt Zα
t ∂y log(Hα(·, e2βθt Zα

t )) dt, t ≥ 0.

The proof of this corollary is detailed in Section 4.3.

4.2. Proof of Proposition 4.1. Following Remark 2.1, we first use a scaling argument to
remove the parameters β and θ.

Let α > 0. Let Sα = (Sα
t , t ≥ 0) be a Poisson process with parameter α independent of the

Brownian motion B. Let Y α = (Y α
t , t ≥ 0) be the unique strong solution (conditionally on S) of

the following SDE:

(34) dY α
t =

√

2Y α
t dBt + 2 (Sα

t + 1) dt for t ≥ 0, and Y α
0 = 0.

Let β, α > 0 and θ ∈ R, and write Z [β,θ,α] for the process Zα under N
θ or P

θ to stress the
dependence in β and θ. Define the process (Y ′α, S′α) = ((Y ′α

s , S′α
s ), s ∈ [0, 1/(2θ−))) by:

(35) Y ′α
s = e2βθt Z

[β,θ,α]
t and S′α

s = Sα,θ
t , with s =

1

cθt
·

Then, it is elementary that this deterministic time change yields the following result.

Lemma 4.3. Let β, α > 0 and θ ∈ R. The process (Y ′α, S′α) under P
θ (whose law depends on

(β, θ) and α) is distributed as
(

(Y α
s , S

α
s ), s ∈

[

0, 1/(2θ−)
)

)

.

Let (Pt, t ≥ 0) be the transition semi-group on R+ × N of the Markov process (Y α, Sα).

Lemma 4.4. The semi-group (Pt, t ≥ 0) is Feller, that is for all t ≥ 0 and all bounded continuous
function f defined on R+ × N, the function Pt(f) is also bounded and continuous.

Proof. Let
(

(Y
α,(x,s)
t , S

α,(x,s)
t ), t ≥ 0

)

denote the solution of the SDE (34) starting from (x, s).

Let (Xx
t , t ≥ 0) be a Feller process starting from x (it is distributed as a solution to the SDE

(8)), independent of the (Y
α,(x,s)
t , S

α,(x,s)
t )t≥0. By the branching property, see (9), we have the

equality in distribution for the processes:

(

(Y
α,(x,s)
t , S

α,(x,s)
t ), t ≥ 0

)

(d)
=

(

(Y
α,(0,s)
t +Xx

t , S
α,(0,s)
t ), t ≥ 0

)

.
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Recall Qt denote the semi-group of the process Xx, see Remark 2.1. Then for every t ≥ 0,
x, y ∈ R+, s ∈ N and every bounded continuous function f defined on R+ ×N, we have:

Ptf(x, s)− Ptf(y, s) = E

[

f
(

Y
α,(x,s)
t , S

α,(x,s)
t

)

− f
(

Y
α,(y,s)
t , S

α,(y,s)
t

)]

= E

[

f
(

Y
α,(0,s)
t +Xx

t , S
α,(0,s)
t

)

− f
(

Y
α,(0,s)
t +Xy

t , S
α,(0,s)
t

)]

= E

[

Qtf(Y α,(0,s)
t ,S

α,(0,s)
t

)(x)−Qtf(Y α,(0,s)
t ,S

α,(0,s)
t

)(y)

]

where f(y,s) is the continuous map x 7→ f (y + x, s). By the Feller property of the semi-group Qt

and the dominated convergence theorem, we deduce that limy→x Ptf(x, s)− Ptf(y, s) = 0. This
gives the Feller property of the kernel Pt. �

We now give the density of (Y α
t , S

α
t ). Recall that Y α

0 = Sα
0 = 0. Let N be the counting

measure on N.

Lemma 4.5. Let t > 0. The random variable (Y α
t , S

α
t ) has a density f on R+ × N with respect

to dy ⊗N(dk) given by:

(36) f(y, k) =
1

t2
αk yk+1

k!(k + 1)!
e−(αt+t−1y), y ≥ 0, k ∈ N.

Proof. Conditionally on S, by (34), we can see Y α as a quadratic CSBP (with β = 1) with
immigration whose rate is 2(Sα

t + 1)dt. This implies that, conditionally on Sα, the process

Y α is distributed as
(

∑

i∈I 1{hi≤t} Z
(i)
t−hi

, t ≥ 0
)

, where
∑

i∈I δ(hi,Z(i))(dt,dZ) is a Poisson point

measure on R+ × C[0,R+) with intensity 2(Sα
t + 1)dtN[dZ] and N is the excursion measure of a

CSBP with branching mechanism ψ(λ) = λ2.

We deduce that for λ, µ ≥ 0:

E

[

e−λY α
t −µSα

t

]

= E

[

e−µSα
t −

∫ t
0 2(Sα

r +1)N[1−e−λZt−r ] dr
]

= E

[

e
−µSα

t −2
∫ t

0
(Sα

r +1) λ
1+(t−r)λ

dr
]

,

where we used (12) for the last equality (with β = 1 and θ = 0). Denote by (ξi, i ∈ N
∗) the

increasing sequence of the jumping times of the Poisson process Sα, and set ξ0 = 0. Then, we
have on {Sα

t = k}:
∫ t

0
(Sα

r + 1)
λ

1 + (t− r)λ
dr =

k
∑

i=0

(i+ 1)

∫ ξi+1∧t

ξi

λ

1 + (t− r)λ
dr

= −
k

∑

i=0

(i+ 1) log(1 + (t− r)λ)

∣

∣

∣

∣

ξi+1∧t

ξi

=

k
∑

i=0

log(1 + (t− ξi)λ).

Conditionally on {Sα
t = k}, the random set {ξ1, . . . , ξk} is distributed as {tU1, . . . , tUk} (no-

tice the order is unimportant and is not preserved), where U1, . . . , Uk are independent random
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variables uniformly distributed on [0, 1]. We deduce that:

E

[

e−λY α
t −µSα

t

]

=
∑

k∈N

(αt)k e−αt−µk

k!
E

[

k
∏

i=1

(

1 + t(1− Ui)λ
)−2

]

(1 + tλ)−2

=
∑

k∈N

(αt)k e−αt−µk

k!
(1 + tλ)−k−2

=
∑

k∈N

∫

R+

dy f(y, k) e−λy−µk,

where for the last equality, we used the definition of f given in (36). This finishes the proof. �

Let q′t be the distribution of Y α
t for t ∈ R+. We have q′0 = δ0 the Dirac mass at 0, and for

t > 0, we deduce from Lemma 4.5 that q′t(dy) has a density, also denoted by q′t, on R+ with
respect to the Lebesgue measure given by:

q′t(y) = t−2 e−y/tHα(t, y), t > 0, y ≥ 0,

where Hα is defined in (24). We now give some properties of the conditional law of St given Yt.
Recall B0 defined in (15).

Lemma 4.6. Let y ∈ R+. The law of Sα
t conditionally on {Y α

t = y} does not depend on t. More
precisely, we get for all t ≥ 0, k ∈ N and y ≥ 0:

(37) P(Sα
t = k|Y α

t = y) =
1

B0(αy)

(αy)k

k!(k + 1)!
·

Proof. Using Lemma 4.5, we directly have (37) for t > 0. Notice that for y = 0, we have
B0(0) = 1 and

1

B0(αy)

(αy)k

k!(k + 1)!
= 1{k=0}.

As (Y α
0 , S

α
0 ) = (0, 0), we deduce that (37) also holds for t = 0. �

We can now prove the Markov property of the process Y = (Yt, t ≥ 0).

Lemma 4.7. The process Y α is Markov, and its transition semi-group (Qt, t ∈ R+) is the unique
Feller semi-group such that q′t = q′0Qt for t ∈ R+, with q

′
t the distribution of Y α

t .

Proof. We say a probability kernel K is continuous if for all continuous and bounded function f ,
Kf is also continuous (and bounded). We shall check hypothesis from [35, Lemma 1]. With the
notation therein (X = (Y α, Sα) and φ(y, s) = y), the semi-group (Pt, t ≥ 0) is Feller, see Lemma
4.4. The probability kernel Λ(y; dz,dk) = P(Sα

t = k|Y α
t = y) δy(dz)N(dk) is clearly continuous

and does not depend on t. The probability kernel Φ(y, k; dz) = δy(dz) is also clearly continuous.
Lemma 4.6 gives exactly condition (i) in [35, Lemma 1]. We now check condition (ii) in [35,
Lemma 1], that is the one-dimensional marginal distributions of Y α, (q′t, t ∈ R+), are determining,
that is if h and g are bounded continuous functions defined on R+, then E[h(Y α

t )] = E[g(Y α
t )]

for all t ∈ R+ implies h = g. To prove this, notice that:

t2 eαt E
[

h(Y α
t )

]

=

∫

R+

e−t−1yH(y)dy,

where H(y) = h(y)y B0(αy). As the Laplace transform characterizes the bounded continuous
function, we deduce that if E[h(Y α

t )] = E[g(Y α
t )] for all t ∈ R+, then H = G (with G(y) =

g(y)y B0(αy)) and thus h = g on (0,+∞) and by continuity on R+.
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As the assumption of [35, Lemma 1] are satisfied, we deduce that Y α is a Markov process, and
that its transition semi-group (Qt, t ∈ R+) is the unique Feller semi-group such that q′t = q′0Qt

for t ∈ R+, with q
′
t the distribution of Y α

t . �

We now compare the distribution of Y α and the distribution of the Feller diffusion Y defined
in Remark 2.1, which is a CSBP with parameter β = 1 and θ = 0. Following (25), we set for
t > 0:

Mα
t = Hα(t, Zt) = e−αt ZtB0(αZt).

Let N denote the canonical measure of Y .

Lemma 4.8. Let α > 0. Let t0 > 0. The process (Y α
t , t ∈ [0, t0]) has the same distribution as

the process (Yt, t ∈ [0, t0]) under N
[

•Mα
t0

]

.

Proof. We first check the two processes have the same one-dimensional marginals. Clearly Y α
0 =

Y0 = 0. Let t > 0. According to Lemma 2.3, the entrance law of Yt under N has density
y 7→ t−2 e−y/t. We deduce that for λ ≥ 0:

N

[

e−λYt Mα
t

]

=

∫

R+

e−λy Hα(t, y) t−2 e−y/t dy =

∫

R+

e−λy q′t(y) dy = E

[

e−λY α
t

]

.

Since the Laplace transform characterizes the probability distribution on R+, we obtain that Y α
t

has the same distribution as Yt under N [•Mα
t ].

Using Doob’s h-transform, we get that the process (Yt, t ∈ [0, t0]) under N
[

•Mα
t0

]

is Markov.
Using that Mα is a martingale under N (see Proposition 3.1 and use that Y is distributed as
Z when β = 1, θ = 0), that Mα

t is a function of Yt, and that Y is Feller under N, we get that
(Yt, t ∈ [0, t0]) under N

[

•Mα
t0

]

is also Feller. We deduce from the uniqueness property of Lemma
4.7 and the identification of the one-dimensional marginals from the first step of the proof, that
(Y α

t , t ∈ [0, t0]) has the same distribution as (Yt, t ∈ [0, t0]) under N
[

•Mα
t0

]

. �

We can now give the proof of Proposition 4.1. Let β, α > 0, θ ∈ R and t0 > 0. Using the time
changes given by Remark 2.1 and (35), we deduce that the process (Zα

t , t ∈ [0, t0]) under Pθ is

distributed as the process (Zt, t ∈ [0, t0]) under N
θ
[

•Mα,θ
t0

]

. Then, using Corollary 3.2, we also

deduce that the process (Zα
t , t ∈ [0, t0]) under P

−θ is distributed as the process (Zt, t ∈ [0, t0])

under Nθ
[

• M̃α,θ
t0

]

. This finishes the proof of Proposition 4.1.

4.3. Proof of Corollary 4.2.

Proof. Since Y α satisfies (34) for Y α
0 = 0, then by Lemma 4.6 and the property of Poisson point

process, the process (Y α
t )t≥0 starting from Y α

0 = y satisfies:

dY α
t =

√

2Y α
t dBt + 2(Sα

t + ξy) dt, t ≥ 0,

where Sα and ξy are independent and (since Sα
0 = 0) for k ∈ N:

P(ξy = k + 1) =
1

B0(αy)

(αy)k

k!(k + 1)!
·

By conditioning on (Sα, ξy) and applying Itô’s formula, one has for any y ≥ 0:

lim
t→0+

E[e−λY α
t |Y α

0 = y]− e−λy

t
= −2λE[ξy] e−λy +λ2 e−λy y

= −2λ e−λy 1

B0(αy)

∞
∑

k=0

(αy)k

(k!)2
+ λ2 e−λy y.
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Since Y α is a diffusion process by Lemma 4.7, the above computation implies that for t ≥ 0:

dY α
t =

√

2Y α
t dBt +

2

B0(αY α
t )

∞
∑

k=0

(αY α
t )k

(k!)2
dt

=
√

2Y α
t dBt + 2Y α

t ∂y log(Hα(·, Y α
t )) dt,

where ∂y log(Hα(t, y)) does not depend on t as:

y ∂y log(Hα(·, y)) = 2

B0(αy)

∞
∑

k=0

(αy)k

(k!)2
·

We deduce Y α is a solution to the equation established in [33, Theorem 3]. Recall from (35) that
Zα
t = e−2βθt Ys with s = 1/cθt = (e2βθt −1)/2θ. With this deterministic time-change, we deduce

that the process Zα also satisfies (33). �

5. Backbone decomposition

We introduce basic facts on the space of real trees in Section 5.1. We recall some properties
of the Brownian CRT in Section 5.2. We give in Section 5.4 a recursive construction of some
discrete random trees using a grafting procedure defined in Section 5.3. Let us stress that the
measurable and topological properties of the grafting procedure, as well as its formal definition,
are discussed in detail in Section 6.3. In Section 5.5, we provide a decomposition of a (sub)critical
Brownian CRT according to n leaves at a given distance from the root and uniformly chosen at
random, this is a generalization of the case n = 1 from [18, Theorem 4.5]. We prove our main
results in Section 5.6 on the local convergence of the Brownian CRT conditioned to have a large
population at time t, as t goes to infinity.

5.1. Notations for trees.

5.1.1. Real trees. We use the framework of real trees to encode the genealogy of a continuous
state branching process. We refer to [22] for a detailed introduction to real trees.

A real tree (or simply a tree in the rest of the text) is a metric space (T, d) that satisfies the
two following properties for every u, v ∈ T :

(i) There is a unique isometric map fu,v from [0, d(u, v)] into T such that:

fu,v(0) = u and fu,v
(

d(u, v)
)

= v.

(ii) If ϕ is a continuous injective map from [0, 1] into T such that ϕ(0) = u and ϕ(1) = v,
then the range of ϕ is also the range of fu,v.

The range of the map fu,v is denoted by [[u, v]]. It is the unique continuous path that links u
to v in the tree. We will write [[u, v[[ (resp. ]]u, v]], ]]u, v[[) for [[u, v]] \ {v} (resp. [[u, v]] \ {u},
[[u, v]] \ {u, v}).

A rooted tree is a tree (T, d) with a distinguished vertex denoted by ̺ and called the root. We
always consider rooted trees in this work. For an element x of a rooted tree (T, d, ̺), we denote
by H(x) = d(̺, x) its height, and we set H(T ) = supx∈T H(x) the height of the tree T .

An element x of T \ {̺} is a leaf if T \ {x} has only one connected component; by convention
the root is a leaf if and only if T is reduced to the root. We denote by Lf(T ) the (non-empty) set
of leaves of T . The skeleton of the tree is the set Sk(T ) = T \Lf(T ). The set of branching points
(or vertices) Br(T ) is the set of x ∈ T such that T \ {x} has at least 3 connected components if
x 6= ̺ or at least 2 components if x = ̺.
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For a vertex x ∈ T , we define the subtree Tx “above” x as:

Tx =
{

y ∈ T : x ∈ [[̺, y]]
}

.

The real tree Tx is endowed with the distance induced by T and will be rooted at x. If u, v ∈ T ,
we denote by u ∧ v the most recent common ancestor of u and v, i.e. the unique vertex of T
such that:

[[̺, u]] ∩ [[̺, v]] = [[̺, u ∧ v]].
If (T, d, ̺) is a rooted real tree and a is a positive real number, we define the scaled tree aT as:

(38) aT = (T, ad, ̺)

where all the distances in the tree T are multiplied by the factor a.
The trace of the Borel σ-field of T on Sk(T ) is generated by the sets [[s, s′]], s, s′ ∈ Sk(T ) (see

[23]). Hence, there exists a σ-finite Borel measure L T on T , such that:

L
T
(

Lf(T )
)

= 0 and L
T
(

[[s, s′]]
)

= d(s, s′).

This measure L T is called the length measure on T . When there is no ambiguity, we simply
write L for L T .

5.1.2. Gromov-Hausdorff distance and sets of trees. We endow the set of (isometry equivalence
classes) of rooted real tree with the classical Gromov-Hausdorff distance whose definition (with
the notion of correspondances) is described below. We refer to [28] for general results on Gromov-
Hausdorff metrics.

Let (T, d, ̺) and (T ′, d′, ̺′) be two rooted compact real trees. A correspondence R between T
and T ′ is a subset of T × T ′ such that:

(i) for all x ∈ T , there exists x′ ∈ T ′ such that (x, x′) ∈ R,
(ii) for all x′ ∈ T ′, there exists x ∈ T such that (x, x′) ∈ R,
(iii) (̺, ̺′) ∈ R.

The distortion of such a correspondence R is defined as:

dist(R) = sup
{∣

∣d(x, y)− d′(x′, y′)
∣

∣; (x, x′), (y, y′) ∈ R
}

.

For two compact rooted trees (T, d, ̺) and (T ′, d′, ̺′) we set:

dGH(T, T ′) = inf
1

2
dist(R),

where the infimum is taken over all the correspodences between (T, d, ̺) and (T ′, d′, ̺′). The
function dGH is the so-called Gromov-Hausdorff pseudo-distance, see [32]. Furthermore, we have
that dGH(T, T

′) = 0 if and only if there exists an isometric bijection from (T, d) to (T ′, d′) which
preserves the root. The relation dGH(T, T

′) = 0 defines an equivalence relation between compact
rooted trees. The set TK of equivalence classes of compact rooted trees endowed with dGH is then
a metric Polish space, see [32, Proposition 9]. We shall consider below the trivial tree T0 ∈ TK

reduced to its root.

We can generalize this definition to compact n-pointed rooted trees where a n-pointed rooted
tree is a triplet (T, d,v) where (T, d) is a rooted real tree and v = (v0, v1, . . . , vn) with that
v0 = ̺ is the root of T and v1, . . . , vn are n distinguished (possibly equal) vertices. A cor-
respondence between two n-pointed rooted trees (T, d,v) and (T ′, d′,v′) is a correspondance
between (T, d, ̺) and (T ′, d′, ̺′) which satisfies moreover (vi, v

′
i) ∈ R for all i ∈ {1, . . . , n}, where

v′ = (v′0, v
′
1, . . . , v

′
n) with v

′
0 = ̺′, the root of T ′. The distance d

(n)
GH on the space T

(n)
K of equiva-

lence classes of compact n-pointed rooted trees is then defined in the same way as dGH on TK,

and the metric space (T
(n)
K , d

(n)
GH) is Polish; and notice that (TK, dGH) = (T

(0)
K , d

(0)
GH).
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For a rooted n-pointed tree (T, d,v) and t ≥ tT = maxi∈{0,...,n} d(̺, vi), we define the rooted
n-pointed tree T truncated at level t as (rt(T,v), d,v) with:

(39) rt(T,v) =
{

x ∈ T : H(x) ≤ t
}

,

and the distance on rt(T,v) is given by the restriction of the distance d. We shall simply write
rt(T,v) for (rt(T,v), d,v). A rooted n-pointed tree (T, d,v) is locally compact if rt(T,v) is
a compact rooted tree for all t ≥ tT . The locally compact trees (T, d,v) and (T ′, d′,v′) are
equivalent if and only if there exists an isometric one-to-one map from (T, d) to (T ′, d′) which

preserves the distinguished vertices. This defined indeed an equivalence relation. The set T
(n)
loc−K

of equivalence classes of locally compact rooted trees is then endowed with a distance d
(n)
LGH in the

spirit of [6], see Section 6.2 below and more precisely Proposition 6.4, so that it is a metric Polish

space and T
(n)
K is an open dense subset of T

(n)
loc−K. For n = 0, we simply write Tloc−K and dLGH

for T
(n)
loc−K and d

(n)
LGH. We shall consider below the infinite spine tree T1 = (R+, | · |, 0) ∈ Tloc−K,

where | · | is the usual Euclidean distance.

5.1.3. Grafting operation. We recall the grafting operation of [2]. Let (T, d, (̺, x)) be a locally
compact rooted 1-pointed tree and (T ′, d′, ̺′) be locally compact rooted trees. We define the tree
T ⊛x T

′ as the tree obtained by grafting T ′ on the tree T at vertex x. We set:

T ⊛x T
′ = T ⊔

(

T ′ \ {̺′}
)

,(40)

∀y, y′ ∈ T ⊛x T
′, d⊛(y, y′) =











d(y, y′) if y, y′ ∈ T,

d′(y, y′) if y, y′ ∈ T ′,

d(y, x) + d′(̺′, y′) if y ∈ T, y′ ∈ T ′,

(41)

where ⊔ denotes the disjoint union of two sets. By construction (T ⊛x T
′, d⊛, ̺) is a locally

compact rooted tree. It is easy to see that the equivalence class of T ⊛x T
′ does not depend of

the choice of the representatives in the equivalence classes of T and T ′ and hence the grafting
operation is well-defined on Tloc−K; it is even continuous, see Lemma 7.1. We also refer to
Section 6.3 for a more general grafting procedure and its topological properties.

Let (T,v) ∈ T
(n)
loc−K be either the infinite spine tree T1 (and n = 0) or a discrete tree, that

is, a compact rooted real tree with all its leaves being distinguished (see (81) for a more formal
definition) and then n ∈ N

∗. Let M =
∑

i∈I δ(xi,Ti) be a point measure on the T × Tloc−K. We

define intuitively the tree Graftn((T,v),M) ∈ T
(n)
loc−K as the tree:

(42) Graftn((T,v),M) =
(

T ⊛xi,i∈I (Ti, i ∈ I),v
)

obtained by grafting each locally compact rooted tree Ti on T at point xi (and keeping the n

distinguished elements v of T ). It is not clear that the resulting tree belongs to T
(n)
loc−K (some

assumptions must be added to M) nor that this infinite grafting procedure can be proceeded in
a measurable way (so that we get indeed a random tree when the tree T and the point measure
M are random). We give a formal definition of this procedure in Section 7.2 and check that it
is well defined (after some lengthy topological preliminaries) with good measurable property in

T
(n)
loc−K, where M is a particular Poisson point measure considered in the context of the backbone

decomposition from Section 5.5. Even if the presentation (42) is abusive, we stick to this informal
definition for simplicity.
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5.2. Brownian CRTs and Kesten trees. Brownian CRTs are random trees in Tloc−K that
code for the genealogy of continuous-state branching processes.

Before recalling the definition of such trees, we give some additional notation. For a locally
compact rooted tree t, we define the population at level a as the sub-set:

Zt(a) = {u ∈ t, H(u) = a}.
We denote by (t(i),∗, i ∈ I) the connected components of the open set t \ ra(t). For every i ∈ I,

let ̺i be the MRCA of t(i),∗, which is equivalently characterized by [[̺, ̺i]] = ∩u∈t(i),∗[[̺, u]]; notice

that ̺i ∈ Zt(a). We then set t(i) = t(i),∗ ∪ {̺i} so that t(i) is a locally compact rooted tree with
root ̺i, and we consider the point measure on Zt(a)× Tloc−K:

N t

a =
∑

i∈I

δ(̺i,t(i)).

We then recall the definition of the excursion measure Nθ for β > 0 and θ ≥ 0 associated with
a Brownian CRT from [18]. The underlying parameter β is fixed, and will be omitted from the
notation. There exists a measure N

θ on TK (and hence on Tloc−K) such that:

(i) Existence of a local time. For every a ≥ 0 and for Nθ[dT ]-a.e. T , there exists a finite
measure Λa on T such that
(a) Λ0 = 0 and, for every a > 0, Λa is supported on ZT (a).
(b) For every a > 0, Nθ[dT ]-a.e., we have {Λa 6= 0} = {H(T ) > a}.
(c) For every a > 0, Nθ[dT ]-a.e., we have for every continuous function ϕ on T :

〈Λa, ϕ〉 = lim
ε→0+

1

cθε

∫

N T
a (du,dT ′)ϕ(u)1{H(T ′)≥ε}

= lim
ε→0+

1

cθε

∫

N T
a−ε(du,dT ′)ϕ(u)1{H(T ′)≥ε}.

(ii) Branching property. For every a > 0, the conditional distribution of the point measure
N T

a (du,dT ′), under the probability measure N
θ[dT |H(T ) > a] and given ra(T ), is that

of a Poisson point measure on ZT (a)× Tloc−K with intensity Λa(du)N
θ[dT ′].

(iii) Regularity of the local time process. We can choose a modification of the process
(Λa, a ≥ 0) in such a way that the mapping a 7−→ Λa is N

θ[dT ]-a.e. continuous for the
weak topology of finite measures on T .

(iv) Link with CSBP. Under Nθ[dT ], the process (〈Λa, 1〉, a ≥ 0) is distributed as a CSBP
under its canonical measure with branching mechanism:

ψ(λ) = βλ2 + 2βθλ, λ ≥ 0.

We now extend the definition of the measure N
θ (only on Tloc−K) for θ < 0 by a Girsanov

transformation, following [7]. For t ≥ 0, set Gt = σ(rt(T )) and Zt = Λt(T ), the latter notation
is consistent with Section 2.2. The CSBP process Z = (Zt, t ≥ 0) is Markov with respect to the
filtration (Gt, t ≥ 0). For θ < 0 and t > 0, we set:

(43) N
−θ[dT ]|Gt

= e2θZt N
θ[dT ]|Gt

.

Then properties (i) to (iv) still hold for every θ ∈ R. This Girsanov transformation is consistent
with the Girsanov transformation of CSBP given by (14). Let us stress that the measure N

θ on
Tloc−K depends also on the parameter β > 0.

The so-called Kesten tree with parameters (β, θ) ∈ R
∗
+×R+ can be defined as the genealogical

tree associated with the continuous-state branching process with the same parameters, con-
ditioned on non-extinction (see for instance [30]). This latter process can also be defined by
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adding to the initial process a particular immigration. We use this second approach to extend
the definition of the Kesten tree for θ < 0.

Using our framework, the Kesten tree with parameters (β, θ) ∈ R
∗
+ ×R is built as a countable

family of trees defined by a Poisson point measure grafted on the infinite spine tree T1:

(44) T ∗ = Graft0(T1,M),

with M(dh,dT ) a Poisson point measure on R+×Tloc−K with intensity 2β1{h>0}dhN
θ[dT ]. We

refer to Section 7.2 for a more formal presentation which in particular implies that the Kesten
tree is a Tloc−K-valued random variable, see Lemma 7.2.

5.3. The set of (planar) discrete trees. A discrete tree is a compact rooted tree with a

finite number of leaves. We denote by T
(n)
dis the subset of n-pointed discrete tree whose leaves

are distinguished (see (81) for a formal definition): for (t,v) ∈ T
(n)
dis with v = (v0 = ̺, . . . , vn),

we have that Lf(t) ⊂ {v0, . . . , vn}. According to Lemma 6.11, the set T
(n)
dis is closed. We can

consider a discrete tree with a planar structure by enumerating its leaves, or more precisely
its distinguished vertices, “from the left to the right”. This will allow us to define on oriented

grafting; this will be used in the next section. Intuitively a discrete tree (t,v) ∈ T
(n)
dis is a planar

tree if for all x ∈ t, there exists 0 ≤ ig ≤ id ≤ n such that vi ∈ tx if and only if i ∈ {ig, . . . , id};
we check in Section 7.3 that the set of (equivalence classes of) n-pointed planar tree T

(n)
plan ⊂ T

(n)
dis

is also closed.

1 3 2

a

b

Figure 1. A tree (t,v) ∈ T
(3)
plan with v = (̺, 1, 3, 2)

We now define an oriented grafting of a discrete tree t′ on a discrete tree t at point x ∈ t; we
shall use later on this construction for planar trees; this is similar to the first grafting defined
in Section 5.1.3 but for the ordering of the distinguished vertices. Formally, if (t,v) be an
n-pointed discrete tree with v = (v0 = ̺, v1, . . . , vn), (t

′,v′) an m-pointed discrete tree with
v′ = (v′0 = ̺′, v′1, . . . , v

′
m) and x ∈ t, we define for ε ∈ {g,d}:

(45) (t,v) ⊛ε
x (t

′,v′) = (t⊛x t
′,v ⊛

ε v′) ∈ T
(n+m)
dis

with t⊛x t
′ defined in (40) and:

v ⊛
g v′ = (v0, . . . , vig−1, v

′
1, . . . , v

′
m, vig , . . . , vn),(46)

v ⊛
d v′ = (v0, . . . , vid , v

′
1, . . . , v

′
m, vid+1, . . . , vn),(47)

where:

(48) ig = min{i ∈ {0, . . . , n} : vi ∈ tx} and id = max{i ∈ {0, . . . , n} : vi ∈ tx},
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and the convention that if ig = 0 (that is, x = ̺), then v⊛g v′ = (v0, v
′
1, . . . , v

′
m, v1, . . . , vn), and

if id = n, then v⊛dv′ = (v0, . . . , vn, v
′
1, . . . , v

′
m). Let us stress that ig and id are well defined as all

the leaf are distinguished. Notice also that if (t,v) and (t′,v′) are planar, so is (t,v)⊛ε
x (t

′,v′).
Furthermore, for i ∈ {1, . . . , n} and h ≤ H(vi), we shall consider the grafting of t′ at xi,h ∈ t

the point of [[̺, vi]] at height h:

(49) (t,v) ⊛ε
i,h (t

′,v′) = (t,v) ⊛ε
xi,h

(t′,v′).

Notice this latter grafting is well defined on the equivalent classes of discrete trees, and it is
measurable thanks to Lemma 7.3.

5.4. A discrete random tree constructed by successive grafts.

5.4.1. A random tree. In this section, for a ≥ 0, we denote by
(

[0, a], (0, a)
)

∈ T
(1)
dis the (equivalent

class of the) tree [0, a] endowed with the usual distance on R, rooted at ̺ = 0 and pointed at a;
and when there is no possible confusion we simply denote it by [0, a].

Let t > 0 and let ν be a probability measure on [0, t]. Let ξ = (ξk, k ∈ N
∗) be a sequence

of independent random variables with distribution ν and let
(

(Kk, εk), k ∈ N
∗
)

be a sequence
of independent random variables independent of the sequence ξ, with Kk uniformly distributed
on {1, . . . , k} independent of εk uniformly distributed on {g,d}. For every integer n ≥ 2, we

set (ξ
(n)
1 , . . . , ξ

(n)
n−1) the increasing order statistic of (ξ1, . . . , ξn−1). Then we define the family of

pointed planar trees
(

(T
(n)
1 ,v

(n)
1 ), . . . , (T

(n)
n ,v

(n)
n )

)

, with (T
(n)
k ,v

(n)
k ) ∈ T

(k)
plan, recursively by:

• T
(n)
1 = [0, t], that is, (T

(n)
1 ,v

(n)
1 ) =

(

[0, t], (0, t)
)

∈ T
(1)
plan.

• For every k ∈ {1, . . . , n−1}, conditionally given the random variable (T
(n)
k ,v

(n)
k ) in T

(k)
plan,

we define the T
(k+1)
loc−K-valued random variable (T

(n)
k+1,v

(n)
k+1) by grafting a branch of length

t− ξ
(n)
k+1 uniformly on the left or on the right of a uniformly chosen vertex among the k

vertices of T
(n)
k at level ξ

(n)
k+1, and the new leaf (which is, as all the other leaves, at level t)

is added to the vector recording the distinguished vertices. Formally, using the grafting
procedure (49) we set:

(50) (T
(n)
k+1,v

(n)
k+1) = (T

(n)
k ,v

(n)
k )⊛

εk+1

Kk, ξ
(n)
k+1

[

0, t− ξ
(n)
k+1

]

·

t

Figure 2. The trees T
(4)
1 , T

(4)
2 , T

(4)
3 and T

(4)
4 obtained from the sequences (K1 =

1,K2 = 1,K3 = 2) and (ε1 = g, ε2 = d, ε3 = d). The dashed lines represent the

levels ξ
(4)
1 , ξ

(4)
2 , ξ

(4)
3 .
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By construction, we get that (T
(n)
k ,v

(n)
k ) belongs to T

(k)
plan for all k ∈ {1, . . . , n}. To simplify

the notations, we set Tn = (T
(n)
n ,v

(n)
n ).

Recall that for a rooted tree T , L T denotes its length measure; and we simply write L when
there is no ambiguity. The next lemma relates the distributions of Tn and of Tn+1; its proof is

given in the next section. Recall that T
(n)
plan is a subset of T

(n)
dis .

Lemma 5.1. Let t ≥ 0. Assume that the probability distribution ν has a positive density fdens
with respect to the Lebesgue measure on [0, t]. For n ∈ N

∗, G a measurable non-negative function

defined on T
(n+1)
dis , and ε a random variable uniformly distributed on {g,d} and independent of

Tn, we have:

(51) E

[
∫

Tn

L (dx) fdens
(

H(x)
)

G
(

Tn ⊛
ε
x

[

0, t−H(x)
]

)

]

=
n+ 1

2
E
[

G
(

Tn+1

)]

.

Remark 5.2. We comment on the left-hand side of (51). First notice the grafting on Tn is
oriented, which justify to build the discrete tree Tn as a planar tree. Second, we check that the
integral I =

∫

Tn
L (dx) fdens(H(x))G

(

Tn ⊛ε
x [0, t −H(x)]

)

is a non-negative random variable.

Recall that Tn = (T
(n)
n ,v

(n)
n ). Then, we can write I as follows:

I =
n
∑

k=1

∫ t

ξ
(n)
k−1

dh fdens(h)G
(

Tn ⊛
ε
k,h [0, t− h]

)

,

with the convention that ξ
(n)
0 = 0. Therefore, using the continuity of the grafting function,

see Lemma 7.3, we obtain that I is a non-negative real-valued random variable, and thus its
expectation is well defined.

5.4.2. Proof of Lemma 5.1. The proof is based on two technical lemmas. We first consider the
case t = 1 and ν the uniform distribution on [0, 1]. Let us denote by Tunif

n for Tn when ν is the
uniform distribution on [0, 1].

Lemma 5.3. For n ∈ N
∗, G a measurable non-negative functional defined on T

(n+1)
dis , and ε a

{g,d}-valued uniform random variable independent of Tunif
n , we have:

(52) E

[

∫

Tunif
n

L (dx)G
(

Tunif
n ⊛

ε
x

[

0, t−H(x)
]

)

]

=
n+ 1

2
E

[

G
(

Tunif
n+1

)

]

.

Remark 5.4. From (52), we see n+1
2 is just the mean length of Tunif

n .

Proof. To simplify notation, we write Tn for Tunif
n . We give a proof by induction. For n = 1, this

is a direct consequence of the construction of T2 = T
(2)
2 from T

(2)
1 = T1 = [0, 1] given by (50).

Let n ∈ N
∗ and assume that (52) holds for n replaced by any k ∈ {1, . . . , n − 1}. We will use

for the proof a special representation of planar binary trees. Let T be a compact planar binary
tree rooted at ̺, with all leaves at height 1; in particular the tree T has a finite number of leaves.
If T has at least two leaves, since it is compact with a finite number of leaves, there exists a
lowest branching vertex, say x. We set h = H(x) and T̃ g (resp. T̃ d) the left (resp. right) subtree
above x. In our settings, we have:

h = H(x) and T =
(

[[̺, x]]⊛x T̃
g
)

⊛
d
x T̃

d =
(

[[̺, x]]⊛x T̃
d
)

⊛
g
x T̃

g,

where, with a slight abuse of language (see Lemma 6.6 for formal justification), one has removed
the vertex x from the distinguished vertices after the graftings. For convenience, we consider the
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scaled left and right trees T g = (1− h)−1T̃ g and T d = (1− h)−1T̃ d (recall (38) for the definition
of a scaled tree), so that T g and T d are rooted bounded binary planar trees with all their leaves
at height 1. We call (h, T g, T d) the decomposition of T according to its lowest branching vertex.

Let (ξ
(n+1)
1 ,Tg

n+1,T
d
n+1) be the decomposition ofTn+1 according to its lowest branching vertex

(which is indeed at height ξ
(n+1)
1 by construction). Denote by In+1 the number of leaves of Tg

n+1.
Using a Pólya urn starting with two balls of color g and d, we get that, by construction, In+1

is the number of balls of color g in the urn after n draws. Thus In+1 is uniform on {1, . . . , n}
and independent of ξ

(n+1)
1 . Notice that if U is a uniform random variable on [0, 1], for every

h ∈ (0, 1), conditionally given {U ≥ h}, the random variable (1− h)−1(U − h) is still uniformly

distributed on [0, 1]. This gives that, conditionally on {ξ(n+1)
1 = h} and {In+1 = i}, the two trees

Tg
n+1 and Td

n+1 are independent and distributed respectively as Ti and Tn+1−i.

We consider a measurable non-negative functional G defined on the space of rooted compact
binary planar trees with a finite number of leaves, all of them at height 1 of the form:

(53) G(T ) = g1(h) g2(T
g) g3(T

d),

where the gi’s are measurable non-negative functionals and (h, T g, T d) is the decomposition of
T according to its lowest branching vertex. Setting fj(i) = E [gj(Ti)] for j ∈ {2, 3}, we have

since ξ
(n+1)
1 is distributed according to a β(1, n) distribution (as the maximum of n independent

uniform random variables):

E [G(Tn+1)] =

(
∫ 1

0
g1(h)n(1− h)n−1 dh

)

1

n

n
∑

i=1

f2(i)f3(n + 1− i)

=

(
∫ 1

0
g1(h) (1 − h)n−1 dh

) n
∑

i=1

f2(i)f3(n+ 1− i).(54)

On the other hand, let (ξ
(n)
1 ,Tg

n,Td
n) be the decomposition of Tn according to its lowest

branching vertex. Let x ∈ Tn and set h = H(x).

• If h < ξ
(n)
1 , the decomposition of Tn⊛

g
x [0, 1−h] according to its lowest branching vertex

is given by (h, [0, 1], (1 − h)−1T′
n) where T′

n is as the tree Tn but for its lowest branch

whose length is ξ
(n)
1 − h instead of ξ

(n)
1 . Notice that the shapes of the tree T′

n and Tn

are the same. Then using again the property of conditioned uniform random variables,

we deduce that conditionally on {ξ(n)1 ≥ h}, the tree (1 − h)−1T′
n is distributed as Tn.

Thus, we get:

(55) E

[
∫

Tn

1
{H(x)<ξ

(n)
1 }

L (dx)G
(

Tn ⊛
g
x [0, 1 − h]

)

]

= E

[

∫ ξ
(n)
1

0
g1(h) dh

]

f2(1)f3(n).

By symmetry, we have:

(56) E

[
∫

Tn

1
{H(x)<ξ

(n)
1 }

L (dx)G
(

Tn ⊛
d
x [0, 1 − h]

)

]

= E

[

∫ ξ
(n)
1

0
g1(h) dh

]

f2(n)f3(1).

• For x ∈ T̃g
n, the decomposition of Tn⊛

ε
x [0, 1−h] according to its lowest branching vertex

is given by (ξ
(n)
1 , (1 − h)−1T ′,Td

n), where T ′ = T̃g
n ⊛ε

x [0, 1 − h]. Notice that the length
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measure on the tree Tg
n is obtained by scaling by (1− ξ

(n)
1 )−1 the length measure on Tn

restricted to T̃g
n. We deduce that:

E

[
∫

Tn

1{x∈T̃g
n}

L
Tn(dx)G

(

Tn ⊛
ε
x [0, 1 − h]

)

]

= E

[

g1(ξ
(n)
1 )g3(T

d
n)

∫

Tn

1{x∈T̃g
n}

L
Tn(dx) g2

(

(1− ξ
(n)
1 )−1

(

T̃g
n ⊛

ε
x [0, 1 −H(x)]

)

)

]

= E

[

g1(ξ
(n)
1 )g3(T

d
n)

∫

T
g
n

(1− ξ
(n)
1 )L T

g
n(dy) g2

(

Tg
n ⊛

ε
y

[

0, 1 −H(y)
]

)

]

= E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

] 1

n− 1

n−1
∑

i=1

f3(n− i)E

[
∫

Ti

L
Ti(dy) g2

(

Ti ⊛
ε
y

[

0, 1−H(y)
]

)

]

.

where we used the distribution of (Tg
n,Td

n) conditionally on ξ
(n)
1 and In for the last

equality. Using that, by induction, (52) holds for n = i, we get:

(57) E

[
∫

Tn

1{x∈T̃g
n}

L (dx)G
(

Tn ⊛
ε
x [0, 1− h]

)

]

= E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

] 1

n− 1

n−1
∑

i=1

i+ 1

2
f2(i+ 1) f3(n− i)

= E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

] 1

n− 1

n
∑

i=2

i

2
f2(i) f3(n− i+ 1).

• By symmetry, for x ∈ T̃d
n, we get:

(58) E

[
∫

Tn

1{x∈T̃d
n}

L (dx)G(Tn ⊛
ε
x [0, 1 − h])

]

= E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

] 1

n− 1

n
∑

i=2

i

2
f3(i) f2(n− i+ 1)

= E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

] 1

n− 1

n−1
∑

i=1

n− i+ 1

2
f2(i) f3(n− i+ 1).

Summing (55) times P(ε = g) = 1/2, (56) times P(ε = d) = 1/2, (57) and (58), and using that

ξ
(n)
1 has distribution β(1, n − 1) so that:

E

[

∫ ξ
(n)
1

0
g1(h) dh

]

=
1

n− 1
E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

]

=

∫ 1

0
g1(h)(1 − h)n−1 dh,

we deduce that:

E

[
∫

Tn

L (dx)G
(

Tn ⊛
ε
x

[

0, 1 −H(x)
]

)

]

=

(
∫ 1

0
g1(h)(1 − h)n−1 dh

) n
∑

i=1

n+ 1

2
f2(i)f3(n+ 1− i).
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Thanks to (54), we deduce that (52) holds for G given by (53). Then use a monotone class
argument to conclude that (52) holds for any measurable non-negative G. This concludes the
proof by induction. �

We now consider t ≥ 0 and assume that the probability distribution ν has a positive density
fdens with respect to the Lebesgue measure on [0, t]. Let F denote the cumulative distribution
function of ν. By the assumptions on fdens, F is a bijection from [0, t] onto [0, 1] and its inverse
F−1 is continuous. For a compact rooted real tree (T, d, ̺), we define:

∀x ∈ T, Hfdens(x) = F−1(H(x)),

∀x, y ∈ T, dfdens(x, y) = Hfdens(x) +Hfdens(y)− 2Hfdens(x ∧ y).
The scaling map Rfdens : (T, d, ̺) 7−→ (T, dfdens , ̺) is then well-defined from {T ∈ TK : H(T ) ≤ 1}
to TK. We shall now prove it is continuous.

Lemma 5.5. The map Rfdens from {T ∈ TK, H(T ) ≤ 1} to TK is continuous.

Proof. Let ε > 0. As F−1 is uniformly continuous with our assumptions, there exists δ > 0 such
that, for every x, y ∈ [0, 1]:

|x− y| < δ =⇒
∣

∣F−1(x)− F−1(y)
∣

∣ ≤ ε

2
·

Let T, T ′ ∈ TK with H(T ) ≤ 1 and H(T ′) ≤ 1 such that dGH(T, T
′) < δ/8. Then, there

exists a correspondence R between (elements in the equivalence classes) T and T ′ such that
dist (R) ≤ 2dGH(T, T

′) + δ/4 < δ/2.
For every (x, x′), (y, y′) ∈ R, we have:
∣

∣dfdens(x, y)− d′fdens(x′, y′)
∣

∣ =
∣

∣Hfdens(x) +Hfdens(y)− 2Hfdens(x ∧ y)−Hfdens(x′)

−Hfdens(y′) + 2Hfdens(x′ ∧ y′)
∣

∣

≤
∣

∣

∣
F−1

(

H(x)
)

− F−1
(

H(x′)
)

∣

∣

∣
+

∣

∣

∣
F−1

(

H(y)
)

− F−1
(

H(y′)
)

∣

∣

∣

+ 2
∣

∣

∣
F−1

(

H(x ∧ y)
)

− F−1
(

H(x′ ∧ y′)
)

∣

∣

∣
.

As (x, x′) ∈ R, we have
∣

∣H(x) − H(x′)
∣

∣ ≤ dist (R) < δ and consequently,
∣

∣

∣
F−1

(

H(x)
)

−
F−1

(

H(x′)
)

∣

∣

∣
< ε/2. Similarly, we have

∣

∣

∣
F−1

(

H(y)
)

− F−1
(

H(y′)
)

∣

∣

∣
< ε/2. We also have:

∣

∣H(x ∧ y)−H(x ∧ y)
∣

∣ =
1

2

∣

∣H(x) +H(y)− d(x, y) −H(x′)−H(y′) + d′(x′, y′)
∣

∣

≤ 1

2

∣

∣H(x)−H(x′)
∣

∣+
1

2

∣

∣H(y)−H(y′)
∣

∣+
1

2

∣

∣d(x, y) − d′(x′, y′)
∣

∣

≤ 3

2
dist (R)

< δ.

This gives
∣

∣

∣
F−1

(

H(x ∧ y)
)

− F−1
(

H(x′ ∧ y′)
)

∣

∣

∣
< ε/2.

To conclude, we have distfdens(R) < 2ε which implies that dfdensGH (T, T ′) < ε. This gives the

continuity of the map Rfdens. �

We now prove Lemma 5.1. Recall that Tn denotes the trees constructed with the probabil-
ity measure ν(dx) = fdens(x) dx and Tunif

n the trees constructed with the uniform distribution
on [0, 1] as studied in the first step. By construction, for all n ∈ N

∗, the random variables
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Rfdens(Tunif
n ) and Tn have the same distribution. Notice also that, for every T ∈ TK and every

non-negative measurable function g on R+ × Tloc−K, we have:
∫

T
L

T (dy) g
(

H(y), T
)

=

∫

Rfdens(T )
L

Rfdens (T )(dx) fdens
(

Hfdens(x)
)

g
(

Hfdens(x), Rfdens(T )
)

.

Let G be a measurable non-negative functional defined on the space of rooted compact binary
planar trees with a finite number of leaves, all of them at height t. We first have:

E

[
∫

Tn

L
Tn(dx) fdens

(

H(x)
)

G
(

Tn ⊛
ε
x

[

0, t−H(x)
]

)

]

= E

[

∫

Rfdens (Tunif
n )

L
Rfdens(Tunif

n )(dx) fdens
(

Hfdens(x)
)

G
(

Rfdens(Tunif
n )⊛ε

x

[

0, t−Hfdens(x)
]

)

]

= E

[

∫

Tunif
n

L
T

unif
n (dy) G ◦Rfdens

(

Tunif
n ⊛

ε
y

[

0, 1−H(y)
]

)

]

.

Applying Lemma 5.1, and then that Rfdens(Tunif
n+1) and Tn+1 have the same distribution, we get

the result.

5.4.3. An infinite tree with no leaves. Let fint be a positive locally integrable function on [0,+∞).
Let S be a Poisson point measure on R+ with intensity fint(t) dt. We denote by (ξi, i ≥ 1) the
increasing sequence of the atoms of S and by N the process

(

Nt = S
(

[0, t]
)

, t ≥ 0
)

.
Let (εn, n ≥ 1) be independent random variables uniformly distributed on {g,d} and let

(Kn, n ≥ 1) be independent random variables uniformly distributed on {1, 2, . . . , n} respectively,
all these variables being independent and independent of S.

We define a tree-valued process (Tt, t ≥ 0) where, for every t ≥ 0, the random tree Tt has
height t and Nt + 1 leaves, all of them at height t. Before going into this construction, we first
define a growing procedure on rooted n-pointed trees for n ∈ N

∗:

(59) Growthn((T,v), h) ∈ T
(n)
dis with (T,v) ∈ T

(n)
dis and h ∈ R+,

as the tree obtained by grafting on all the distinguished vertices of T , but the root (that is, on
v∗ = (v1, . . . , vn)) a branch of length h, distinguishing the new leaves with the order naturally
induced by v∗ and removing the vertices v∗ from the list of distinguished vertices. This function
is formally defined in Section 7.5, see also Lemma 7.4 for its measurability.

We can now construct the process (Tt, t ≥ 0) inductively. For 0 ≤ t ≤ ξ1, we set Tt =
(

[0, t], (0, t)
)

and Nt = 0.
Let n ∈ N

∗ and assume that (Tξn ,vn) is a tree of height ξn with n leaves, all of them at height
ξn and distinguished (i.e. the vector vn is composed of the root of Tξn and all its leaves). Then,
we define the process on (ξn, ξn+1] by setting, for every t ∈ (ξn, ξn+1]:

Tt = Growthn(Tξn , t− ξn)⊛
εn
Kn,ξn

[0, t− ξn] and Nt = n.

Standard properties of Poisson processes give the following result.

Lemma 5.6. For every n ≥ 1 and every t > 0, conditionally given Nt = n − 1, the tree Tt is
distributed as the tree Tn of Section 5.4.1 associated with the density fdens on [0, t] given by:

(60) fdens(u) =
fint(u)

F (t)
1[0,t](u) with F (t) =

∫ t

0
fdens(u) du.
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We now view the tree Tt as a real-tree of Tloc−K (we forget about the distinguished leaves which
is a continuous operation thanks to Lemma 6.6). It is easy to see that the process (Tt, t ≥ 0)
satisfies the Cauchy property in Tloc−K as rs(Tt) = rs(Tt′) for every s ≤ t ≤ t′. Thus this
sequence converges a.s. in Tloc−K, and we write:

(61) T
ske = lim

t→+∞
Tt.

The tree Tske is a Tloc−K-valued random variable which has no leaves. The tree Tske will serve
as a backbone for the description of the genealogical tree of the conditioned CSBP.

We present now an ancillary result which is interesting by itself; it is a consequence of
Lemma 5.1 on two tree-valued processes that have the same one-dimensional marginal.

We first consider the process (Tt, t ≥ 0) associated with the intensity fint ≡ 1, that is, fint(t) =
1 for all t ≥ 0. Then we construct a sequence t = (tn, n ≥ 1) of increasing real trees, with

tn ∈ T
(n)
K for every n ≥ 1, all of them of height 1. Let (εk, k ≥ 1) be independent random

variables uniformly distributed on {g,d}. We define the sequence t by induction by setting first

t1 =
(

[0, 1], (0, 1)
)

. Let n ≥ 1 and assume that (tn,vn) is a tree of T
(n)
K with height 1 and with

n leaves all of them at height 1. Conditionally given tn, let Vn+1 be a random element on tn
uniformly chosen according to the length measure; that is Vn+1 is distributed according to the
measure cn L , with L the length measure on tn and the normalization cn = 1/L (tn). Notice
that Vn+1 is a.s. not a leaf nor the root of tn. Then we set:

tn+1 = tn ⊛
εn+1

Vn+1

[

0, 1 −H(Vn+1)
]

.

In particular, for every measurable nonnegative function G, we have:

(62) E
[

G(tn+1)| t1, . . . , tn, εn+1

]

=

∫

tn

L (dx)

L (tn)
G
(

tn ⊛
εn+1
x

[

0, 1−H(x)
]

)

.

Recall the measurable function Ñt from Definition (82) which records the number of vertices

at level t of a tree without leaves: Ñt(T ) = Card
(

{

x ∈ T : H(x) = t
}

)

. Let us consider the

continuous (see Lemma 6.6) canonical projection Π◦
n : T

(n)
K −→ TK defined by Π◦

n(t,v) = t.

Proposition 5.7. Let n ≥ 1 and fint ≡ 1. For all measurable non-negative functional G defined

on T
(n)
dis , we have, with L the length measure on tn:

(63) E

[

G(T1)
∣

∣

∣
N1 = n− 1

]

=
2n−1

n!
E

[

G(tn)

n−1
∏

k=1

L (tk)

]

,

and for all measurable non-negative functional G defined on TK (or on Tloc−K):

(64) E

[

G(Tske
1 )

∣

∣

∣
Ñ1(T

ske) = n
]

= E

[

G ◦ Π◦
n(T1)

∣

∣

∣
N1 = n− 1

]

.

Proof. By construction, we have that the process
(

(

Tske
t , Ñt(T

ske)
)

, t ≥ 0
)

is distributed as the

process
(

(

Π◦
Nt+1(Tt), Nt + 1

)

, t ≥ 0
)

. This gives (64).

We now prove (63) by induction. Thanks to Lemma 5.6, conditionally given N1 = n− 1, the
tree T1 is distributed as Tunif

n . For n = 1, we have Tunif
n = t1 = ([0, 1], (0, 1)) hence Equation

(63) holds. Let us suppose that (63) holds for some n ≥ 1. Applying Lemma 5.1, one gets:

E
[

G(Tunif
n+1)

]

=
2

n+ 1
E

[

L (Tunif
n )

∫

Tunif
n

L T
unif
n (dx)

L Tunif
n (Tunif

n )
G
(

Tunif
n ⊛

ε
x

[

0, 1 −H(x)
]

)

]

.
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Now we apply the induction assumption for the right-hand side of the previous equation to get:

E
[

G(Tunif
n+1)

]

=
2

n+ 1

2n−1

n!

[

L
tn(tn)

∫

tn

L tn(dx)

L tn(tn)
G
(

tn ⊛
εn+1
x

[

0, 1−H(x)
]

)

n−1
∏

k=1

L
tn(tk)

]

=
2n

(n+ 1)!
E

[

G(tn+1)
n
∏

k=1

L
tn+1(tk)

]

by definition of the tree tn+1 and by (62). This gives that (63) holds with n replaced by n+ 1.
This concludes the proof by induction. �

5.5. The n-leaves decomposition of the Brownian CRT. The decomposition of a (sub)critical
Brownian CRT T according to a spine [[∅, x]], where x ∈ T is a leaf picked at random at level
t > 0, that is according to the local time Λt(dx), is given in Theorem 4.5 in [18]. In our setting, it
can be rephrased in the next theorem. Notice that, for t > 0, the (planar discrete) 1-pointed tree

[0, t] ∈ T
(1)
loc−K denotes the segment [0, t] endowed with the Euclidean distance, with the root 0

and the distinguished vertex t. Recall that the grafting operation Graftn on a n-pointed discrete
tree of trees formalized by atoms of a Poisson point measure M has been intuitively presented
in (42) (or (114)) and formally defined in Section 7.2.2, see (115) therein, using the theoretical

background of Section 6.8, so that Graft1([0, t],M) in (65) below is a well defined T
(1)
loc−K-valued

random variable.

Theorem 5.8 ([18]). Let β > 0, θ ≥ 0 and t > 0. Let M be under E a Poisson measure with

intensity 2β 1[0,t](s)dsN
θ[dT ]. For every non-negative measurable functional F on T

(1)
loc−K (or

T
(1)
K ), we have, with ̺ the root of T :

(65) N
θ

[
∫

T
Λt(dv)F

(

T , (̺, v)
)

]

= e−2βθt
E
[

F
(

Graft1([0, t],M)
)]

.

We extend this result to the super-critical case θ < 0.

Corollary 5.9 (One-leaf decomposition). Let β > 0, θ ∈ R and t > 0. Let M be under
E a Poisson measure with intensity 2β 1[0,t](s)dsN

θ[dT ]. For every non-negative measurable

functional F on T
(1)
loc−K, Equation (65) holds.

Proof. Let (T,v) ∈ T
(1)
loc−K with v = (̺, v). We denote by (T ◦

i , i ∈ I) the connected components
of the set T \ [[̺, v]]. For every x ∈ T , there exists a unique xi ∈ T such that ∩x∈T ◦

i
[[̺, x]] = [[̺, xi]]

and we set Ti = T ◦
i ∪ {xi} viewed as a real tree rooted at xi. Then we define the point measure

M(T,v) on R+ × Tloc−K by:

M(T,v) =
∑

i∈I

δH(xi),Ti
.

This application is well defined according to Corollary 6.34. Even if we shall not use it as such, let
us mention that a.s.M(Graft1([0, t],M)) = M; this can be easily deduced from Proposition 6.33.

We first prove (65) for functionals F of the form:

(66) F (T,v) = e−〈Φ,M(T,v)〉,

where (T,v) ∈ T
(1)
loc−K, Φ is a continuous non-negative function with bounded support defined

on R+ × T
∗
loc−K (with T

∗
loc−K = Tloc−K \ {T0} where T0 ∈ Tloc−K is the tree reduced to its root,

see Section 6.9).
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For simplicity, we write (T , v) for the 1-pointed tree (T , (̺, v)). Let θ > 0. Using (43), we
have for every s > t that:

N
−θ

[
∫

T
Λt(dv) e

〈Φ,M(rs(T ,v))〉

]

= N
θ

[
∫

T
Λt(dv) e

2θZs−〈Φ,M(rs(T ,v))〉

]

.

We apply then (65) to get:

N
−θ

[
∫

T
Λt(dv) e

−〈Φ,M(rs(T ,v))〉

]

= e−2βθt
E

[

e2θZs F (rs(Graft1([0, t],M))
]

= exp

{

−2βθt− 2β

∫ t

0
daNθ

[

1− e−Φ(a,rs−a(T ))+2θZs−a

]

}

= exp

{

−2βθt− 2β

∫ t

0
da

(

N
−θ

[

1− e−Φ(a,rs−a(T ))
]

+ N
θ
[

1− e2θZs−a

])

}

= exp

{

2βθt− 2β

∫ t

0
daN−θ

[

1− e−Φ(a,rs−a(T ))
]

}

,

where we used standard property of Poisson point measures for the second equality, (43) again
for the third one, and that Nθ

[

1− e2θZa
]

= u(−2θ, a) = −2θ, see (7) and (11), for the last one.
As Φ has bounded support, we get taking s large enough:

N
−θ

[
∫

T
Λt(dv) e

−〈Φ,M(T ,v)〉

]

= exp

{

2βθt− 2β

∫ t

0
daN−θ

[

1− e−Φ(a,T )
]

}

.

Then the result follows from the definition of Graft1([0, t],M), that is (65) holds for F given
by (66).

As (T , v) is a measurable function of M(T , v), see Section 7.6, we then conclude by the
monotone class theorem that Equation (65) holds for any non-negative measurable function F

defined on T
(n)
loc−K. �

Let β > 0, θ ∈ R and t > 0. Recall c̃θt = (2θ)/(1 − e−2βθt) defined in (5). We consider the
probability measure on [0, t]:

(67) ν(ds) =
2βθ e2βθs

e2βθt−1
1[0,t](s) ds = β c̃t(θ) e

−2βθ(t−s) 1[0,t](s) ds.

Let (Tn,vn) be, under P
θ,t, the planar tree, element of T

(n)
dis , defined in Section 5.4.1 associated

with the measure ν and t > 0 (recall that all the distinguished vertices from vn but the root
are at distance t from the root). The following theorem is a generalization of Theorem 5.8 when
picking n leaves uniformly at random at level t.

Theorem 5.10 (Generalized n-leaves decomposition). Let β > 0, θ ∈ R, t > 0 and n ∈ N
∗. For

every non-negative measurable function F defined on T
(n)
loc−K, we have:

(68) N
θ

[
∫

T n

Λ⊗n
t (dv∗)F (T ,v)

]

= n!
(

c̃θt

)1−n
e−2βθt

E
θ,t

[

F
(

Graftn
(

(Tn,vn),M
)

)]

,

where v = (̺,v∗) ∈ T n+1, with ̺ the root of T , and, under E
θ,t, conditionally given (Tn,vn),

M(dx,dT ) is a Poisson point measure on Tm × Tloc−K with intensity 2β dL Tn(dx)Nθ[dT ].
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We stress again that measurability of the grafting map Graftn on a discrete tree is formally

stated in Section 7.2.2, so that Graftn
(

(Tn,vn),M
)

)

is indeed a T
(n)
loc−K-valued random variable

(see in particular (114) and (115) therein). The proof of this theorem is postponed to Section 8
as it heavily relies on the topological setting developed in Section 6.

5.6. Local limit of conditioned Brownian CRT. Let β > 0, θ, α ∈ R+ and let Sα,θ be a
Poisson point measure on [0,∞) with intensity measure fint(t) dt, where:

(69) fint(t) = αβ e2βθt, t ≥ 0.

We first consider the case α > 0. Denote by (ξi, i ∈ N
∗) the increasing sequence of jumping times

of the inhomogeneous Poisson process (Nα,θ
t = Sα,θ([0, t]), t ≥ 0). We consider the T

(n)
dis -valued

random variable Tξn of Section 5.4.3 for n ≥ 1 associated with fint. In particular, recall that, for
every n ≥ 1, Tξn is a discrete tree with n distinguished leaves, where all of them are at height

ξn. Recall the construction of the infinite backbone Tske in Section 5.4.3 from the sequence of
trees Tξn . Notice its distribution depends on α and θ (and also β which is fixed). We informally

define T α,θ as the tree obtained by grafting on Tske (whose distribution depends on α and θ) a
tree Ti at point xi where, conditionally given Tske, the family ((xi,Ti), i ∈ I) is the atoms of a

Poisson point measure on Tske × Tloc−K with intensity 2βL Tske
(dx)Nθ(dT ).

For α = 0, the infinite backbone rooted tree Tske has only one branch and is identified with
(R+, 0), and the tree T 0,θ is then identified with the Kesten tree with parameter (β, θ) defined
in Section 5.2 and formally in Section 7.2.1.

Since we are considering equivalence class of trees, it is ambiguous to present Tske as a subtree
of T α,θ. This motivate the introduction of marked trees in Section 6.4; and to avoid confusion,
we shall denote Tα,θ the subtree of T α,θ; it is in the same equivalent class as Tske in Tloc−K. We
refer to Section 7.7 for a formal and more rigorous definition of the trees (T α,θ,Tα,θ). We then

define the random process (T α,θ
t , t ≥ 0) by setting:

T α,θ
t = rt(T α,θ).

Recall that the Tloc−K-valued function T is under Nθ a Lévy tree; and we write Tt = rt(T ). We
now give the main result of this section.

Proposition 5.11 (Representation of an h-transform of the CRT). Let β ∈ R
∗
+, θ, α ∈ R+ and

t > 0. For every non-negative measurable functional F on Tloc−K (or TK), we have:

E

[

F
(

T α,θ
t

)]

= N
θ
[

F (Tt) Mα,θ
t

]

.

Remark 5.12 (On the h transform of Z). By considering the size population at level t of T α,θ, the
above proposition gives a representation of the process (Zt, t ≥ 0) under Nθ[·Mα,θ] as a quadratic

CSBP with a Poisson immigration given by Tske and the grafting intensity 2βL Tske
(dx)Nθ(dT ).

As (Ñt(T
ske), t ≥ 0) is distributed as (Nα,θ

t + 1, t ≥ 0), that is, as (Sα,θ
t + 1, t ≥ 0), this provides

another proof of Proposition 4.1.

Proof of Proposition 5.11. We first consider the case α > 0. Let us fix t > 0, and write Nt for

Nα,θ
t . Recall Ñt(T ) is the number of vertices of T at level t. Since Tske = Tα,θ in Tloc−K, we

get that Ñt(T
α,θ) = Ñt(T

ske) is distributed as Nt + 1. The fact that (T α,θ
t , Ñt(T

α,θ)) is a well
defined random variable is detailed at the end of Section 7.7. We shall also consider the truncated
backbone T

α,θ
t = rt(T

α,θ) for t ≥ 0, and see T
α,θ
t as a subtree of T α,θ

t .
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Let (Tn, n ≥ 0) be the sequence of trees defined in Section 5.4.1 associated with the function:

(70) fdens(s) = β c̃t(θ) e
−2βθ(t−s) 1[0,t](s).

Recall the continuous canonical projection Π◦
n : T

(n)
K −→ TK defined by Π◦

n(t,v) = t. Set
Graft◦k = Π◦

k ◦Graftk. Then we have,

E

[

F
(

T α,θ
t

)]

=
∑

n∈N

E

[

F
(

T α,θ
t

) ∣

∣

∣
Ñt(T

α,θ) = n+ 1
]

P(Nα,θ
t = n)

=
∑

n∈N

E

[

F
(

rt
(

Graft◦n+1(T
α,θ
t ,Mt)

)

) ∣

∣

∣
Nα,θ

t = n
] (α/cθt )

n e−α/cθt

n!

=
∑

n∈N

E

[

F
(

rt
(

Graft◦n+1(Tn+1,M̃t)
)

)] (α/cθt )
n e−α/cθt

n!
,

where we used that Ñt(T
α,θ) is distributed as Nα,θ

t +1 for the first equality, that conditionally on

Ñt(T
α,θ) = n+1, the random tree T α,θ

t is distributed as rt

(

Graft◦n+1(T
α,θ
t ,Mt)

)

conditionally on

Nα,θ
t = n where, conditionally given Tt, Mt (resp. M̃t) is a Poisson point measure on T

α,θ
t ×TK

(resp. Tn+1 × TK) with intensity 2βL T
α,θ
t (dx)Nθ(dθ) (resp. 2βL Tn+1(dx)Nθ(dθ)), and that

Nα,θ
t is distributed as a Poisson process with intensity α at time 1/cθt (see Lemma 4.3) for the

second one, and that T
α,θ
t conditionally on Nα,θ

t = n is distributed as Tn+1 with fint and fdens
in (60) given by (69) and (70) (see Lemma 5.6) for the last one. Using Theorem 5.10 and that
ν(ds) in (67) is exactly fdens(s) ds with fdens given by (70), we have:

E

[

F
(

rt

(

Graft◦n+1(Tn+1,M̃t)
))]

=

(

c̃θt
)n

e2βθt

(n+ 1)!
N
θ

[
∫

T n+1

Λ
⊗(n+1)
t (dv∗)F

(

rt(T )
)

]

=

(

c̃θt
)n

e2βθt

(n+ 1)!
N
θ

[
∫

T n+1

Λ
⊗(n+1)
t (dv∗)F (Tt)

]

=

(

c̃θt
)n

e2βθt

(n+ 1)!
N
θ
[

Zn+1
t F (Tt)

]

,

as Zt = Λt(1) is the total local time of T at level t. Thus, using the definition of Mα,θ
t in (25),

we obtain:

E

[

F
(

T α,θ
t

)]

=
∑

n∈N

(

c̃θt
)n

e2βθt

(n+ 1)!
N
θ
[

Zn+1
t F (Tt)

] (α/cθt )
n e−α/cθt

n!
= N

θ
[

F (Tt) Mα,θ
t

]

.

The simpler case α = 0, which is left to the reader, can also be handled in a similar way. �

As a conclusion, we deduce the following result for α > 0.

Theorem 5.13 (Local limit of CRT in the Poisson regime). Let α, β > 0, θ ∈ R. Assume that
the function a is such that as t→ ∞ :

at ∼
{

αβ2t2, if θ = 0;

α(2θ)−2 e2β|θ|t, if θ 6= 0.

For every non-negative measurable function F on TK and s > 0, we have:

lim
t→∞

N
θ [F (Ts) |Zt = at] = E

[

F
(

T α,|θ|
s

)]

.
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Proof. Clearly, Proposition 3.4 still holds if Hs is Gs = σ(rs(T )) measurable, that is Hs =
F (Ts) with F non-negative defined on Tloc−K, and Zt is the total local time of T at level t, see
Section 5.2. We deduce that:

lim
t→∞

N
θ[F (Ts)|Zt = at] = N

|θ|
[

F (Ts)Mα,|θ|
s

]

= E

[

F (T α,|θ|
s )

]

,

where we used Proposition 5.11 for the last equality. �

Similarly, we also get the following result for α = 0. Recall that T 0,θ is a Kesten tree with
parameter (β, θ).

Theorem 5.14 (Local limit of CRT in the Kesten regime). Let β > 0, θ ∈ R. Assume that the
function a is positive such that as t→ ∞:

at =

{

o(t2), if θ = 0;

o(e2β|θ|t) if θ 6= 0.

For every non-negative measurable function F on TK and s > 0, we have:

lim
t→∞

N
θ [F (Ts) |Zt = at] = E

[

F
(

T 0,|θ|
s

)]

.

Remark 5.15. Using [33], Corollary 4.2 on the SDE for the size-population process Z, is a direct
consequence of Theorems 5.13 (for α ∈ (0,+∞)) and 5.14 (for α = 0) and Remark 5.12.

6. Set of trees, topology and measurability

In a nutshell, the main objective of this section is to define the grafting and splitting functions,
as well as the decorating and de-decorating functions in a measurable way on the set of locally
compact rooted real trees, so that we can properly define in Section 7 the random variables used
the in the previous sections. An index of all the (numerous) relevant notations of this section is
provided at the end of the document.

We keep the basic definitions and notations for rooted real trees from Section 5.1. In Section 6.1
we consider the regularity of the spanning of subtrees. In Section 6.2, we study the Polish spaces
of equivalent classes of compact (resp. locally compact) rooted trees with distinguished vertices
endowed with the Gromov-Hausdorff distance. We define various grafting measurable operations
(denoted by ⊛∗

∗) of a tree on an another tree in Section 6.3. Motivated by the fact that some
random trees are obtained as decorated backbone trees, we introduce in Section 6.4 the space of
marked trees, that is of trees with a distinguished subtree (or backbone tree). We also establish
in this section the measurability of various truncation maps. The short Section 6.5 is devoted
to special case of the backbone tree being reduced to an infinite spine (this is the case for the
Kesten tree). In Section 6.6, we consider specifically discrete trees which are spanned by n
distinguished vertices, and describe them as a set of branches indexed by all the possible subsets
of the n distinguished vertices. This description is then used in Section 6.7 to split (with a
function Splitn) a locally compact tree with n distinguished vertices as subtrees supported by
the different branches of the discrete tree spanned by the distinguished vertices. Then, we provide
in a sense the inverse construction in Section 6.8 where (with a function Graftn) we decorate the
branches of a discrete trees with subtrees. In Section 6.9, we describe a measurable procedure to
decorate a branch with a family of subtrees given by the atoms of a point measure on the set of
trees (the function Tree) and a measurable procedure to describe the decoration of a distinguished
branch of a tree (the function M) through a point measure on the set of trees.

We shall use many times Lusin’s theorem from [34] or [10, Exercise 6.10.54 p.60] which states
that, if f is a measurable function defined on a Borel subset A of a Polish space to a Polish
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space, then f(B) is a Borel set for all Borel subsets B ⊂ A if and only if the set of all values y,
such that f−1({y}) is uncountable, is at most countable.

6.1. Continuity of the map Span. Recall the definition of the set T
(n)
K of n-pointed compact

rooted tree in Subsection 5.1.2, endowed with the distance d
(n)
GH. Recall also the definition of the

tree spanned by n vertices. For a rooted n-pointed tree (T, d,v), with v = (̺, v1 . . . , vn), we
denote the corresponding spanned tree Span◦(T,v) as:

(71) Span◦(T,v) =
n
⋃

k=1

[[̺, vk]].

The tree (Span◦(T,v), d, ̺) will be simply denoted by Span◦(T,v), whereas we will denote by
Span(T,v) the rooted n-pointed tree (Span◦(T,v), d,v). For y ∈ T , we also define pv(y), the
projection of y on Span◦(T,v), as the only point of Span◦(T,v) such that:

(72) [[̺, y]] ∩ Span◦(T,v) = [[̺, pv(y)]].

Let us state a technical result which will be used several times in what follows.

Lemma 6.1. Let n ∈ N. Let (T, d,v) and (T ′, d′,v′) be two compact rooted n-pointed trees and
let R be a correspondence between them. For every (x, x′) ∈ R with x′ ∈ Span◦(T ′,v′), we have:

d(x, pv(x)) ≤
3

2
dist (R).

Proof. Let (x, x′) ∈ R with x′ ∈ Span◦(T ′,v′). First remark that there exist k, ℓ ∈ {0, . . . , n}
such that pv(x) ∈ [[vk, vℓ]] and x

′ ∈ [[v′k, v
′
ℓ]]. Indeed, let us set:

A =
{

vk : pv(x) ∈ [[̺, vk]]
}

and A′ =
{

v′k : x
′ ∈ [[̺′, v′k]]

}

.

Notice that A 6= ∅ and A′ 6= ∅. If there exists k ≥ 1 such that vk ∈ A and v′k ∈ A′, then one can
take ℓ = 0 so that vℓ = ̺ and v′ℓ = ̺′. Otherwise, take k and ℓ with k 6= ℓ such that vk ∈ A and
v′ℓ ∈ A′ . In this case, we get vℓ 6∈ A. Clearly we have pv(x) ∈ [[vk, vℓ]] and by a similar argument,
x′ ∈ [[v′k, v

′
ℓ]]. Therefore, we have:

2d
(

x, pv(x)
)

= d(x, vk) + d(x, vℓ)− d(vk, vℓ) ≤ d′(x′, v′k) + d′(x′, v′ℓ) − d′(v′k, v
′
ℓ) + 3dist (R).

Then, use that d′(x′, v′k) + d′(x′, v′ℓ)− d′(v′k, v
′
ℓ) = 0, as x′ ∈ [[v′k, v

′
ℓ]], to conclude. �

If (T,v) and (T ′,v′) belong to the same equivalence class in T
(n)
K , then so do Span(T,v) and

Span(T ′,v′) in T
(n)
K . Therefore, the function (T,v) 7→ Span(T,v) is well defined from T

(n)
K to

T
(n)
K . A first consequence of Lemma 6.1 is that this function is Lipschitz continuous; this result

will be completed in Lemma 6.7.

Lemma 6.2 (Continuity of the map Span). Let n ∈ N. The map (T,v) 7→ Span(T,v) is

4-Lipschitz continuous from T
(n)
K to T

(n)
K .

Proof. Let (T,v), (T ′,v′) be two compact rooted n-pointed trees and let R be a correspondence
between them. Let us set with obvious notations:

(73) R̃ =
{

(

x, p′
v′(x′)

)

: (x, x′) ∈ R, x ∈ Span◦(T,v)
}

∪
{

(

pv(x), x
′
)

: (x, x′) ∈ R, x′ ∈ Span◦(T ′,v′)
}

.
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Clearly, R̃ is a correspondence between Span(T,v) and Span(T ′,v′). We now compute its dis-
tortion. We consider the case x ∈ Span(T,v), y′ ∈ Span(T ′,v′) and (x, x′), (y, y′) ∈ R, so that

(x, p′
v′(x′)) and (pv(y), y

′) belong to R̃. We have:
∣

∣

∣
d
(

x, pv(y)
)

− d′
(

p′
v′(x′), y′

)

∣

∣

∣
=

∣

∣

∣
d(x, y) − d

(

y, pv(y)
)

− d′(x′, y′) + d′
(

x′, pv′(x′)
)

∣

∣

∣

≤
∣

∣d(x, y) − d′(x′, y′)
∣

∣+ d
(

y, pv(y)
)

+ d′
(

x′, pv′(x′)
)

≤ 4 dist (R),

where we used Lemma 6.1 for the last inequality. The other cases can be treated similarly. This

implies that dist (R̃) ≤ 4 dist (R) and thus, by definition of d
(n)
GH:

d
(n)
GH

(

Span(T,v),Span(T ′,v′)
)

≤ 4 d
(n)
GH

(

(T,v), (T ′,v′)
)

.

�

6.2. Set of (equivalence classes of) rooted n-pointed locally compact trees. Recall the
definition of the height H(x) = d(̺, x) of a vertex x in a rooted tree (T, d, ρ). For a rooted
n-pointed tree (T, d,v) and t ≥ 0, we define the rooted n-pointed tree T truncated at level t as
(rt(T,v), d,v) with:

(74) rt(T,v) =
{

x ∈ T : H(x) ≤ t
}

∪
{

Span◦(T,v)
}

,

and the distance on rt(T,v) is given by the restriction of the distance d. We shall simply
write rt(T,v) for (rt(T,v), d,v). (Notice that for t ≥ tT = maxi∈{0,...,n} d(̺, vi) the truncated
operations defined by (74) and (39) coincide.)

If (T,v) and (T ′,v′) are in the same equivalence class of T
(n)
K , so are rt(T,v) and rt(T

′,v′).

Thus the function rt can be seen as a map from T
(n)
K to itself. When n = 0, we shall simply write

rt(T ) for rt(T, ̺). The next lemma is about the continuity of rt.

Lemma 6.3 (Continuity of rt). Let n ∈ N. For s, t ≥ 0 and (T,v), (T ′,v′) ∈ T
(n)
K , we have:

(75) d
(n)
GH

(

rt(T,v), rt+s(T
′,v′)

)

≤ 4 d
(n)
GH

(

(T,v), (T ′,v′)
)

+ s.

The map
(

t, (T,v)
)

7→ rt(T,v) is continuous from R+ × T
(n)
K to T

(n)
K .

Proof. Let (T, d,v), (T ′, d′,v′) be two compact rooted n-pointed trees. Firstly, notice that

d
(n)
GH

(

rt+s(T,v), rt(T,v)
)

≤ s. Secondly, recall Definition (72) of the projection pv on Span◦(T,v).
For y ∈ T , we also define the projection pt(y) of y on rt(T,v) as the only point of rt(T,v) such
that:

[[̺, y]] ∩ rt(T,v) = [[̺, pt(y)]].

We first prove the analogue of Lemma 6.1. Let R be a correspondence between (T,v) and
(T ′,v′). Let (x, x′) ∈ R with x′ ∈ rt(T

′,v′). By construction, we have pt(x) ∈ [[pv(x), x]]. If x
′ ∈

Span(T ′,v′), then we deduce from Lemma 6.1 that d
(

x, pt(x)
)

≤ d
(

x, pv(x)
)

≤ 3
2dist (R). If x′ ∈

rt(T
′,v′)\Span(T ′,v′), then we have H(x′) ≤ t and thus H(x) = d(̺, x) ≤ d′(̺′, x′)+dist (R) ≤

t + dist (R), which implies that d
(

x, pt(x)
)

≤ dist (R). In conclusion, we get d
(

x, pt(x)
)

≤
3
2dist (R). Now, arguing as in the proof of Lemma 6.2, we deduce that d

(n)
GH

(

rt(T,v), rt(T
′,v)

)

≤
4 d

(n)
GH

(

(T,v), (T ′,v′)
)

. This gives the result. �
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A rooted n-pointed tree (T, d,v) is locally compact if rt(T,v) is a compact rooted tree for all
t ≥ 0. Following [6], we set for two locally compact rooted n-pointed trees (T,v) and (T ′,v′):

d
(n)
LGH((T,v), (T

′,v′)) =

∫ ∞

0
e−t dt

(

1 ∧ d(n)GH

(

rt(T,v), rt(T
′,v′)

)

)

.

Furthermore, we have that d
(n)
LGH

(

(T,v), (T ′,v′)
)

= 0 if and only if there exists an isometric
bijection from (T, d) to (T ′, d′) which preserves the distinguished vertices (this can easily be

proved with similar arguments as for [6, Proposition 5.3]). The relation d
(n)
LGH

(

(T,v), (T ′,v′)
)

= 0
defines an equivalence relation. Arguing as in [6] where n = 0, we get the following result.

Following the notations in [6], for n = 0, we simply write Tloc−K and dLGH for T
(n)
loc−K and d

(n)
LGH.

Proposition 6.4 (T
(n)
loc−K is Polish). The set T

(n)
loc−K of equivalence classes of locally compact

rooted n-pointed trees endowed with d
(n)
LGH is a metric Polish space. Furthermore, the set T

(n)
K of

equivalence classes of compact rooted n-pointed trees is an open dense subset of T
(n)
loc−K.

We first provide a short proof for the following inequalities.

Lemma 6.5 (Inequalities for d
(n)
GH and d

(n)
LGH). Let n ∈ N. For (T,v), (T ′,v′) ∈ T

(n)
K , we have:

(76) d
(n)
LGH

(

(T,v), (T ′,v′)
)

≤ 1 ∧ 4 d
(n)
GH

(

(T,v), (T ′,v)
)

.

For (T,v), (T ′,v′) ∈ T
(n)
loc−K and s, t ≥ 0, we have:

d
(n)
LGH

(

rt(T,v), rt+s(T
′,v′)

)

≤ 4 d
(n)
LGH

(

(T,v), (T ′,v′)
)

+ s,(77)

d
(n)
GH

(

rt(T,v), rt(T
′,v′)

)

≤ 4 et d
(n)
LGH

(

(T,v), (T ′,v′)
)

.(78)

The map
(

t, (T,v)
)

7→ rt(T,v) is continuous from R+ × T
(n)
loc−K to T

(n)
loc−K (and to T

(n)
K ).

Proof. Equation (76) is a direct consequence of (75) with s = 0 and the definition of d
(n)
LGH.

Equation (77) follows from similar arguments, using also that rt′ ◦ ru = ru ◦ rt′ = rt′∧u. For

t ≤ s, we have 4−1 d
(n)
GH

(

rt(T,v), rt(T
′,v′)

)

≤ d
(n)
GH

(

rs(T,v), rs(T
′,v′)

)

. Integrating with respect
to e−s ds gives (78). The continuity of the map (t, (T,v)) 7→ rt(T ) is a direct consequence
of (77). �

We deduce from (76) and (78) that all the measurable sets of (T
(n)
K , d

(n)
GH) are measurable sets of

(T
(n)
loc−K, d

(n)
LGH), and that a converging sequence in (T

(n)
K , d

(n)
GH) is also converging in (T

(n)
loc−K, d

(n)
LGH).

We also we deduce from (76) that the restriction to T
(n)
K of a continuous function defined on

(T
(n)
loc−K, d

(n)
LGH) is also continuous on (T

(n)
K , d

(n)
GH).

Removing from v some of the distinguished vertices (but the root) is continuous, see the next

lemma. For (T,v = (v0 = ̺, . . . , vn)) ∈ T
(n)
loc−K and 0 ∈ A ⊂ {0, . . . , n}, we set:

(79) Π◦,A
n (T,v) = (T,vA) with vA = (vi, i ∈ A).

For simplicity, we shall write Π◦
n for Π◦,A

n when A is reduced to {0}, so that Π◦
n corresponds to

removing all the distinguished vertices but the root.

Lemma 6.6 (Removing some distinguished vertices is continuous). Let n ∈ N and 0 ∈ A ⊂
{0, . . . , n}. The map Π◦,A

n from T
(n)
loc−K to T

(k)
loc−K, with k the cardinal of A, is 1-Lipschitz con-

tinuous.
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Proof. First, notice that the equivalence class of (T,vA) in T
(k)
loc−K does not depend of the choice

of (T,v) in its equivalence class in T
(n)
loc−K. Thus the map Π◦,A

n is well defined from T
(n)
loc−K to

T
(k)
loc−K. It is clearly 1-Lipschitz continuous since a correspondence between the trees (T,v) and

(T ′,v′) is also a correspondence between (T,vA) and (T,v′
A). �

We give an immediate consequence on the continuity of the maps Span and Span◦.

Lemma 6.7 (Continuity of the maps Span and Span◦). Let n ∈ N. The map (T,v) 7→ Span(T,v)

and (T,v) 7→ Span◦(T,v) are 4-Lipschitz continuous from T
(n)
loc−K to T

(n)
loc−K and to Tloc−K re-

spectively.

Proof. Notice that d
(n)
LGH

(

Span(T,v),Span(T ′,v)
)

= d
(n)
GH

(

Span(T,v),Span(T ′,v)
)

, and thus the

map Span from T
(n)
loc−K to T

(n)
loc−K is 4-Lipschitz continuous, thanks to Lemma 6.2. Then use

Lemma 6.6 on the continuity of Π◦
n and the fact that Span◦ = Π◦

n ◦ Span to conclude. �

Next, we check that rerooting or reordering the distinguished vertices is a continuous operation.
For a vector v = (v0, . . . , vn) and a permutation π of {0, . . . , n}, we set vπ = (vπ(0), . . . , vπ(n)).

Remark 6.8. One can see that the map (T,v) 7→ (T,vπ) is an isometry on T
(n)
K . The next lemma

is an extension to locally compact case.

Lemma 6.9 (Permuting the distinguished vertices is continuous). Let n ∈ N and let π be a

permutation on {0, . . . , n}. The map (T,v) 7→ (T,vπ) defined on T
(n)
loc−K is continuous.

Proof. First notice that if (T,v) and (T ′,v′) are rooted n-pointed trees belonging to the same

equivalence class of T
(n)
loc−K, so do (T,vπ) and (T ′,v′π). Thus, the map (T,v) 7→ (T,vπ) is indeed

well-defined on T
(n)
loc−K. We shall use the following notation: we denote by r◦t the truncation rt

when one forgets about the distinguished vertices (but the root): r◦t = Π◦
n ◦ rt. (Take care that

Π◦
n ◦ rt 6= rt ◦ Π◦

n.) To prove the continuity of the map, we consider two cases.

1st case: No rerooting, π(0) = 0. In that case, for every t ≥ 0 and every (T,v) ∈ T
(n)
loc−K, we

have that r◦t (T,v) = r◦t (T,v
π) and thus we get that:

d
(n)
LGH

(

(T,vπ), (T ′,v′π)
)

= d
(n)
LGH

(

(T,v), (T ′,v′)
)

.

This trivially implies the continuity of the map.

2nd case: With rerooting, π(k0) = 0 for some k0 6= 0. Let (T,v), (T ′,v′) ∈ T
(n)
loc−K, with

v = (v0 = ̺, . . . , vn) and v′ = (v′0 = ̺′, . . . , v′n), such that d
(n)
LGH

(

(T,v), (T ′,v′)
)

< 1/2. As vk0
and v′k0 are always in correspondence as well as ̺ and ̺′, we have, for every t ≥ 0 that:

∣

∣H(vk0)−H(v′k0)
∣

∣ ≤ 2d
(n)
GH

(

rt(T,v), rt(T
′,v′)

)

.

Multiplying by e−t and integrating yields:

1 ∧
∣

∣H(vk0)−H(v′k0)
∣

∣ ≤ 2d
(n)
LGH

(

(T,v), (T ′,v′)
)

< 1,

and hence:

H(v′k0) ≤ H(vk0) + 1.

We set h0 = H(vk0) + 1. Then, for every t ≥ 0, we have:

r◦t (T,v
π) ⊂ r◦t+h0

(T,v) and thus rt(T,v
π) = rt

(

r◦t+h0
(T,v),vπ

)

,
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and the same holds for T ′. Consequently, applying Lemma 6.3, we have:

d
(n)
LGH

(

(T,vπ), (T ′,v′π)
)

≤ 4

∫ +∞

0
dt e−t

(

1 ∧ d(n)GH

(

(

r◦t+h0
(T,v),vπ

)

,
(

r◦t+h0
(T ′,v′),v′π

)

))

= 4

∫ +∞

0
dt e−t

(

1 ∧ d(n)GH

(

rt+h0(T,v), rt+h0(T
′,v′)

)

)

≤ 4 eh0 d
(n)
LGH

(

(T,v), (T ′,v′)
)

,

where we used for the second inequality that d
(n)
GH

(

(T̃ ,vπ), (T̃ ′,v′π)
)

= d
(n)
GH

(

(T̃ ,v), (T̃ ,v′)
)

for

(T̃ ,v), (T̃ ′,v′) ∈ T
(n)
K . The continuity of the map follows. �

We shall also consider the set of trees whose root is not a branching vertex:

(80) T
(n),0
loc−K =

{

(T,v) ∈ T
(n)
loc−K : ̺ 6∈ Br(T )

}

.

We shall simply write T
0
loc−K for T

(n),0
loc−K when n = 0.

Lemma 6.10. The set T
(n),0
loc−K is a Borel subset of T

(n)
loc−K.

Proof. For a rooted tree T , we define its diameter by diam (T ) = sup{d(x, y) : x, y ∈ T}. Notice
that H(T ) ≤ diam (T ) ≤ 2H(T ). Clearly the function diam is constant on all equivalent classes

of T
(n)
K and thus of T

(n)
loc−K. If diam (T ) = 2H(T ) < +∞, then we deduce that the root is a

branching vertex. Recall Π◦
n for (79). More generally, we get that:

T
(n),0
loc−K =

⋃

n∈N∗

D1/n with Dt =
{

T ∈ T
(n)
loc−K : diam

(

rt ◦ Π◦
n(T )

)

= 2t
}

.

Since the functions diam , rt and Π◦
n are continuous, we deduce that Dt is closed, and hence

T
(n),0
loc−K is a Borel subset of Tloc−K. �

We now define the set of discrete trees. We say that a rooted n-pointed tree (T, d,v) is a
discrete tree if T is equal to the tree spanned by its distinguished vertices: T = Span◦(T,v). We
define the set of (equivalence classes of) discrete trees with at most n leaves as:

(81) T
(n)
dis =

{

(T,v) ∈ T
(n)
loc−K : (T,v) = Span(T,v)

}

.

As a direct consequence of the continuity of the map Span we get the following result.

Lemma 6.11. Let n ∈ N. The set of discrete trees T
(n)
dis is a closed subset of T

(n)
K and of T

(n)
loc−K.

We end this section with partial measurability result on the number of vertices at a given
height of a tree.

Remark 6.12. It is immediate to check that the map (T,v) 7→
(

d(vi, vj), i, j ∈ {0, . . . , n}
)

is

injective 1/2-Lipschitz continuous from (T
(n)
loc−K, d

(n)
LGH) to R

(n+1)×(n+1) endowed with the supre-
mum norm (i.e. the maximum of the distances between coordinates). It is also bi-measurable
thanks to Lusin’s theorem.

Let Tno leaf
loc−K be the set of trees with no leaves:

T
no leaf
loc−K =

{

T ∈ Tloc−K : Lf(T ) = ∅
}

.

For T ∈ T
no leaf
loc−K and t ≥ 0, let Ñt(T ) denotes the number of vertices at height t of T :

(82) Ñt(T ) = Card
(

{

x ∈ T : H(x) = t
}

)

.
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It is easy to prove (and left as an exercise to the reader) that Ñt(T ) is finite using that T is
locally compact without leaves. We have the following result.

Lemma 6.13 (Measurability of Ñt). The set Tno leaf
loc−K is a Borel subset of Tloc−K and the map

(t, T ) 7→ Ñt(T ) is measurable from R+ × T
no leaf
loc−K to N.

Proof. Let t ≥ 0 and let Θn(t) be the set of discrete trees such that all the distinguished vertices
(but the root) are leaves at height t:

Θn(t) =
{

T ∈ T
(n)
dis : d(̺, vi) = t and d(vi, vj) > 0 for all i, j ∈ {1, . . . , n}

}

.

Thanks to Remark 6.12, Θn(t) is a Borel set of T
(n)
dis ⊂ T

(n)
K ⊂ T

(n)
loc−K. For T ∈ Tloc−K, we get

that
{

T ′ ∈ T
(n)
dis : Π◦

n(T
′) = T

}

is finite. We deduce from Lusin’s theorem that Π◦
n restricted

to T
(n)
dis is bi-measurable. This implies that the set Π◦

n(Θn(t)) is a Borel subset of Tloc−K. We

deduce that the set of trees with no leaves, Tno leaf
loc−K, which is formally defined by:

T
no leaf
loc−K =

⋂

k∈N∗

⋃

n∈N

r−1
k

(

Π◦
n

(

Θn(k)
)

)

,

is a Borel subset of Tloc−K. We also get that
{

T ∈ T
no leaf
loc−K : Ñt(T ) = n

}

= r−1
t

(

Π◦
n

(

Θn(t)
)

)

; this

implies that the map Ñt is measurable. Since t 7→ Ñt(T ) is non-decreasing and left-continuous,

we deduce that the map (t, T ) 7→ Ñt(T ) is measurable from R+ × T
no leaf
loc−K to N. �

6.3. Grafting a discrete tree on another one. We define, in a slightly more general context
than Section 5.1.3, the grafting of a locally compact rooted tree at a distinguished vertex of an

another locally compact rooted tree. For (T,v) ∈ T
(n)
loc−K and (T ′,v′) ∈ T

(k)
loc−K and i ∈ {0, . . . , n},

with n, k ≥ 0, v = (v0 = ̺, . . . , vn) and v′ = (v′0 = ̺′, . . . , v′k), we define the tree T ⊛i T
′ by (40)

and the distance d⊛ by (41) with x replaced by vi, and consider the distinguished vertices
v ⊛ v′ = (v0 = ̺, . . . , vn, v

′
1, . . . , v

′
k).

Lemma 6.14 (Continuity of the grafting map). Let n, k ∈ N and i ∈ {0, . . . , n}. The map
(

(T,v), (T ′,v′)
)

7→ (T ⊛i T
′,v ⊛ v′), is continuous from T

(n)
loc−K × T

(k)
loc−K to T

(n+k)
loc−K.

Proof. Let (T1,v1), (T
′
1,v

′
1) ∈ T

(n)
loc−K and (T2,v2), (T

′
2,v

′
2) ∈ T

(k)
loc−K. Set T = T1 ⊛i T2, T

′ =

T ′
1 ⊛i T

′
2, v = v1 ⊛ v2, and v′ = v′

1 ⊛ v′
2.

First suppose that the trees are compact, that is (T1,v1), (T
′
1,v

′
1) ∈ T

(n)
K and (T2,v2), (T

′
2,v

′
2) ∈

T
(k)
K . Let R1 be a correspondence between (elements of the classes) (T1,v1) and (T ′

1,v
′
1) and

let R2 be a correspondence between (elements of the classes) (T2,v2) and (T ′
2,v

′
2). We set

R = R1 ∪ R2 with ̺2 and ̺′2 replaced respectively by vi and v′i. It defines a correspondence
between (T,v) and (T ′,v′). For every (x, x′), (y, y′) ∈ R, we have:

∣

∣d⊛(x, y)− d′⊛(x′, y′)
∣

∣ =

{

∣

∣d1(x, y)− d′1(x
′, y′)

∣

∣ ≤ dist (R1) if (x, x′), (y, y′) ∈ R1,
∣

∣d2(x, y)− d′2(x
′, y′)

∣

∣ ≤ dist (R2) if (x, x′), (y, y′) ∈ R2,

and if (x, x′) ∈ R1 and (y, y′) ∈ R2, we have:
∣

∣d⊛(x, y)− d′⊛(x′, y′)
∣

∣ =
∣

∣d1(x, vi) + d2(ρ2, y)− d′2(ρ
′
2, y

′)− d′1(x
′, v′i)

∣

∣

≤
∣

∣d1(x, vi)− d1(x
′, v′i)

∣

∣+
∣

∣d2(̺2, y)− d′2(̺
′
2, y

′)
∣

∣

≤ dist (R1) + dist (R2).
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This gives:

(83) d
(n+k)
GH

(

(T,v), (T ′,v′)
)

≤ d
(n)
GH

(

(T1,v1), (T
′
1,v

′
1)
)

+ d
(k)
GH

(

(T2,v2), (T
′
2,v

′
2)
)

.

Now consider (T1,v1), (T
′
1,v

′
1) ∈ T

(n)
loc−K and (T2,v2), (T

′
2,v

′
2) ∈ T

(k)
loc−K. Without loss of

generality we assume that H(v′i) ≥ H(vi). Remark that, for every t ≥ 0, we have, with a+ =
max(a, 0):

rt(T,v) = rt(T1,v1)⊛i r(t−H(vi))+(T2,v2).

Therefore, we have:

d
(n+k)
LGH

(

(T,v), (T ′,v′)
)

=

∫ +∞

0
dt e−t

(

1 ∧ d(n+k)
GH

(

rt(T,v), rt(T
′,v′)

)

)

=

∫ +∞

0
dt e−t

(

1 ∧ d(n+k)
GH

(

rt(T1,v1)⊛i r(t−H(vi))+(T2,v2), rt(T
′
1,v

′
1)⊛i r(t−H(v′i))+

(T ′
2,v

′
2)
))

≤
∫ +∞

0
dt e−t

(

1 ∧ d(n)GH

(

rt(T1,v1), rt(T
′
1,v

′
1)
)

)

+

∫ +∞

0
dt e−t

(

1 ∧ d(k)GH

(

r(t−H(vi))+(T2,v2), r(t−H(v′i))+
(T ′

2,v
′
2)
))

≤ d
(n)
LGH

(

(T1,v1), (T
′
1,v

′
1)
)

+ 4e−H(v′i) d
(k)
LGH

(

(T2,v2), (T
′
2,v

′
2)
)

+H(v′i)−H(vi)

≤ 3 d
(n)
LGH

(

(T1,v1), (T
′
1,v

′
1)
)

+ 4d
(k)
LGH

(

(T2,v2), (T
′
2,v

′
2)
)

,

where we used Equation (83) for the first inequality and Lemma 6.3 for the second one. This
completes the proof. �

We shall use a version of the grafting procedure where, instead of grafting on vi, we shall graft
on the branch [[̺, vi]] at height h provided that H(vi) ≥ h. Let n ∈ N and i ∈ {0, . . . , n} be given.

For h ∈ R+ and (T,v) ∈ T
(n)
K , we denote by xi,h the unique vertex of T that satisfies xi,h ∈ [[̺, vi]]

and H(xi,h) = H(vi) ∧ h. Then, the map
(

h, (T,v)
)

7→
(

T, (v, xi,h)
)

is clearly continuous from

R+ × T
(n)
loc−K to T

(n+1)
loc−K. We then define the grafting map ⊛i,h by:

(84)
(

h, (T,v), (T ′,v′)
)

7→ T ⊛i,h T
′ = (T ⊛i,h T

′,v ⊛ v′),

as the composition of

[adding the vertex xi,h]:
(

h, (T,v)
)

7→ (T, ṽ) with v = (v0 = ̺, . . . , vn) and ṽ =
(v, xi,h) = (ṽ0 = ̺, . . . , ṽn = vn, ṽn+1 = xi,h),

[grafting]:
(

(T, ṽ), (T ′,v′)
)

7→ (T ⊛n+1 T
′, ṽ ⊛ v′) and

[removing the (n+ 1)-th distinguished vertex]: (T ′′ = T ⊛n+1 T
′, ṽ⊛ v′) 7→ (T ′′,v⊛ v′).

Since all those maps are continuous, we get the following result.

Lemma 6.15 (Continuity of the grafting map ⊛i,h). Let n, k ∈ N, i ∈ {0, . . . , n}. The map
(

h, (T,v), (T ′,v′)
)

7→ T ⊛i,h T
′ is continuous from R+ × T

(n)
loc−K × T

(k)
loc−K to T

(n+k)
loc−K.
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6.4. Set of (equivalence classes of) marked trees. We shall consider trees with a marked
infinite branch; for this reason we introduce the notion of marked trees. In this part, we do not
record an order on the marked vertices as in the n-pointed trees.

We say that (T, S, d, ̺) is a marked rooted tree if (T, d, ̺) is a rooted tree and the set of marks
S is a subtree of T with the same root (that is ̺ ∈ S) endowed with the restriction of the distance
d. A correspondence between two compact marked rooted trees (T, S, d, ̺) and (T ′, S′, d′, ̺′) is a
set R ⊂ T ×T ′ such that R is a correspondence between (T, d, ̺) and (T ′, d′, ̺′) and R∩ (S×S′)
is also a correspondence between (S, d, ̺) and (S′, d′, ̺′). Then, we set:

d
[2]
GH

(

(T, S), (T ′, S′)
)

= inf
1

2
dist (R),

where the infimum is taken over all the correspondences R between (T, S, d, ̺) and (T ′, d′, S′, ̺′).

An easy extension of [6] gives that d
[2]
GH is a pseudo-distance, and that d

[2]
GH(T, T

′) = 0 if and
only if there exists an isometric one-to-one map ϕ from (T, d) to (T ′, d′) which preserves the

root and which is also one-to-one from S to S′. The relation d
[2]
GH((T, S), (T

′, S′)) = 0 defines an

equivalence relation. The set T
[2]
K of equivalence classes of compact marked rooted trees (T, S, d, ̺)

endowed with d
[2]
GH is then a metric Polish space. We simply write (T, S) for (T, S, d, ̺), and unless

specified otherwise, we shall denote also by (T, S) its equivalence class. Since

(85) dGH(T, T
′) ∨ dGH(S, S

′) ≤ d
[2]
GH((T, S), (T

′, S′)),

we deduce that the map (T, S) 7→ (T, S) from T
[2]
K to (TK)

2 (endowed with the maximum distance

on the coordinates) is continuous. For t ≥ 0, we define the truncation function r
[2]
t of a marked

rooted tree (T, S, d, ̺) as the marked rooted tree r
[2]
t (T, S) = (rt(T ), rt(S), d, ̺), where we recall

that rt(T ) = {x ∈ T : H(x) ≤ t}. If (T, S) and (T ′, S′) are in the same equivalence class of T
[2]
K ,

so are r
[2]
t (T, S) and r

[2]
t (T ′, S′); thus the function r

[2]
t can be seen as a map from T

[2]
K to itself.

Similarly to (75), we have for t, s ≥ 0 and (T, S), (T ′, S′) ∈ T
[2]
K :

(86) d
[2]
GH

(

r
[2]
t (T, S), r

[2]
t+s(T

′, S′)
)

≤ 4 d
[2]
GH

(

(T, S), (T ′, S′)
)

+ s.

This implies that the map (t, (T, S)) 7→ r
[2]
t (T, S) is continuous from R+ × T

[2]
K to T

[2]
K .

A marked rooted tree (T, S, d, ̺) is locally compact if r
[2]
t (T, S) is a compact marked rooted

tree for all t ≥ 0. Following [6], we consider for two locally compact marked rooted trees (T, S)
and (T ′, S′):

(87) d
[2]
LGH((T, S), (T

′, S′)) =

∫ ∞

0
e−t dt

(

1 ∧ d[2]GH

(

r
[2]
t (T, S), r

[2]
t (T ′, S′)

))

.

Furthermore, we have that d
[2]
LGH((T, S), (T

′, S′)) = 0 if and only if there exists an isometric one-
to-one map ϕ from (T, d) to (T ′, d′) which is one-to-one from S to S′ and preserves the roots.

Thus the relation d
[2]
LGH((T, S), (T

′, S′)) = 0 defines an equivalence relation, see [7, Proposition

5.3]. The set T
[2]
loc−K of equivalence classes of locally compact marked rooted trees (T, S, d, ̺)

endowed with d
[2]
LGH is then a metric Polish space. Furthermore, T

[2]
K is an open dense subset of

T
[2]
loc−K. Combining (85) and the definition of d

[2]
LGH, we get the elementary following result.

Lemma 6.16 (Regularity of the projection). The map P : (T, S) 7→ T from T
[2]
loc−K to Tloc−K is

1-Lipschitz.
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Similar equations to (76), (77) and (78) holds with d
(n)
LGH and d

(n)
GH replaced by d

[2]
LGH and d

[2]
GH.

For future use, let us give the equations corresponding to (77) and (78). For (T, S), (T ′, S′) ∈
T
[2]
loc−K and s, t ≥ 0, we have:

d
[2]
LGH

(

r
[2]
t (T, S), r

[2]
t+s(T

′, S′)
)

≤ 4 d
[2]
LGH

(

(T, S), (T ′, S′)
)

+ s,(88)

d
[2]
GH

(

r
[2]
t (T, S), r

[2]
t (T ′, S′)

)

≤ 4 et d
[2]
LGH

(

(T, S), (T ′, S′)
)

.(89)

We also we have the following result consequences of (86) and (88).

Lemma 6.17 (Continuity of the truncation map). Let n ∈ N. The map
(

t, (T, S)
)

7→ r
[2]
t (T, S)

is continuous from R+ × T
[2]
K to T

[2]
K and from R+ × T

[2]
loc−K to T

[2]
loc−K (and to T

[2]
K ).

We give in the next lemma an example of a T
[2]
K and T

[2]
loc−K valued function.

Lemma 6.18 (Continuity of Span◦). Let n ∈ N. The map (T, d,v) 7→
(

Π◦
n(T ),Span

◦(T,v), d, ̺
)

from T
(n)
loc−K to T

[2]
loc−K (resp. from T

(n)
K to T

[2]
K ) is injective, bi-measurable and 16-Lipschitz (resp.

4-Lipschitz) continuous.

Proof. We first consider the compact case. Let (T,v) and (T ′,v′) be rooted n-pointed compact
trees and let R be a correspondence between them. Recall the definition of pv in (72) as the

projection on Span◦(T,v) and the correspondence R̃ from (73). We set R[2] = R ∪ R̃. By

construction R[2] is a correspondence between
(

T,Span◦(T,v)
)

and
(

T ′,Span◦(T ′,v′)
)

. From

the proof of Lemma 6.2, we get that dist (R[2]) ≤ 4 dist (R). This directly implies that:

(90) d
[2]
GH

(

(

T,Span◦(T,v)
)

,
(

T ′,Span◦(T ′,v′)
)

)

≤ 4 d
(n)
GH

(

(T,v), (T ′,v′)
)

.

This gives that the map (T, d,v) 7→
(

T,Span◦(T,v), d, ̺
)

from T
(n)
K to T

[2]
K is 4-Lipschitz contin-

uous.

We now consider the locally compact case. Let (T,v) and (T ′,v′) belong to T
[2]
loc−K. We have:

d
[2]
LGH

(

(

T,Span◦(T,v)
)

,
(

T ′,Span◦(T ′,v′)
)

)

=

∫ ∞

0
e−t dt

(

1 ∧ d[2]GH

(

r
[2]
t

(

(T,Span◦(T,v)
)

, r
[2]
t

(

T ′,Span◦(T ′,v′)
)

))

≤ 4

∫ ∞

0
e−t dt

(

1 ∧ d[2]GH

(

(

rt(T,v),Span
◦(T,v)

)

,
(

rt(T
′,v′),Span◦(T ′,v′)

)

))

≤ 16

∫ ∞

0
e−t dt

(

1 ∧ d(n)GH

(

rt(T,v), rt(T
′,v′)

)

)

= 16 d
(n)
LGH

(

(T,v), (T ′,v′)
)

,

where we used (86) (with T and S replaced respectively by rt(T,v) and Span◦(T,v) and similarly
for T ′ and S′) for the first inequality, and (90) (with (T,v) replaced by rt(T,v)) as well as the
relation Span◦(rt(T,v)) = Span◦(T,v) for the second. This gives that the map (T, d,v) 7→
(T,Span◦(T,v), d, ̺) from T

(n)
loc−K to T

[2]
loc−K is 16-Lipschitz continuous.

Clearly those maps are injective and thus bi-measurable thanks to Lusin’s theorem. �

Remark 6.19. Let us stress that for (T,v) a rooted n-pointed compact tree, the rooted tree

r
[2]
t

(

T,Span◦(T,v)
)

=
(

rt(T ), rt
(

Span◦(T,v)
)

)

and the rooted tree
(

rt(T ),Span
◦
(

rt(T,v)
)

)

=
(

rt(T ),Span
◦(T,v)

)

differ if and only if t is smaller than the height of Span◦(T,v).
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Let (T, S, d, ̺) be a marked locally compact rooted tree. To simplify, we shall only write (T, S)
for (T, S, d, ̺). We define the projection of z ∈ T on S, pS(z) ∈ S, as the element of S uniquely
defined by:

[[̺, pS(z)]] = [[̺, z]] ∩ S.
Now, we consider the truncation of a marked tree at a given height, say t, of the marked subtree.
For t ≥ 0 and ε ∈ {−,+}, we set:

(91) r
[2],ε
t (T, S) =

(

r
[2],ε
t,1 (T, S), rt(S)

)

with:

r
[2],+
t,1 (T, S) =

{

x ∈ T : H
(

pS(x)
)

≤ t
}

,

r
[2],−
t,1 (T, S) =

{

x ∈ T : H
(

pS(x)
)

< t
}

∪
{

x ∈ S : H(x) = t
}

.

See Figure 3 for an instance of r
[2],ε
t (T, S), where S is an infinite branch. For ε ∈ {+,−}, we also

denote by r
[2],ε
t (T, S) the marked rooted tree

(

r
[2],ε
t (T, S), d, ̺

)

endowed with the restriction of the
distance d and the root ̺. Furthermore, if (T, S) and (T ′, S′) belong to the same equivalence class

of T
[2]
loc−K or T

[2]
K , then so do r

[2],ε
t (T, S) and r

[2],ε
t (T ′, S′). Thus the map

(

t, (T, S)
)

7→ r
[2],ε
t (T, S)

is a well defined map from R+ × T
[2]
loc−K to T

[2]
loc−K for ε ∈ {+,−}.

Figure 3. Example of restrictions of a tree T with a marked spine S (in bold).

Remark 6.20 (Examples). We give elementary examples. For ε ∈ {+,−} and t > 0, we have

that r
[2],ε
t

(

T, {̺}
)

=
(

T, {̺}
)

and r
[2],−
0

(

T, {̺}
)

=
(

{̺}, {̺}
)

as well as r
[2],+
0

(

T, {̺}
)

=
(

T, {̺}
)

.

We also have for t ∈ R+ that r
[2],ε
t (T, T ) =

(

rt(T ), rt(T )
)

.

Remark 6.21 (The map r
[2],ε
t is not continuous). Let ε ∈ {+,−} and t > 0. The function

r
[2],ε
t is not continuous from T

[2]
loc−K to itself. Indeed take t = 1 without loss of generality and

consider T = [0, 2] and Sδ = [0, δ], with δ ∈ [0, 2], ̺ = 0 and the Euclidean distance. Notice

that
(

[0, 1], [0, 1]
)

= (S1, S1) 6= (T, S1). Then we have that limδ→1 d
[2]
GH

(

(T, Sδ), (T, S1)
)

= 0,
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r
[2],ε
1 (T, Sδ) = (T, Sδ) for δ < 1, r

[2],ε
1 (T, Sδ) = (S1, S1) for δ > 1, r

[2],−
1 (T, S1) = (S1, S1) and

r
[2],+
1 (T, S1) = (T, S1).

We have the following measurability result.

Lemma 6.22 (Measurability of some truncation maps). Let ε ∈ {+,−}. The map
(

t, (T, S)
)

7→
r
[2],ε
t (T, S) is measurable from R+ × T

[2]
loc−K to T

[2]
loc−K.

Proof. Let a > 0. For a marked tree (T, S) = (T, S, d, ̺), we define its partial dilatation
Ra(T, S) = (T, S, da, ̺) as the marked tree with da(x, y) = ad

(

x, pS(x)
)

+ d
(

pS(x), pS(y)
)

+

ad
(

y, pS(y)
)

if pS(x) 6= pS(y) and da(x, y) = ad(x, y) if pS(x) = pS(y). Intuitively the distances

on T are multiplied by a outside S. The equivalence class of Ra(T, S) in T
[2]
loc−K does not depend

of the choice of (T, S) in its equivalence class in T
[2]
loc−K; so the map Ra is well defined on T

[2]
loc−K

to itself. Notice that the map Ra is continuous and one-to-one with inverse R1/a. It is immediate
to check that, for t ≥ 0:

r
[2],−
t = lim

a→0+
R1/a ◦ r[2]t ◦Ra.

This and Lemma 6.17 imply the measurability of the map
(

t, (T, S)
)

7→ r
[2],−
t (T, S). Then, notice

that lims↓t r
[2],−
s = r

[2],+
t to get the measurability of the map (t, (T, S)) 7→ r

[2],+
t (T, S). �

We end this section by proving (in a very similar way) that the map r
[2]
∗ below, which consists

in cleaning the root, that is, in erasing the bushes at the root of a marked tree is measurable.
For (T, S) = (T, S, d, ̺) a marked locally compact rooted tree, we set:

r
[2]
∗ (T, S) =

(

r
[2]
∗,1(T, S), S

)

with r
[2]
∗,1(T, S) =

{

x ∈ T : pS(x) 6= ̺
}

∪ {̺}.(92)

We also denote by r
[2]
∗ (T, S) the marked rooted tree

(

r
[2]
∗ (T, S), d, ̺

)

endowed with the restriction
of the distance d and the root ̺. Furthermore, if (T, S) and (T ′, S′) belong to the same equivalence

class of T
[2]
loc−K, then so do r

[2]
∗ (T, S) and r

[2]
∗ (T ′, S′). Thus the map r

[2]
∗ is well-defined from T

[2]
loc−K

to T
[2]
loc−K.

Lemma 6.23 (Measurability of the root cleaning map). The map r
[2]
∗ is measurable from T

[2]
loc−K

to T
[2]
loc−K.

Proof. Let a > 0. For a marked tree (T, S) = (T, S, d, ̺), we define its partial dilatation
R′

a(T, S) = (T, S, d′a, ̺) as the marked tree with d′a(x, y) = Fa(t)d(x, y) if pS(x) = pS(y) with t =
H
(

pS(x)
)

, and otherwise d′a(x, y) = Fa(t)d
(

x, pS(x)
)

+ ad
(

pS(x), pS(y)
)

+Fa(s)d
(

y, pS(y)
)

with

t = H
(

pS(x)
)

, s = H
(

pS(y)
)

, and the function Fa defined for t ≥ 0 by Fa(t) = t∧a+a−2(a−t)+ if
a ≤ 1, and Fa(t) = 1/F1/a(at) if a > 1. Notice that for x ∈ T \{̺}, we have, as a goes down to 0,

that: d′a(x, ̺) ∼ ad(x, ρ) as well as d′1/a(x, ̺) ∼ a−1d(x, ρ) if pS(x) 6= ̺; and d′a(x, ̺) ∼ a−1d(x, ρ)

as well as d′a(x, ̺) ∼ ad(x, ρ) if pS(x) = ̺.

The equivalence class of R′
a(T, S) in T

[2]
loc−K does not depend of the choice of (T, S) in its

equivalence class in T
[2]
loc−K; so the map R′

a is well defined on T
[2]
loc−K to itself. Notice that the

map R′
a is continuous and one-to-one with inverse R′

1/a. It is immediate to check that for t > 0:

r
[2]
∗ = lim

a→0+
R1/a ◦ r[2]t ◦Ra.

This and Lemma 6.17 imply the measurability of the map r
[2]
∗ . �
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6.5. Set of (equivalence classes of) trees with one infinite marked branch. Let us

denote by T0 = (̺, {̺}) the rooted tree reduced to its root. Notice that r
[2],+
0 (T, S) = {(T0,T0)}

if and only if [[̺, x]]∩S = {̺} implies x = ̺. Let T1 = ([0,∞), d, 0) be the tree consisting of only
one infinite branch. We consider the set (of equivalence classes) of locally compact rooted trees
with one infinite marked branch and its subset of trees whose root is not a branching vertex:

T
spine
loc−K =

{

(T, S) ∈ T
[2]
loc−K : S = T1 in Tloc-K

}

,(93)

T
spine,0
loc−K =

{

(T, S) ∈ T
spine
loc−K : ̺ 6∈ Br(T )

}

.(94)

Lemma 6.24. The sets T
spine
loc−K and T

spine,0
loc−K are Borel subsets of T

[2]
loc−K.

Proof. Consider the projection Π̃ : (T, S) 7→ S from T
[2]
loc−K to Tloc−K, which is by construction

1-Lipschitz and thus continuous. As Tspine
loc−K = Π̃−1

(

{T1}
)

, we get that Tspine
loc−K is Borel.

Notice that for (T, S) ∈ T
spine
loc−K, then, by definition of r

[2],+
t , we get that the root is not a

branching vertex of (T, S) if and only if r
[2],+
0 (T, S) = (T0,T0). Then, the set T

spine,0
loc−K = T

spine
loc−K∩

(r
[2],+
0 )−1

(

{

(T0,T0)
}

)

is Borel as the map r
[2],+
0 is measurable according to Lemma 6.22. �

We shall be mainly consider elements of T
spine,0
loc−K in what follows. For simplicity, we shall

write T ∗ = (T, S) for an element of Tspine,0
loc−K . For t ≥ 0 and T ∗ = (T, S) in T

spine,0
loc−K , we have

r
[2],+
t (T ∗) =

(

r
[2],+
t,1 (T ), rt(S)

)

where the rooted tree rt(S) is given by
(

[[̺, x]], ̺
)

with x ∈ S

uniquely characterized by d(̺, x) = t. We shall consider a slight modification of r
[2],+
t on T

spine,0
loc−K ,

say r̃
[2],+
t , where one keeps track only of (̺, x) instead of rt(S):

(95) r̃
[2],+
t (T ∗) =

(

r
[2],+
t,1 (T ), (̺, x)

)

.

It is left to the reader to check that r̃
[2],ε
t is defined on T

spine,0
loc−K and T

(1)
loc−K-valued. Similarly to

Lemma 6.22, we get the following result.

Lemma 6.25. The function (t, T ∗) 7→ r̃
[2],+
t (T ∗) from R+ × T

spine,0
loc−K to T

(1)
loc−K is measurable.

6.6. Another representation for discrete trees. Let n ∈ N be fixed. Let (T,v), with
v = (v0 = ̺, . . . , vn), be a locally compact rooted n-pointed tree. We will decompose the tree
Span(T,v) as a sequence of edges. To do so, we introduce some notations. Let A ⊂ {0, . . . , n}
be non-empty. We set vA = (vi, i ∈ A). We denote by vA the most recent common ancestor of
vA, which is the only element of T such that:

(96) [[̺, vA]] =
⋂

k∈A

[[̺, vk]].

Notice that v{i} = vi. Recall that for x ∈ T , Tx is the subtree of T above x and rooted

at x. Let P+
n be the set of all subsets A ⊂ {1, . . . , n} such that A 6= ∅. For A ∈ P+

n , if
TvA ∩ Span◦(T,vAc) 6= ∅ with Ac = {0, 1, 2, · · · , n} \ A, we set wA = vA, otherwise we define
wA ∈ [[̺, vA]] as the only element of T such that:

(97) [[̺,wA]] = Span◦(T,vAc) ∩ Span◦
(

T, (̺,vA)
)

.

Equivalently wA is the only element in [[̺, vA]] such that wA = vA∪{k0} for some k0 ∈ Ac and for
all k ∈ Ac, we have vA∪{k} ∈ [[̺,wA]]. Notice that w{1,...,n} = ̺. We also record the lengths of all
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the branches [[wA, vA]]:

(98) Ln(T,v) =
(

ℓA(T,v), A ∈ P+
n

)

with ℓA(T,v) = d(wA, vA).

1 3 2

a

b

Figure 4. A discrete trees spanned by the leaves {1, 2, 3}.

Table 1. Quantities of interest for the discrete tree from Figure 4.

A ⊂ P+
3 {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

vA 1 2 3 a a b a
wA a b b a a a ̺
ℓA d(a, 1) d(b, 2) d(b, 3) 0 0 d(a, b) d(̺, a)

For instance, we record the quantity of interest in Table 1 for the discrete tree spanned by the
leaves {1, 2, 3} from Figure 4. We can see that each branch of the discrete tree appears (through
their length) once and only once in L3(T,v).

Set v̂ =
(

v̂0 = ̺, (vA, A ∈ P+
n )

)

∈ T 2n , so that (T, v̂) is a locally compact rooted (2n − 1)-
pointed tree with the same root ̺ as T . Notice that all the vertices in v appear in v̂ (possibly
more than once), and that wA also appears in v̂ for all A ∈ P+

n . Recall the set of discrete
trees defined at the end of Section 6.2. The next lemma states that Ln encodes discrete trees

continuously. Set Im (Ln) ⊂ R
P+
n

+ (with R
P+
n

+ = R
2n−1
+ ) for the image of Ln.

Lemma 6.26 (Regularity of the branch lengths as a function of the tree). Let n ∈ N
∗. The map

(T,v) 7→ (T, v̂) is well defined from T
(n)
loc−K to T

(2n−1)
loc−K , and it is continuous. The function Ln is

well defined from T
(n)
loc−K to Im (Ln) ⊂ R

P+
n

+ and is continuous. Furthermore, Im (Ln) is closed

and Ln is a one-to-one bi-measurable map from T
(n)
dis to Im (Ln).

Proof. If (T,v) and (T ′,v′) belong to the same equivalence class in T
(n)
loc−K, then we deduce from

(96) and (97) that (T, v̂) and (T ′, v̂′) belong also to the same equivalence class. This implies

that the function (T,v) 7→ (T, v̂) is well defined from T
(n)
loc−K to T

(2n−1)
loc−K . We deduce from (96)

and (97) that this function is in fact continuous on T
(n)
loc−K. We also get that the function Ln is

well defined from T
(n)
loc−K to R

P+
n

+ .

We shall now precise the image of the function Ln and prove its continuity. Recall x+ =

max(x, 0) denotes the positive part of x ∈ R. We define the function L from R
(n+1)×(n+1)
+ to
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R
P+
n

+ by, for d = (dij, 0 ≤ i, j ≤ n) and A ∈ P+
n :

LA(d) =
1

4
inf

{

(

dii′ + dij′ + dji′ + djj′ − 2dij − 2di′j′
)

+
: i, j ∈ A and i′, j′ ∈ Ac

}

,

where Ac = {0, . . . , n} \ A. We also define the function D from R
P+
n

+ to R
(n+1)×(n+1)
+ by, for

ℓ = (ℓA, A ∈ P+
n ) and i, j ∈ {0, . . . , n}:

(99) Dij(ℓ) =
∑

A∈P+
n

ℓA
(

1{i∈A,j 6∈A} + 1{i 6∈A,j∈A}

)

.

The functions L and D are continuous. Consider the closed subset Q(n) of R
(n+1)×(n+1)
+ satisfying

the so-called four-point condition, that is the set of all (dij, 0 ≤ i, j ≤ n) ∈ R
(n+1)×(n+1)
+ such

that:

dij + di′j′ ≤ max(dii′ + djj′,dij′ + dji′) for all i, j, i′, j′ ∈ {0, . . . , n}.
Notice that the four-point condition is also used to characterize metric spaces which are real
trees, see [22]. Then, one can check that the function L is one-to-one from Q(n) to L(Q(n))

with inverse D. We also get that L(Q(n)) is closed (indeed if (ℓk = L(dk), k ∈ N) is a sequence

of elements of L(Q(n)) converging to a limit, say ℓ, then it is bounded and thus the sequence
(dk, k ∈ N) is also bounded. Hence there is a converging sub-sequence, and denote by d its limit

which belongs to Q(n) as this set is closed. Since L is continuous, we get that L(d) = ℓ and thus

ℓ belongs to L(Q(n)), which gives that L(Q(n)) is closed). Since for (T,v) ∈ T
(n)
loc−K, we have that

Ln(T,v) = L
(

d(vi, vj), 0 ≤ i, j ≤ n
)

, we deduce that the function Ln is continuous from T
(n)
loc−K

to L(Q(n)).

We now prove that Im (Ln) = L(Q(n)) and that Ln is one-to-one from T
(n)
dis to L(Q(n)). Let

ℓ = (ℓA, A ∈ P+
n ) ∈ L(Q(n)). Thus, there exists a sequence d = (dij, 0 ≤ i, j ≤ n) ∈ Q(n)

which satisfies the four-point condition and such that L(d) = ℓ. Since d satisfies the four-point

condition, we get that there exists a discrete tree (T, d,v) ∈ T
(n)
dis such that d(vi, vj) = dij for all

i, j ∈ {0, . . . , n}. This proves that Im (Ln) = L(Q(n)). Then use that L is one-to-one from Q(n)

to L(Q(n)) with inverse D and that two discrete trees (T, d,v) and (T ′, d′,v′) are equal in T
(n)
dis

if and only if d(vi, vj) = d′(v′i, v
′
j) for all i, j ∈ {0, . . . , n} to deduce that Ln is one-to-one from

T
(n)
dis to L(Q(n)) and thus bi-measurable thanks to Lusin’s theorem. �

6.7. The splitting operator for a pointed tree. We want now to decompose the pointed
tree (T,v) along the branches of Span◦(T,v). We keep notations from Section 6.6.

Let (T,v), with v = (v0 = ̺, . . . , vn), be a locally compact rooted n-pointed tree. Recall
Definition (72) of the projection pv on Span(T,v). For A ∈ P+

n , consider the rooted 1-pointed
tree:

(100) T̂A(T,v) =
(

TA(T,v), (̺A, vA)
)

∈ T
(1)
loc−K,

with root ρA = wA and

TA(T,v) =
{

x ∈ T : pv(x) ∈]]wA, vA]]
}

∪ {wA}.
By construction, we have that ℓA(T,v) = d(̺A, vA).

Notice that ℓA(T,v) = 0 if and only if T̂A(T,v) is reduced to its root, that is,
(

{̺A}, (̺A, ̺A)
)

.

Notice also that ℓA(T,v) > 0 implies that T̂A belongs to T
(1),0
loc−K, the set of trees in T

(1)
loc−K such
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that the root is not a branching point (see Definition (80)). We also define the rooted 1-pointed

tree T̂{0}(T,v) ∈ T
(1)
loc−K =

(

T{0}(T,v), (̺, ̺)
)

by:

T{0}(T,v) =
{

x ∈ T : ]]̺, x]] ∩ Span◦(T,v) = ∅
}

,

with root ̺ and distinguished vertex also ̺. If (T,v) and (T ′,v′) belong to the same equivalence

class in T
(n)
loc−K, then we get that T̂A(T,v) and T̂A(T

′,v′) belong also to the same equivalent class

in T
(1)
loc−K for A ∈ Pn = P+

n ∪ {{0}}. Thus, the map Splitn defined on T
(n)
loc−K by:

(101) Splitn(T,v) =
(

T̂A(T,v), A ∈ Pn

)

takes values in
(

T
(1)
loc−K

)2n

. We give an instance of the function Splitn in Figure 5.

1 3

2

Figure 5. The splitting of the left hand tree with respect to v = {̺, 1, 2, 3}. In
this instance, T{1,2} and T{1,3} are reduced to their own root.

Lemma 6.27 (Measurability of the splitting map). Let n ∈ N
∗. The map Splitn from T

(n)
loc−K to

(

T
(1)
loc−K

)2n

is measurable.

Proof. The proof is divided into three steps.

Step 1 : The map T̂{0} is measurable. Let (T,v) ∈ T
(n)
loc−K. By construction, we have that

r
[2],+
0

(

T,Span◦(T,v)
)

=
(

T{0}(T,v),T0

)

. We deduce from Lemma 6.22 on the measurability of

r
[2],ε
t , that the map (T,v) 7→ T̂{0} =

(

T{0}(T,v), (̺, ̺)
)

is measurable.

Step 2 : A measurable truncation function. Let n ≥ 1. Let (T,v) be a rooted n-pointed tree.

Recall the definition of T̂A(T,v) from (100). We set q(T,v) = T̂{1,2,...,n}(T,v) so that q is a map

from T
(n)
loc−K to T

(1)
loc−K. Recall the measurable truncation functions r

[2],+
t and r

[2]
∗ from (95) and

(92), respectively.
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We set:

q′(T,v) = r
[2]
∗ ◦ r[2],+d(̺,w{1,...,b})

(

T,Span◦(T,v)
)

.

Thanks to Lemma 6.18, the map (T,v) 7→
(

T,Span◦(T,v)
)

is continuous from T
(n)
loc−K to T

[2]
loc−K.

Thanks to Lemma 6.26 and Remark 6.12, we get that the map (T,v) 7→ d(̺,w{1,...,b}) is contin-

uous from T
(n)
loc−K to R+. Then, use Lemmas 6.22 and 6.23 on the measurability of r

[2],ε
t and r

[2]
∗

to conclude that the map q′ from T
(n)
loc−K to T

[2]
loc−K is measurable and it has the same image as

the map
(

T, (̺, v)
)

7→
(

T, [[̺, v]]
)

from T
(1)
loc−K to T

[2]
loc−K. According to Lemma 6.18 (with n = 1),

this latter map is injective and measurable. Hence the map q, which is the composition of q′ and
this latter map, is measurable.

Step 3 : Conclusion. Let A ⊂ {1, . . . , n} be non-empty. Notice that T̂A is the image of (T,v)
by: the expansion procedure (T,v) 7→ (T, v̂) from the first part of Lemma 6.26, the rerooting
at wA from Lemma 6.9, the reducing procedure from Lemma 6.6 where one forgets about all
wA′ and vA′ for A′ ⊂ Ac, and then the function q from Step 2. This implies that the function

(T,v) 7→ T̂A(T,v) is measurable from T
(n)
loc−K to T

(1)
loc−K. �

6.8. The grafting procedure. Let n ∈ N
∗. Let ℓ = (ℓA, A ∈ P+

n ) ∈ Im (Ln). According to

Lemma 6.26, there exists a unique (up to the equivalence in T
(n)
K ) rooted n-pointed discrete tree

(S,v) (that is S = Span◦(S,v)) such that Ln(S,v) = ℓ. Recall vA and wA defined in Section 6.6
for A ∈ P+

n so that:

(102) S =
⋃

A∈P+
n

[[wA, vA]],

where the sets (]]wA, vA[[, A ∈ P+
n ) are pairwise disjoint.

Recall that Tspine,0
loc−K denotes the set (of equivalence classes) of locally compact rooted trees with

one infinite marked branch such that the root is not a branching vertex. Let T ∗ = (T ∗
A, A ∈ P+

n )

be a family of elements of equivalence classes in T
spine,0
loc−K . Then, we define the tree (T,v) =

Graftn(ℓ, T
∗), where T is the tree S with that the branches ]]wA, vA]] are replaced by the trees

given by the first component of r
[2],+
ℓA

(T ∗
A) (where the second component has been identified to

[[wA, vA]]).

We now provide a more formal construction of Graftn(ℓ, T
∗). Let ℓ ∈ Im (Ln), and consider

the rooted n-pointed discrete tree (S,v) = L−1
n (ℓ) ∈ T

(n)
dis and v = (v0 = ̺, . . . , vn). Set v̂ =

(v̂0 = ̺, (vA, A ∈ P+
n )) ∈ T 2n , with vA the most recent common ancestor of (vi, i ∈ A) defined in

(96). Thus, we get that (S, v̂) ∈ T
(2n−1)
dis is a rooted (2n − 1)-pointed discrete tree with the same

root ̺ as S.

In a first step, we build by a backward induction an “increasing” sequence of discrete trees
(

(Sk,vk), k ∈ {0, . . . , 2n − 1}
)

such that (Sk,vk) ∈ T
(k)
dis with root ̺. We set (S2n−1,v2n−1) =

(S, v̂). Recall that x is a leaf of a tree T with root ̺ if x ∈ [[̺, y]] ⊂ T implies y = x. Assume
that (Sk+1,vk+1) is defined for some k ≥ 0. We consider the lexicographical order on the non-
empty sets of N defined recursively as follow: for A,B ⊂ N non empty, we write A < B: if
minA < minB; or if minA = minB and A is a singleton but not B; or if minA = minB, A
and B are not singletons and A′ < B′ where A′ = A \ {minA} and similarly for B′. Notice this
order is total. We set:

Ak+1 = max
{

A ∈ P+
n , vA ∈ vk+1 and vA is a leaf of (Sk+1,vk+1)

}

.
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Then, we define vk as the sequence vk+1 where vAk+1
has been removed (notice that the first

element of vk is still the root ̺), and we set (Sk,vk) = Span(S,vk) ∈ T
(k)
dis . We also set Bk =

max{B ∈ Pn : vB = wAk+1
}. By construction, vBk

= wAk+1
belongs to the sequence vk and is

therefore an element of v for some index, and, with a slight abuse of notation, we simply denote
this index by Bk. We have, using the grafting operation from Section 6.3 that:

(103) (Sk+1,vk+1) = (Sk,vk)⊛Bk
[0, ℓAk+1

],

where the equality holds in T
(k+1)
loc−K (and in T

(k+1)
dis ) and by convention [0, t] denotes the discrete

1-pointed tree
(

[0, t], (0, t)
)

with root 0. Notice that ℓAk+1
= 0 if and only if Span◦(S,vk) =

Span◦(S,vk+1). Eventually, notice that (S0,v0) =
(

{̺}, ̺
)

is the rooted tree reduced to its
root ̺ = v{0} and B0 = {0}. Let us stress, that in Section 6.3, the vector vk+1 is obtained by
adding the distinguished vertex ℓAk+1

of [0, ℓAk+1
] to vk. However here we identify [0, ℓAk+1

] with
[[vBk

= wAk+1
, vAk+1

]] and add the distinguished vertex vAk+1
to vk in order to obtain vk+1.

For instance, we give in Table 2 the sequences (Ak, 1 ≤ k ≤ 2n − 1) and (Bk, 0 ≤ k ≤ 2n − 2)
for the tree of Figure 4.

Table 2. The sequences (Ak+1, 0 ≤ k ≤ 6), (Bk, 0 ≤ k ≤ 6) and (ℓAk+1
, 0 ≤ k ≤

6) for the tree of Figure 4.

k 0 1 2 3 4 5 6
Ak+1 {1, 2} {1, 2, 3} {1, 3} {1} {2, 3} {2} {3}
Bk {0} {1, 3} {1, 2} {1, 2, 3} {1, 2, 3} {2, 3} {2, 3}
ℓAk+1

d(̺, a) 0 0 d(1, a) d(a, b) d(2, b) d(3, b)

Remark 6.28. The family
{

Ak, k ∈ {1, 2n−1}
}

is exactly equal to P+
n . Furthermore the sequence

ℓ ∈ Im (Ln) ⊂ R
2n−1
+ provides implicitly two unique ordered sequences A(ℓ) =

(

Ak, k ∈ {1, 2n −
1}
)

(of all elements of P+
n ) and B(ℓ) = (Bk, k ∈ {0, 2n − 2}) (of elements of Pn = P+

n ∪ {{0}}),
and an “increasing” way to built L−1

n (ℓ) recursively by adding at step k ∈ {0, 2n−2} a branch of
length ℓAk+1

(and graft it on vBk
chosen among vk). It is obvious from the construction that if

ℓ and ℓ′ are two sequences in Im (Ln) with the same zeros (that is, ℓA = 0 if and only if ℓ′A = 0),
then we have A(ℓ) = A(ℓ′) and B(ℓ) = B(ℓ′). Thus, the sets A(ℓ) and B(ℓ) are implicitly coded
by the zeros of ℓ.

In a second step, given A(ℓ) and B(ℓ) from Remark 6.28 and a sequence T ∗ = (T ∗
A, A ∈ Pn

+)

in T
spine,0
loc−K , we build by a forward induction an “increasing” sequence of marked locally compact

trees
(

(Tk,vk), k ∈ {0, . . . , 2n − 1}
)

such that (Tk,vk) belongs to T
(k)
loc−K, has root ̺, and the

components of the vector vk can be ranked as the root ̺ = v{0} and (vAi
, 1 ≤ i ≤ k). Recall also

the truncation function r̃
[2],+
t given in (95). We set (T0,v0) =

(

{̺}, ̺
)

and for k ∈ {0, 2n − 2}:

(104) (Tk+1,vk+1) = (Tk,vk)⊛Bk
r̃
[2],+
ℓAk+1

(T ∗
Ak+1

),

where the distinguished vertex of r̃
[2],+
ℓAk+1

(T ∗
Ak+1

) is identified with vAk+1
(and its root with vBk

).

Then, we set:

(105) Graftn(ℓ, T
∗) = (T2n−1,v) with v = (v{k}, 0 ≤ k ≤ n).
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Figure 6. Example of a replacement of the branch ]]w{1,...,n}, v{1,...,n}]].
Upper left: The tree S with the branch ]]w{1,...,n}, v{1,...,n}]] in bold.
Upper right: The branch ]]w{1,...,n}, v{1,...,n}]] replaced by the first component of

the marked tree r
[2],+
ℓ{1,...,n}

(T ∗
{1,...,n}).

Lower: The tree T ∗
{1,...,n} with its marked infinite branch.

It is easy to check that the equivalence class of (T2n−1,v) in T
(n)
loc−K does not depend on the

choice of T ∗ = (T ∗
A, A ∈ P+

n ) in their own equivalence class. Thus, the map Graftn defined by:

(ℓ, T ∗) 7→ Graftn(ℓ, T
∗)

is well defined from Im(Ln) ×
(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K. The main result of this section is the

measurability of the map Graftn.

Lemma 6.29 (Measurability of the grafting map). Let n ∈ N
∗. The map Graftn from Im (Ln)×

(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K is measurable.

Proof. For J ⊂ Pn
+, we write IJ =

{

ℓ ∈ Im (Ln) : ℓA = 0 if and only if A ∈ J
}

. Thus, the

closed set Im (Ln) of R
Pn
+

+ can be written as the union of IJ over all the subsets J of Pn
+.

Furthermore, the sets (IJ , J ⊂ Pn
+) are Borel sets (as Im (Ln) is a Borel set), and they are

pairwise disjoint. Thanks to Remark 6.28, the maps ℓ 7→ A(ℓ) and ℓ 7→ B(ℓ) are constant over
IJ . We deduce from Equation (105) and recursion (104), Lemma 6.14 on the continuity of the

grafting procedure and Lemma 6.25 on the measurability of (t, T ) 7→ r̃
[2],+
t (T ) that the function

Graftn from IJ×
(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K is measurable (as long as IJ is not empty). Since there is

a finite number of such sets IJ , we deduce that the function Graftn from Im (Ln)×
(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K is measurable. �

Remark 6.30. Since the map Ln is continuous one-to-one from T
(n)
dis to Im (Ln), we deduce that

the map:
(T, T ∗) 7→ Graftn

(

Ln(T ), T
∗
)
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from T
(n)
dis ×

(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K is measurable. Without ambiguity, we shall simply write

Graftn(T, T
∗) for Graftn

(

Ln(T ), T
∗
)

.

Remark 6.31. Intuitively, the maps Graftn and Splitn should be the inverse one of the other. More

precisely, we have the following result. For every (T, (̺, v)) ∈ T
(1)
loc−K, we define the tree Sp(T ) =

(T ′, S′) ∈ T
spine,0
loc−K by T ′ = Π◦

1 (T ⊛1 [0,∞)) with the marked spine S = Π◦
1 ([[̺, v]] ⊛1 [0,∞)).

Then then we have, for every (T,v) ∈ T
(n),0
loc−K (that is, the root of T is not a branching vertex,

see Definition (80)), that the following equality hold in T
(n)
loc−K:

(106) Graftn

(

Spann(T,v),Sp
(

Splitn(T,v)
)

)

= (T,v),

where Sp(TA, A ∈ Pn) = (Sp(TA), A ∈ P+
n ).

6.9. A measure associated with trees in T
spine,0
loc−K or T

(1)
loc−K. Recall T0 = ({̺}, ̺) ∈ Tloc−K

is the tree reduced to its root. We define

T
∗
loc−K = Tloc−K \ {T0}(107)

endowed with the distance:

d∗LGH(T, T
′) = dLGH(T, T

′) +
∣

∣H(T )−1 −H(T ′)−1
∣

∣ .

Clearly (T∗
loc−K, d

∗
LGH) is Polish with the topology induced by the topology on Tloc−K (as H

is continuous on Tloc−K), and for all ε > 0, the sets BT∗
loc−K

(ε) = {T ∈ T
∗
loc−K : H(T ) ≥ ε}

are closed and bounded. Furthermore, every bounded set is a subset of BT∗
loc−K

(ε) for ε > 0

small enough. Set E = R+ × T
∗
loc−K endowed with the distance dE((u, T ), (u

′, T ′)) = |u −
u′| + d∗LGH(T, T

′), so that (E, dE) is a Polish space. Every bounded set of E is a subset of
BE(ε) = [0, ε−1]×BT∗

loc−K
(ε) for ε > 0 small enough. We define M(E), the set of point measures

on E which are bounded on bounded sets, that is finite on BE(ε) for all ε > 0. We say that a
sequence (Mn, n ∈ N) of elements of M(E) converges to a limit M, if limn→∞Mn(f) = M(f)
for all continuous functions on E with bounded support. According to [13, Proposition 9.1.IV]
the space M(E) is Polish and the Borel σ-field is the smallest σ-field such that the application
M 7→ M(A) is measurable for every Borel set A of E.

We build a tree from a point measure M =
∑

i∈I δ(hi,Ti) ∈ M(E) by grafting Ti at height hi
on an infinite spine. Recall the infinite spine T1 = (R+, 0) endowed with the Euclidean distance

is an element of Tspine,0
loc−K ⊂ Tloc−K. For T ∈ Tloc−K, let (T̃ , d, ̺) denote a rooted locally compact

tree in the equivalent class T . With obvious notation, we define the tree T ′ as follow:

T ′ = T̃1 ⊔i∈I (T̃i \ {̺i}),

∀x, x′ ∈ T ′, d(x, x′) =



















di(x, x
′) if x, x′ ∈ T̃i, i ∈ I

|x− x′| if x, x′ ∈ T̃1,

di(x, ̺i) + |hi − x| if x ∈ T̃i, x
′ ∈ T̃1, i ∈ I,

di(x, ̺i) + dj(x
′, ̺j) + |hi − hj | if x ∈ T̃i, x

′ ∈ T̃j with i 6= j, i, j ∈ I,

where ⊔ denotes the disjoint union. By construction T ′ is a tree rooted at ̺ = ̺1, the root of T̃1.
Because M is finite on bounded sets of E, it is not difficult to check that T ′ is locally compact. It

is easy to see that the equivalence class of Tree(M) = (T ′, T̃1) in T
[2]
loc−K does not depend of the

choice of the representatives in the equivalence classes of T1 and Ti for i ∈ I. Hence, identifying
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Tree(M) with its equivalence class, we get that the map Tree is well defined from M(E) into

T
[2]
loc−K.

Lemma 6.32 (Regularity of the map Tree). The map Tree from M(E) to T
[2]
loc−K (or T

spine
loc−K) is

continuous.

Proof. We only give the principal arguments of the proof. Let (Mn, n ∈ N) a sequence of point
measures, elements of M(E), which converges to M. Let ε > 0 be fixed such that M(∂BE(ε)) =
0. For n large enough, we have Mn(BE(ε)) = M(BE(ε)) and the atoms of Mn in BE(ε)
converge to the atoms of M in BE(ε). Using correspondence between the representations of
the atoms, and similar arguments as in the proof of Lemma 6.14, we deduce that the distance

between Tree(Mn) and Tree(M) (in T
[2]
loc−K) is small if ε > 0 is small (to prove this statement

in detail, one can use the distance on M(E) given in [12, Equation (A2.6.1)]). This means that

limn→∞ d
[2]
LGH(Tree(Mn),Tree(M)) = 0, and thus the map Tree is continuous on T

[2]
loc−K. �

We shall now prove that the restriction of the map Tree to a subset of M(E) is injective and
bi-measurable. For this reason, we consider the subset of Tloc−K of (equivalence classes of) trees
not reduced to their root and such that the root is not a branching vertex (recall Definitions (107)
and (80) with n = 0):

(108) T
0,∗
loc−K = T

∗
loc−K ∩ T

0
loc−K.

As a direct consequence of Lemma 6.10, T0,∗
loc−K is a Borel subset of Tloc−K and thus of T∗

loc−K.
In particular, the following subset of M(E) is a Borel set (recall E = R+ × T

∗
loc−K):

(109) M̃(E) =
{

M ∈ M(E) : M
(

R+ × (T0,∗
loc−K)

c
)

= 0
}

.

We now introduce a map M from T
spine
loc−K to M(E) as follow. Let T ∗ = (T,T1) be a rooted

locally compact tree with an infinite marked spine. In particular, we have T1 ⊂ T and T1 is
equivalent to (R+, d, 0). Let (T ◦

i , i ∈ I) be the family of the connected components of T \ T1.
For every i ∈ I, let us denote by xi the MRCA of T ◦

i , that is, the unique point of T1 such that
for every x ∈ T ◦

i , [[̺, x]] ∩ T1 = [[̺, xi]]. We then set Ti = T ◦
i ∪ {xi} viewed as a locally compact

tree rooted at xi. Then, we define the point measure M(T ∗) on R+×T
∗
loc−K ⊂ R+×Tloc−K by:

(110) M(T ∗) =
∑

i∈I

δ(H(xi),Ti).

As M(T ∗) does not depends on the representatives chosen in the equivalence class of T ∗ in

T
spine
loc−K, we deduce that M : T ∗ 7→ M(T ∗) is a map from T

spine
loc−K to M(E). We now give the

main result of this section.

Proposition 6.33 (Regularity of the maps Tree and M). The map M is bi-measurable from

T
spine
loc−K to M̃(E) with M̃(E) = Im(M). The map Tree is bi-measurable from M̃(E) to T

spine
loc−K.

Furthermore, the map Tree◦M is the identity map on T
spine
loc−K and M ◦Tree is the identity map

on M̃(E).

Proof. By construction, the roots of all the trees Ti in the point measure M(T ∗) are not branch-

ing vertices, so that M(T ∗) belongs to M̃(E) ⊂ M(E). We also get by construction that
Tree(M(T ∗)) = T ∗. This implies that M is injective and thus bi-measurable thanks to Lusin’s
theorem.
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We also have by construction that M ◦ Tree(M) = M for M ∈ M̃(E). This implies that

Im(M) = M̃(E) and also that Tree restricted to M̃(E) is injective and thus bi-measurable thanks
to Lusin’s theorem. �

We extend the map T ∗ 7→ M(T ∗) to T
(1)
loc−K in the following way. For

(

T,v = (̺, v1)
)

∈ T
(1)
loc−K,

we graft the infinite spine T1 on v1 and consider the rooted locally compact tree with an infinite

marked spine Sp(T ) ∈ T
spine
loc−K defined in Remark 6.31. Then, we define M(T,v) as M(Sp(T )).

From the continuity of the grafting procedure, see Lemma 6.14 and the continuity of Π◦
1, see

Lemma 6.6, and the measurability of the map M, we deduce that the map (T,v) 7→ M(T,v),
which we still denote byM is measurable. In fact, we have the stronger following result. Consider
the set of (equivalent classes of) n-pointed rooted locally compact tree such that the root is not
a branching vertex and the distinguished vertices are not equal to the root:

(111) T
(n),0,∗
loc−K =

{

(T,v) ∈ T
(n),0
loc−K : d(̺, vi) > 0 for all i ∈ {1, . . . , n}

}

,

where v = (̺, v1, . . . , vn). According to Lemma 6.10 and Remark 6.12, the set T
(n),0,∗
loc−K is a Borel

subset of T
(n)
loc−K. Recall from (108) that the Borel set T

0,∗
loc−K is the set of (equivalence class

of) 1-pointed rooted locally compact trees such that the root is not a branching vertex and the
distinguished vertex is not equal to the root.

Corollary 6.34 (Recovering (T,v) from M(T,v)). The following map from T
(1)
loc−K to R+ ×

M(E) defined by:

(T,v) 7→
(

d(̺, v),M(T,v)
)

is measurable and its restriction to T
(1),0,∗
loc−K is injective and bi-measurable.

Proof. Set M
∗(E) =

{

M ∈ M(E) : M
(

{0} × T
∗
loc−K

)

= 0
}

. For M ∈ M
∗(E), we get that

Tree(M) belongs to T
spine,0
loc−K . Write [0, a] ∈ T

(1)
loc−K for the tree [0, a] with root 0 and distin-

guished vertex a ≥ 0. We define a map g on R+ ×M
∗(E) by g(a,M) = Graft1

(

[0, a],Tree(M)
)

.
Thanks to the continuity of the grafting procedure, see Lemma 6.29 and of the function Tree,
see Lemma 6.32, we deduce that g is continuous.

Let (T,v) ∈ T
(1),0,∗
loc−K. As the root of T is not a branching vertex, we get that M(T,v) belongs

to M
∗(E), and thus g

(

d(̺, v),M(T,v)
)

, where v = (̺, v), is well defined and in fact equal to

(T,v) thanks to (106) with n = 1. This implies that the map (T,v) 7→
(

d(̺, v),M(T,v)
)

defined

on T
(1),0,∗
loc−K is injective, and thus bi-measurable by Lusin’s theorem. �

We extend this result to n-pointed trees. Recall from (101) that, for (T,v) ∈ T
(n)
loc−K, we have

Splitn(T,v) =
(

T̂A(T,v), A ∈ Pn

)

and set MA[T,v] = M
(

T̂A(T,v)
)

for A ∈ P+
n .

Corollary 6.35 (Recovering (T,v) from the MA[T,v]). The following map from T
(n)
loc−K to

T
(n)
dis ×M(E)P

+
n defined by:

(T,v) 7→
(

Spann(T,v),
(

MA[T,v], A ∈ P+
n

)

)

is measurable and its restriction to T
(n),0,∗
loc−K is injective and bi-measurable.

Proof. Using the measurability of the functions Span from T
(n)
loc−K to T

(n)
loc−K (see Lemma 6.7),

Ln from T
(n)
loc−K to R

P+
n

+ (see Lemma 6.26), Splitn from T
(n)
loc−K to

(

T
(1)
loc−K

)2n

(see Lemma 6.27)



BROWNIAN CONTINUUM RANDOM TREES CONDITIONED TO BE LARGE 55

and the map (T,v) 7→ M(T,v) from T
(1)
loc−K to M(E) (see Corollary 6.34), we deduce that the

following map, say g1, from T
(n)
loc−K to T

(n)
loc−K ×

(

R+ ×M(E)
)P+

n is measurable:

g1 : (T,v) 7→
(

Span(T,v),
(

(ℓA(T,v),MA[T,v]), A ∈ P+
n

)

)

.

Notice that (T,v) ∈ T
(n),0,∗
loc−K implies that T̂{0} is reduced to its root. Using the measurable

functions Graftn and the map defined in Corollary 6.34, we easily deduce that g1 restricted to

T
(n),0,∗
loc−K is injective and thus bi-measurable by Lusin’s theorem. Since Ln(T,v) is also equal

to Ln

(

Span(T,v)
)

, we deduce that the following map g2, from T
(n)
loc−K to T

(n)
loc−K × M(E)P

+
n is

measurable:

g2 : (T,v) 7→
(

Span(T,v),
(

MA[T,v], A ∈ P+
n

)

)

.

Furthermore, its restriction to T
(n),0,∗
loc−K is also injective and thus bi-measurable. �

7. Formal definitions of the objects informally introduced in Section 5

In this section we check that the topological and measurability results obtained in the previous
section allows to precisely define the objects which are introduced in Section 5.

7.1. The elementary grafting operation. In Section 5.1.3, we considered the map:

(112)
(

(T, (̺, x)), (T ′, ̺′)
)

7→ (T ⊛x T
′, ρ).

Lemma 7.1. The map (112) from T
(1)
loc−K × Tloc−K to Tloc−K is continuous.

Proof. The map (112) is the composition of the continuous grafting the map from Lemma 6.14
(with n = i = 1, k = 0 and vi = x) with the map Π◦

1 defined in (79) which removes x from the
distinguished vertices, as this latter map is also continuous by Lemma 6.6. �

7.2. The grafting operation (42). In this section we give a precise definition of the grafting
procedure given in (42). Recall T0 is the tree reduced to its root and the infinite spine tree
T1 ∈ Tloc−K is identified as the set R+ with the usual Euclidean distance and root ̺ = 0. We
also recall that T∗

loc−K = Tloc−K \ {T0}, see (107).
Unfortunately, it is not possible to prove in general the regularity property of the grafting

procedure Graftn defined informally by (42). To stay close to this informal presentation, we
consider the case where n = 0 and (T,v) = T1 is just the infinite spine and the case where (T,v)

is a discrete tree, element of T
(n)
dis .

7.2.1. The spine case: (T,v) = T1. This case appear in the definition of the Kesten tree in (44).
Let M be a point measure on E = R+ × T

∗
loc−K (or equivalently on T1 × T

∗
loc−K) with the

restriction that M belongs to M(E), the set of point measures on E which are bounded on
bounded sets introduced in Section 6.9. Then the grafting procedure Graft0(T1,M) is precisely
defined by:

Graft0(T1,M) = P ◦ Tree(M),

where the reconstruction map Tree is continuous, see Lemma 6.32 and the projection map P is also
continuous, see Lemma 6.16. More precisely, seeing T1 as a distinguished spine of Graft0(T1,M),
we also have:

(Graft0(T1,M),T1) = Tree(M) in T
[2]
loc−K.

It is then elementary to check that the Kesten tree is well defined.
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Lemma 7.2 (The Kesten tree is well defined). Let M(dh,dT ) be a Poisson point measure on
R+ × Tloc−K with intensity 2β1{h>0}dhN

θ[dT ]. Then the Kesten tree T ∗ = Graft0(T1,M) is a
Tloc−K-valued random variable.

Proof. Since P◦Tree is continuous, it is enough to check that a.s. the random variable M belongs
to M(E). Keeping the notations from Section 6.9, we get:

E [M(BE(ε))] = 2βε−1
N
θ[H(T ) ≥ ε] = 2βε−1cq(ε) < +∞.

Thus the point measure M is a.s. bounded on bounded sets of E. �

Let us notice that (T ∗,T1) = Tree(M) is a T
[2]
loc−K-valued random variable, which we call the

Kesten tree with its distinguished spine; by definition (93) and (94), it is also a T
spine
loc−K-valued

and a T
spine,0
loc−K -valued random variable. Let us stress that the Kesten tree has a unique spine

(which is then distinguished) if θ > 0 and a countable number of spines if θ < 0 with only one of
them being distinguished.

7.2.2. The discrete case: (T,v) ∈ T
(n)
dis . For n ≥ 1, the construction is much more technical

(even though the case n = 1 could be still handled by hand), and we shall only consider grafting
on a discrete tree, using the theoretical background of Section 6.8. First recall the measurable
application M defined in (110) which intuitively from a locally compact rooted tree with a

marked infinite spine (T, T̃1) (in the sense of Section 6.4, with T̃1 equivalent to T1 and seen as a
subset of T ) gives a point measure recording the heights hi and the locally compact trees Ti 6= T0

such that (T, T̃1) is in the same equivalence class as the infinite spine tree T1 on which the Ti
are grafted at hi. See Proposition 6.33 for the measurable property of the application M. From
the proof of Lemma 7.2, we deduce from Proposition 6.33 that, if M(dh,dT ) is a Poisson point
measure on R+ × Tloc−K with intensity 2β1{h>0}dhN

θ[dT ], then:

M(Tree(M)) = M.

For this reason, it is natural to identify M with the T
spine,0
loc−K -valued random variable (T ∗,T1) =

Tree(M).
From Lemma 6.29 and Remark 6.30, we get that the map:

(T, T ∗) 7→ Graftn
(

T, T ∗
)

with Graftn
(

T, T ∗
)

= Graftn
(

Ln(T ), T
∗
)

from T
(n)
dis ×

(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K, which consist in replacing the branches of the discrete tree

T with truncated part of locally compact tree with a distinguished spine is measurable. Now
for A ∈ P+

n , identifying the locally compact tree with a distinguished spine T ∗
A with the point

measure MA = M(T ∗
A) allow the following identification:

Graftn

(

T, (MA)A∈P+
n

)

= Graftn
(

T, T ∗
)

.

We shall consider the case where the random variables (MA)A∈P+
n

are independent Poisson

point measure on E with the same intensity 2β1{h>0}dhN
θ[dT ]. In this case, the locally compact

n-pointed random tree Graftn

(

T, (MA)A∈P+
n

)

is informally obtained by grafting, for all i ∈ I,

on xi ∈ T the tree Ti ∈ Tloc−K, where M′(dx,dT ) =
∑

i∈I δ(xi,Ti)(dx,dT ) is, conditionally on T ,

a Poisson point measure on T × Tloc−K with intensity 2β dL T (dx)Nθ[dT ]; and we shall write:

(113) Graftn(T,M′) for Graftn

(

T, (MA)A∈P+
n

)

.
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We shall stress here that the definition of Graftn(T,M′) is abusive because the measure M′ is
not clearly defined as T is an equivalent class of trees and that furthermore there is no clear
measurability property in T , which is mandatory as we want to consider T a random variable in
the n-leaves generalized decomposition from Theorem 5.10. So in conclusion, the notation:

(114) Graftn(T,M′)

where, conditionally on T , the random measure M′ a Poisson point measure on T ×Tloc−K with
intensity 2β dL T (dx)Nθ[dT ] is an abusive shortcut for:

(115) Graftn
(

T,T ∗
)

with T ∗ = (T ′
A)A∈P+

n
independent Kesten trees with their distinguished spine.

Thanks to the measurability property of Graftn in its two arguments given in Lemma 6.29,

the discrete tree T in (115) can be a T
(n)
dis -valued random variable. In the setting of the present

paper the random variables T and T ∗ will be independent.

7.3. Planar trees (Section 5.3). Recall T
(n)
dis ⊂ T

(n)
loc−K is the closed subset of (equivalence

classes of) discrete trees, that is, compact trees with all the leaves being distinguished, see (81).

Let (t,v) ∈ T
(n)
dis with v = (v0 = ̺, . . . , vn). (Notice that the tree t has at most n leaves.) For

k ∈ {1, . . . , n − 1}, let pk+1 denote the projection of vk+1 on Span(t, (v0, . . . , vk)), that is the
only point on [[̺, vk+1]] such that [[̺, pk+1]] = [[̺, vk+1]] ∩ Span(t, (v0, . . . , vk)). The discrete tree
(t,v) is planar if pk+1 ∈ [[̺, vk]] for all k ∈ {1, . . . , n − 1}. It is easy to check this condition is
equivalent to the condition used in Section 5.3: for all x ∈ t, there exists 0 ≤ ig ≤ id ≤ n such
that vi ∈ tx if and only if ig ≤ i ≤ id.

Let T
(n)
plan ⊂ T

(n)
dis be the set of (equivalence classes of) n-pointed planar trees. It is elementary

to check that for a discrete tree (t,v) ∈ T
(n)
dis there exists a permutation (which is not unique)

π such that the discrete tree (t,vπ) is planar. Arguing as in the proof of Lemma 6.2, on get

that the map (t,v) 7→ (t,vk) with vk = (v0, . . . , vn, pk) is 5/2-Lipschitz from T
(n)
dis to T

(n)
dis . Then,

since the application (t,vk) 7→ d(̺, pk) + d(pk, vk)− d(̺, vk) is clearly continuous and the latter

quantity is zero if and only if pk ∈ [[̺, vk]], we deduce that T
(n)
plan is a closed subset of T

(n)
dis and

thus a closed subset of T
(n)
K .

7.4. Oriented grafting on discrete trees (Section 5.3). When considering planar trees in
Section 7.3, we shall also be interested in a grafting on the left or on the right of i ∈ {1, . . . , n},
which is the same as the grafting (84), but for the order of the coordinates of the vector v⊛ v′.

Recall that for h ≥ 0 and (T,v) ∈ T
(n)
dis , the vertex xi,h the unique vertex of T that satisfies

xi,h ∈ [[̺, vi]] and H(xi,h) = H(vi)∧h, see Section 6.3. For ǫ ∈ {g,d}, we define the grafting map
⊛ǫ

i,h by (45) with x = xi,h and (46), (47) and (48), using the convention stated thereafter when

ig = 0 (that is, xi,h = ̺) and id = n. Let us recall that ig = min{j ∈ {0, . . . , n} : vj ∈ Txi,h
}

(resp. id = max{j ∈ {0, . . . , n} : vj ∈ Txi,h
}) is the left (resp; right) most distinguished vertices

being a descendant of xi,h.

Lemma 7.3 (Measurability of the left/right grafting maps). Let n, k ∈ N, i ∈ {0, . . . , n} and

ǫ ∈ {g,d}. The map
(

h, (T,v), (T ′,v′)
)

7→ T ⊛ǫ
i,h T

′ is measurable from R+×T
(n)
loc−K ×T

(k)
loc−K to

T
(n+k)
loc−K.

Proof. We recall that the map
(

h, (T,v)
)

7→
(

T, (v, xi,h)
)

is continuous from R+ × T
(n)
loc−K to

T
(n+1)
loc−K, see Section 6.3, and that the grafting map ⊛i,h is continuous, see Lemma 6.15 therein.
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Thanks to the continuity of the permutation of the distinguished vertices (so that ig and id
play a similar role by considering the permutation π on {0, , . . . , n} such that π(0) = 0 and
π(j) = n + 1 − j otherwise) and of the removing of distinguished vertices (so that xi,h can
be removed from the distinguished vertices of

(

T, (v, xi,h)
)

), see Lemmas 6.9 and 6.6, we only
need to prove that the map (T,v) 7→ ig, with i = n and h = 0 or equivalently xi,h = vn,

is a measurable function from T
(n)
dis to {0, . . . , n} for n ∈ N

∗. This latter result is obvious as

{ig > k} =
⋂k

j=0{vj 6∈ Tvn} and as vj belongs to Tvn if and only if d(̺, vi) = d(̺, vn) + d(vn, vi)

and the map (T,v) 7→ (d(vi, vj), 0 ≤ i ≤ j ≤ n) is trivially continuous. �

7.5. The Growthn function from (59). Let n ∈ N
∗. We consider the function Growthn defined

in (59), which formally is written as first attaching successively a branch ([0, h], (0, h)) ∈ T
(1)
dis

simply denoted [0, h] to each distinguished vertices v∗ of (T,v), but the root, (notice that there
is then 2n + 1 distinguished vertices) and then forgetting all the n distinguished vertices v∗ so
that there are only n+ 1 distinguished vertices:

Growthn
(

(T,v), h
)

= Π◦,An

2n ◦Growth′n,n
(

(T,v), h
)

,

where Π◦,An

2n is defined in (79) with An = (0, n + 1, . . . , 2n) and for i = 1, . . . , n:

Growth′n,i
(

(T,v), h
)

= Growth′n,i−1

(

(T,v), h
)

⊛i [0, h],

with the convention Growth′n,0
(

(T,v), h
)

= (T,v). Using the continuity of the grafting procedure

(see Lemma 6.15) and the continuity of Π◦,An

2n (see Lemma 6.6), we get the following result.

Lemma 7.4 (Continuity of the map Growthn). Let n ∈ N
∗. The map Growthn is continuous

from T
(n)
loc−K × R+ to T

(n)
loc−K.

7.6. A detail of the proof of Corollary 5.9. Recall T
(1),0,∗
loc−K defined in (111) is the Borel subset

of T
(1)
loc−K of the trees such that the root is not a branching vertex and the distinguished vertex

is distinct from the root. The map g : (T,v) 7→
(

d(̺, v),M(T,v)
)

, with v = (̺, v), defined on

T
(1),0,∗
loc−K is injective and bi-measurable, see Corollary 6.34. We deduce that (T,v) is a measurable

function of (d(̺, v),M(T,v)
)

on the image of T
(1),0,∗
loc−K by g.

Furthermore the set T
(1),0,∗
loc−K is of full measure with respect to the distribution of (T ,v) under

N
θ[dT ] Λt(dv), with v = (̺, v), as Nθ-a.e. the root of T is not a branching vertex and d(̺, v) =

t > 0. Thus, as t > 0 is fixed, we get that (T ,v) is a measurable function of M(T ,v).
7.7. Construction of the continuum random tree T α,θ. Let β > 0, θ, α ∈ R+ and let Sα,θ

be a Poisson point measure on [0,∞) with intensity measure fint(t) dt and fint given by (69). We
first consider the case α > 0. Denote by (ξi, i ∈ N

∗) the increasing sequence of jumping times

of the inhomogeneous Poisson process (Nα,θ
t = Sα,θ([0, t]), t ≥ 0). We consider the T

(n)
dis -valued

random variable Tξn of Section 5.4.3 for n ≥ 1 associated to fint. In particular, recall that, for
every n ≥ 1, Tξn is a discrete tree with n distinguished leaves, where all of them are at height
ξn.

For every n ≥ 1, let T n,∗ = (TA, A ∈ P+
n ) be a family of independent Kesten trees with

parameter (β, α), independent of the tree Tξn . We define the random marked tree:

T (n) =
(

Π◦
n(T̃ (n)),Span◦(T̃ (n))

)

with T̃ (n) = Graftn (Tξn ,T n,∗) .

Thanks to Lemma 6.18 and Lemma 6.29 on the measurability of the grafting function, we

deduce that T (n) is a T
[2]
loc−K-valued random variable. The family of the distributions of the
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T
[2]
loc−K-valued random trees (T (n), n ≥ 1) is consistent in the sense that, for every n ≥ 1 and

every t ≤ ξn, r
[2]
t (T (n))

(d)
= r

[2]
t (T (n+1)). It is in particular a Cauchy sequence in T

[2]
loc−K, and we

denote by (T α,θ,Tα,θ) its limit which is thus a T
[2]
loc−K-valued random variable. By construction,

Tα,θ and Tske have the same distribution. This construction is a formal way to define the tree
obtained by grafting on the infinite discrete tree Tske (which serves as a backbone) at xi a tree
Ti where ((xi,Ti), i ∈ I) are the atoms of a Poisson point measure of intensity 2βL (dx)Nθ(dT ),
where L is the length measure on Tske.

For α = 0, we simply define (T ∅,θ,T0,θ) as the Kesten tree with parameter (β, α).

We then define the T
[2]
loc−K-valued random process

(

(T α,θ
t ,Tα,θ

t ), t ≥ 0
)

by setting:

T α,θ
t = rt(T α,θ) and T

α,θ
t = rt(T

α,θ
t ),

In particular, thanks to Lemma 6.13, the random variable (T α,θ
t , Ñt(T

α,θ)) is well defined.

8. Proof of Theorem 5.10

We prove Formula (68) by induction. For n = 1, as T1 = [0, t] (with root ̺ = 0 and
distinguished vertex v1 = t), this is Corollary 5.9.

Let k ∈ N
∗. Recall the maps Lk, from (98) in Section 6.6, and Splitk from (101) in Section 6.7.

For (T,v) ∈ T
(k)
loc−K and A ∈ P+

k , we write MA[T,v](dh,dt) for the measure M(T̂A(T,v)) on

E = R+ × T
∗
loc−K, where (T̂A(T,v), A ∈ Pk) = Splitk(T,v) and the measure M(T,v) is defined

at the end of Section 6.9. We also recall the notation (ℓA(T,v), A ∈ P+
k ) = Lk(T,v), and notice

that ℓA(T,v) = 0 implies that MA[T,v] = 0. Let n ∈ N
∗ and (ΦA, A ∈ P+

n ) be a family of
non-negative measurable functions defined on E. Let f be a bounded non-negative measurable

function defined on T
(n)
loc−K (or more simply on T

(n)
dis ). We shall first prove (68) for a non-negative

function F defined on T
(n)
loc−K of the form:

F (T,v) = f(Span(T,v)) exp
{

−
∑

A∈P+
n

〈

ΦA,MA[T,v]
〉

}

.

Let n ≥ 2 and suppose that (68) holds for n − 1. For k ∈ {1, . . . , n}, we denote by T [k] the

tree Span(T ,vk) ∈ T
(k)
loc−K, where vk = (v0 = ̺,v∗

k) and v∗
k = (v1, . . . , vk); and we simply write

M[k]
A for MA[T ,vk] and ℓ

[k]
A for ℓA(T ,vk), so that under Nθ[dT ] ℓ⊗n

t (dv∗):

F (T ,vn) = f(T [n]) exp
{

−
∑

A∈P+
n

〈

ΦA,M[n]
A

〉

}

.

We also write v
[k]
A and w

[k]
A for vA and wA from (96) and (97) with (T,v) replaced by (T [k],vk);

and thus we have ℓ
[k]
A = d(w

[k]
A , v

[k]
A ).

Similarly, under E
θ,t, for k ≥ 2, we write also M̂[k]

A for the measure M(T ∗
A) restricted to

[0, ℓA(Tk)] × T
∗
loc−K, v̂

[k]
A and ŵ

[k]
A for vA and wA from (96) and (97) with (T,v) replaced by

(Tk,vk), and ℓ̂
[k]
A = d(ŵ

[k]
A , v̂

[k]
A ) = ℓA(Tk). For n ≥ 2, simply writing Tn for (Tn,vn), we have:

F
(

Graftn(Tn,T ∗)
)

= f(Tn) exp
{

−
∑

A∈P+
n

〈

ΦA,M̂[n]
A

〉

}

.
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Using the definition of the Kesten tree via Poisson point measures and the definition of the
function Graftn, we obtain in particular that:

(116) E
θ,t
[

F
(

Graftn(Tn,T ∗)
)

]

= E
θ,t

[

F ′(Tn)
]

,

where

(117) F ′(Tn) = f(Tn) exp

{

− 2β
∑

A∈P+
n

∫ ℓ̂
[n]
A

0
daNθ

[

1− e−ΦA(a,T )
]

}

.

Recall (72). Set pn = pvn−1(vn) for the projection of vn on T [n−1]. Since N
θ-a.e. pn 6=

̺, we deduce that there exists N
θ-a.e. a unique B ∈ P+

n−1 such that pn ∈]]w[n−1]
B , v

[n−1]
B ]] ⊂

T [n−1], and write hn = d(pn, w
[n−1]
B ). Recall the function Tree, defined in Section 6.9 just before

Lemma 6.32, from M(E) into T
[2]
loc−K and the projection Π̃ from T

[2]
loc−K to Tloc−K, defined just

before Lemma 6.24, which forgets about the marked subtree defined in Section 6.5. We simply
write Tree′ = Π̃ ◦ Tree. On the one hand, we have:

T [n] = T [n−1]
⊛minB,H(pn)

[

0, t−H(pn)
]

,

ℓ
[n−1]
B = ℓ

[n]
B + ℓ

[n]
B∪{n}

,(118)

M[n−1]
B = M[n]

B∪{n} +M[n]
B (·+ hn, ·) + δ(

hn,Tree′
(

M
[n]
{n}

));

and, to fix notation, we shall write:

M[n−1]
B = MB [T ,vn−1] =

∑

i∈IBn−1

δ
h
[n−1],B
i

,T
[n−1],B
i

.

On the other hand, for A ∈ P+
n−1 and A 6= B, we have:

B ⊂ A =⇒ M[n−1]
A = M[n]

A∪{n}
, M[n]

A = 0, ℓ
[n−1]
A = ℓ

[n]
A∪{n}

and ℓ
[n]
A = 0,(119)

A ∩B ∈ {∅, A} =⇒ M[n−1]
A = M[n]

A , M[n]
A∪{n} = 0, ℓ

[n−1]
A = ℓ

[n]
A and ℓ

[n]
A∪{n} = 0,(120)

A ∩B 6∈ {∅, B,A} =⇒ M[n−1]
A = M[n]

A = M[n]
A∪{n} = 0 and ℓ

[n−1]
A = ℓ

[n]
A = ℓ

[n]
A∪{n} = 0.

(121)

It is also easy to rebuild (M[n]
A , A ∈ P+

n ) from (M[n−1]
A , A ∈ P+

n−1) and vn.

Set

Fn = N
θ

[
∫

T n

Λ⊗n
t (dv∗

n)F
(

T ,vn

)

]

.
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Considering that T [n−1],B
i is a subset of T , we have:

Fn = N
θ

[

∫

T n−1

Λ
⊗(n−1)
t (dv∗

n−1)
∑

B∈P+
n−1

∑

i∈IBn−1

∫

T
[n−1],B
i

ℓt(dvn)F (T ,vn)

]

= N
θ

[

∫

T n−1

Λ
⊗(n−1)
t (dv∗

n−1)

∑

B∈P+
n−1

∑

i∈IBn−1

ΓB

(

T [n−1],H(w
[n−1]
B ),M[n−1]

B,i ,H(w
[n−1]
B ) + h

[n−1],B
i ,T [n−1],B

i

)

× exp

{

−
∑

A∈P+
n−1\{B}

〈

1{B⊂A} ΦA∪{n} + 1{A∩B=∅ or A}ΦA,M[n−1]
A

〉

}

]

,

where the measure M[n−1]
B,i is the measure M[n−1]

B without its atom at (h
[n−1],B
i ,T [n−1],B

i ):

M[n−1]
B,i = M[n−1]

B − δ
(h

[n−1],B
i ,T

[n−1],B
i )

,

and, for (T,w) ∈ T
(n−1)
loc−K, (T

′, ̺′) ∈ Tloc−K, ν ∈ M(E) and h′ ≥ h ≥ 0:

ΓB

(

(T,w), h, ν,h′, T ′
)

= f
(

T ⊛minB,h′ [0, t− h′]
)

exp
{

−〈ΦB,h′−h, ν〉
}

×
∫

T ′

Λt−h′(dv) exp

{

−
〈

Φ{n},M
(

T ′, (̺′, v)
)

〉

}

,

with:

(122) ΦB,h′′(s, t) = 1{s≤h′′}ΦB∪{n}(s, t) + 1{s>h′′}ΦB(s− h′′, t).

For B ∈ P+
n−1, using the notation M̂[n]

B =
∑

i∈ÎBn−1
δ
(ĥ

[n−1],B
i ,T̂

[n−1],B
i )

, we set for i ∈ ÎBn−1:

M̂[n−1]
B,i = M̂[n−1]

B − δ(
ĥ
[n−1],B
i ,T̂

[n−1],B
i

).

We deduce from the induction assumption (i.e. Equation (68) with n − 1 instead of n) and
the definition of Kesten tree, with Fn = (n− 1)!(c̃θt )

2−n e−2βθtGn that:

Gn = E
θ

[

∑

B∈P+
n−1

∑

i∈ÎBn−1

ΓB

(

Tn−1,H(ŵ[n−1],B),M̂[n−1]
B,i ,H(ŵ[n−1],B) + ĥ

[n−1],B
i , T̂ [n−1],B

i

)

× exp

{

−
∑

A∈P+
n−1\{B}

〈

1{B⊂A} ΦA∪{n} + 1{A∩B=∅ or A} ΦA,M̂[n−1]
A

〉

}

]

.

Since for A ∈ P+
n−1, the random measure M(T ∗

A, ℓ̂
[n−1]
A )(dh′,dT ′) is conditionally given ℓ̂

[n−1]
A a

Poisson point measure on [0, ℓ̂
[n−1]
A ]×Tloc−K with intensity 2βdh′ Nθ[dT ′], we deduce from Palm
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formula that:

Gn = E
θ

[

∑

B∈P+
n−1

2β

∫ ℓ̂
[n−1]
B

0
dr

∫

N
θ[dT ] ΓB

(

Tn−1,H(ŵ
[n−1]
B ),M̂[n−1]

B ,H(ŵ
[n−1]
B ) + r,T

)

× exp

{

−
∑

A∈P+
n−1\{Bx}

〈

1{Bx⊂A}ΦA∪{n} + 1{A∩Bx=∅ or A} ΦA,M̂[n−1]
A

〉

}

]

= E
θ

[

2β

∫

Tn−1,t

L (dx)

∫

N
θ[dT ] ΓBx

(

Tn−1,H(ŵ
[n−1]
Bx

),M̂[n−1]
Bx

,H(x),T
)

× exp

{

−
∑

A∈P+
n−1\{Bx}

〈

1{Bx⊂A}ΦA∪{n} + 1{A∩Bx=∅ or A} ΦA,M̂[n−1]
A

〉

}

]

,

where Bx is the only element B of P+
n−1 such that x belongs to the branch B of Tn−1: x ∈

]]ŵ
[n−1]
B , v̂

[n−1]
B ]], where, as Tn−1 is discrete, we recall that Splitn−1(Tn−1) =

(

[[ŵ
[n−1]
A , v̂

[n−1]
A ]], A ∈

Pn−1

)

with Pn−1 = P+
n−1 ∪

{

{0}
}

. Using (68) again for n = 1 (or Corollary 5.9) gives:

∫

N
θ[dT ] ΓB(Tn−1,t, h, ν,h

′,T ) = f
(

Tn−1 ⊛minB,h′ [0, t − h′]
)

e−〈Φh′−h,ν〉

× exp

{

−2βθ(t− h′)− 2β

∫ t−h′

0
daNθ

[

1− e−Φ{n}(a,T )
]

}

.

With x chosen according to the length measure L (dx) on Tn−1, the tree Tn−1⊛minBx,H(x)

[

0, t−
H(x)

]

is obtained by grafting a branch of length t − H(x) at x on Tn−1 and thus will simply

be denoted as Tn−1 ⊛x

[

0, t −H(x)
]

(see also Remark 5.2 for similar notation). Therefore, we
obtain:

Gn = E
θ

[

2β

∫

Tn−1

L (dx) f
(

Tn−1 ⊛x

[

0, t−H(x)
]

)

exp
{

−2β
(

t−H(x)
)

}

× exp

{

−2β
∑

A∈P+
n−1\{Bx}

1{Bx⊂A}

∫ ℓ̂
[n−1]
A

0
daNθ

[

1− e−ΦA∪{n}(a,T )
]

}

× exp

{

−2β
∑

A∈P+
n−1\{Bx}

1{A∩Bx=∅ or A}

∫ ℓ̂
[n−1]
A

0
daNθ

[

1− e−ΦA(a,T )
]

}

× exp

{

−2β

∫ H(x)−H
(

w
[n−1]
Bx

)

0
daNθ

[

1− e−ΦBx∪{n}(a,T )
]

}

× exp

{

−2β

∫ H
(

v
[n−1]
Bx

)

−H(x)

0
daNθ

[

1− e−ΦBx (a,T )
]

}

× exp

{

−2β

∫ t−H(x)

0
daNθ

[

1− e−Φ{n}(a,T )
]

}

]

.
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We deduce from Lemma 5.1 with the density:

fdens(s) =
2βθ e2βθs

e2βθt−1
1[0,t](s) = c̃θt β e−2βθ(t−s) 1[0,t](s)

that for a non-negative measurable function F ′′ defined on T
(n)
loc−K (or T

(n)
dis ):

E
θ,t

[

2β

∫

Tn−1

L (dx)F ′′
(

Tn−1 ⊛x [0, t−H(x)]
)

e−2βθ(t−H(x))

]

= (c̃θt )
−1 nEθ,t

[

F ′′(Tn)
]

.

Using similar equations as (118), (119), (120) and (121) stated with Tn instead of (T ,vn) as
well as an obvious choice of F ′′, we obtain that:

Gn = (c̃θt )
−1 nEθ,t

[

F ′(Tn)
]

,

where F ′(Tn) is given by (117). Then, we deduce from (116) that:

Gn = (c̃θt )
−1 nEθ,t

[

F
(

Graftn(Tn,T ∗)
)

]

.

This gives:

N
θ

[
∫

T n

Λ⊗n
t (dv∗

n)F (T ,v)
]

= Fn = (n− 1)!(c̃θt )
2−n e−2βθtGn

= n!
(

c̃θt

)1−n
e−2βθt

E
θ,t
[

F
(

Graftn(Tn,T ∗)
)

]

.

Thus, Equation (68) holds for the functionals F we considered.

Recall that T
(n),0,∗
loc−K is the Borel subset of T

(n)
loc−K of the trees such that the root is not a

branching vertex and the point vertices (but the root) are distinct from the root. The map:

(T,v) 7→
(

Span(T,v),
(

MA[T,v], A ∈ P+
n

)

)

defined on T
(n),0,∗
loc−K is one-to-one onto its image and bi-measurable, see Corollary 6.35. Fur-

thermore the set T
(n),0,∗
loc−K is of full measure with respect to the distribution of (T ,v) under

N
θ[dT ] Λ⊗n

t (dv∗), with v = (̺,v∗), as N
θ-a.e. the root of T is not a branching vertex. Thus,

(T ,v) is a measurable function of
(

T [n],
(

M̂[n]
A , A ∈ P+

n

)

)

. We then conclude by the monotone

class theorem that Equation (68) holds for any non-negative measurable function F defined on

T
(n)
loc−K.
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Index of notation

Trees and pointed trees

- T , t, T, T : generic notations for trees (or
class of equiv. trees).

- d: generic distance on a tree.

- ̺: generic notation for the root of trees.

- H(x) = d(̺, x): height of the vertex x.

- H(T ): height of the tree T .

- Tx: subtree of T above the vertex x ∈ T .

- [[x, y]]: the branch joining the vertices x to y.

- T0: the rooted tree reduced to its root.

- T1: the rooted infinite branch.

- L or L T : length measure on the tree T .

- v = (v0 = ̺, v1, . . . , vn): generic notation for
distinguished vertices of a tree.

- (T,v) a (or a class of equiv. of) rooted n-
pointed tree.

- (T, S) = (T, S, d, ̺) a (or a class of equiv. of)
marked tree with ̺ ∈ S ⊂ T .

Grafting a tree on a tree

- (T ⊛i T
′,v ⊛ v′), also denoted by T ⊛i T

′, is
the tree obtained by grafting T ′ on T at the
distinguished vertex vi ∈ T and identifying
the root ̺′ of T ′ with vi. The distinguished
vertices v ⊛ v′ are the concatenation of the
distinguished vertices v of T and the distin-
guished vertices v′ (but for the root) of T ′.

- T ⊛i,h T
′, is the tree obtained by grafting T ′

on T at level h on the branch [[̺, vi]].

- T ⊛ǫ
i,h T

′, with ǫ ∈ {g,d}, same as above but

for the distinguished vertices of T ′ which are
inserted on the left (if ǫ = g) or on the right
of vi (if ǫ = d).

Spanning and truncation

- Span◦(T,v): the discrete rooted subtree of T
spanned by the distinguished vertices v.

- Span(T,v): the rooted tree (Span◦(T,v),v)
with the distinguished vertices v.

- The map Π◦
n removes the distinguished ver-

tices (but the root) from an n-pointed tree:
Π◦

n(T,v) = (T, ̺). Thus:

Π◦
n(Span(T,v)) = Span◦(T,v).

- rt(T,v): the tree T truncated at level t with
the spanned tree Span◦(T,v), and the distin-
guished vertices v.

- r
[2]
t , r

[2],+
t , r

[2],−
t , r

[2]
∗ , r̃

[2],+
t : various trunca-

tion on marked trees (see Sect. 6.4 and 6.5).

Splitting and grafting

- Ln(T,v) record the lengths of all the branches
of the subtree Span(T,v) spanned by the n
distinguished vertices:

Ln(T,v) = (ℓA(T,v), A ∈ P+
n ),

with P+
n the set of all subsets A ⊂ {1, . . . , n}

such that A 6= ∅.
- Splitn(T,v) record the subtrees of T associ-
ated to all the branches of Span(T, bv):

(123) Splitn(T,v) =
(

T̂A(T,v), A ∈ Pn

)

with Pn = P+
n ∪ {{0}}.

- Graftn(T
′, (T ∗

A, A ∈ P+
n )): replace the

branches labeled by A, of the discrete n-
pointed tree T ′ by the trees T ∗

A with a
marked infinite branch cut at the length
ℓA(T,v). (The discrete tree (T ′,v′) can be
coded/replaced by Ln(T

′,v′).)

- Intuitively, we have for (T,v) a n-pointed
tree whose root is not a branching vertex
(see (106)):

(T,v) = Graftn

(

Spann(T,v),Splitn(T,v)
)

.
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Set of (equiv. classes of) trees

- TK set of (equiv. classes of) rooted compact
trees.

- T
(n)
K set of (equiv. classes of) rooted n-

pointed compact trees; T
(0)
K = TK.

- d
(n)
GH the distance on T

(n)
K ; d

(0)
GH ≡ dGH.

- Tloc−K set of (equiv. classes of) rooted loc.
compact trees.

- T
∗
loc−K = Tloc−K\{T0}.

- T
0
loc−K subset of Tloc−K of trees whose root is

not a branching vertex.

- T
0,∗
loc−K = T

0
loc−K ∩ T

∗
loc−K.

- T
(n)
loc−K set of (equiv. classes of) rooted n-

pointed loc. compact trees; T
(0)
loc−K = Tloc−K.

- d
(n)
LGH the distance on T

(n)
loc−K; d

(0)
LGH ≡ dLGH.

- T
(n),0
loc−K subset of T

(n)
loc−K of trees whose root is

not a branching vertex.

- T
(n),∗
loc−K subset of T

(n)
loc−K of trees whose all dis-

tinguished vertices (but the root) are distinct
from the root.

- T
(n),0,∗
loc−K = T

(n),0
loc−K ∩ T

(n),∗
loc−K.

- T
(n)
dis subset of T

(n)
K ⊂ T

(n)
loc−K of discrete trees.

- T
[2]
loc−K set of (equiv. classes of) rooted loc.

compact marked trees.

- T
spine
loc−K subset of T

[2]
loc−K of marked trees (T, S)

such that S = T1, with T1 the infinite branch.

Trees with a marked branch and point
measures

- E = R+ × T
∗
loc−K.

- M(E) set of point measures on E which are
bounded on bounded sets of E.

- Tree : M(E) → T
spine
loc−K maps the measure

M =
∑

i∈I δhi,Ti
to the marked tree (T,T1),

with the rooted tree T obtained by grafting
the trees Ti on the rooted infinite branch T1

at level hi.

- M : T
spine
loc−K → M(E) maps the marked

tree (T,T1) to the measure
∑

i∈I δhi,Ti
where

Ti\{̺i} are the connected component of T\T1

with root ̺i ∈ T1 and hi = d(̺, ̺i), where ̺
is the common root of T and T1.

- M is also defined on T
(1)
loc−K.

Reconstruction results

- With Id the identity map:

Tree ◦M = Id on T
spine
loc−K,

M ◦ Tree = Id on M̃(E) = Im(M).

- (T,v) ∈ T
(1),0,∗
loc−K can be recovered in a measur-

able way from (d(̺, v),M(T,v)).

- (T,v) ∈ T
(n),0,∗
loc−K can be recov-

ered in a measurable way from
(Spann(T,v), (MA[T,v], A ∈ P+

n )), where

MA[T,v] = M(T̂A(T,v)), with T̂A(T,v) ∈
T
(1)
loc−K defined by the splitting operation

in (123).

✂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Supérieure, Ser. 4, 42(5):725–781, 2009.
[33] L. Overbeck. Martin boundaries of some branching processes. Ann. Inst. H. Poincaré Probab. Statist.,
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